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ALMOST COMPLEX 4-MANIFOLDS WITH VANISHING
FIRST CHERN CLASS

STEFAN BAUER

Abstract

An odd Seiberg-Witten invariant imposes bounds on the signa-
ture of a closed, almost complex 4-manifold with vanishing first
Chern class. This applies in particular to symplectic 4-manifolds
of Kodaira dimension zero.

1. Introduction

Vanishing of the first Chern class imposes severe restrictions on a
compact complex surface: It has to be minimal and of Kodaira dimen-
sion at most zero. The list of examples [1], p. 188, is rather short
and known to be complete ([10], [15]). It comprises in particular K3-
surfaces and tori, but also other examples found by and named after
Bombieri, Inoue, Hopf and Kodaira. Amongst these surfaces, only the
K 3-surfaces exhibit nonvanishing signature.

Including closed symplectic 4-manifolds into the consideration, a few
more examples of such with vanishing first Chern class become available
[16], [7], [8]. However, K3-surfaces remain the only known examples
with nonvanishing signature. The main result of this paper relates this
more or less empirical fact to Seiberg-Witten theory.

Theorem 1.1. Let X be a closed, almost complex 4-manifold with
vanishing first Chern class. If the dimension by (X) of a mazimal pos-
itive definite linear subspace in the second cohomology of X satisfies
by (X) > 4, then the Seiberg- Witten invariant of X is an even number.

According to a theorem of Taubes [14], the absolute value of the
Seiberg-Witten invariant of a symplectic 4-manifold is 1, as soon as
b; (X) > 2. So this theorem applies, in particular, to compact symplec-
tic 4-manifolds.

Corollary 1.2. A closed, symplectic 4-manifold X with torsion first
Chern class satisfies the inequality

by (X) < 3.
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Indeed, if the first Chern class of X is torsion, then there is a finite
covering X with vanishing first Chern class, which of course is symplec-
tic. The induced map H?(X;R) — H?(X;R) is injective.

Remark 1.3. Let X be an almost complex manifold with vanishing
first Chern class and b3 (X) < 3. Then the signature is either zero or
—16. If the signature is —16, then b5 (X) = 3 and the first Betti number
vanishes. Otherwise the Betti numbers are related through by = 1+ b;.

Indeed, according to Rochlin’s theorem the signature is divisible by
16. The assumption thus implies an upper bound 0 for the signature
of X. In the equality c% — 2¢9 = p; of characteristic classes, the second
Chern class equals the Euler class of an almost complex manifold and
the first Pontrjagin class describes three times the signature. So we
obtain an equality

0= (2c2 + p1, [X]) = 2(2 — 2by + b3 +by) +3(b3 —by)

=2
= 4(1 — by + by + sign(X),

from which we conclude sign(X) > —16 and the claimed values of the
Betti numbers.

Corollary 1.4. Let X be a closed symplectic 4-manifold with vanish-
ing first Chern class and sign(X) = —16. Then the fundamental group
of X has mo proper subgroup of finite index.

Indeed, the covering manifold X associated to a subgroup of finite
index n would be compact symplectic with ¢; (X) = 0 and with signature
sign(X) = n - sign(X).

Fundamental groups of complex surfaces are rather restricted. In
contrast, every finitely presented group can be realized as the funda-
mental group of a symplectic 4-manifold [9]. But, doesn’t any finitely
generated group contain subgroups of finite index? The amazing answer
is: No. In 1965, Richard Thompson constructed infinite simple groups
which are finitely presented; compare [5]. If such a Thompson group T
did admit a proper subgroup S of finite index, then the kernel of the
action of T on T'/S would be of finite index, contradicting simplicity.

Question 1.5. Is there a symplectic homology- K 3-surface with van-
ishing first Chern class and nontrivial fundamental group? More specif-
ically, can a Thompson group be the fundamental group of such a man-
ifold?

The fundamental group of a symplectic manifold with vanishing first
Chern class and vanishing signature has a property corresponding to
1.4: Any subgroup of finite index has rank at most 4. Of course, this
narrows the range of possible fundamental groups of such manifolds.
But still there is a considerable gap if one compares with the groups



ALMOST COMPLEX 4-MANIFOLDS 27

known to be realizable by symplectic manifolds of Kodaira dimension
Zero.

Partial results with regard to 1.2 were obtained by Morgan-Szabo [12]
under the assumption b;(X) = 0, and by Tian-Jun Li [11] under the
assumption b1 (X) < 4 (compare also [13]). The main theorem above
partially answers Question 9.7 in [3] and proves the “Betti Number
Conjecture” in [11].

The proof of the main result in the present paper is modelled on
the stable cohomotopy proof [3], Thm. 9.5, of Morgan-Szabo’s result.
The concept can be explained in a few words: In its stable homotopy
interpretation ([2], [4], [3]), the Seiberg-Witten invariant is the degree
of a monopole map. Source and target depend on index data of the
given 4-manifold in a controllable way. So it suffices to show that under
the assumptions of the theorem, there are only maps of even degree
between the relevant spaces. This follows from equivariant obstruction
theory using the fact that the vanishing of the first Chern class leads to
additional symmetry of the monopole map.

Acknowledgement. I am grateful to Katrin Tent for helpful remarks
on group theory.

2. Proof of the main theorem

Due to the vanishing of the integral first Chern class, the almost
complex 4-manifold X may be equipped with a spin structure. Fixing
such a spin structure and, furthermore, a Riemannian metric on X, gives
rise to a monopole map and a refined Seiberg-Witten invariant. A key
observation, well known in gauge theory, is that for spin-manifolds the
monopole map is actually Pin (2)-equivariant, where Pin (2) C Sp(1) C
H* is the normalizer of the maximal torus T = Sp(1) N C* in the group
Sp(1) of quaternions of unit length. As explained in [3, Ch. 9], the
refined invariant [p] is a morphism in the Pin (2)-Spanier-Whitehead
category indexed by a universe U containing only the quaternions H and
the real 1-dimensional nontrivial Pin (2)-representation V' as irreducible
summands. The monopole morphism

. + Pin (2
(1] € {T(ind D), §7" X137

is a morphism from a Thom spectrum associated to the virtual index
bundle of a family of Dirac operators to a sphere spectrum. Source and
target will be detailed in an instant.

Twisting the Dirac operator associated to the fixed spin structure
with flat T-connections defines a family of Dirac operators, parametrized
by the torus

Pic’(X) = H'(X;R)/H (X, Z).
The untwisted Dirac operator itself is Sp(1)-equivariant. This symmetry
reduces to a Pin (2)-symmetry over the given parameter space, with
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j € Pin (2) acting on Pic%(X) via multiplication by —1. So the virtual
index bundle can be represented as a difference

indD = Fy — Fy
of complex vector bundles with quaternionic structures (i.e., equipped
with complex anti-linear bundle maps j with j2 = —1 over the given

involution of the base) and thus an element in the Grothendieck group
KQ(Pic?(X)) of such bundles. Without loss of generality one can as-
sume F to be trivial F; = H® := Pic?(X) x H°. The rank of Fy as a
complex bundle is determined by index theory:

—sign(X)

8
. . Jr
The target of the monopole morphism is a sphere spectrum S (X)|

the suspension spectrum of the one-point completed b3 (X) = b-dimen-
sional vector space H'(X) of self-dual harmonic 2-forms on X. The
Pin (2)-action factors through the quotient Z/2 with j acting by multi-
plication with —1; so we may identify H+(X) = V?,

In particular, the monopole morphism is represented by a Pin (2)-
equivariant based map

w:T(Fp) A SV, gH AV

We are going to classify the relevant Pin (2)-equivariant maps from
Thom spaces to spheres as above using equivariant obstruction theory
as in [6], ch. IL1.3. For this we need a slightly more general setup:

rkckFy = + 2c¢.

Notation 2.1.

1) Let F be a complex vector bundle with quaternionic structure over
Pic%(X) and let U < W be a fixed linear inclusion of Pin (2)-
representations U =2 V% and W = H¢ 4+ V% . We will call the pair
(TF,S") consisting of the Thom space of the bundle F = F + U
and the 1-point compactification SV of W an Euler pair of index
(¢,n) with ¢ = F —H° € KQ(Pic’(X)) and n = d; —do > 0. The
virtual dimension of the Euler pair is the difference dim(TF ) —
dim(SW) = b1(X) + 2rkc(€) — n of the dimensions of the two
spaces.

2) A map f: TF — SW for an Euler pair (T'F,S") will be called
a quasipole map, if its restriction to the T-fixed point set is the
1-point completion of the projection to the fiber

Pic'(X) x U - U — W,

A quasipole map need not be Pin (2)-equivariant. The set of
homotopy classes of G-equivariant quasipole maps for subgroups
G < Pin (2) will be denoted by [TF,S"S.

The following lemma lists a few easy observations:
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Lemma 2.2. Let (TF,SV) be an Euler pair.

1) The space TF can be equipped with the structure of a Pin(2)-
equivariant CW-complex. The space SV is a sphere with a linear
Pin (2)-action.

2) The T-fized point set TET™ ¢ TF is the Thom space TU of the
trivial bundle U = Pic®(X) x U. The residual Z/2 = Pin (2)/T-
action is via multiplication by —1 on both base and fiber of U.

3) If the virtual dimension of (TF,SW) is 1 and dim(W) = w, then
the cohomology group HY(TF /T, TU;Z) is isomorphic to Z.

4) Let X be an almost complex manifold with vanishing first Chern
class. Then the monopole morphism is represented by a Pin (2)-
equivariant quasipole map on an Euler pair of indez (indD, b (X))
and virtual dimension 1.

Proof. After introducing an equivariant metric on the bundle F 4+ U,
the unit disc bundle is a manifold with a differentiable Pin (2)-action
and thus can be given an equivariant CW-structure such that the sphere
bundle is a sub-complex. Such a CW-structure induces one on the Thom
space.

If an Euler pair is of virtual dimension 1, then after replacing TU by
a tubular neighborhood, H*(TF/T,TU;Z) is the cohomology of a con-
nected and orientable manifold of dimension w relative to its boundary.

The monopole morphism for a 4-manifold is linear when restricted to
the T-fixed point sets and satisfies the defining condition of a quasipole
map, cf. [2], [3]. For an almost complex manifold, the virtual dimension
of an Euler pair with index (indD, b5 (X)) is (compare 1.2)

_ sign(X)

b1 (X) 1

— by (X) = 1.

In [3] ch.4, a degree homomorphism
hi[TF, ST —Z

was defined for an Euler pair of index (£,n) with n > 2, the sign de-
pending on a choice of orientations. The Seiberg-Witten invariant of
X is the degree of the monopole morphism. The degree in the case of
virtual dimension 1 is defined as follows: The condition n > 2 implies a
natural one-to-one correspondence

[TF, sV, = [TF/TU, "]

of T-homotopy classes of quasipole maps with T-homotopy classes of
maps which are constant on the T-fixed point set. An element f of
the latter set induces a homomorphism in reduced T-equivariant Borel
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cohomology
£ Hy(SY;Z) — Hi(TF,TU; Z) = H*(TF/T,TU; 7).

The image f*([W]) € HY(TE/T,TU;7Z) = Z of the generator [W] €
HY¥(SW:7Z) of H:(SW;Z) as a free Hz(pt; Z)-module is the degree of f.

Lemma 2.3. Let (TF, SWY be an Euler pair of index (€,n) and vir-
tual dimension 1.

1) There exists a Pin (2)-equivariant quasipole map f : TF — SW.

2) If n > 2, then the degree map h induces a bijection

[TF, sV, = Z.
3) Suppose n > 2 and both f and g are Pin (2)-equivariant quasipole

maps on the given Euler pair. Then the degrees of f and g differ
by an even mumber.

Proof. We have to show that the given map on the T-fixed points
extends to a Pin (2)-equivariant map over T'F. The obstructions to
extending over the [-skeleton of T'F are elements of obstruction groups

Hin @) (TF, TU; w1 (S))

(as defined in [6], I1.3) for £ < [. As long as | < w holds, these ob-
struction groups are zero due to the vanishing of the coefficient groups.
But the w-skeleton of TF already is the whole of TF (a free Pin (2)-
equivariant k-cell Pin (2) x DF has topological dimension k + 1). This
proves the first part of the lemma.

If n > 2, then we may use the natural one-to-one correspondence

[TF, sV, = [TF/TU, ST

to single out a nullhomotopic T-equivariant quasipole map. Associating
to a T-equivariant quasipole map f the difference cocycle to the nullho-
motopic quasipole map defines (thm I1.3.17 in [6]) a bijective map

[TF, 5", — $F(TF, TU; m(S")) = HY(TF/T, TU; 7).

Composing an isomorphism of the latter group with Z results in the
degree map h. This proves the second part of the lemma.

Obstruction theory associates to the Pin (2)-equivariant quasipole
maps f and g a difference cocycle and thus an element in the group

Pin (2) (TF,TU; 7, (S")). The image of the restriction homomorphism

Bin (2)(TE, TU; 7 (S™)) — 98(TF, TU; 7y (S™)) = Z
consists of the multiples of 2 = |Pin (2)/T| by [6], Prop. 4.9. q.e.d.

The proof of the theorem uses the Pin (2)-equivariant Hopf map 7 :
SH _, §V* Suppose the action of Pin (2) on H is by left multiplication,
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and consider V? C H embedded as purely imaginary quaternions. Then
the Hopf map is given by n(h) = hih.

We are now ready to finish the proof of the main theorem:

Proof. Let X be an almost complex manifold with vanishing first
Chern class and b = b3 (X) > 4. We will show that the degree of every
the Pin (2)-equivariant quasipole map and thus the degree of the mono-
pole morphism is even. Because of the last part of 2.3, it suffices to
exhibit a Pin (2)-equivariant quasipole map of even degree on an Euler
pair of index (indD,b). For this we choose an Euler pair (T'F,SW) of
index (indD — H,b — 4). According to the first part of 2.3, there exists
a Pin (2)-equivariant quasipole map f : TF — SW. The map f A n
then is a Pin (2)-equivariant quasipole map T(F +H) — SW+V*_ Com-
posed with the inclusion SWV* < §WHV* we get, a Pin (2)-equivariant
quasipole map of degree zero on the Euler pair (T(ﬁ' + H), S W+V4) of
index (indD, b). q.e.d.
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Note added in proof: Four months after submission of the present paper
to JDG, I got notice of a preprint being circulated in which T.J. Li gives a proof
of 1.1 and of 1.2. The preprint was published within two months. Its reference
is:

T.J. Li, Quaternionic bundles and Betti numbers of symplectic 4-manifolds with
Kodaira dimension zero, IMRN, Vol. 2006, Article ID 37385, 1-28, MR 2264722.
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