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SUSPENSION FLOWS ARE QUASIGEODESIC

Diane Hoffoss

Abstract

A hyperbolic 3-manifold M which fibers over the circle admits
a flow called the suspension flow. We show that such a flow can be
isotoped to be uniformly quasigeodesic in the hyperbolic metric on
M; i.e., the flow lines lifted to hyperbolic space are K-bilipschitz
embeddings of R (K > 1 fixed).

A flow on a manifold M is a continuous action of R on M ; i.e., a
continuous map Φ : M × R → M , written Φt(x) = Φ(x, t), such that
for each t, Φt is a homeomorphism of M , and such that Φs ◦Φt = Φs+t

for all x ∈ M, s, t ∈ R. Note that we may isotope the flow so that all
flow lines are rectifiable. As an example of a flow, a closed orientable 3-
manifold has Euler characteristic zero and therefore admits a nowhere
zero vector field, which in turn produces a flow given by the integral
curves of that vector field.

Let M be a hyperbolic 3-manifold which fibers over the circle. Then
M can be represented as a product of a hyperbolic surface (the fiber,
F ) with the unit interval [0, 1], with F × {1} glued to F × {0} using a
pseudo-Anosov [Th1] monodromy map Ψ:

M = F × [0, 1]
/

(x, 1) ≡ (Ψx, 0).

Thus M is covered by F ×R. The flow on M obtained by projecting the
1-manifolds {x} × R from F × R to M is called the suspension flow,
and M is referred to as the suspension of F . Our main result is

Main Theorem 1. The suspension flow on a cusped hyperbolic 3-
manifold which fibers over the circle is (can be isotoped to be) uniformly

quasigeodesic.

Informally, a flow on a manifold M is uniformly quasigeodesic if the
lifts of all sufficiently long flow lines to the universal cover of M are K-
bilipschitz embeddings of R for fixed K > 1; a more careful definition
is given in Section 1.1.

Zeghib has shown that a closed hyperbolic 3-manifold does not admit
any flow where each flow line is geodesic [Z]; however, there are examples
of hyperbolic 3-manifolds which admit quasigeodesic flows. Cannon and
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Thurston [CT] showed that the suspension flow on any compact hyper-
bolic 3-manifold fibering over the circle is quasigeodesic. Zeghib [Z] also
gave an elementary proof that if M is any compact 3-manifold fibering
over the circle, then any flow transverse to the fibration is quasigeodesic.
More recently, combined works of Gabai [G], Mosher [Mo1], and Fen-
ley [FM] show that any closed, oriented, hyperbolic three-manifold with
nontrivial second homology admits many quasigeodesic flows. In each
of the above cases, the manifold under consideration is compact; in
this paper, we consider non-compact hyperbolic 3-manifolds which have
finitely many cusps.

To prove the main theorem, we make use of the idea of a path “track-
ing” [F] a geodesic: a path c in H

3 tracks a geodesic γ in H
3 if

1) There exists R > 0 so that c lies within the neighborhood of radius
R of γ (c is close to γ).

2) There exists Q > 0 such that if the length of a subpath of c with
endpoints a and b is at least Q, then the distance between π(a) and
π(b) along γ is at least 1, where π denotes orthogonal projection
onto γ (c makes progress along γ).

The following three basic facts are used repeatedly throughout this
paper:

Basic Fact 1. A path in H
n is quasigeodesic if and only if it tracks

a geodesic.

Basic Fact 2. Geodesic segments in H
n with nearby ends are close

everywhere.

Basic Fact 3. To show that a flow is uniformly quasigeodesic, it
suffices to show that all sufficiently long flow lines are quasigeodesic,
with uniform quasigeodesic constants, as we are only interested in the
large scale behavior of the flow.

We will show that the suspension flow on M is uniformly quasi-
geodesic by showing that there are constants R and Q so that each
flow line tracks a geodesic with these tracking constants.

The manifold M has finitely many cusps. Fix an open neighborhood
of each cusp in M such that each neighborhood lifts to a collection of

horoballs in the universal cover M̃ . We may choose these cusp neighbor-
hoods so that each horoball lies a hyperbolic distance at least 1000 from

all the other horoballs. Then the neutered space Ñ is obtained by re-

moving these open horoballs from M̃ . In this paper, we will sometimes
use the term neutered space to also refer to the compact submanifold

N = M \ {open neighborhood of cusps} covered by Ñ .
In Section 1, the dynamics of the flow which arise from pseudo-Anosov

monodromy Ψ are used to prove the following 2 crucial lemmas:
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Lemma 1. Every flow line segment inside a horoball is uniformly

quasigeodesic.

Lemma 2. Each flow line enters a given horoball at most once.

horoball
Ñ = neutered space

pushed path

path

H
3string of beads

Figure 1. A pushed path and a string of beads.

In Section 2, we show that flow lines are close to geodesics (part 1 of

the definition of tracking). Define r : M̃ → Ñ to be the nearest point
retraction (in the hyperbolic metric). Given a path c in M , its associated
pushed path c is r ◦ c (Figure 1). Define the string of beads along
a geodesic γ in H

3, denoted γ+, to be the geodesic γ together with all
the horoballs which γ intersects. In Section 2.1 we will show that each
pushed flow line lies close to the string of beads connecting its endpoints.
We prove this by showing

1) Pushed flow lines are uniformly quasigeodesic in the neutered
space of M .

2) Any quasigeodesic of the neutered space is close (in the hyperbolic
metric) to the string of beads with the same endpoints.

In Section 2.2, we will show that every flow line lies close to a string
of beads, as follows: Since a flow line is identical to its corresponding
pushed flow line outside the horoballs, the portions of this flow line
which lie outside the horoballs are close to the string of beads. The
portion of this flow line which lies inside a horoball lies close to the
geodesic segment γ′ connecting its endpoints by Lemma 1. Since the
endpoints of γ′ are close to the string of beads, it follows that all of γ′

lies close to the string of beads. Thus each flow line is close to a string
of beads.
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In Section 2.3, we prove that every flow line is close to the string in
the string of beads. We now know a flow line has segments which lie
within a fixed distance, Rf, of the string (for which there is nothing to
prove) and segments which lie within Rf of some bead. We will show
that the subsegments of flow line which lie near the bead but do not
enter the bead have a bounded length Mf, where the bound depends
only on Rf, and therefore these subsegments are close to the string.
On the other hand, since flow lines are quasigeodesic inside cusps, the
subsegments of ℓ which lie inside the bead lie within Rc of some geodesic
segment in the bead. We will show this geodesic lies within an Rf + Mf
neighborhood of the string, and therefore the subsegment of ℓ inside the
bead lies within Rf + Mf + Rc of the string.

Finally, in Section 3 we show that all flow lines make uniform progress
along the geodesic with the same endpoints.

Acknowledgements. I would like to thank the referee for offering in-
sightful suggestions which lead to many important improvements in sev-
eral proofs and which greatly clarified the exposition of this paper. I
would also like to thank Daryl Cooper and Joseph Maher for their nu-
merous good ideas, advice, encouragement, and endless patience.

1. Preliminaries

Cannon and Thurston introduce a useful metric called the singular
Solv metric on the suspension X of a closed surface in [CT]. This metric
is useful because in the singular Solv metric on the universal cover of X,
the lifts of the flow lines of the suspension flow on X are geodesics. In
this section we will define a new metric based on the singular Solv metric
with this same useful property outside cusp neighborhoods, which will
help us understand the dynamics of the flow.

Remark 1.1. In this paper, when we write the word metric, we will
always mean a path metric arising from an infinitesimal length function.

Most of the time, these infinitesimal length metrics are Riemannian
metrics; the only exceptions are the singular Solv metric and the mod-
ified metric, which are Riemannian except along a certain 1-manifold
called the singular set.

1.1. Definition of Quasi-Isometry and Quasigeodesic. Let (X, d)
be a metric space. If the distance between every pair of points in X is
equal to the infimum of the lengths of rectifiable curves joining them,
then we call (X, d) a length space. We also say that d is a path
metric. Furthermore, if the infimum is always attained, we call (X, d) a
geodesic space.

For example, a Riemannian manifold with boundary is a length space;
a complete Riemannian manifold is a geodesic space. Note that every
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path connected covering π : X̃ → X of a length space is also a length

space, where the length of a path c : [a, b] → X̃ is defined to be the
length of π ◦ c : [a, b] → X.

In this paper, all underlying spaces are manifolds, so they always
have universal covers. Most of the spaces in this paper have Riemannian
metrics as well, or metrics which are Riemannian except at well-behaved
singularities. Every space in the paper is length space.

In the following definitions, all paths are rectifiable, I, I ′ are (possibly
infinite) subintervals of R, and X is a length space with universal cover

π : X̃ → X.

Definition 1.2. A path c : I → X is parametrized by arc length
if for all a, b ∈ I, length(c|[a, b]) = |b − a|.

Definition 1.3. A path c′ : I ′ → X is a reparametrization of
c : I → X if there exists a homeomorphism h : I → I ′ such that
c = c′ ◦ h.

Lemma 3. If c : I → X is rectifiable and injective, then there exists

a reparametrization of c by arc length.

In this paper, when we say a path is geodesic we will mean that
its lift to the universal cover is a minimal geodesic, as in the following
definition:

Definition 1.4. A path c : I → X is a geodesic if a lift c̃ : I → X̃
of c is an isometry; i.e., for all a, b ∈ I, d eX

(c̃(a), c̃(b)) = |b − a|. A path
is a local geodesic if every point is contained in a subpath of positive
length which is a geodesic.

Remark 1.5. Geodesics are parametrized by arc length.

Definition 1.6. A path c : I → X is a ugeodesic or unparametrized
geodesic if it can be reparametrized to be a geodesic.

Remark 1.7. Equivalently, an injective c : I → X is a ugeodesic if
for all a, b ∈ I, d eX

(c̃(a), c̃(b)) = length(c̃|[a, b]).

Definition 1.8. Let (X, dX) and (Y, dY ) be metric spaces. For K ≥ 1
and L ≥ 0, a (K, L)-quasi-isometry is a map f : (X, dX) → (Y, dY )
such that for all x, x′ ∈ X, if dX(x, x′) ≥ L, then

1

K
≤ dY (fx, fx′)

dX(x, x′)
≤ K.

Remark/Definition 1.9. A K-bilipschitz map is a (K, 0)-quasi-
isometry.

Note that two path metrics on a manifold M are K-bilipschitz if and
only if the infinitesimal versions of these path metrics (Finsler metrics)
on M are K bilipschitz.
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Definition 1.10. A (K, L)-quasigeodesic in a length space X with

universal cover π : X̃ → X is a path c : I → X such that if c̃ : I → X̃
is a lift of c (so π ◦ c̃ = c), then c̃ is a (K, L)-quasi-isometry of I (with

the usual metric) into X̃. A path c : I → X is quasigeodesic in X if
c is a (K, L)-quasigeodesic for some K ≥ 1, L ≥ 0.

Note that it is standard to define a quasigeodesic in the universal
cover; the definition given above is slightly nonstandard as it defines
a quasigeodesic in the base space to be a path which is covered by a
(standard definition) quasigeodesic in the universal cover.

Remark 1.11. A (1,0)-quasigeodesic is simply a geodesic.

The following definition gives a notion of a quasi-fication of ugeodesic;
in other words, a criterion for a path to be quasigeodesic without concern
for a parametrization.

Definition 1.12. Let M be a manifold and a length space, and c :
I → M be a rectifiable path. For K ≥ 1 and L ≥ 0, c is a (K, L)-quasi-
ugeodesic if for all subintervals [a, b] ⊆ I with length(c|[a, b]) ≥ L, we
have length(c|[a, b]) ≤ K · dfM

(c̃(a), c̃(b)).

Lemma 4. Let M be a manifold and a length space, and c : I → M
be (K, L)-quasi-ugeodesic. Then there exists a reparametrization c′ of c
which is a (K, L)-quasigeodesic.

Proof. Let c′ : I ′ → M be a reparametrization of c by arc length;
then for all a, b ∈ I ′, length(c′|[a, b]) = b − a. Since c is a (K, L)-quasi-
ugeodesic and the definition of (K, L)-quasi-ugeodesic is independent
of parametrization, we know that if a, b ∈ I ′ with length(c′|[a, b]) ≥ L,

then length(c′|[a, b]) ≤ K · dfM
(c̃′(a), c̃′(b)). But also, length(c|[a, b]) ≥

dfM
(c̃(a), c̃(b)). Therefore, if length(c′|[a, b]) ≥ L, then

1

K
≤ 1 ≤ b − a

dfM
(c̃(a), c̃(b))

≤ K,

so c′ is a (K, L)-quasigeodesic. q.e.d.

Many of the proofs in this paper prove directly that certain paths are
quasi-ugeodesics (rather than quasigeodesics). In light of Lemma 4, to
avoid extra complication, we will refer to these quasi-ugeodesics simply
as quasigeodesics.

Finally, a flow on a manifold M is quasigeodesic if there exist
uniform K ≥ 1, L ≥ 0 such that every flow line lifts to a (K, L)-

quasigeodesic in M̃ .
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1.2. Definition of Singular Solv Metric.

Definition 1.13. A Euclidean cone metric on a surface F is a
path metric (actually, a Finsler metric [Sp]) on F which is Euclidean
except at a discrete set of points called cone points. At each cone
point pi there is a cone angle θi and a neighborhood Ui of pi where the
infinitesimal metric is given by

ds2 = dr2 + r2

(
θi

2π

)2

dθ2.

Definition 1.14. Let F be a (possibly punctured) surface. A home-
omorphism Ψ : F → F is pseudo-Anosov if there is a Euclidean cone
metric on F such that

1) Ψ permutes the cone points on F , preserving cone angle.
2) There are one dimensional foliations F+ and F− in F − {cone

points}, called stable and unstable foliations respectively, whose
leaves are local Euclidean geodesics, and the leaves of F+ are
orthogonal to those of F−.

3) At each nonsingular point p in F , there are x, y coordinates in a
neighborhood of p such that the leaves of F+ are y = constant
and the leaves of F− are x = constant.

4) Using these local coordinates, Ψ is given locally by

(
λ 0
0 λ−1

)

with λ > 1.

The closure of a leaf in F that contains a singular point is called a
singular leaf. The singularity is called n-pronged if n leaves of F+

and n leaves of F− meet at the singularity (we will also use the notation
F+ and F− to refer to the singular foliations).

Figure 2 is a picture of a 3-pronged singularity. The total angle
around the singular point is 3π.

For λ > 1, the Solv metric on R
3 is the path metric arising from

the infinitesimal length function

ds2 = λ2tdx2 + λ−2tdy2 + dt2.

Up to isometry, this metric does not depend on λ because rescaling the t
axis is equivalent to changing λ. For each integer n ≥ 1, we will describe
a path metric on R

3 called the n-prong singular Solv metric. This metric
is Riemannian everywhere except on the t-axis. Using global cylindrical
coordinates (r, φ, t) on R

3, it is the path metric on R
3 arising from the

infinitesimal length function on R
3 − t-axis given by

ds2 = λ2t

(
cos

(
nφ

2

)
dr − rn

2
sin

(
nφ

2

)
dφ

)2

+ λ−2t

(
sin

(
nφ

2

)
dr +

rn

2
cos

(
nφ

2

)
dφ

)2

+ dt2.
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F+

F+

F+

F−

F−

F−

a sector

Figure 2. Leaves of F+ and F− near a 3-prong singularity.

The metric completion of this is the Finsler metric called the n-prong
singular Solv metric on R

3.

A sector of R
3 is a subset of this metric space with 2πk

n
≤ φ ≤ 2π(k+1)

n
for an integer k ∈ [0, n − 1] (Figure 2). It is isometric to the subset of
R

3 with the Solv metric given by y ≥ 0. Later on we will use the local
parameter θ = n

2 φ in each sector, so that a sector corresponds to θ
between kπ and (k + 1)π for k an integer in [0, n − 1] . We refer to the
θ parameter as angle. The restriction of the infinitesimal version of the
singular Solv metric to a horizontal plane t = constant is a Euclidean
cone metric with the origin a singular point with cone angle nπ.

Definition 1.15. A singular Solv metric on a 3-manifold M is a
path metric which is locally isometric to some model; i.e., an open set
in some n-prong singular Solv metric on R

3.

We allow different values of n for different points in M . The subset of
M corresponding to cone points on the t-axis in some model with n 6= 2
is called the singular set of M , written ΣM ; it is a 1-submanifold of
M . For each component C of ΣM the cone angle, nπ, is constant.

There is a foliation on R
3 given by lines parallel to the t-axis. These

are geodesics for every n-prong singular Solv metric on R
3. This gives a

foliation by geodesics on any manifold M with a singular Solv metric.

Definition 1.16. A set V in a manifold M with a singular Solv
metric is vertical if it is a union of leaves of the foliation by geodesics
described above. A surface H in M is horizontal if for every point
in H there is a neighborhood U which is locally isometric to an open
set in R

3 with the singular Solv metric and H ∩ U is mapped into the
horizontal plane given by t = constant.
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The following theorem describes the connection between the singular
Solv metric and surface bundles over the circle with pseudo-Anosov
monodromy.

Theorem 1.17. [Th1][CT] Suppose Ψ : F → F is pseudo-Anosov

with stretch factor λ, and M is the F -bundle over S1 with monodromy

Ψ. Then there is a submersion p : M → S1 such that for all x ∈ S1,

p−1(x) ≡ Fx is homeomorphic to F , and

1) M is hyperbolic

2) M has a singular Solv metric (with the given λ)
3) Each fiber Fx is horizontal in the singular Solv metric; i.e., it

is given locally by t = constant. Thus the induced infinitesimal

metric on Fx is a Euclidean cone metric.

A covering translation in the universal cover associated to the mon-
odromy is given locally by (x, y, t) 7→ (λ−1x, λy, t + 1).

In such a 3-manifold, the stable and unstable singular foliations F+

and F− on F give rise to 2-dimensional singular stable and unstable
foliations on M , where each 2-dimensional leaf is the suspension of a
one-dimensional leaf in F+ or F−. The flow lines of the suspension flow
on M consist of the 1-manifolds which are the intersections of the leaves
of these 2-dimensional foliations. Note that in an unstable leaf, every
pair of flow lines move closer together as t increases, and in a stable
leaf, every pair of flow lines move farther apart as you flow forward.

1.3. Cylinders in M̂ . We are studying a hyperbolic 3-manifold M
which fibers over the circle with fiber a surface F . This surface F is
homeomorphic to a closed surface F+ with finitely many points, cor-
responding to punctures of F , deleted. The monodromy Ψ : F → F
extends to a map Ψ+ : F+ → F+. Since Ψ is pseudo-Anosov, it follows
that Ψ+ is also pseudo-Anosov. The mapping cylinder M+ of Ψ+ is a
closed 3-manifold such that M+−M is a finite union of circles. We call
these circles cusp lines.

From the previous discussion we have a singular Solv metric on M+.
The restriction of this metric to M is not quasi-isometric to the hyper-
bolic metric on M , because the diameter of M in this metric is finite.
Below we construct, for each cusp line ci of M+, a certain tubular neigh-
borhood N(ci) in M+. The submanifold Ci = N(ci)−ci is called a cusp
of M ; it has boundary a torus. We will construct a new metric on Ci

which equals the infinitesimal singular Solv metric on ∂Ci. This will
give a new path metric on M which is quasi-isometric to the hyperbolic
metric on M .

The bundle map p : M → S1 extends to a bundle map p+ : M+ → S1

such that for all x ∈ S1, (p+)−1(x) ≡ F+
x is homeomorphic to F+. Fix

a cusp line c in M+. Each point q on c lies in some fiber F+
x of M+.

For each q ∈ c on each F+
x , take the topological disk consisting of all
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points on F+
x whose distance to q in the induced Euclidean cone metric

on F+
x (coming from restricting the infinitesimal singlar Solv metric) is

at most 1
e
. Then define N(c) to be the union of these disks. (Scale the

metric on M , if necessary, so that each neighborhood is a solid torus,
neighborhoods around different cusp lines do not intersect, and N(c)−c
contains no singularity of the flow.)

Let F̂ be the cover of F corresponding to the kernel of the inclusion

map i∗ : π1F → π1F
+. Then F̂ is a punctured plane with a singular

Euclidean metric, with cone points where the cone angle is a multiple of

π. Let M̂ = F̂ ×R, which is a cover of M ; let ρ : M̂ → M be this cover.

The manifold M̂ is a subset of M̃+, the universal cover of M+. We use

the path metric on M̂ given by restricting the singular Solv metric on

M̃+.

Definition 1.18. A cylinder in M̂ is a component of ρ−1(C) where
C is a cusp of M ; it is homeomorphic to (D2 − {pt}) × R

1.

Note that by the way we have chosen C, the cylinders in M̂ do not
intersect one another and do not contain any singularity of the flow.

When we draw pictures of the Solv metric, we will always draw flow
lines as vertical straight lines. In this model, a cylinder becomes more
eccentrically star shaped, lengthened along the unstable singular foli-
ation and shortened along the stable singular foliation, as t tends to
infinity, as in Figure 3. The elongating and shortening effect can be
more easily seen if we “square off” a 2-pronged cylinder so that it has 4
sides, two of which are parallel to the x-axis and the other two parallel
to the y-axis (Figure 4).

Choose a cylinder T in M̂ with an n-pronged singularity. Choose
local coordinates (r, θ, t) for T with θ ∈ [0, nπ), t ∈ R in such a way
that θ = kπ corresponds to the unstable eigendirections and θ = kπ + π

2
corresponds to the stable eigendirections, with the rest of the values
of θ increasing monotonically when traveling counterclockwise from the
θ = 0 eigendirection. This lamentable choice leads to local coordinates

x = r sin θ, y = r cos θ;

under these coordinates T is described by

(1) 0 < r
√

λ−2t cos2 θ + λ2t sin2 θ ≤ 1

e
.

Note that the puncture in each constant t cross section of T occurs on
the local t-axis. The universal cover of T is obtained by unwrapping T
about the t-axis.

Flow lines are vertical in the singular Solv metric on T . Since r, θ,
and t are local singular Solv coordinates on T , each segment of flow line
contained in T is determined by some fixed choice of r and θ, and is
parameterized by the coordinate t. If the segment has θ coordinate an
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y

y

y

x

x

x

t

Figure 3. A portion of a 3-pronged cylinder of M̂ show-
ing constant singular Solv distance.

t = 1

t = 0

t = −1

a squared-off cusp horizontal cross sections

Figure 4. A portion of a “squared-off” 2-pronged cusp

of M̂ .

integer multiple of π
2 , then it lies in a non-compact leaf of either the

stable or unstable 2-dimensional foliation which contains the cusp line.
In this case, the flow line segment approaches the cusp line asymptot-
ically in either forwards (i.e. upwards) time (in an unstable leaf) or
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backwards time (in a stable leaf). We will refer to this type of flow line
as a trapped flow line, for one end of the flow line becomes trapped in
the cusp forever. If θ is not an integer multiple of π

2 , it is easy to check
that this type of flow line will leave the cusp through its boundary in
both finite forwards and backwards time. As these flow lines will enter
the cusp and then return to the compact part of the manifold, we will
call them returning flow lines.

1.4. Modifying the Singular Solv Metric. We now construct a new
path metric on M called the modified metric as follows. The infini-
tesimal version of this metric is the infinitesimal singular Solv metric
except in the cusps of M . In the cusps of M we use a standard hy-
perbolic cusp metric. Near the boundary of each cusp we interpolate
with a Riemannian metric between the infinitesimal singular Solv and
the hyperbolic metrics.

Let C̃ → C be the universal cover of a cusp C. To define the standard

hyperbolic metric on C we construct an embedding f : C̃ → H
3 so that

the covering transformations π1(C) of C correspond to isometries of H
3.

Then using the pull back metric on C̃ we get a hyperbolic metric on

C = f(C̃)/π1(C). The map is chosen so that the images of flow lines
are quasigeodesics (see Section 1.6).

We use the upper half space model of H
3, namely, {(x, y, z) ∈ R

3 :
z > 0} with Riemannian metric (dx2 + dy2 + dz2)/z2. The image of f

is the horoball |z| ≥ 1. The universal cover, C̃, is the union of infinitely

many sectors T̃i such that T̃n intersects T̃m if and only if n = m, m± 1,

and T̃n ∩ T̃n+1 = vertical half plane.

The cylindrical coordinates on each sector of C̃ fit together to give
global coordinates (r, θ, t) in the subset of (0,∞) × R × R given by

equation (1), such that T̃n is given by (0,∞)× [(n− 1)π, nπ]×R. Then

f : C̃ → H
3 is given by

(2) f(r, θ + nπ, t) =
(
t, nπ + tan−1(λ2t tan θ),

− log(r
√

λ−2t cos2 θ + λ2t sin2 θ)
)

for 0 ≤ θ < π. To a first approximation, the map sends (r, θ, t) to
(x, y, z) = rectangular coordinates (t, θ,− log r) in H

3. However, this
map has been adjusted so that the boundary of T is mapped to the
plane z = 1.

An easy calculation shows that f is equivariant under the covering
translation sending (x, y, z) to (x+1, y, z) in the upper half space model
of H

3, which corresponds to (x, y, t) 7→ (λ−1x, λy, t + 1) the singular

Solv coordinates in a sector of a cylinder in M̂ . (Note that the x and
y coordinates in the upper half space model of H

3 are not the same
as the local x and y coordinates in the singular Solv metric on R

3.)
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Further, f is equivariant under the covering translation corresponding

to (r, θ, t) 7→ (r, θ+nπ, t). Therefore the pull-back to T̃ of the hyperbolic
metric on H

3 under f covers a hyperbolic metric on T .
Under f , a given flow line is specified by a fixed choice of r and θ,

and is parameterized by t. By symmetry it suffices to consider the case
0 < θ < π

2 . By differentiating the function f(r, θ, t) in the case where θ is
not a multiple of π

2 one can show that the image of a returning flow line

in H
3 travels monotonically in the x and y directions while it is inside the

horoball, and increases monotonically in the z direction until it reaches
a peak, then decreases monotonically until it exits the horoball again.
Further, one can calculate that the critical point of the z-coordinate of
each flow line is at tc = 1

2 logλ cot θ. We define a reparametrization F
of f , by composing with translations in the t direction, which puts the
critical point of each flow line at t = 0:

(3) F (r, θ, t)

=

(
t + tc, tan−1(λ2t),− log

(
r

√
sin 2θ

2

)
− 1

2
log(λ−2t + λ2t)

)
.

Using this new map F one can easily see that the foliation in the cusp
is invariant under translations in both the x and z directions.

Recall that pushing is defined in the upper half space model by pro-
jecting in the z direction onto the horosphere z = 1. Since flow lines in
the upper half space model are mapped to other flow lines by vertical
translation, the image of the flow lines under the pushing map gives a
foliation on the horosphere z = 1, as seen in Figure 5. In fact, the push-
ing map identifies all flow lines with the same local θ coordinate. The
lines of this foliation on the horosphere are preserved by the parabolic
subgroup and therefore project to a foliation on the boundary of N .
The projection of a leaf of the foliation in the cusp into the xz plane is
given in Figure 6.

Definition 1.19. The modified metric on M is a path metric
coming from the following infinitesimal metric:

1) On M−∪Ci, use the infinitesimal singular Solv metric, where each
Ci is a cusp of M .

2) Put a Riemannian metric on each cusp Ci as follows:
a) Choose a diffeomorphism to identify Ci = T

2 × [1,∞).
b) On each sector of T

2 × [2,∞), use the pullback of the infinites-
imal hyperbolic metric under f induced in a cusp of M .

c) Let dsh and dss denote the hyperbolic and singular Solv infini-
tesimal metrics restricted to T

2× [1, 2]. Then on T
2× [1, 2], use

the blended infinitesimal metric given by (t−1)dsh+(2−t)dss,
where t is the coordinate in [1, 2].
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x

y

Figure 5. Projection of the foliation in the cusp to the
xy plane.

x

z

1

slope ≈ log λ slope ≈ − log λ

Figure 6. Projection of the foliation in the cusp to the
xz plane.

Proposition 1.20. The modified metric on M̃ is quasi-isometric to

the hyperbolic metric on M̃ .

Proof. Any two Finsler metrics on a compact manifold are bilipschitz.
The infinitesimal version of the singular Solv metric is a Finsler met-
ric. Recall that the neutered space N is a compact submanifold of M .
It follows that the infinitesimal versions of the hyperbolic metric and
singular Solv metric are bilipschitz on N (see Figure 7). Furthermore,
a cusp under the modified metric is a hyperbolic cusp by the way we
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construct the modified metric. This cusp will have a different shape
than the hyperbolic cusp coming from the actual hyperbolic metric on
M . However, it is easy to see that any two hyperbolic cusps are bilips-
chitz. Hence the hyperbolic and modified metrics on M are bilipschitz.
Therefore, the hyperbolic (path) metric and the modified (path) metric

on M̃ are K-bilipschitz for some K, and thus are (K, 0)-quasi-isometric.
q.e.d.

Therefore the distance in M̃ between two points measured in the
modified metric is within a bounded factor of distance between the same
points in the hyperbolic metric, so a quasigeodesic in one metric will
necessarily be quasigeodesic (with different quasigeodesic constants) in
the other metric. To avoid extra complication we will forget about this
quasi-isometry factor, and pretend that distances are the same in two
metrics which are quasi-isometric.

hyperbolic

hyperbolic metric on cusp

metric

metric

bilipschitz map (compact) bilipschitz map (cusp)

singular Solv

blend hyperbolic metric on cusp∂Ci

Ci

Figure 7. Bilipschitz map between modified and hyper-
bolic metrics.

1.5. The Effect of Pushing a Flow Line. Each flow line travels

monotonically in the R direction in M̂ , typically entering, passing

through, and leaving several of the cylinders in M̂ which cover the
boundary of cusps in M .

Proposition 1.21. Let ℓ be a flow line which passes through a cylin-

der T . Then the portion of ℓ that lies entirely inside T stays inside a

single sector of T .
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∂T

θ = 0θ = π

typical

flow line

Figure 8. Flow lines passing through T , projected onto
the plane t = 0.

Proof. Study the dynamics of the flow (Figure 8). A flow line moves
from the unstable direction to the stable direction, but never moves
from one sector to another. q.e.d.

We will push each flow line out of all the cylinders in M̂ to the
boundary of these cylinders (while fixing portions of the flow line which
are already outside the cylinders) to produce a pushed flow line in the
neutered space. The pushing is realized as follows:

Proposition 1.22. Let ℓ be a flow line segment which lies inside

a cylinder T . In the local cylindrical coordinates in the sector of T
containing ℓ, r and θ are constant along ℓ. Then, in the singular Solv

metric, a point (r, θ, t) on ℓ will be pushed to the point
(

1

e
√

λ−2t cos2 θ + λ2t sin2 θ
, θ, t

)

on the boundary of T .

Thus, in the local cylindrical coordinates of the sector of T containing
a flow line segment, a pushed flow line segment has constant θ coordi-
nate, the same as that of the unpushed flow line.

Proof. We push a flow line out of the cusp neighborhoods using near-
est point retraction in the hyperbolic metric. In the upper half space
model, nearest point retraction sends a point (x, y, z) with z > 1 to the
point (x, y, 1).

The modified singular Solv metric on the cusp neighborhoods is given
by the pullback of the map f (Equation 2). Therefore, the nearest point
retraction (x, y, z) 7→ (x, y, 1) will fix x = t and y = tan−1(λ2t tan θ),
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and will set z = − log(r
√

λ−2t cos2 θ + λ2t sin2 θ) to 1. Fixing x and y
forces t and θ to be fixed, and setting z = 1 results in r changing to

1/(e
√

λ−2t cos2 θ + λ2t sin2 θ). q.e.d.

cusp line

pushed flow line

flow line

∂ cylinder

vertical half plane in singular Solv

Figure 9. Pushing a flow line out of a cusp in the sin-
gular Solv metric.

To visualize this pushing, note that a flow line ℓ and a cusp flow line

determine a vertical (Euclidean) plane in M̂ . Then pushing ℓ out of the
cylinder containing w is realized by projecting ℓ horizontally across this
half plane to the boundary of the cylinder (see Figure 9).

1.6. Proof of Lemma 1. In this section we will prove that every (suf-
ficiently long) segment of flow line inside a horoball is quasigeodesic.

Since the modified metric and the hyperbolic metric on M̃ are quasi-
isometric, we will show the portions of the flow lines which lie in the
horoballs are quasigeodesic in the modified metric by proving that their
images are quasigeodesic in H

3 under the map f .
Under this map, the trapped flow lines are Euclidean straight lines

going off to infinity in the upper half space model of H
3; these trapped

flow lines are shown to be quasigeodesic by a fairly simple calculation.
The returning flow line segments are somewhat more complicated to
handle: using a direct calculation we will show that if a returning flow
segment is sufficiently long, then its length is bounded above by a uni-
form constant multiple of the hyperbolic distance between its endpoints.

Proposition 1.23. There is a Kt > 0 such that all trapped flow line

segments are uniformly (Kt, 0)-quasigeodesic.

Proof. Suppose ℓ is the image under f (Equation (2)) of a trapped
flow line segment for which θ = kπ, k ∈ Z (the argument in the case
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θ = kπ + π
2 is similar). Then f simplifies to

f(r, θ, t) = (t, 0, t log λ − log r);

therefore ℓ is a Euclidean straight line segment in the upper half space
model of H

3 with slope dz
dx

= log λ.

If the endpoints of ℓ are (x1, 0, z1) and (x2, 0, z2), then an easy calcu-
lation shows

length(ℓ) = Kt · (hyp length of vertical segment

between (x1, 0, z1) & (x1, 0, z2))

≤ Kt · dH
3((x1, 0, z1), (x2, 0, z2)),

where Kt =

√
1+(log λ)2

log λ
. Thus such flow line segments are (Kt, 0)-

quasigeodesic. q.e.d.

We now consider a segment of a returning flow line inside a horoball.

Proposition 1.24. There exist constants Kr, Lr depending only on

λ such that all returning leaf segments are uniformly (Kr, Lr)-quasi-

geodesic.

Proof. The segments of flow lines in the cusp have been mapped into
the standard hyperbolic cusp using a carefully defined map F (Equation
(3)). Recall that under F , a given flow line is specified by a fixed choice
of r and θ, and is parameterized by t. By symmetry it suffices to consider
the case 0 < θ < π

2 .

Let ℓ be a segment of returning flow line inside a horoball with end-
points a and b on the boundary of the horoball. We will show that ℓ
is quasigeodesic by showing that the hyperbolic length of ℓ is no more
than a constant multiple of the hyperbolic distance between a and b.
Let E be the Euclidean distance between a and b. Then the hyperbolic
distance d

H
3(a, b) between a and b is given by

d
H

3(a, b) = cosh−1

(
1 +

E2

2

)
.

Now let’s consider the hyperbolic length of ℓ. Let D =
cosh−1(2)

2 log λ
.

Divide ℓ into three pieces: one piece where |t| ≤ D, called the crown,
and two pieces having |t| > D, called legs. It is easy to check that
the hyperbolic length of the crown is globally bounded above by a con-
stant B(λ) depending only on λ (the uniform boundedness follows from
the invariance of the flow under vertical translation and the horizontal
translations described on page 226).
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Next we will show that slopes of the legs are bounded below. Suppose
|t| > D. From the new parametrization F we obtain

dx

dt
=

d

dt
(t + tc) = 1,

dy

dt
=

log λ

cosh(2t log λ)
, and

dz

dt
= log λ tanh(2t log λ).

Since |t| > D and cosh(x) is monotonic, we know cosh(2t log λ) >
cosh(2D log λ). Further, by our choice of D, we know cosh(2D log λ) =
2. Therefore tanh2(2t log λ) = 1 − 1

cosh2(2t log λ)
> 1 − 1

4 = 3
4 , so

∣∣∣∣
dz

dx

∣∣∣∣ = |log λ tanh(2t log λ)| >

√
3 log λ

2
.

Also, sinh2(2t log λ) = cosh2(2t log λ) − 1 > 3, so
∣∣∣∣
dz

dy

∣∣∣∣ = |sinh(2t log λ)| >
√

3.

Let A = min

(√
3 log λ

2
,
√

3

)
. Then both

∣∣∣∣
dz

dx

∣∣∣∣ ,

∣∣∣∣
dz

dy

∣∣∣∣ > A, and by

an argument similar to the one used in the trapped flow line case, the
hyperbolic length of a leg is at most a uniform constant multiple K1 of
the length of the vertical segment from the boundary of the horoball to
the top of the leg.

We have just shown that the legs of ℓ are uniform quasigeodesics.
Since the crown of ℓ has bounded length, in order to prove that all of ℓ
is a uniform quasigeodesic, one just needs to compare the whole length
of ℓ with the distance between its endpoints. If z0 is the z value at the
top of a leg and | |

H
3 denotes the length of a path in the hyperbolic

metric,

|ℓ|
H

3 = 2|leg|
H

3 + |crown|
H

3

≤ 2K1 log(z0) + B(λ).

Let ∆x,∆z be the change in x and z coordinates along one leg of
ℓ. Since | tanh(x)| < 1, we know | dz

dx
| < log λ. There exists a constant

L1 so that if the length of the flow line ℓ is greater than L1, then
∆x = ∆t > max(1, 1

log λ
). Then, if the length of ℓ is greater than L1,

z0 = ∆z + 1

≤ ∆x log λ + 1

< 2∆x log λ,
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since ∆x > 1
log λ

. So, if ℓ is longer than L1

|ℓ|
H

3 ≤ 2K1 log(z0) + B(λ)

≤ 2K1 log(2∆x log λ) + B(λ)

≤ 2K1 log(∆x) + C(λ) for some constant C(λ)

≤ 2K1 log E + C(λ) (note log E > 0 since E ≥ ∆x > 1)

≤ K1(2 log E) + C(λ)

≤ K1(cosh−1(1 +
E2

2
) + log 2) + C(λ) since E > 2

√
2 − 2

= K1(d(a, b) + log 2) + C(λ)

≤ K1d(a, b) + D(λ),

where D(λ) depends only on λ. Taking Lr = max(L1, D(λ)) and Kr =
K1 gives the result. q.e.d.

Proof of Lemma 1. If Kc = max{Kt, Kr} and Lc = Lr, then every seg-
ment of flow line inside a horoball is a (Kc, Lc)-quasigeodesic. q.e.d.

1.7. Proof of Lemma 2. In this section we prove Lemma 2, which

says that every flow line visits a cylinder T in M̂ (and hence a horoball

in M̃) at most once.

height = t0

height = t1

flow line

T

Figure 10. A typical flow line intersection with T .

Proof of Lemma 2. For a fixed cusp neighborhood T , we may choose
local coordinates r, θ, t. In these coordinates, each flow line which in-
tersects T is determined by some fixed choice of r and θ, and is pa-
rameterized by the coordinate t. As flow lines are straight lines in these
coordinates, a typical flow line which intersects T will enter the cylinder
at some height t0 and will remain inside the cylinder until some height
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t1 > t0, where it will exit. It is clear from the shape of a cusp that a flow
line may enter any given sector of T at most one time. Every returning
flow line remains in the same sector of T as t grows, and every trapped
flow line stays on the same line radiating from the origin. Therefore a

flow line may visit a covering cylinder T in M̂ at most once. Figure 10
illustrates this observation in the case that T is a 2-pronged cusp. q.e.d.

2. Flow Lines Are Near Geodesics

In this section we will find a uniform constant RΦ such that every
flow line segment lies in a neighborhood of radius RΦ of the geodesic
connecting its endpoints. We will establish this result for flow line seg-
ments, but we need only pass to longer and longer segments of flow line
to have the same result for entire flow lines.

2.1. Pushed Flow Lines Lie Near Strings of Beads. Identify F
with a fixed fiber Fx in M , where Fx = p−1(x) for some x ∈ S

1. Let
FN = F∩N , and let N∞ → N be the infinite cyclic cover of the neutered
space dual to FN . We may identify N∞ with FN ×R in such a way that
the action of n ∈ Z by covering transformations on N∞ corresponds
to τn : FN × R → FN × R where τ(p, t) = (Ψ−n(p), t + n). Note that
N∞ ⊆ M∞, where M∞ → M is the corresponding infinite cyclic cover
of M .

2.1.1. Pushed Flow Segments are Quasigeodesic in N .

Proposition 2.1. There exist constants Kp > 1, Lp > 0 such that

every pushed flow line segment is a (Kp, Lp)-quasigeodesic in the induced

hyperbolic metric on N∞, and hence a (Kp, Lp)-quasigeodesic in N .

Proof. Any two metrics on the compact set N are quasi-isometric.
We will prove that there exist Kp, Lp satisfying the proposition using
the singular Solv metric on N ; from this the result will follow for the
hyperbolic metric on N .

We want to compare the length in the modified metric along a pushed
flow line between two points with the length in the modified metric of a
geodesic segment between the two points. To do this, we show an even
stronger result: that the maximum length of a pushed flow line between
successive lifts of F is no more than a bounded multiple of the minimum
(neutered space) distance between the lifts.

Let π2 : FN × R → R be projection onto the second factor. From
the structure of the flow and the pushing map operation, it follows that
π2 restricted to any pushed flow line is monotone, so once any pushed
flow line passes through one copy of the fiber FN × {t} for t ∈ R, it
never returns. Thus, the length of any given pushed flow line segment
is no more than the maximum length of a pushed flow line segment
between FN × {0} and FN × {1} multiplied by the number n of copies
of FN × [0, 1] the pushed flow line intersects.
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Every segment of flow line in F × [0, 1] has singular Solv length 1. By
the choice made on page 216, the hyperbolic distance between horoballs
is at least 1000. Recall that a cylinder is covered by a horoball. The
hyperbolic metric is (K, 0)-quasi-isometric (for some K > 0) to the
singular Solv metric, so the singular Solv distance between cylinders is
at least 1000/K. Therefore each segment meets at most 1 + K/1000
cylinders.

Let T be a cylinder in F × R. Then A = (∂T ) ∩ (F × [0, 1]) is a
smooth, compact annulus. Recall from the discussion on page 227 that
the pushing map produces a foliation on the boundary of the neutered
space N . Therefore pushing all flow line segments inside T ∩ (F × [0, 1])
out to the boundary annulus A gives a foliation on A. This foliation is
transverse to the fibers F × t for the following reason: The fibers F × t
are horizontal in F × R. Under the map f defined in Equation (2), a
constant value for t gives a constant value for the x coordinate in the
upper half space model, and from Figure 5 we see that the foliation
on the boundary of the neutered space is transverse to every line of
constant x value. The leaves of this foliation vary continuously as you
travel around A, therefore there is a uniform upper bound to the singular
Solv length of any pushed flow line segment on A. This gives a uniform
upper bound B > 1 to the singular Solv length of any pushed flow line
segment in FN × [0, 1].

Let ǫ be the minimum distance between the compact surfaces FN×{0}
and FN×{1} in N∞. Choose Kp > max(2B

ǫ
(1+ K

1000), 1), and let Lp = 1.

Let ℓ be a finite segment of pushed flow line of length at least Lp with
endpoints a ∈ FN × 0 and b ∈ FN × {t}, where t ∈ [n, n + 1) for some
integer n ≥ Lp = 1. Then

dℓ(a, b) ≤ B

(
1 +

K

1000

)
· (n + 1)

< 2B

(
1 +

K

1000

)
· n (since B > 1)

< Kpǫ · n
≤ Kp · dN∞

(a, b).

Therefore every pushed flow line is a (Kp, Lp)-quasigeodesic. q.e.d.

2.1.2. Quasigeodesic Segments Lie Near Strings of Beads. Re-
call that a string of beads γ+ is the geodesic γ together with all the
beads which γ intersects. Let CH(γ+) denote the convex hull of γ+,
given by the union of all the tetrahedra with all four vertices in γ+, and

let πCH : Ñ → CH(γ+) be nearest point retraction onto this convex
hull. The following 3 lemmas will be used to show that any quasi-

geodesic segment in the path metric on Ñ must lie close to the string of
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pushed flow line

FN × 0 FN × 1

A = maximum length of pushed flow line

segments between FN × 0 and FN × 1

ǫ = minimum distance between FN × 0 and FN × 1

Figure 11. Distance comparison in the infinite cyclic
cover of N .

beads connecting its endpoints. Lemma 5 is a standard fact from hyper-
bolic geometry, while Lemmas 6 and 7 are straightforward applications
of the thin triangles property of hyperbolic space (Lemma 7 follows from
Lemma 6).

Lemma 5. If c is a path segment which is a hyperbolic distance at

least r from CH(γ+), then |c| ≥ sinh r · |πCH(c)|.
Lemma 6. Every point in a geodesic tetrahedra in hyperbolic space

lies within distance 2δ of an edge, where δ is the thin triangles constant

log(1 +
√

2).

Lemma 7. Every point in CH(γ+) lies within distance 4δ of γ+.

We will use Lemma 5 to show that a pushed flow line segment cannot
stray very far away from the string of beads connecting its endpoints,

for if it does, there exists a path in Ñ with the same endpoints which is
much shorter than the pushed flow line segment, contradicting that the

pushed flow line is quasigeodesic in Ñ .

Proposition 2.2. Let Ñ ⊆ H
3 be the neutered space described above.

Given K > 1, L > 0, there exists R > 0 such that if q is any (K, L)-

quasigeodesic segment in Ñ and γ is the hyperbolic geodesic segment in

H
3 connecting the endpoints of q, then q lies within hyperbolic distance

R of the hyperbolic convex hull of the string of beads along γ.

Proof. We will show that if a neutered space quasigeodesic gets too far
(in the hyperbolic metric) from the hyperbolic convex hull of the string
of beads connecting its endpoints, then projecting the path onto the
convex hull (followed by pushing the projected path out of the horoballs)
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a
a′

b

b′

c

y

CH(γ+)

Nr(CH(γ+))

NR(CH(γ+))

γ

Figure 12. Quasigeodesic segments lie near convex
hulls of strings of beads.

produces a much shorter path in the neutered space (in the path metric

on Ñ), contradicting that the original path was quasigeodesic.

Suppose q is any (K, L)-quasigeodesic segment in Ñ and γ is the hy-
perbolic geodesic segment in H

3 connecting the endpoints of q. Choose
r > max(L, sinh−1(2Ke4δ)) and let R = 2Krer+4δ + r, where δ is the
thin triangles constant. Then q lies completely inside the hyperbolic
R-neighborhood of the convex hull of the string of beads along γ, for
suppose a point y in q falls outside this neighborhood. Then there is a
subsegment c of q (containing y), which is at least hyperbolic distance
r from the convex hull of the string of beads, of hyperbolic length at
least

|c| ≥ 2(R − r) = 4Krer+4δ(4)

(see Figure 12). Note that, by our choice of r, we also have |c| > L.
Let a and b be the endpoints of this subsegment c, and let s be the
path A ∪ πCH(c) ∪ B, where A and B are paths of hyperbolic length r
connecting a to a′ = πCH(a) and b to b′ = πCH(b), respectively. Paths A,

B, and πCH(c) need not be in Ñ , but may pass through many horoballs

not on the string of beads. Let A, B, πCH(c), and s be the results of

pushing A, B, πCH(c), and s out of the horoballs into Ñ ; then s =

A ∪ πCH(c) ∪B. We must find upper bounds for the hyperbolic lengths
of these subpaths of s.
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The path πCH(c) lies along the boundary of the convex hull of the
string of beads γ+. To understand by how much πCH(c) lengthens when
pushed out of all horoballs into the neutered space, we must know how
deeply πCH(c) can enter any given horoball. Let H be a horoball that
πCH(c) enters. Note that H cannot be a bead along γ+ since H contains
a nontrivial subsegment of πCH(c). By Lemma 7, every point in H ∩
CH(γ+) lies within hyperbolic distance 4δ of γ+. But by our initial
choice of horoballs, H lies a distance at least 1000 from all the other
horoballs. Thus H∩CH(γ+) lies with hyperbolic distance 4δ of γ. So no
point of CH(γ+) inside H can be further than 4δ from the boundary of
H. Therefore, pushing πCH(c) from the interior of H onto the boundary
of H can increase its length by no more than the factor e4δ, and indeed

|πCH(c)| ≤ e4δ · |πCH(c)|.(5)

Similarly, since every point of A and B is within r+4δ of γ, no point of A
or B inside a horoball H can be further than r+4δ from the boundary of
H; therefore each of A and B will be no longer than er+4δ · r. Therefore

K · |s| = K · |A ∪ πCH(c) ∪ B|
≤ K · (er+4δ · r + e4δ · |πCH(c)| + er+4δ · r) by Equation 5

= 2Krer+4δ + Ke4δ · |πCH(c)|

≤ |c|
2

+ Ke4δ · |πCH(c)| by Equation 4

<
|c|
2

+
Ke4δ

sinh r
|c| by Lemma 5

<
|c|
2

+
Ke4δ

2Ke4δ
|c|

≤ |c|
2

+
|c|
2

= |c|.
Notice that since c is a subsegment of the (K, L)-quasigeodesic segment
with |c| > L, |c| < K · d eN

(a, b). Hence K · |s| < |c| < K · d eN
(a, b), so

|s| < d eN
(a, b), a contradiction to the quasigeodesic behavior of c. q.e.d.

Proposition 2.3. There exists Rs > 0 such that every pushed flow

line segment lies within hyperbolic distance Rs of the string of beads

connecting its endpoints.

Proof. Since pushed flow lines are (Kp, Lp)-quasigeodesics in Ñ , by
the previous proposition there exists a constant Rp > 0 so that every
pushed flow line segment lies within a hyperbolic neighborhood of radius
R of the convex hull of the string of beads connecting its endpoints.
Thus, in light of Lemma 7, every pushed flow line segment lies within
Rs = Rp + 4δ of the string of beads connecting its endpoints. q.e.d.
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2.2. Flow Segments Lie Near Strings of Beads. We now know
that a pushed flow line segment lies in a neighborhood of the string of
beads along the geodesic connecting its endpoints. To prove that flow
line segments lie near the string of beads connecting their endpoints,
we only need to prove that the segments of flow line which lie inside a
horoball lie in a uniform neighborhood of the string of beads. This does
not follow automatically from what we have already done, for given a
large neighborhood of a string of beads, most horoballs intersecting this
neighborhood are not beads on this string. A segment of flow line which
lies inside one of the beads trivially lies inside a neighborhood of the
string of beads, but the non-bead horoballs need special consideration.

Proposition 2.4. Every flow line segment ℓ can be extended to a

flow line segment ℓ+ which lies inside neighborhood of radius Rf of the

string of beads along the geodesic connecting the endpoints of ℓ+.

Proof. Let ℓ be a flow line segment. This flow line segment is ei-
ther part of a trapped flow line (one that spends infinite backwards or
forwards time in a cusp) or it isn’t.

Case 1: Suppose ℓ is not a subsegment of a trapped flow line. Extend
ℓ a bit further if necessary to get ℓ+ so that the endpoints of ℓ+ lie
outside the cusps; then ℓ+ and its associated pushed flow line ℓ+ have
the same endpoints. Let γ be the hyperbolic geodesic connecting these
endpoints; then ℓ+ lies inside the Rs-neighborhood of γ+, the string
of beads along γ by Proposition 2.3. The flow line ℓ+ agrees with ℓ+

outside the cusps, thus ℓ+ ∩ ℓ+ lies inside the Rs-neighborhood of γ+ as
well.

Consider a subsegment of ℓ+ which lies inside a cusp, with endpoints
a and b on the boundary of the cusp (see Figure 13). Since the a and
b are points on the pushed flow line, they lie within a distance Rs of
the string of beads along the geodesic. Therefore, a and b lie within
Rs of CH(γ+), the convex hull of the string of beads γ+. Let γ′ be
the geodesic segment connecting a and b. Since a geodesic segment is
furthest from a convex set at its endpoints, we know that γ′ lies within
Rs of CH(γ+). Therefore, by Lemma 7, γ′ lies within distance Rs + 4δ
of γ+. But a flow line is quasigeodesic inside the cusps, and therefore ℓ+

lies within a neighborhood of some radius Rc of γ′. Hence, the portions
of ℓ+ inside the cusp (and thus the entire flow line segment ℓ+) lie within
a neighborhood of radius Rf = Rc +Rs +4δ of the string of beads along
γ.

Case 2: Suppose now that ℓ is a subsegment of a trapped flow line.
Extend this flow line segment all the way to its end, where the trapping
horoball meets the sphere at infinity. Let ℓ be the associated pushed
flow line. The portion of ℓ inside the trapping horoball has θ coordinate
a multiple of π

2 , and therefore is mapped under f to a Euclidean straight
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non bead horoball
intersecting NRs(γ+)

NRc(γ
′)ℓ+

ℓ+

a b

γ

γ′

ℓ+

NRs(γ+)

Figure 13. Flow line segments lie inside Rf = Rc+Rs+
4δ neighborhoods of strings of beads.

line of slope log λ in the x, z plane in the standard cusp in the upper half
space model of H

3. Hence ℓ projects to the boundary of the horoball as
a horocycle (rather than just as a single point). Thus ℓ has the same
endpoints as ℓ, with at least one of these endpoints lying on the sphere
at infinity. Let γ be the geodesic connecting these endpoints. Then the
trapping horoball(s) are beads on the the string of beads along γ, so
it is immediate that the portion of ℓ inside the trapping horoball lies
within the string of beads, and hence any neighborhood of the string
of beads, along γ. The argument for the rest of ℓ follows exactly as
above. Therefore, every flow line segment lies within a neighborhood
Rf = Rc +Rs +4δ of the string of beads connecting its endpoints. q.e.d.

2.3. Flow Line Segments Lie Close to Geodesics. We now know
that every flow line segment is close to a string of beads. The goal of
this section is to show that every flow line segment is close to the string

in the string of beads.
The proof proceeds as follows: Consider a flow line segment ℓ which

lies in an Rf neighborhood of a bead. We will show that the subsegments
of ℓ which lie near the bead but do not enter the bead have a bounded
length Mf depending only on Rf, and therefore these subsegments are
close to the string. On the other hand, since flow lines are quasigeodesic
inside cusps, the subsegments of ℓ which lie inside the bead lie within
Rc of some geodesic segment in the bead. We will show this geodesic
lies within an Rf + Mf neighborhood of the string, and therefore the
subsegment of ℓ inside the bead lies within Rf + Mf + Rc of the string.
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Lemma 8 (Limited Time Lemma). For any R > 0, there is an

MR > 0 such that every segment of flow line in H
3 which lies within

hyperbolic distance R of a horoball but does not enter the horoball has

hyperbolic length at most MR.

To prove the Limited Time Lemma, we will first find a bound for
the length of ℓ in the singular Solv metric on M . Then we will use a
compactness argument to produce a bound for the hyperbolic length of
ℓ. Let dgF+

(p, q) be the distance between points p and q in the singular

Euclidean metric on F̃+, and let d gM+
(p, q) be the distance between p

and q in the singular Solv metric on M̃+. We will need to make use of
the lemma below:

Lemma 9. Given K > 0 there exists L > 0 such that if p, q ∈ F̃+×0
and dgF+

(p, q) > L then d gM+
(p, q) > K.

Proof of Lemma 9. Suppose not. Then for each n ∈ N there exist

pn, qn ∈ F̃+×0 such that dgF+
(pn, qn) > n and d gM+

(pn, qn) ≤ K. Apply
covering transformations to the pairs pn, qn such that the pn all lie in
a given (compact) fundamental domain D. Then, up to subsequences,

we may assume pn converges to p ∈ D. Let B be the ball in M̃+ of
(singular Solv) radius K +1 centered at p. Then for n sufficiently large,

pn, qn ∈ B. Now B is compact; therefore F̃+ ∩ B is compact. But
dgF+

(pn, qn) > n → ∞ as n → ∞, which contradicts compactness of

F̃+ ∩ B. q.e.d.

Proof of Limited Time Lemma. Let C be the compact neighborhood of
a cusp line c in M+ such that C−c is a cusp of M . Let H be a horoball
in H

3 covering C − c, and let Z = NR(H) be the neighborhood of H of

hyperbolic radius R. Suppose ℓ̃ is a segment of flow line in H
3 contained

in Z − H.
Let ℓ̂, Ĥ, and Ẑ be the projections of ℓ̃, H, and Z to M̂ , and let

ĉ ⊆ M̃+ be the cusp line in the closure of Ĥ covering c in M+. Then

ℓ̂ ∈ Ẑ − Ĥ. We will first show that there is a universal bound to
the singular Solv length of ℓ̂ (and hence ℓ̃) by bounding the distance

between ℓ̂ and ĉ in terms of the orbit of a point on ℓ̂ in F+ under the
monodromy Ψ. Then we will use a compactness argument to produce

an upper bound on the hyperbolic length of ℓ̃.
The cusp line c is a closed flow line in M+; without loss of generality

(by passing to a finite cover) we may assume that c has period 1. Choose

a fixed fiber F̃+ in M̃+ ≃ F̃+ ×R and identify F̃+ with F̃+ × 0. Define

p0 = ĉ ∩ F̃+. Let Ψ̂+ : F̃+ → F̃+ be the lift of Ψ+ such that Ψ̂+(p0) =

p0, and let τ : F̃+ × R → F̃+ × R be the generator for the covering

translations such that τ(p, t) = ((Ψ̂+)−1p, t + 1). Let S be the set of
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integers n for which ℓ̂ ∩ τn(F̃+) 6= ∅. For each n ∈ S, define qn =

τ−n(ℓ̂ ∩ τn(F̃+)). Then ℓ̂ ⊂ q0 × R. Therefore

qn = τ−n(ℓ̂ ∩ τn(F̃+))

= τ−n((q0 × R) ∩ τn(F̃+))

= τ−n(q0, n)

= Ψ̂+
n
(q0, 0).

As we have identified F̃+ with F̃+ × 0, we can write qn = Ψ̂+
n
(q0). So

for all n ∈ S,

d gM+
(p0, qn) = d gM+

(p0, Ψ̂+
n
(q0)).

We will show that if n is large, then dgF+
(p0, Ψ̂+

n
(q0)) is large. Then

Lemma 9 will imply that d gM+
(p0, Ψ̂+

n
(q0)) is large, hence p0 and Ψ̂+

n
(q0)

are far apart in in the singular Solv metric on M̃+.

Since Ĥ is a neighborhood of p0 which is invariant under τ , and since

ℓ̂ stays outside Ĥ, we know that Ψ̂+
n
(q0) is bounded away from p0 for

all n ∈ Z ∩ [n0, n1]. Thus there exists a uniform ǫ > 0 (depending only
on C, independent of our choice of ℓ) such that for all n ∈ Z ∩ [n0, n1],

dgF+
(p0, Ψ̂+

n
(q0)) > ǫ.

The stable and unstable foliations F+ and F− on F̃+ give pseudo-

metrics d+ and d− on F̃+ using the transverse measures of the foliations.
Since Ψ+ is pseudo-Anosov, for any points p and q on F+,

d+(Ψp, Ψq) = λ · d+(p, q), and

d−(Ψp, Ψq) = λ−1 · d−(p, q).

Away from the singularities in F̃+, d++d− is locally the taxicab metric.
The following comparison holds at the infinitesimal level between d+ +

d− and the singular Solv metric on F̃+:

1

2
≤

√
dx2 + dy2

|dx| + |dy| ≤ 1.

Integrating this along smooth curves allows us to approximate distance

dgF+
(p, q) between any points p, q ∈ F̃+ using d+(p, q) + d−(p, q), as

follows:
1

2
≤

dgF+
(p, q)

d+(p, q) + d−(p, q)
≤ 1.

Let a = d+(p0, q0), and b = d−(p0, q0). Then

d+(p0, Ψ̂+
n
(q0)) = d+(Ψ̂+

n
(p0), Ψ̂+

n
(q0)) = λna, and

d−(p0, Ψ̂+
n
(q0)) = λ−nb.
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Therefore, since ℓ̂ stays outside Ĥ, we know that for all n ∈ Z∩ [n0, n1],

λna + λ−nb = d+(p0, Ψ̂+
n
(q0)) + d−(p0, Ψ̂+

n
(q0))

≥ dgF+
(p0, Ψ̂+

n
(q0))

> ǫ.

Thus the values of a and b are bounded below.
In M+, the intersection of every copy of the fiber surface F with Z

is a disk. Therefore, Ẑ ∩ (F̃+ × 0) is a disk as well, and is therefore
compact. Thus there exists K > 0 (depending only on R) such that

for any q ∈ F̃+ × 0, if d gM+
(p0, q) > K, then q 6∈ Ẑ. By Lemma 9,

for this K there is an L > 0 (depending only on K) such that for any

q ∈ F̃+ × 0, if dgF+
(p0, q) > L, then q 6∈ Ẑ. Now, for this L, there exists

a B > 0 depending only on L (and hence on R), λ, and ǫ, such that for
all |n| > B, λna + λ−nb > 2L. Then, for |n| > B,

dgF+
(p0, Ψ̂+

n
(q0)) ≥

1

2
(λna + λ−nb) > L

Therefore, for |n| > B, Ψ̂+
n
(q0) 6∈ Ẑ.

Since ℓ̂ ⊆ Ẑ − Ĥ, we know ℓ̂ crosses at most 2B translates of F̃+ × 0

in M̂ , and therefore ℓ̂ has t coordinate that changes by at most 2B + 2.

Therefore, ℓ̂ has singular Solv length at most 2B + 2. The projection

of ℓ̂ to M is contained in the compact set Z − C, and all metrics on
a compact set are quasi-isometric; it follows that there is a universal
upper bound MR (depending only on R) to the hyperbolic length of ℓ,

and hence the hyperbolic length of ℓ̃. q.e.d.

2.3.1. Flow Line Segments Lie Inside Neighborhoods.

Theorem 2.5. There is a constant RΦ > 0 such that every segment

of flow line ℓ of the suspension flow on M can be extended to a flow

line segment ℓ+ which lies within the neighborhood of radius RΦ of the

geodesic connecting the endpoints of ℓ+.

The proof will make use of the following lemma:

Lemma 10. Let R > 0. Suppose H1 and H2 are horoballs on a string

of beads γ+ such that NR(H1) ∩ NR(H2) 6= ∅. Then there is a D > 0
depending only on R such that every point in NR(H1) ∩ NR(H2) lies

within D + 2δ of the string γ.

Proof. Let α be the geodesic segment perpendicular to both H1 and
H2, and let d be the distance between H1 and H2. Then NR(H1) ∩
NR(H2) is a compact set whose diameter depends only on d and R. As
d gets larger, the diameter of NR(H1) ∩NR(H2) gets smaller; therefore
since R is fixed and d is bounded below by 1000 (page 216), there is a
maximum diameter D of NR(H1) ∩ NR(H2) depending only on R. Let
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x be midpoint of α; then x ∈ NR(H1) ∩ NR(H2) and thus every point
in NR(H1) ∩ NR(H2) lies within D of x.

Let g1 ∈ H1 and g2 ∈ H2 be the endpoints of the subsegment of γ
which lies between H1 and H2, and let a1 ∈ H1 and a2 ∈ H2 be the
endpoints of α. Create a hyperbolic quadrilateral by connecting ai to
gi by a geodesic segment βi for i = 1, 2. Then β1 and β2 are distance
at least 1000 > 4δ apart. By thin triangles, we know x lies within 2δ of
β1 ∪ γ ∪ β2. Since x is the midpoint of α, we know x is not within 2δ of
β1 or β2; therefore x lies within a distance at most 2δ of some point on
γ. Therefore, every point in NR(H1) ∩NR(H2) lies within D + 2δ of γ.

q.e.d.

Proof of Theorem 2.5. Let ℓ be a flow line segment, γ be the geodesic
segment with the same endpoints, and γ+ be the string of beads along
γ. Then by Proposition 2.4, ℓ can be extended to a flow line segment
ℓ+, with endpoints outside or on the boundary of the beads, which lies
within a neighborhood of radius Rf of γ+. Away from the beads, ℓ+ lies
within Rf of the string, so we only need to consider the portions of ℓ+

which lie within Rf of a bead. Let a and b be the points where ℓ+ last
enters and first exits the Rf neighborhood of a bead H.

We will now show a and b must lie close to γ. Let H1 be the bead
adjacent to H along γ that is nearest to a. If NRf

(H) and NRf
(H1) do

not intersect, then it is clear that a must lie within Rf of γ. If NRf
(H)∩

NRf
(H1) 6= ∅, then by Lemma 10 every point in ℓ ∩ NRf

(H) ∩ NRf
(H1)

lies within D + 2δ of γ. Hence a (and by a similar argument, b) lies
within RD = max(Rf, D + 2δ) of γ.

Let Mf be the constant that comes from the Limited Time Lemma
(Lemma 8) for R = Rf. This segment of ℓ+ between a and b is either
shorter than or longer than Mf. If the segment is shorter than Mf, then
the entire segment is within RD + Mf of the geodesic, by measuring
along the segment back to endpoint a (at most Mf), then joining up to
the string with a path of length at most RD.

So assume that the segment is longer than Mf. Then by the Limited
Time Lemma, the flow line segment must enter the cusp (see Figure
14) The flow line segment does not enter the cusp more than once, by
Lemma 2. Therefore this flow line segment consists of a segment from a
to the point a′ where the flow line meets the cusp (of length at most Mf),
connected to a segment from a′ to b′ which lies entirely within the cusp,
connected to a segment from b′ to b of length at most Mf. As above in
the case of the short flow line segment, the subsegments between a and
a′ and between b and b′ are within RD+Mf of the geodesic, by measuring
along the subsegments. It remains only to consider the portion of the
flow line inside the cusp.
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a

a′

bb′

ℓ+ ≤ RD

≤ RD

≤ Mf

≤ Mf

≤ RD + Mf

≤ RD + Mf

γ

γ′

NRc(γ
′)

RD-nbhd of

string of beads

bead

Figure 14. The flow line segment ℓ+ lies within RΦ =
RD + Mf + Rc of γ.

The flow lines are quasigeodesic in the cusp, therefore the portion
of ℓ+ inside H lies within a neighborhood of radius Rc of the geodesic
connecting its endpoints a′ and b′; call it γ′. The maximum distance
between two geodesic segments occurs at one of the endpoints of the
segments; thus the entire geodesic segment γ′ lies within a RD + Mf
neighborhood of γ. Therefore, every point on ℓ+ between a′ and b′ lies
within a distance of Rc + RD + Mf of γ. Taking RΦ = Rc + RD + Mf
gives the result. q.e.d.

3. Flow Line Progress

In this section, we complete the proof by showing that flow lines sat-
isfy part 2 of the definition of tracking: that inside the RΦ neighborhood
of the geodesic connecting its endpoints, a flow line makes progress from
one end of the tube to the other.

Theorem 3.1. There exists Q > 0 such that the following is true:

Let ℓ be a flow line and let γ be the geodesic connecting its endpoints.

Let πγ : H
3 → γ denote nearest point retraction onto γ. Then if p, q are

any two points on ℓ such that the length of the segment of ℓ between p
and q is at least Q, d(πγ(p), πγ(q)) ≥ 1.

Proof. If not, then for every n ∈ N there exists pn, qn on a flow line
ℓn such that d(πn(pn), πn(qn)) < 1, but the length along ℓn between pn
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and qn is greater than n (where πn denotes nearest point retraction onto
γn and γn is the geodesic connecting the endpoints of ℓn). Let pnqn be
the subsegment of ℓn between pn and qn. Note that by the results in
Section 2, ℓn and hence pnqn is contained in NRΦ

(γn).
Suppose there is a subsequence of {pn}, which after relabelling we

may assume is the original sequence, such that each πn(pn) lies a dis-
tance at least RΦ + 1 inside a horoball Hn. Then since pn ∈ ℓn, we
know pn lies within RΦ of γn; therefore pn lies inside Hn. Similarly,
since d(πn(pn), πn(qn)) < 1, we know that each qn lies inside Hn as

well. We proved earlier that a flow line in M̃ enters a horoball at most
once; therefore pnqn lies entirely inside Hn. So we have a sequence of
flow line segments pnqn inside horoballs Hn whose lengths go to infinity,
but that do not make progress along their corresponding geodesics γn.
This contradicts the fact that all segments of flow line inside cusps are
uniform quasigeodesics. Therefore, this case cannot happen.

Therefore, all pn (and all qn) project under πn to points in a compact
subset of M . We may assume up to covering translations and subse-
quences that pn converges to p and qn converges to q. Since Φ is a

suspension flow, the orbit space O of Φ̃ can be identified to F̃ . Thus
O is homeomorphic to R

2 and is therefore Hausdorff. For every n, the
points pn and qn project to the same point in the O. Since O is Haus-
dorff, it follows that the limits of the projections of pn and qn into O
are the same, and hence p and q lie on the same flow line. The flow
line segment pq has a flow product neighborhood; therefore the flow line
segments pnqn converge to pq. Thus the length of pnqn must be bounded
above, contradicting our original choice of pn and qn. Therefore, flow
lines must make uniform progress along the geodesics connecting their
endpoints. This completes the proof. q.e.d.
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