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ON THE UNIRULEDNESS OF STABLE BASE LOCI

Shigeharu Takayama

Abstract

We discuss the uniruledness of various base loci of linear sys-
tems related to the canonical divisor. In particular we prove that
the stable base locus of the canonical divisor of a smooth projec-
tive variety of general type is covered by rational curves.

1. Introduction

The aim of this paper is to propose a way to study the stable base
loci and its variants for divisors on smooth projective varieties. The
stable base locus of a divisor D is the Zariski-closed subset SBs (D) =
⋂

m≥1 Bs |mD|, where Bs |mD| denotes the base locus of the linear

system |mD|. The ample locus is the Zariski-open subset Amp (D),
where the linear system |mD| gives an embedding around every point
of Amp (D) for a sufficiently large m. The non-ample locus NAmp (D)
is the complement of Amp (D). This can be written as NAmp (D) =
⋂

SBs (mD − A) for any fixed ample divisor A, where the intersec-
tion is taken over all positive integers m and the intersection does not
depend on the choice of A. The non-nef locus is similary defined by
NNef (D) :=

⋃

SBs (mD + A). The non-nef locus NNef (D) is empty if
and only if D is nef. Nonetheless, this terminology is misleading, be-
cause we are not saying that x ∈ NNef (D) if and only if there exists
a curve C ∋ x with D · C < 0. It is not known whether NNef (D) is
Zariski-closed, but it is at most a countable union of irreducible subva-
rieties. We obtain immediately that NNef (D) ⊂ SBs (D) ⊂ NAmp (D).
The main application is as follows:

Theorem 1.1. Let X be a smooth projective variety of general type.

Then every irreducible component of (i) SBs (KX), (ii) NAmp (KX), or

(iii) NNef (KX) of the canonical divisor KX is uniruled.

Theorem 1.2. Let X be a smooth projective variety with a nu-

merically trivial canonical divisor, and let L be a big divisor on X.

Then every irreducible component of (i) SBs (L), (ii) NAmp (L), or (iii)
NNef (L) is uniruled.
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Theorem 1.3. Let X be a smooth projective variety with a

big anti-canonical divisor −KX . Then every irreducible compo-

nent of (i) SBs (−KX), or (ii) NAmp (−KX), which is not contained

in NNef (−KX), is uniruled.

In the last theorem, we note that some irreducible component of
NNef (−KX) can be non-uniruled in general (see Example 6.4). We
will also discuss refinements of these theorems, and the uniruledness of
subvarieties defined by asymptotic multiplier ideal sheaves, for example
by J (c · ‖KX‖) (see §6).

In case when the relevant big divisor in above theorems (KX , L and
−KX respectively) is moreover nef, then the divisor is semi-ample by
Kawamata-Shokurov’s base point freeness theorem ([13, §3-1]). Hence
we are only concerned with the non-ample locus. In that case, the
uniruledness is already known by Kawamata as a special case of [11,
Theorem 2].

This paper is motivated by a conjecture of Ueno (see [19, p. 372]),
which predicts that every divisorial component of SBs (KX) in a case
when KX is big has negative Kodaira dimension. According to the
minimal model program ([13]), Ueno’s conjecture can be rephrased as
the uniruledness of the divisorial components of SBs (KX). Talking
about the uniruledness, it is known that a smooth projective variety
is uniruled if and only if the canonical divisor is not pseudo-effective.
This is a consequence of a numerical criterion of uniruledness due to
Miyaoka and Mori [15], and of a numerical characterization of pseudo-
effectivity of divisors due to Boucksom, Demailly, Paun and Peternell
[3]. We are also motivated by related results by Wilson [19, 3.3] [20,
2.3], Kawamata [11], Huybrechts [9, 5.2] (see [2, §4]), and by Boucksom
[2, Proposition 4.7] and so on.

As for the technical side, the key to this paper is an extension state-
ment from [18, §4] (§3). Let us explain it very briefly. Let L be a
big divisor on X, and let V be an irreducible component of SBs (L).
After taking a multiple of L, we obtain a decomposition ℓL∼Q A + D
into an ample Q-divisor A and an effective Q-divisor D such that V is
a “maximal” log-canonical center for the pair (X, D) (§4). By Kawa-
mata’s subadjunction theorem [12], (KX + D)|V dominates KV , and
hence (KX +ℓL)|V dominates KV +A|V . Then the extension statement
[18, §4] shows that a subsystem of |m(KX + ℓL)|V |, which is something
like |m(KV + A|V )|, can be extended to X for large m. Hence if KV is
pseudo-effective, we see KV + A|V is big, and then V is not contained
in SBs (KX + ℓL). We need to consider the balance of SBs (L) and
SBs (KX + ℓL). For example, in case L = KX , V is contained in both
SBs (L) and SBs (KX + ℓL). Then this concludes that KV can not be
pseudo-effective, and hence V is uniruled by [15] and [3]. For this pos-
sible application of the extension statement, we are inspired by a paper
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by Hacon and McKernan [8]. They apply their extension statement [7,
3.17] to the study of the loci where “−KX is relatively big”.

Acknowledgement. The author would like to thank the referee for his
or her comments to improve the presentation of this paper. Moreover,
some improvements of statements in §4 are inspired by the referee’s
comments.

2. Stable Base Locus and Asymptotic Invariant

We recall some basic notions, fix some notations, and also make a
remark on a structure of non-ample loci. We work over the complex
number field.

2.1. Stable base locus and its variant.

(1) We refer [5, §1] and [17, III, V §1] for general properties of
SBs (D), NAmp (D) and NNef (D). In [5], these are denoted by B(D) =
SBs (D),B+(D) = NAmp (D) and B−(D) = NNef (D). These base loci
can be defined not only for integral divisors, but also any Q-divisors.
(We will not use these for R-divisors.) Since NNef (D) might be a count-
able union of irreducible subvarieties ([5, 1.19]), we might say that an
irreducible subvariety V is an irreducible component of NNef (D), if V
is maximal among all irreducible subvarieties contained in NNef (D).

(2) We make a remark on non-ample loci. To state a result, we need
to prepare some notations. Let L be a big divisor on a smooth projective
variety X, and let m be a positive integer such that Bs |mL| 6= X. Let
Φm = Φ|mL| : X 99K PN be the rational map associated to |mL|, and

denote by Y ⊂ PN the Zariski closure of the image Φm(X \ Bs |mL|).
We take a birational morphism µ : X ′ −→ X from a smooth projective
variety X ′ such that µ is biregular over X \ Bs |mL|, and µ∗(|mL|) =
|L′| + E with a base point free linear system |L′| and with the fixed
component E. We have an induced morphism Φ′

m : X ′ −→ Y ⊂ PN

such that Φ′
m = Φm◦µ on µ−1(X \Bs |mL|) and Φ′

m
∗OPN (1) = OX′(L′).

We take the Stein factorization of Φ′
m : X ′ −→ Y into Ψm : X ′ −→ Y ′

and ν : Y ′ −→ Y for a normal projective variety Y ′ with an ample
invertible sheaf ν∗OPN (1). We set

Sm = {x ∈ X \ Bs |mL|; dim Ψ−1
m (Ψm(µ−1(x))) > 0},

Σm = Bs |mL| ∪ Sm.

These sets do not depend on the choice of µ : X ′ −→ X, in fact Sm =
{x ∈ X \Bs |mL|; dimx Φ−1

m (Φm(x)) > 0}. In this setting, we recall the
following classically known result:

Lemma 2.1. Assume Σm 6= X. Then for any given divisor G on X,

one has Bs |kL − G| ⊂ Σm for every large integer k. In particular, by

taking G to be ample, one has NAmp (L) ⊂ Σm.
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See, for example, [4, 7.2 (ii)] for the proof. The statement is not ex-
actly the same as [4, 7.2 (ii)]. However, the proof goes through without
any essential changes, by passing to the Stein factorization as above.

By definition, Sm = Σm \Bs |mL| has no isolated points, but it has a
“non-trivial” fiber structure. More precisely we can show the following,
by a simple geometric argument.

Lemma 2.2. Let L be a big divisor on a smooth projective variety

X. Then

(1) NAmp (L) \ SBs (L) has no isolated points.

(2) Let V be an irreducible subvariety of positive dimension of X.

Assume that V 6⊂ Bs |L| and that the restriction of the rational

map Φ|L| : X 99K Pℓ on V gives a generically finite map. Then V
is not an irreducible component of NAmp (L).

As examples show, such V in (2) can be contained in NAmp (L).

Proof. (0) We recall that NAmp (L) =
⋂

SuppE, where the inter-
section is taken over all decompositions D = A + E into an ample
Q-divisor A and an effective Q-divisor E ([5, 1.2]). By the Noether-
ian property, the intersection is in fact a finite intersection. Thus we
can take a large integer m such that Bs |mL| = SBs (L), and the ratio-
nal map Φm = Φ|mL| : X 99K PN gives an embedding on Amp (L) =

X \NAmp (L). Associated to this Φm : X 99K PN , we have the subsets
Sm and Σm of X defined as above. Since Φm gives an embedding of
Amp (L), we see Σm ⊂ NAmp (L). Combining with Lemma 2.1, we
have NAmp (L) = Σm. In particular Sm = NAmp (L)\SBs (L). We use
this setting to show our assertions.

(1) follows from the fact that Sm has no isolated points.

(2) Let V0 ⊂ V be a non-empty Zariski open subset such that V0 ∩
Bs |mL| = ∅, and the indeced morphism Φm|V0

: V0 −→ Φm(V0) is finite.
By our assumption, we can find such V0. For every x0 ∈ V0, we have
dim(Φ−1

m (Φm(x0)) ∩ V0) = 0.
Assume that V ⊂ NAmp (L) = Σm = Bs |mL| ∪ Sm. Then we see

V0 ⊂ Sm. Moreover, for every x0 ∈ V0, if we regard it as x0 ∈ Sm, we see
that x0 is not isolated in Φ−1

m (Φm(x0)). Hence V is not an irreducible
component of Σm = NAmp (L). q.e.d.

Remark 2.3. It is known that for any divisor D on a smooth projec-
tive variety, SBs (D) and NAmp (D) have no isolated points ([6, 1.1]).
This is based on a result of Zariski, whose proof is rather algebraic (see
[1, 9.17] for a proof).

2.2. Asymptotic invariant. We recall a classical asymptotic numer-
ical invariant of divisors. We will refer its modern treatment to [5, §2],
[17, III §§1-2] (see also [2, §3]). Unless otherwise stated, we will discuss
on a smooth projective variety X.
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(1) Let V be an irreducible subvariety of X. For a big divisor D on
X, we define

σV (D) = lim
m→∞

multV |mD|

m
.

Here multV |mD| is the multiplicity of a general member of |mD| along
V . We can see the limit in fact exists ([5, 2.2] [17, III §1.a]). This σV (D)
can be defined for any big Q-divisor D by the homogeneity σV (D) =
σV (mD)/m for a large and divisible m. This is called the asymptotic

order of vanishing of D along V .

(2) We can extend the asymptotic invariant for any pseudo-effective
Q-divisors. For a pseudo-effective Q-divisor D, we define σV (D) =
limε→0 σV (D + εA), where A is any fixed ample divisor and ε > 0
are rational numbers. The limit exists and does not depend on the
choice of ample divisors A. We have a subadditivity: σV (D1 + D2) ≤
σV (D1) + σV (D2) for pseudo-effective Q-divisors D1 and D2 ([5, 2.4],
[17, III.1.1]).

(3) We reformulate [5, 2.8], [17, III.2.3(2), V.1.5], in the following
way to fit our purposes. The main statement is the equivalence of (i)
and (ii). Others follow from definitions and this main statement.

Lemma 2.4. Let D be a pseudo-effective Q-divisor, and let V be an

irreducible subvariety of X.

(1) Let H be an ample Q-divisor. Then the following four conditions

are equivalent:

(i) V ⊂ NNef (D).
(ii) σV (D) > 0.
(iii) V ⊂ NNef (tD + H) for every large rational number t.
(iv) V ⊂ SBs (tD + H) for every large rational number t.

(2) The following four conditions are equivalent:

(i) V 6⊂ NNef (D).
(ii) σV (D) = 0.
(iii) V 6⊂ NNef (D + A) for any ample Q-divisor A.

(iv) V 6⊂ SBs (D + A) for any ample Q-divisor A.

Let us observe the following lemma as a corollary.

Lemma 2.5. Let D be a pseudo-effective divisor, and let V be an

irreducible subvariety such that V ⊂ NNef (D). Let H be an ample

divisor, and consider a real number

t0 = sup{0 ≤ t ∈ Q; σV (tD + H) = 0}.

Then

(1) 0 < t0 < +∞.

(2) Let t ≥ 0 be a rational number. Then V 6⊂ NAmp (tD +H) if and

only if t < t0. In particular, for a rational number t < t0, one
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has tD + H ∼Q A + E for an ample Q-divisor A and an effective

Q-divisor E with V 6⊂ SuppE ([5, 1.2]).

Proof. (1) Since tD + H is ample for a sufficiently small t > 0, it
follows that t0 > 0. On the other hand, by Lemma 2.4, σV (D) > 0 is
equivalent to t0 < +∞.

(2) Assume V 6⊂ NAmp (tD + H). Then we have tD + H ∼Q A + E
for an ample Q-divisor A and an effective Q-divisor E with V 6⊂ SuppE
([5, 1.2]). We take a small rational number ε > 0 so that A − εH is
still ample. Then tD + (1 − ε)H ∼Q (A − εH) + E, and in particular
V 6⊂ NAmp ((1 − ε)−1tD + H). Hence t < (1 − ε)−1t ≤ t0.

We take a rational number s so that t < s < t0. We see σV (tD +
t
sH) = 0. By Lemma 2.4, we have V 6⊂ SBs ((tD+ t

sH)+εH) for any 0 <

ε < t
s , and hence there exists an effective Q-divisor E ∼Q (tD+ t

sH)+εH

such that V 6⊂ SuppE. Then tD + H ∼Q (1 − t
s − ε)H + E, and hence

V 6⊂ NAmp (tD + H). q.e.d.

2.3. Multiplier ideal. We recall the notion of multiplier ideal sheaves
and singularities of pairs. We refer to [14, Chapters 9, 11] for the basics
on these topics.

For a real number α, we let xαy be the largest integer which is less
than or equal to α, and let pαq be the smallest integer which is greater
than or equal to α. We also use the notation xBy and pBq for R-divisors
B on smooth varieties.

In the rest of this subsection, we let X be a smooth variety, D be
an effective Q-divisor, and let L be a divisor on X. Associated to a
coherent ideal sheaf J ⊂ OX , we denote by V J = SuppOX/J the
co-support of J .

(1) [14, 9.2.1]. Let µ : X ′ −→ X be a log-resolution of D, namely
µ : X ′ −→ X is a projective birational morphism from a smooth va-
riety X ′ such that Supp (µ∗D + Exc(µ)) is a divisor with simple nor-
mal crossing. Here Exc(µ) denotes the sum of the exceptional divisors.
Then the multiplier ideal sheaf of D is defined to be J (D) = J (X, D) =
µ∗OX′(KX′/X − xµ∗Dy) ⊂ OX .

(2) The pair (X, D) is said to have only Kawamata log-terminal sin-

gularities, klt for short (resp. log-canonical singularities, lc for short), if
J (X, D) = OX (resp. J (X, (1 − ε)D) = OX for all rational numbers
0 < ε < 1). The pair (X, D) is said to be klt (resp. lc) at x ∈ X, if
(U, D|U ) is klt (resp. lc) for some Zariski open neighbourhood U of x.

(3) We set Nklt (X, D) = V J (X, D) ⊂ X with the reduced structure,
and call it the non-klt locus of (X, D). An irreducible component W of
Nklt (X, D) is called a maximal lc center for (X, D) if there exists a
Zariski open subset U ⊂ X such that W ∩ U 6= ∅ and (U, D|U ) is lc.
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(4) [14, 9.2.10]. Let V ⊂ H0(X,OX(L)) be a non-zero vector sub-
space. We denote by |V | ⊂ |L| the associated linear subsystem. Let
µ : X ′ −→ X be a log-resolution of |V | such that X ′ is smooth and
µ∗|V | = |W | + F , where F is the fixed part and Supp (F + Exc(µ)) is
simple normal crossing, and W ⊂ H0(X ′,OX′(µ∗L−F )) defines a base
point free linear system. Given a rational number c > 0, the multi-

plier ideal sheaf corresponding to c and |V | is defined to be J (c · |V |) =
J (X, c · |V |) = µ∗OX′(KX′/X − xcFy) ⊂ OX . In case V = 0, we set
J (c · |V |) = 0 for every c > 0.

(5) [14, 11.1.2]. Assume that X is projective, and L is big. Let
c > 0 be a rational number, and let p be a positive integer. Then
J ( c

p · |pL|) ⊂ J ( c
pk · |pkL|) holds for every integer k > 0 ([14, 11.1.1]).

The asymptotic multiplier ideal sheaf associated to c and L, J (c·‖L‖) =
J (X, c·‖L‖) ⊂ OX , is defined to be the unique maximal member among
the family of ideals {J ( c

p · |pL|)}p∈N. We set J (c · ‖L‖) = OX for c = 0.

Above these multiplier ideal sheaves in (1), (4), and (5) are indepene-
dent of the log-resolution used to construct them ([14, 9.2.18]).

(6) We conclude this section by noting a fundamental relation [5,
2.10].

Lemma 2.6. Assume that X is projective, and L is big. Then

NNef (L) =
⋃

m∈N V J (‖mL‖).

3. Application of Extension Theorem

The following theorem is the key extension statement from [18]. As
we will now explain, the proof of [18, 4.5] in fact proves Theorem 3.1 to
follow, even if the latter looks stronger. We only give an outline of the
proof, and refer to the original article for details.

Theorem 3.1. Let X be a smooth projective variety, V be a smooth

irreducible subvariety of positive dimension, and let L be a divisor on

X. Assume that there exists a decomposition L∼Q A + D into (i) an

ample Q-divisor A, and (ii) an effective Q-divisor D such that V is a

maximal lc center for the pair (X, D).
If KV is pseudo-effective, the linear system |m(KX + L)| on X sep-

arates two general distinct points on V for every large and divisible

integer m.

Proof. We will extract the proof from that of [18, 4.5].

(1) The case when V is a divisor (see the proof of [18, 4.7]). We
take a log-resolution µ : Y −→ X of D. We can write µ∗D = S + F ,
where S is the strict transform of V , and where F is an effective Q-
divisor which is not containing S and Supp (S + F ) is a simple normal
crossing. Then KY + µ∗L − xFy∼Q KY + S + (F − xFy) + µ∗A. We
note that S 6⊂ NAmp (µ∗A) (namely S is in µ∗A-general position in the
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terminology in [18, §2.4]), and that the pair (S, (F − xFy)|S) is klt.
Then [18, 4.1] implies that the restriction map

H0(Y, OY (m(KY + µ∗L − xFy)))

−→ H0(S,OS(m(KS + (F − xFy)|S + (µ∗A)|S)))

is surjective for every m > 0. Since KS is pseudo-effective and the Q-
divisor (F − xFy)|S + (µ∗A)|S on S is big, the linear system |m(KS +
(F − xFy)|S + (µ∗A)|S)| separates two general distinct points on S for
every large and divisible integer m. Since the divisor xFy is effective
and integral, we have a natural injection:

H0(Y, OY (m(KY + µ∗L − xFy)))

−→ H0(Y,OY (m(KY + µ∗L))) ∼= H0(X,OX(m(KX + L))).

The last isomorphism is obtained by push-down µ∗. Noting that
µ(Supp xFy) does not contain V , we see that the linear system |m(KX +
L)| separates two general distinct points on V for every large and divis-
ible integer m.

(2) The case when codim V > 1. We note that the conclusion does not
depend on a decomposition L∼Q A+D satisfying (i) and (ii). By taking
another decomposition of L if necessary, we can assume that there exists
a log-resolution µ : Y −→ X of D with only one place S of log-canonical
singularities for the pair (X, D) dominating V ([18, 4.8]). We can write
µ∗(KX +D)∼Q KY +S+FY with the properties in [18, 4.9]. We denote
by f = µ|S : S −→ V , F := FY |S and M = (KX + D)|V − KV . Then
KS +F ∼Q f∗(KV +M) and (KX +L)|V = KV +M +A|V ([18, 4.12]).

We apply a flattening technique for f ([18, 4.14]), and then we have
a birational morphism τ : V ′ −→ V (resp. τ ′ : S′ −→ S) from a smooth
projective variety V ′ (resp. S′), and a morphism f ′ : S′ −→ V ′ which is
compatible with other morphisms, with certain properties ([18, 4.15]).
We obtain the following commutative diagram ([18, 4.16]):

S′ τ ′

−−−−→ S ⊂ Y

f ′





y





y

f





y

µ

V ′ −−−−→
τ

V ⊂ X

Let us denote by jV : V −→ X (resp. jS : S −→ Y ) the inclusion, and
AV ′ = τ∗(A|V ). We set F ′ = τ ′∗F − KS′/S and M ′ = τ∗M − KV ′/V .

Then KS′ + F ′∼Q f ′∗(KV ′ + M ′) and KV ′ + M ′ + AV ′ = τ∗(KV + M +
A|V ) = τ∗((KX + L)|V ).

We apply Kawamata’s positivity result [12, Theorem 2] for the fiber
space f ′ : S′ −→ V ′ with the f ′-Q-trivial log-canonical divisor KS′ +F ′,
and then we have a Q-divisor ∆′ on V ′ such that M ′ − ∆′ is nef on
V ′ ([18, 4.17]). Since KV ′ is pseudo-effective by our assumption here
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and since AV ′ is (nef and) big, the linear system |m(KV ′ + M ′ − ∆′ +
AV ′)| separates two general distinct points on V ′ for every large and
divisible integer m. Applying the extension theorem [18, 4.1], we have
an injection

f ′∗H0(V ′, OV ′(m(KV ′ + M ′ − ∆′ + AV ′)))

−→ (µ ◦ jS ◦ τ ′)∗H0(X,OX(m(KX + L)))

for every large and divisible integer m ([18, 4.19(2)]). This injection
is given by a composition of multiplications by effective divisors with
respect to τ ′ or µ, by disregarding the effects of effective exceptional
divisors, and by restricting sections on Y to S, namely the extension
from S to Y ([18, 4.1] or [18, 4.11(1)]). Since the linear system |m(KV ′+
M ′−∆′+AV ′)| separates two general distinct points on V ′ for every large
and divisible integer m, so does the induced linear system τ∗j∗V |m(KX +
L)| on V ′. q.e.d.

A variety X is said to be uniruled if there exists a dominant rational
map Y × P1

99K X from a product of P1 and a variety Y of dimY =
dimX−1. By definition, a uniruled variety has positive dimension. We
quote a uniruledness criterion in a birational setting.

Theorem 3.2 ([15], [3]). A proper algebraic variety X is uniruled,

if and only if there exists a smooth projective model X ′ whose canonical

divisor KX′ is not pseudo-effective.

Using this criterion, we will use Theorem 3.1 in the following form.

Corollary 3.3. Let X be a smooth projective variety, V be an ir-

reducible subvariety, and let L be a divisor on X. Assume that there

exists a decomposition L∼Q A + D into (i) an ample Q-divisor A, and

(ii) an effective Q-divisor D such that V is a maximal lc center for the

pair (X, D). Then

(1) V is uniruled, provided V ⊂ SBs (KX + L).
(2) V is uniruled, provided that KX + L is big and that V is an irre-

ducible component of NAmp (KX + L).

Proof. We shall prove by contradiction. Namely we shall claim that

(1) if V is not uniruled, then V 6⊂ SBs (KX + L), and that

(2) if V is not uniruled and if KX + L is big, then V is not an
irreducible component of NAmp (KX + L).

(0) We start with a remark in the case of dimV = 0. The point V
is not uniruled. By (ii), the point V is isolated in the non-klt locus
Nklt (X, D). Then Nadel’s vanishing H1(X,OX(KX +L)⊗J (X, D)) =
0 (see for example [14, 9.4.8]) implies that V 6∈ Bs |KX + L|, and hence
V 6∈ SBs (KX +L). We now assume that KX +L is big. We have either
V 6∈ NAmp (KX + L) or V ∈ NAmp (KX + L) \ SBs (KX + L). By
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taking into account Lemma 2.2 (1), the point V is not an irreducible
component of NAmp (KX + L) in any way.

Hereafter we consider the case when dim V > 0. We consider the fol-
lowing change of models. Let µ : X ′ −→ X be an embedded resolution
of V , and let V ′ ⊂ X ′ be the strict transform of V . We see that the
Q-divisor µ∗A is nef and big, and V ′ 6⊂ NAmp (µ∗A), and that V ′ is a
maximal lc center for the pair (X ′, µ∗D). By an equivalent definition of
non-ample loci ([5, 1.2]), we have a decomposition µ∗A∼Q A′ +D0 into
an ample Q-divisor A′ and an effective Q-divisor D0 with V ′ 6⊂ SuppD0.
Hence we have a decomposition µ∗L∼Q A′ + D′ with D′ = D0 + µ∗D
such that V ′ is a maximal lc center for the pair (X ′, D′).

(1) We see that V is not uniruled if and only if KV ′ is pseudo-effective
(by Theorem 3.2), and that V 6⊂ SBs (KX + L) if and only if V ′ 6⊂
SBs (KX′ + µ∗L). Then applying Theorem 3.1 on X ′ with the smooth
model V ′ and the decomposition µ∗L∼Q A′ + D′, we obtain (1).

(2) Here we assume that V is not uniruled and that KX + L is big.
We also see that V is an irreducible component of NAmp (KX + L)
if and only if V ′ is an irreducible component of NAmp (KX′ + µ∗L).
Hence as in the proof of (1), we may assume that V is smooth, and
KV is pseudo-effective by Theorem 3.2. Since dim V > 0 and KV is
pseudo-effective, by Theorem 3.1, we can take a positive integer m such
that the linear system |m(KX +L)| on X separates two general distinct
points on V . Then by Lemma 2.2 (2), V is not an irreducible component
of NAmp (KX + L). q.e.d.

4. Decomposition of Big Divisor

According to Corollary 3.3, a special decomposition of a big divisor
concludes a property of the stable base locus, or the non-ample locus
of the adjoint divisor. Here we construct such decompositions as a
preliminary step, which can be seen as a refinement of the so-called
Kodaira’s lemma. We stress that to find an effective Q-divisor D such
that a given subvarity V is a maximal lc center for the pair (X, D) is
not enough. A complementary ample part A in L∼Q A + D is needed.
We would like to state our result in a slightly general form than we will
need later in this paper. This is because it becomes more and more
important to control log-canonical centers with extra ample parts, as
we can see in Fujita type conjecture on adjoint bundles, the extensions
of pluricanonical forms [7] [18], a recent paper by Hacon and McKernan
on the existence of flips, and so on.

In this section, we let X be an n-dimensional smooth projective va-
riety, and let L be a big Q-divisor on X.
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Lemma 4.1. Let V be an irreducible subvariety of X which is con-

tained in NNef (L), and let ε be a positive constant. Then there ex-

ists an effective Q-divisor D such that D∼Q L, multx(D) < ε for any

x ∈ X \ NNef (L), and σV (L) ≤ multV (D) < σV (L) + ε.

Proof. We take a positive integer m0 such that m0L becomes integral.
We set L′ = m0L. We take a positive integer p so large that n

εp < 1

and multV |pL′|/p < σV (L′) + ε. By [14, 11.1.1], we can moreover
assume that J ( n

εp |pL′|) = J (n
ε ‖L

′‖) holds. We take a general member

D′
p ∈ |pL′|. Then σV (L′) ≤ multV (D′

p)/p < σV (L′)+ ε, and J ( n
εpD′

p) =

J ( n
εp |pL′|) holds by [14, 9.2.26]. We set D′ := D′

p/p∼Q L′.

We let x 6∈ NNef (L′) = NNef (L). We have J (n
ε ‖L

′‖)x = OX,x

by Lemma 2.6. Hence J (n
ε D′) = OX,x. We have multx(n

ε D′) < n
([14, 9.3.2]), and hence multx(D′) < ε. Then we can see that D :=
D′/m0 ∼Q L satisfies all the properties stated in the lemma. q.e.d.

Lemma 4.2. Let ε be a positive constant. Assume that there exist

a subset T ⊂ X and an effective Q-divisor D such that D∼Q L and

multx(D) < ε for any x ∈ X \ T . Let B be a divisor on X. Then there

exists a decomposition L∼Q bB + G with a rational number b > 0, and

with an effective Q-divisor G such that multx(G) < 2ε for any x ∈ X\T .

Proof. Since L is big, by Kodaira’s lemma, there exists a positive
integer m0 such that m0L ∼ B + E for some effective divisor E. We
take a large integer m1 such that m0 < m1 and maxx∈X multxE < εm1.
Then L = m0

m1
L + (1 − m0

m1
)L∼Q

1
m1

B + 1
m1

E + (1 − m0

m1
)D. We set

b = 1/m1 and G = 1
m1

E + (1 − m0

m1
)D. Then multx(G) < 2ε for any

x ∈ X \ T . q.e.d.

Proposition 4.3. Let V be an irreducible component of (i) SBs (L)
(respectively (ii) NAmp (L) and (iii) NNef (L)). Let ε be a number with

0 < ε < 1.
Then there exist a rational number α > 0, and a decomposition

αL∼Q A + D into an ample Q-divisor A and an effective Q-divisor

D such that V is a maximal lc center for the pair (X, D), and that

multx(D) < ε for any x ∈ X outside (i) SBs (L) (respectively (ii)
NAmp (L) and (iii) NNef (L)). In case (iii), α can be taken so that

1

σV (L)
− ε < α ≤

codimV

σV (L)
.

Proof. Let H be an ample divisor on X. We denote by d = dim V .

Proof of (iii). We first consider the case (iii). We note σV (L) > 0.

(1) Let X ′ −→ X be the blowing-up of X along V . We take a
modification Y −→ X ′ from a smooth projective variety Y so that the
induced morphism µ : Y −→ X is isomorphic over X \ V . We denote
by EV ⊂ Y the strict transform of the exceptional divisor of X ′ −→ X.
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(2) We will divide into three substeps.

(2.1) We take positive numbers ε1 < ε, and then ε2 so that

1

σV (L)
− ε <

n − d

n − d + ε1
·

1

σV (L) + ε1
,

ε2 <
ε1

2n
min

{

σV (L), σV (L)−1
}

.

By Lemma 4.1, there exists an effective Q-divisor F such that F ∼Q L,
multx(F ) < ε2 for any x ∈ X \ NNef (L), and σV (L) ≤ multV (F ) <
σV (L)(1 + ε2) < σV (L) + ε1.

(2.2) We take a large and divisible integer m such that mF becomes
integral, Bs |mL| = SBs (L), the associated map Φ|mL| is birational onto
its image, and that σV (L) ≤ multV |mL|/m ≤ multV (F ). We denote
r = r(m) = multV |mL| > 0.

(2.3) We have a big Q-divisor M := (n−d)r−1(mµ∗L−rEV ), and an
effective Q-divisor FY := (n−d)r−1(mµ∗F −rEV ) on Y with FY ∼Q M .
We see multEV

(FY ) = (n−d)(m
r multV (F )− 1) < n(σV (L)−1σV (L)(1+

ε2) − 1) < ε1/2. In particular, there exists a non-empty Zariski open
subset E0

V ⊂ EV such that multy(FY ) < ε1/2 for any y ∈ E0
V . For

every y 6∈ µ−1(NNef (L)), we have multy(FY ) = (n− d)m
r multµ(y)(F ) <

nσV (L)−1ε2 < ε1/2. In summary, FY ∼Q M and multy(FY ) < ε1/2 for
any y ∈ (Y \ µ−1(NNef (L))) ∪ E0

V .

(3) We apply Lemma 4.2 for the big Q-divisor M on Y with the
divisor (B =)µ∗H. We obtain a decomposition M ∼Q hµ∗H + G with
a rational number h > 0, and with an effective Q-divisor G on Y such
that multy(G) < ε1 for any y ∈ (Y \ µ−1(NNef (L))) ∪ E0

V .

(4) We can push down the effective Q-divisor (n−d)EV +G∼Q µ∗((n−
d)(m/r)L − hH), namely we have an effective Q-divisor D0 on X such
that

µ∗D0 = (n − d)EV + G and that (n − d)(m/r)L∼Q hH + D0.

Since multV D0 = multEV
((n− d)EV + G) ≥ codim V , the pair (X, D0)

is not klt along V ([14, 9.3.5]). On the other hand, multx(D0) =
multµ−1(x)(G) < ε1 < ε < 1 for any x ∈ X \NNef (L), and in particular
the pair (X, D0) is klt on X \NNef (L). Then, since V is an irreducible
component of NNef (L), there exists a rational number 0 < δ ≤ 1 such
that V is a maximal lc center for the pair (X, δD0). The rationality of
δ follows from the rationality of log-canonical thresholds ([14, 9.3.12,
9.3.16]). Thus we can take α = δ(n − d)m/r, A = δhH and D = δD0.

(5) Let us discuss the bounds for α. Since (X, δD0) is not klt along
V , it follows that multV (δD0) ≥ 1 ([14, 9.5.13]). By our construction in
(3), we have multV D0 = multEV

((n−d)EV +G) < n−d+ε1. These two
inequalities show that δ > 1/(n−d+ε1). Then the upper and the lower



ON THE UNIRULEDNESS OF STABLE BASE LOCI 533

bounds for α = δ(n − d)m/r follow from σV (L) ≤ r/m < σV (L) + ε1,
1/(n − d + ε1) < δ ≤ 1 and the first property of ε1 in (2.1).

Proof of (i). We next consider the case (i). If V ⊂ NNef (L), our
assertion is a special case of (iii). Hence we may assume V 6⊂ NNef (L).
We start with the same (1) as in the case (iii) above, and continue as
follows.

(2) We take a large and divisible integer m such that Bs |mL| =
SBs (L), the associated map Φ|mL| is birational onto its image, and
multV |mL|/m < ε/2. We denote r = r(m) = multV |mL| > 0. We
note that µ−1(Bs |mL|) = Bs |mµ∗L| = Bs |mµ∗L − rEV | ∪ EV , EV 6⊂
Bs |mµ∗L − rEV |, and in particular µ−1(SBs (L)) ⊃ Bs |mµ∗L − rEV |.
We also note that a Q-divisor M := (n − d)r−1(mµ∗L − rEV ) on Y is
big.

(3) We apply Lemma 4.1 and 4.2 for the big Q-divisor M on Y with
the divisor (B =)µ∗H. We obtain a decomposition M ∼Q hµ∗H+G with
a rational number h > 0, and with an effective Q-divisor G on Y such
that multy(G) < ε for any y ∈ Y \ NNef (mµ∗L − rEV ). In particular
multEV

(G) < ε. Since NNef (mµ∗L − rEV ) ⊂ Bs |mµ∗L − rEV | ⊂
µ−1(SBs (L)), we also have multy(G) < ε for any y ∈ µ−1(X \ SBs (L)).

(4) The next step to find α and αL∼Q A + D is parallel to that in
the case (iii) above.

Proof of (ii). We finally consider case (ii). We note by [5, 1.3] that
there exists a positive integer k such that kL−H is big and SBs (kL−
H) = NAmp (L). Then the irreducible component V of NAmp (L) is
an irreducible component of SBs (kL − H). By case (i), there exist a
rational number α0 > 0 and a decomposition α0(kL − H)∼Q A0 + D0

into an ample Q-divisor A0, and an effective Q-divisor D0 such that V
is a maximal lc center for the pair (X, D0), and that multx(D0) < ε for
any x 6∈ SBs (kL − H) = NAmp (L). Then α0kL∼Q (A0 + α0H) + D0

is a desired decomposition. q.e.d.

Lemma 4.4. Assume that L is integral (and big), and let 0 ≤ d < c be

rational numbers (then J (c · ‖L‖) ⊆ J (d · ‖L‖) by [14, 11.1.7]). Assume

that an irreducible component V of V J (c · ‖L‖) is not contained in

V J (d · ‖L‖). Then there exist a rational number α with d < α ≤ c, and

an effective Q-divisor D∼Q αL such that V is a maximal lc center for

the pair (X, D).

Proof. We take a sufficiently large integer p > c such that J (c ·
‖L‖) = J ( c

p · |pL|) and J (d · ‖L‖) = J (d
p · |pL|) ([14, 11.1.4]). By [14,

9.2.26], for a general member Dp ∈ |pL|, we have J ( c
p · |pL|) = J ( c

pDp)

and J (d
p · |pL|) = J (d

pDp). We consider a real number t0 = inf{0 <

t ∈ Q; V ⊂ V J ( t
pDp)}; the log-canonical threshold along V . By our
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assumption, it follows d < t0 ≤ c. The infimum is in fact minimum,
and t0 is a rational number ([14, 9.3.12, 9.3.16]). Hence we can take as
α = t0 and D = t0

p Dp. q.e.d.

5. Uniruledness I: Non-Ample Locus and Stable Base Locus

We will give several uniruledness criteria for subvarieties. We will
consider them devided into two cases. The first case is that of a sub-
variety V which appears as a component of SBs (L), or NAmp (L) of
some big divisor L with vanishing asymptotic invariant, i.e., σV (L) = 0.
The second case is that of σV (L) > 0, namely V ⊂ NNef (L). The for-
mer will be discussed here, and the latter will be discussed in the next
section. In this section, we will also prove the theorems stated in the
introduction.

We let X be a smooth projective variety.

5.1. Non-ample locus other than stable base locus.

Proposition 5.1. Let L be a big divisor on X. Let V be a subvariety

of X such that

(i) V is an irreducible component of NAmp (L),
(ii) V 6⊂ SBs (L), and

(iii) V is an irreducible component of NAmp (KX +mL) for every large

integer m.

Then V is uniruled.

Proof. By Proposition 4.3 (ii), there exist a rational number α > 0,
and a decomposition αL∼Q A + D into an ample Q-divisor A and an
effective Q-divisor D such that V is a maximal lc center for the pair
(X, D). We take a large integer m so that m > α, KX + mL is big,
and that V is an irreducible component of NAmp (KX + mL). Since
V 6⊂ SBs (L), there exists an effective Q-divisor E ∼Q (m − α)L with
V 6⊂ SuppE. Then we obtain a decomposition mL = αL + (m −
α)L∼Q A + D + E so that A is ample, and that V is a maximal lc
center for the pair (X, D+E). Then our assertion follows from Corollary
3.3 (2). q.e.d.

5.2. Stable base locus other than non-nef locus.

Proposition 5.2. Let L be a big divisor on X. Let V be a subvariety

of X such that

(i) V is an irreducible component of SBs (L),
(ii) V 6⊂ NNef (L), and

(iii) V ⊂ SBs (KX + mL) for every large integer m.

Then V is uniruled.
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Proof. By Proposition 4.3 (i), there exist a rational number α > 0,
and a decomposition αL∼Q A + D into an ample Q-divisor A and an
effective Q-divisor D such that V is a maximal lc center for the pair
(X, D). We take a large integer m so that m > α, and that V ⊂
SBs (KX + mL). Since σV ((m − α)L) = 0 and A is ample, we have
V 6⊂ SBs ((m − α)L + 2−1A) by Lemma 2.4. Hence we can take an
effective Q-divisor E ∼Q (m − α)L + 2−1A with V 6⊂ SuppE. Then we
obtain a decomposition mL∼Q A + D + (m − α)L∼Q 2−1A + D + E
so that 2−1A is ample, and that V is a maximal lc center for the pair
(X, D + E). Then our assertion follows from Corollary 3.3 (1). q.e.d.

Remark 5.3. As we saw in the statement and in the proof above,
there are two technical issues to applying Corollary 3.3:

(i) the rational number α is not necessarily integral, and
(ii) the balance of L and KX .

When we deal with non-nef loci in the next section, another issue will
come into the picture, that is σV (L) > 0.

5.3. Proof of theorem. Let us give the proof of the theorems stated
in the introduction. The part (iii) of Theorem 1.1 and 1.2 are special
cases of Proposition 6.1 and 6.2 below. By taking for granted part (iii)
of Theorem 1.1 and 1.2, let us show (i) and (ii) of Theorem 1.1, 1.2 and
1.3.

Proof of Theorem 1.1. Assume that KX is big.

(i) Let V be an irreducible component of SBs (KX). If V⊂NNef (KX),
V is uniruled by Theorem 1.1 (iii). If V 6⊂ NNef (KX), we apply Propo-
tision 5.2 with the big divisor L = KX , and we have the uniruledness
of V .

(ii) Let V be an irreducible component of NAmp (KX). If V ⊂
SBs (KX), V is uniruled by Theorem 1.1 (i). If V 6⊂ SBs (KX), we
apply Proposition 5.1 with the big divisor L = KX , and we have the
uniruledness of V . q.e.d.

Proof of Theorem 1.2. Assume that KX is numerically trivial. Since
the non-ample locus depends only on the numerical equivalence class of
the big divisor ([5, 1.4]), we have NAmp (KX + D) = NAmp (D) for
any big divisor D. By the same token ([5, 2.7]), we also have σV (KX +
D) = σV (D); in particular, NNef (KX + D) = NNef (D) for any divisor
D. Moreover, it follows from Kawamata [10, Theorem 8.2] that there
exists a positive integer k0 such that k0KX ∼ 0. Hence we also have
SBs (KX + D) = SBs (D) for any divisor D. Thanks to these facts, the
proof of Theorem 1.2 (i) and (ii) are parallel to those of Theorem 1.1.
q.e.d.
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Proof of Theorem 1.3. Assume that −KX is big, and let V be an irred-
ducible component of (i) SBs (−KX), or (ii) NAmp (−KX) such that
V 6⊂ NNef (−KX). We can see easily that V is uniruled, in a similar
manner to in the proof of Theorem 1.1. q.e.d.

6. Uniruledness II: Non-Nef Locus

We consider the uniruledness of non-nef loci. By a technical reason,
we state our results devided into three cases. We just recall [5, 2.10]
(Lemma 2.6) that NNef (L) =

⋃

m∈N V J (‖mL‖) for a big divisor L.
We let X be a smooth projective variety.

Proposition 6.1.

(1) Assume that KX is big. For every rational number c > 0, every

irreducible component of V J (c · ‖KX‖) is uniruled.

(2) Assume that KX is pseudo-effective. Every irreducible component

of NNef (KX) is uniruled.

Proposition 6.2. Assume that KX is numerically trivial.

(1) Let L be a big divisor on X. For every rational number c > 1,
every irreducible component of V J (c·‖L‖), which is not contained

in V J (‖L‖), is uniruled.

(2) Let L be a pseudo-effective divisor on X. Every irreducible com-

ponent of NNef (L) is uniruled.

Proposition 6.3.

(1) Assume that −KX is big. For every rational number c > 2, every

irreducible component of V J (c · ‖ −KX‖), which is not contained

in V J (‖ − 2KX‖), is uniruled.

(2) Assume that −KX is big. Every irreducible component of

NNef (−KX), which is not contained in V J (‖−KX‖), is uniruled.

(3) Assume that −KX is pseudo-effective. Every irreducible compo-

nent V of NNef (−KX) with 0 < σV (−KX) < 1 is uniruled.

We do not know whether the assumptions c > 1 in Proposition 6.2,
and c > 2 in Proposition 6.3, are really necessary or not. On the other
hand, Proposition 6.3 (2) and (3) are sharp in a sense. In fact, we have
an example as follows.

Example 6.4. Let S ⊂ P3 be a cone over a smooth elliptic curve C
of deg C = 3. Let µ : X −→ S be the blowing-up of S at the vertex.
Then X is smooth, and is a P1-bundle over C. Let H be the hyperplane
section divisor of S ⊂ P3, and let E be the µ-exceptional divisor on
X. Then −KX = µ∗H + E is big, but not nef. We can see easily that
E = NNef (−KX) = SBs (−KX) = NAmp (−KX), σE(−KX) = 1 and
V J (‖ − KX‖) = E, while E ∼= C is a smooth elliptic curve.
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As in the proof of propositions in §5, our main task is to construct
a decomposition of a certain big divisor with a special regard to the
balance with the canonical divisor KX .

For the rest of this section we fix an ample divisor H on X.

Proof of (1) in Proposition 6.1, 6.2 and 6.3. The proof of the first as-
sertions are parallel. We will denote a big divisor L and an integer d as
follows.

In 6.1, L = KX and d = 0.
In 6.2, L = L (the one in the statement) and d = 1.
In 6.3, L = −KX and d = 2.
In each case, we have d < c. We take an irreducible component V

of V J (c · ‖L‖), which is not contained in V J (d · ‖L‖). It follows from
Lemma 2.6 that V ⊂ NNef (L).

Step 1: threshold. We consider a real number

t0 = sup{0 ≤ t ∈ Q; σV (tL + H) = 0}.

By Lemma 2.5, we have 0 < t0 < +∞.

Step 2: lc center. By Lemma 4.4, there exist a rational number α
with d < α ≤ c, and an effective Q-divisor D∼Q αL such that V is a
maximal lc center for the pair (X, D).

Step 3: complementary ample. We take large integers p and q satis-
fying p > α and d ≤ p − qt0 < α (in case d = 0, −1 < p − qt0 < α is
enough for our latter purpose). The existence of such p and q is veri-
fied as follows. In case t0 ∈ Q, we take t0 = (p − d)/q for large p and
q. In case t0 6∈ Q, it follows from an elementary result in Diophantine
approximation theory. Then we see 0 < (p − α)/q < t0, and hence by
Lemma 2.5, we have a decomposition (p − α)L + qH ∼Q A + E into an
ample Q-divisor A, and an effective Q-divisor E with V 6⊂ SuppE.

Step 4: decomposition. We set M = pL + qH an integral big divisor
on X. Then we obtain a decomposition M = αL+(p−α)L+qH ∼Q A+
D + E so that A is ample, and that V is a maximal lc center for the
pair (X, D + E).

Step 5: balance. Since KX + M = (p + 1 − d)L + qH and since
(p + 1− d)/q > t0, we have σV (KX + M) = σV ((p + 1− d)L + qH) > 0,
and in particular V ⊂ SBs (KX + M). Then our assertion follows from
Corollary 3.3 (1). q.e.d.

Proof of (2) in Proposition 6.1 and 6.2. We denote a pseudo-effective
divisor L as L = KX in 6.1, and L = L (the one in the statement) in
6.2. We take an irreducible component V of NNef (L).

Step 1. We consider a real number t0 = sup{0 ≤ t ∈ Q; σV (tL+H) =
0}. We see 0 < t0 < +∞ as before.
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Step 2. By Lemma 2.4, we see that there exist a positive integer m0

such that V is an irreducible component of SBs (mL + H) for every
integer m > m0.

We take an integer m1 such that m1 > max{m0, t0 +1}. Then m1L+
H is big, σV (m1L + H) > 0, and V is an irreducible component of
SBs (m1L+H). By Proposition 4.3, there exist a rational number α > 0
and a decompotision α(m1L + H)∼Q A1 + D1 into an ample Q-divisor
A1, and an effective Q-divisor D1 such that V is a maximal lc center for
the pair (X, D1). We take a general effective Q-divisor D2 ∼Q A1 and
set D = D1 +D2. Then D∼Q α(m1L+H) and V is a maximal lc center
for the pair (X, D).

Step 3. We take large integers p and q satisfying p > max{αm1, m0},
q > max{α, 1} and 0 ≤ p − qt0 < α (for the case of 6.1, −1 < p −
qt0 < α is enough for our latter purpose). These inequalities imply that
(p−αm1)/(q−α) < t0 ≤ p/q. Since (p−αm1)/(q−α) < t0, by Lemma
2.5, we have a decomposition (p−αm1)L + (q −α)H ∼Q A + E into an
ample Q-divisor A, and an effective Q-divisor E such that V 6⊂ SuppE.

Step 4. We set M = pL + qH as an integral big divisor on X. Then
we obtain a decomposition M = α(m1L + H) + (p − αm1)L + (q −
α)H ∼Q A + D + E so that A is ample, and that V is a maximal lc
center for the pair (X, D + E).

We add a side remark (see Remark 6.5 below). Since q > 1, we
have SBs (M) ⊂ NAmp (M) ⊂ SBs (pL + H). On the other hand, since
p > m0, we see that V is an irreducible component of SBs (pL + H).

Step 5. The final step depends on the canonical divisor.

Step 5 for 6.1. Since KX +M = (p+1)L+qH and since (p+1)/q > t0,
we have σV (KX + M) = σV ((p + 1)L + qH) > 0, and in particular
V ⊂ SBs (KX + M). Then our assertion follows from Corollary 3.3 (1).

Step 5 for 6.2. We recall the remark in the proof of Theorem 1.2
in §5.3, that σV (KX + M) = σV (M), SBs (KX + M) = SBs (M), and
NAmp (KX + M) = NAmp (M).

(i) Case t0 6∈ Q. Then p/q > t0. We obtain σV (KX +M) = σV (M) =
σV (pL + qH) > 0, and in particular V ⊂ SBs (KX + M). Then our
assertion follows from Corollary 3.3 (1).

Since SBs (KX + M) = SBs (M) ⊂ SBs (pL + H), and since V is an
irreducible component of SBs (pL + H), V is an irreducible component
of SBs (KX +M). Moreover, σV (KX +M) > 0 implies that V is in fact
an irreducible component of NNef (KX + M).

(ii) Case t0 = p/q ∈ Q. Our assertion will follow from Corol-
lary 3.3 (2), if we can show that V is an irreducible component of
NAmp (KX + M). Since NAmp (KX + M) = NAmp (M) ⊂ SBs (pL +
H), and V is an irreducible component of SBs (pL+H), it is enough to
show that V ⊂ NAmp (M). This in fact follows from Lemma 2.5. q.e.d.
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Remark 6.5. If we want to study whether the subvariety V in the
proofs above is contractible or not, the rationality of t0 in Step 1 will
be more important. For example in Step 5 for 6.2 (2), we can at least
devide into the following three cases.

(1) t0 6∈ Q.
(2) t0 = p/q ∈ Q, and V is an irreducible component of SBs (pL+qH),

moreover σV (pL + qH) = 0.
(3) t0 = p/q ∈ Q, V 6⊂ SBs (pL + qH), and V is an irreducible com-

ponent of NAmp (pL + qH).

For the moment we cannot say anything in cases (1) and (2).

Proof of Proposition 6.3 (2) and (3). We denote L = −KX in both
cases. We take an irreducible component V of NNef (L) satisfying the
following condition: in case (2), V is not contained in V J (‖L‖); in case
(3), σV (L) < 1.

Step 1. We let t0 = sup{0 ≤ t ∈ Q; σV (tL + H) = 0}. We see
0 < t0 < +∞.

Step 2 and 3. By Lemma 2.4, we can take a positive integer m0 such
that V is an irreducible component of NNef (mL + H) for every integer
m > m0.

Step 2 and 3 for (2). By Lemma 2.6, there exists an integer m > 1
such that V is an irreducible component of V J (‖mL‖). Then by Lemma
4.4, there exist a rational number α with 1 < α ≤ m and an effective Q-
divisor D∼Q αL such that V is a maximal lc center for the pair (X, D).

We take large integers p and q satisfying p > max{α, m0}, q > 1 and
0 ≤ p − qt0 < α − 1. We see (p + 1 − α)/q < t0 ≤ p/q. By Lemma 2.5,
we have a decomposition (p + 1 − α)L + qH ∼Q A + E into an ample
Q-divisor A, and an effective Q-divisor E with V 6⊂ SuppE.

Step 2 and 3 for (3). Arguments will be a bit narrow. We denote
s0 = σV (L), and we have 0 < s0 < 1. We take a number ε such
that 1 < 1 + ε < 1/s0. We take an integer m1 such that m1 > m0,
2codim V/s0 < m1ε/t0 and that s0/2 < σV (L + m−1

1 H) < s0. Then
m1L+H is big, and V is an irreducible component of NNef (m1L+H).
By Proposition 4.3 (iii), there exist a rational number α > 0 and an
effective Q-divisor D∼Q α(m1L + H) = αm1(L + m−1

1 H) such that
V is a maximal lc center for the pair (X, D). We can take α so that
1/σV (L+m−1

1 H)−ε′ < αm1 ≤ codim V/σV (L+m−1
1 H)(< 2codim V/s0)

for any given ε′ > 0 so that 1 + ε < 1/s0 − ε′. Hence we can take α
so that 1 + ε < αm1 ≤ 2codim V/s0(< m1ε/t0). In particular we have
ε − αt0 < αm1 − 1 − αt0 and ε − αt0 > 0.

We take large integers p and q satisfying p > max{αm1, m0}, q >
max{α, 1} and 0 ≤ p−qt0 < ε−αt0. The inequalities p−qt0 < ε−αt0 <
αm1 − 1−αt0 show that (p + 1−αm1)/(q −α) < t0. Hence by Lemma
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2.5, we have a decomposition (p + 1−αm1)L + (q−α)H ∼Q A + E into
an ample Q-divisor A, and an effective Q-divisor E with V 6⊂ SuppE.

Step 4. We set M = (p + 1)L + qH. In both cases, we obtain a
decomposition M ∼Q A + D + E so that A is ample, and that V is a
maximal lc center for the pair (X, D + E).

Step 5. This is parallel to Step 5 for 6.2 (2). We note KX + M =
pL + qH.

(i) Case t0 6∈ Q. Then p/q > t0. We obtain σV (KX + M) = σV (pL +
qH) > 0, and in particular V ⊂ SBs (KX + M). Then our assertion
follows from Corollary 3.3 (1).

(ii) Case t0 = p/q ∈ Q. Our assertion will follow from Corol-
lary 3.3 (2), if we can show that V is an irreducible component of
NAmp (KX + M). Since NAmp (KX + M) = NAmp (pL + qH) ⊂
SBs (pL + H) by q > 1, and since V is an irreducible component of
SBs (pL+H) by p > m0, it is enough to show that V ⊂ NAmp (pL+qH).
This again follows from Lemma 2.5. q.e.d.

References
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