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CHARACTERISTIC CLASSES OF FOLIATED SURFACE

BUNDLES WITH AREA-PRESERVING HOLONOMY

D. Kotschick & S. Morita

Abstract

Making use of the extended flux homomorphism defined in [13]
on the group Symp Σg of symplectomorphisms of a closed ori-
ented surface Σg of genus g ≥ 2, we introduce new characteristic
classes of foliated surface bundles with symplectic, equivalently
area-preserving, total holonomy. These characteristic classes are
stable with respect to g and we show that they are highly non-
trivial. We also prove that the second homology of the group
Ham Σg of Hamiltonian symplectomorphisms of Σg, equipped with
the discrete topology, is very large for all g ≥ 2.

1. Introduction

In this paper we study the homology of symplectomorphism groups
of surfaces considered as discrete groups. We shall prove that certain
homology groups are highly non-trivial by constructing characteristic
classes of foliated surface bundles with area-preserving holonomy, and
proving non-vanishing results for them.

Let Σg be a closed oriented surface of genus g ≥ 2, and Diff+ Σg its
group of orientation preserving selfdiffeomorphisms. We fix an area form
ω on Σg, which, for dimension reasons, we can also think of as a symplec-
tic form. We denote by Symp Σg the subgroup of Diff+ Σg preserving the

form ω. The classifying space BSympδ Σg for the group SympΣg with

the discrete topology is an Eilenberg-MacLane space K(Sympδ Σg, 1)
which classifies foliated Σg-bundles with area-preserving total holonomy
groups.

Our construction of characteristic classes proceeds as follows. Let
Symp0 Σg be the identity component of Symp Σg. A well-known the-
orem of Moser [24] concerning volume-preserving diffeomorphisms im-
plies that the quotient Symp Σg/ Symp0 Σg can be naturally identified
with the mapping class group Mg, so that we have an extension

1−→Symp0 Σg−→Symp Σg
p

−→Mg−→1.
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There is a surjective homomorphism Flux : Symp0 Σg →H1 (Σg; R),
called the flux homomorphism. In [13] we proved that this homomor-
phism can be extended to a crossed homomorphism

F̃lux: Symp Σg−→H1(Σg; R),

which we call the extended flux homomorphism. This extension is es-
sentially unique in the sense that the associated cohomology class

[F̃lux] ∈ H1(Sympδ Σg; H
1(Σg; R))

with twisted coefficients is uniquely defined. Now we consider the pow-
ers

[F̃lux]k ∈ Hk(Sympδ Σg; H
1(Σg; R)⊗k) (k = 2, 3, . . .),

and apply Mg-invariant homomorphisms

λ : H1(Σg; R)⊗k−→R

to obtain cohomology classes

λ([F̃lux]k) ∈ Hk(BSympδ Σg; R)

with constant coefficients. The usual cup-product pairing H1(Σg; R)⊗2

→R is the main example of such a homomorphism λ.
This method of constructing constant cohomology classes out of

twisted ones was already used in [23] in the case of the mapping class
group, where the Torelli group (respectively the Johnson homomor-
phism) played the role of Symp0 Σg (respectively of the flux homo-
morphism) here. In that case, it was proved in loc. cit. that all the
Mumford–Morita–Miller classes can be obtained in this way. The pre-
cise formulae were given in [11, 12], with the important implication
that no other classes appear. In our context here, we can go further
by enhancing the coefficients R to associated Q-vector spaces which ap-
pear as the targets of various multiples of the discontinuous cup-product
pairing

H1(Σg; R) ⊗Z H1(Σg; R)−→S2
QR,

where S2
QR denotes the second symmetric power of R over Q, see Sec-

tion 2 for the details. In this way, we obtain many new characteristic
classes in

H∗(Sympδ Σg; S
∗(S2

QR)),

where

S∗(S2
QR) =

∞⊕

k=1

Sk(S2
QR)

denotes the symmetric algebra of S2
QR. On the other hand, we proved

in [13] that any power

ek
1 ∈ H2k(Sympδ Σg; Q)
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of the first Mumford–Morita–Miller class e1 is non-trivial for k ≤ g
3 .

Now we can consider the cup products of ek
1 with the new characteristic

classes defined above. The main purpose of the present paper is to prove
that these characteristic classes are all non-trivial in a suitable stable
range.

The contents of this paper is as follows. In Section 2 precise state-
ments of the main results are given. In Section 3 we study, in detail, the
transverse symplectic class of foliated Σg-bundles with area-preserving
total holonomy groups. In Section 4 we construct two kinds of extended

flux homomorphisms for open surfaces Σ0
g = Σg \ D2. We compare

these extended flux homomorphisms with the one obtained in the case
of closed surfaces. This is used in Section 5 to generalize our result on
the second homology of the symplectomorphism group to the case of
open surfaces. Sections 4 and 5 are the heart of this paper. Then in
Section 6 we use the results of the previous sections to show the non-
triviality of cup products of various characteristic classes, thus yielding
proofs of the main results about the homology of symplectomorphism
groups as discrete groups. In the final Section 7 we give definitions of
yet more characteristic classes, other than the ones given in Section 2.
We propose several conjectures and problems about them.

2. Statement of the main results

Consider the usual cup-product pairing

ι : H1(Σg; R) ⊗ H1(Σg; R)−→R

in cohomology, dual to the intersection pairing in homology. For sim-
plicity, we denote ι(u, v) by u · v, where u, v ∈ H1(Σg; R). We first lift
this pairing as follows.

As in Section 1, let S2
QR denote the second symmetric power of R

over Q. In other words, this is a vector space over Q, consisting of the
homogeneous polynomials of degree two generated by the elements of R
considered as a vector space over Q. For each element a ∈ R, we denote
by â the corresponding element in S1

QR. Thus any element in S2
QR can

be expressed as a finite sum

â1b̂1 + · · · + âk b̂k

with ai, bi ∈ R. We have a natural projection

S2
QR−→R

given by the correspondence â 7→ a (a ∈ R).
With this terminology we make the following definition:

Definition 1 (Discontinuous intersection pairing). Define a pairing

ι̃ : H1(Σg; R) × H1(Σg; R)−→S2
QR
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as follows. Choose a basis x1, . . . , x2g of H1(Σg; Q). For any two ele-
ments, u, v ∈ H1(Σg; R), write

u =
∑

i

aixi, v =
∑

i

bixi (ai, bi ∈ R).

Then we set

ι̃(u, v) =
∑

i,j

ι(xi, xj)âib̂j ∈ S2
QR.

Clearly ι̃ followed by the projection S2
QR−→R is nothing but the usual

intersection or cup-product pairing ι. Henceforth we simply write u⊙ v
for ι̃(u, v).

It is easy to see that ι̃ is well defined independently of the choice
of basis in H1(Σg; Q). We can see from the following proposition that
ι̃ enumerates all Z-multilinear skew-symmetric pairings on H1(Σg; R)
which are Mg-invariant. Let Λ2

ZH1(Σg; R) denote the second exterior
power, over Z, of H1(Σg; R) considered as an abelian group, rather than
as a vector space over R. Also let

(
Λ2

ZH1(Σg; R)
)
Mg

denote the abelian

group of coinvariants of Λ2
ZH1(Σg; R) with respect to the natural action

of Mg.

Proposition 2. There exists a canonical isomorphism
(
Λ2

ZH1(Σg; R)
)
Mg

∼= S2
QR

given by the correspondence

(
∑

i

aiui

)
∧


∑

j

bjvj


 7−→

∑

i,j

ι(ui, vj) âib̂j ,

where ai, bj ∈ R, ui, vj ∈ H1(Σg; Q).

In order not to digress, we refer the reader to the appendix for a
proof.

Before we can define some new cocycles on the group Symp Σg, we
have to recall some facts from [13]. The symplectomorphism group
Symp Σg acts on its identity component by conjugation, and acts on
H1(Σg; R) from the left via ϕ(w) = (ϕ−1)∗(w). The flux homomorphism
Flux: Symp0 Σg → H1(Σg; R) is equivariant with respect to these ac-

tions by Lemma 6 of [13]. Its extension F̃lux: Symp Σg → H1(Σg; R)
is a crossed homomorphism for the above action in the sense that

(1) F̃lux(ϕψ) = F̃lux(ϕ) + (ϕ−1)∗F̃lux(ψ).

Definition 3. Let ϕ1, . . . , ϕ2k ∈ Symp Σg, and

ξi = ((ϕ1 . . . ϕi−1)
−1)∗F̃lux(ϕi).
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Define a 2k-cocycle α̃(k) with values in Sk(S2
QR) by

α̃(k)(ϕ1, . . . , ϕ2k)

=
1

(2k)!

∑

σ∈S2k

sgn σ (ξσ(1) ⊙ ξσ(2)) . . . (ξσ(2k−1) ⊙ ξσ(2k)) ∈ Sk(S2
QR),

where the sum is over permutations in the symmetric group S2k.

That α̃(k) is indeed a cocycle is easy to check by a standard argument
in the theory of cohomology of groups using (1). Thus we have the
corresponding cohomology classes

α̃(k) ∈ H2k(Sympδ Σg; S
k(S2

QR)),

denoted by the same letters. If we apply the canonical projection
Sk(S2

QR)→R to these classes, we obtain real cohomology classes

αk ∈ H2k(Sympδ Σg; R),

which are the usual cup products of the first one α ∈ H2(Sympδ Σg; R).

The refined classes α̃(k) can be considered as a twisted version of dis-

continuous invariants in the sense of [18] arising from the flux homo-
morphism.

Now we can state our first main result.

Theorem 4. For any k ≥ 1 and g ≥ 3k, the characteristic classes

ek
1, e

k−1
1 α̃, . . . , e1α̃

(k−1), α̃(k)

induce a surjective homomorphism

H2k(Sympδ Σg; Z)−→Z ⊕ S2
QR ⊕ · · · ⊕ Sk(S2

QR).

For k = 1 this is not hard to see, so we give the proof right away. For
k > 1 the proof is given in Section 6 below and requires the technical
results developed in the body of this paper.

Consider the subgroup Ham Σg of Symp0 Σg consisting of all Hamil-
tonian symplectomorphisms of Σg. As is well known (see [1, 16]), we
have an extension

(2) 1−→Ham Σg−→Symp0 Σg
Flux
−→ H1(Σg; R)−→1.

This gives rise to a 5-term exact sequence in cohomology:

0−→H1(H1(Σg; R)δ; Z)
Flux∗

−→ H1(Sympδ
0 Σg; Z)−→H1(Hamδ Σg; Z)H1

R

−→H2(H1(Σg; R)δ; Z)
Flux∗

−→ H2(Sympδ
0 Σg; Z),

where we have written H1
R for H1(Σg; R). Now Ham Σg is a perfect

group by a result of Thurston [25], see also Banyaga [1]. Therefore,
Flux∗ injects the second cohomology of H1(Σg; R) as a discrete group

into that of Sympδ
0 Σg. By definition, the class α̃ is the image of the

class of ι̃ under Flux∗. So α̃ is nontrivial on Sympδ
0 Σg, and is defined
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on the whole Sympδ Σg. We conclude that α̃ defines a surjective homo-
morphism

H2(Sympδ Σg; Z) → S2
QR,

for any g ≥ 2. We already proved in [13] that the first Mumford–
Morita–Miller class e1 defines a surjection H2(Sympδ Σg; Z) −→ Z for
all g ≥ 3. Clearly the two classes are linearly independent because
α̃ is nonzero on Sympδ

0 Σg, to which e1 restricts trivially. This proves
Theorem 4 in the easy case when k = 1.

We can restrict the homomorphism

Flux∗ : H∗(H1(Σg; R)δ; R)−→H∗(Sympδ
0 Σg; R)

to the continuous cohomology

H∗
ct(H

1(Σg; R)δ; R) ∼= H∗(T
2g; R) ⊂ H∗(H1(Σg; R)δ; R),

see Section 3 for the precise definition. Thereby we obtain a ring homo-
morphism

Flux∗ : H∗(T
2g; R) −→ H∗(Sympδ

0 Σg; R),

where T 2g = K(π1Σg, 1) is the Jacobian manifold of Σg, and the ring
structure on the homology of T 2g is induced by the Pontrjagin product.
Let ω0 ∈ H2(T

2g; R) be the homology class represented by the dual of
the standard symplectic form on T 2g. We decompose the Sp(2g, R)-
module Hk(T

2g; R) into irreducible components. For this, consider the
homomorphism

ω0∧ : Hk−2(T
2g; R) −→ Hk(T

2g; R)

induced by the wedge product with ω0. On the one hand, it is easy
to see using Poincaré duality on T 2g, that the above homomorphism
is surjective for any k ≥ g + 1. On the other hand, it is well-known
(see [4]), that the kernel of the contraction homomorphism

C : Hk(T
2g; Q) −→ Hk−2(T

2g; Q)

induced by the intersection pairing H2(T
2g; Q) ∼= Λ2H1(Σg; Q)→Q is

the irreducible representation of the algebraic group Sp(2g, Q) corre-
sponding to the Young diagram [1k] for any k ≤ g. Let [1k]R = [1k]⊗R
denote the real form of this representation. Then we have a direct sum
decomposition

(3) Hk(T
2g; R) = [1k]R ⊕ ω0 ∧ Hk−2(T

2g; R) (k ≤ g).

Theorem 5. The kernel of the homomorphism

Flux∗ : H∗(T
2g; R)−→H∗(Sympδ

0 Σg; R)

induced by the flux homomorphism is the ideal generated by the subspace

ω0∧H1(T
2g; R) ⊂ H3(T

2g; R), and the image of this homomorphism can
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be described as

Im Flux∗ ∼= R ⊕

g⊕

k=1

[1k]R,

where R denotes the image of the subspace of H2(T
2g; R) spanned by ω0.

The group H1(Σg; R) acts on Ham Σg by outer automorphisms. In

particular, it acts on the homology H∗(Hamδ Σg; Z) of the discrete group

Hamδ Σg so that we can consider the coinvariants H∗(Hamδ Σg; Z)H1

R
,

where for simplicity we have written H1
R instead of H1(Σg; R). The

following result shows that the second homology group H2(Hamδ Σg; Z)
is highly non-trivial.

Theorem 6. For any g ≥ 2, there exists a natural injection

H1(Σg; R) ⊂ H2(Hamδ Σg; Z)H1

R
.

3. The transverse symplectic class

Since Σg is an Eilenberg-MacLane space, the total space of the uni-

versal foliated Σg-bundle over the classifying space BSympδ Σg is again

a K(π, 1) space. Hence if we denote by ESympδ Σg the fundamental
group of this total space, then we obtain a short exact sequence

(4) 1−→π1Σg−→ESympδ Σg−→Sympδ Σg−→1

and any cohomology class of the total space can be considered as an
element in the group cohomology of ESympδ Σg. Now on the total
space of any foliated Σg-bundle with total holonomy group contained in
Symp Σg there is a closed 2-form ω̃ which restricts to the symplectic form
ω on each fiber. At the universal space level, the de Rham cohomology
class of ω̃ defines a class v ∈ H2(ESympδ; R) which we call the transverse
symplectic class. We normalize the symplectic form ω on Σg so that its
total area is equal to 2g−2. It follows that the restriction of v to a fiber
is the same as the negative of the Euler class e ∈ H2(ESympδ; R) of the
vertical tangent bundle.

Let ESymp0 Σg denote the subgroup of ESympδ Σg obtained by re-
stricting the extension (4) to Symp0 Σg ⊂ Symp Σg. Since any foliated
Σg-bundle with total holonomy in Symp0 Σg is trivial as a differentiable
Σg-bundle, there exists an isomorphism

ESymp0 Σg
∼= π1Σg × Symp0 Σg.

Henceforth we identify the above two groups. By the Künneth decom-
position, we have an isomorphism

H2( ESympδ
0 Σg; R) ∼= H2(Σg; R)⊕(5)

⊕
(
H1(Σg; R) ⊗ H1(Sympδ

0 Σg; R)
)
⊕ H2(Sympδ

0 Σg; R),
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where we identify H∗(π1Σg; R) with H∗(Σg; R). Let µ ∈ H2(Σg; Z)
be the fundamental cohomology class of Σg. Clearly the Euler class

e ∈ H2(ESympδ
0 Σg; R) is equal to (2 − 2g)µ. The flux homomorphism

gives rise to an element

[Flux] ∈ HomZ(H1(Sympδ
0 Σg; Z), H1(Σg; R))

∼= HomR(H1(Sympδ
0 Σg; R), H1(Σg; R))

∼=H1(Σg; R) ⊗ H1(Sympδ
0 Σg; R),

where the last isomorphism exists because H1(Σg; R) is finite dimen-
sional. Choose a symplectic basis x1, . . . , xg, y1, . . . , yg of H1(Σg; R)
and denote by x∗

1, . . . , x
∗
g, y∗1, . . . , y

∗
g the dual basis of H1(Σg; R). Then

Poincaré duality H1(Σg; R) ∼= H1(Σg; R) is given by the correspondence
xi 7→ −y∗i , yi 7→ x∗

i . The element [Flux] can be described explicitly as

(6) [Flux] =

g∑

i=1

(x∗
i ⊗ x̃i + y∗i ⊗ ỹi) ∈ H1(Σg; R) ⊗ H1(Sympδ

0 Σg; R)

where x̃i, ỹi ∈ H1(Sympδ
0 Σg; R) ∼= Hom(H1(Symp0 Σg; Z); R) is defined

by the equality

Flux(ϕ) =

g∑

i=1

(x̃i(ϕ)xi + ỹi(ϕ)yi) (ϕ ∈ Symp0 Σg).

The elements x̃i, ỹi can be also interpreted as follows. The flux homo-
morphism induces a homomorphism in cohomology

(7) Flux∗ : H∗(H1(Σg; R)δ; R)−→H∗(Sympδ
0 Σg; R)

where the domain

H∗(H1(Σg; R)δ; R) ∼= HomZ(Λ∗
Z(H1(Σg; R)), R)

is the cohomology group of H1(Σg; R) considered as a discrete abelian

group, rather than as a vector space over R, so that it is a very large
group. Its continuous part is defined as

H∗
ct(H

1(Σg; R)δ; R) = HomR(Λ∗
R(H1(Σg; R)), R)

⊂HomZ(Λ∗
R(H1(Σg; R)), R)

⊂HomZ(Λ∗
Z(H1(Σg; R)), R) ∼= H∗(H1(Σg; R)δ; R),

where the second inclusion is induced by the natural projection

Λ∗
Z(H1(Σg; R)) −→ Λ∗

R(H1(Σg; R)).

Denoting by T 2g = K(π1Σg, 1) the Jacobian torus of Σg, there is a
canonical isomorphism

Λ∗
RH1(Σg; R) ∼= H∗(T 2g; R),
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so that we can identify

H∗
ct(H

1(Σg; R)δ; R) ∼= HomR(H∗(T 2g; R); R) ∼= H∗(T
2g; R) .

Thus, by restricting the homomorphism Flux∗ in (7) to the continuous
cohomology, we obtain a homomorphism

Flux∗ : H∗(T
2g; R) −→ H∗(Sympδ

0 Σg; R).

It is easy to see that under this homomorphism we have

x̃i = Flux∗(xi) , ỹi = Flux∗(yi).

Let ω0 ∈ Λ2
RH1(Σg; R) be the symplectic class defined by

ω0 =

g∑

i=1

xi ∧ yi

and set

ω̃0 = Flux∗(ω0) =

g∑

i=1

x̃iỹi ∈ H2(Sympδ
0 Σg; R).

Lemma 7. We have the equality

[Flux]2 = −2µ ⊗ ω̃0 ∈ H2(Σg; R) ⊗ H2(Sympδ
0 Σg; R).

Proof. A direct calculation using the expression (6) yields

[Flux]2 = −

g∑

i=1

(x∗
i y

∗
i ⊗ x̃iỹi + y∗i x

∗
i ⊗ ỹix̃i).

Since x∗
i y

∗
i = −y∗i x

∗
i = µ, we obtain

[Flux]2 = −2µ ⊗

g∑

i=1

x̃iỹi = −2µ ⊗ ω̃0

as required. q.e.d.

Now we can completely determine the transverse symplectic class v
of foliated Σg-bundles whose total holonomy groups are contained in
the identity component Symp0 Σg of Symp Σg as follows.

Proposition 8. On the subgroup ESympδ
0 Σg the transverse symplec-

tic class v ∈ H2(ESympδ
0 Σg; R) is given by

v = (2g − 2)µ + [Flux] +
1

2g − 2
ω̃0

under the isomorphism (5). Furthermore, the homomorphism

ω̃0 ⊗ H1
ct(Sympδ

0 Σg; R)−→H3(Sympδ
0 Σg; R)

induced by the cup product is trivial, where H1
ct (Sympδ

0 Σg; R) ∼=
H1(Σg; R) denotes the subgroup of H1(Sympδ

0 Σg; R) generated by the

continuous cohomology classes x̃i, ỹi. In particular, ω̃2
0 = 0.
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Proof. Since the restriction of v to each fiber is equal to the negative
of that of the Euler class e by our normalization, v restricts to (2g−2)µ
on the fiber. This gives the first component of the formula. The second
component follows from Lemma 8 of [13]. Thus we can write

v = (2g − 2)µ + [Flux] + γ ∈ H∗(Σg; R) ⊗ H∗(Sympδ
0 Σg; R)

for some γ ∈ H2(Sympδ
0 Σg; R). Now observe that v2 = 0 because

ω̃2 = 0. Also, because we have restricted to Symp0 Σg, we have µ2 = 0,
µ[Flux] = 0. Hence we obtain

[Flux]2 + γ2 + 2(2g − 2)µγ + 2[Flux]γ = 0.

It follows that

[Flux]2 + 2(2g − 2)µγ = 0

[Flux]γ = 0

γ2 = 0

because these three elements belong to different summands in the Kün-
neth decomposition of H∗(Σg; R) ⊗ H∗(Sympδ

0; R). If we combine the
first equality above and Lemma 7, then we can conclude that

(8) γ =
1

2g − 2
ω̃0.

This proves the first claim of the proposition. If we substitute (6) and (8)
in the second equality above, then we see that ω̃0x̃i = ω̃0ỹi = 0 for any
i, whence the second claim. Observe that the third equality γ2 = 0,
which is equivalent to ω̃2

0 = 0 by the above, is a consequence of the
second claim. q.e.d.

Now we can calculate the restriction of the cocycle α defined in Sec-
tion 2 to the identity component Symp0 Σg.

Proposition 9. Let i : Sympδ
0 Σg→Sympδ Σg be the inclusion. Then

i∗α = 2ω̃0 ∈ H2(Sympδ
0 Σg; R)

and

i∗α2 = 0.

Proof. Let ϕ, ψ ∈ Symp0 Σg be any two elements. Then, by the
definition of α, see Definition 3 and the subsequent discussion, we have

α(ϕ, ψ) = ι(Flux(ϕ), Flux(ψ)).

By the definition of the cohomology classes x̃i, ỹi, we have

Flux(ϕ) =

g∑

i=1

(x̃i(ϕ)xi + ỹi(ϕ)yi), Flux(ψ) =

g∑

i=1

(x̃i(ψ)xi + ỹi(ψ)yi).
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Hence we obtain

α(ϕ, ψ) =

g∑

i=1

{x̃i(ϕ)ỹi(ψ) − ỹi(ϕ)x̃i(ψ)} .

Using the Alexander–Whitney cup product, we also have

ω̃0(ϕ, ψ) =

g∑

i=1

x̃i(ϕ)ỹi(ψ) = −

g∑

i=1

x̃i(ψ)ỹi(ϕ).

Thus α = 2ω̃0 as required. The last statement follows from Proposi-
tion 8. q.e.d.

We see from this proposition that i∗α2 = 0 in H4(Sympδ
0 Σg; R),

while we will prove the non-triviality of α2 ∈ H4(Sympδ Σg; R), which
is a special case of Theorem 4. One could say that the non-triviality of
α2 is realized by an interaction of the two groups Symp0 Σg and Mg.

4. Extended flux homomorphisms for open surfaces

We consider the open surface Σ0
g = Σg\D obtained from Σg by remov-

ing a closed embedded disk D ⊂ Σg. Let j : Σ0
g→Σg be the inclusion.

We denote by Sympc Σ0
g the symplectomorphism group of (Σ0

g, j
∗ω) with

compact supports. Hence the group Sympc Σ0
g can be considered as

a subgroup of SympΣg with inclusion j : Sympc Σ0
g→Symp Σg. Let

Sympc
0 Σ0

g be the identity component of Sympc Σ0
g. Clearly Sympc

0 Σ0
g is

a subgroup of Symp0 Σg.
Let Mg,1 denote the mapping class group of Σg relative to the em-

bedded disk D2 ⊂ Σg, equivalently, the mapping class group of the

compact surface Σ0
g with boundary. We have a natural homomorphism

p : Sympc Σ0
g→Mg,1 which is easily seen to be surjective. Moreover,

Moser’s theorem [24] adapted to the present case (see [26] for a general
statement), implies that the kernel of this surjection is precisely the
group Sympc

0 Σ0
g. We summarize the situation in the following diagram:

(9)

1 −−−−→ Sympc
0 Σ0

g
ic

−−−−→ Sympc Σ0
g

p
−−−−→ Mg,1 −−−−→ 1

j0

y j

y q

y

1 −−−−→ Symp0 Σg
i

−−−−→ Symp Σg −−−−→ Mg −−−−→ 1

where q : Mg,1→Mg denotes the natural projection.
The restriction of the flux homomorphism

(10) Flux: Symp0 Σg−→H1(Σg; R)

to the subgroup Sympc
0 Σ0

g, denoted j∗ Flux, can be described as follows.

The restriction j∗ω of the area form ω to the open surface Σ0
g is exact.

Choose a 1-form λ such that dλ = −j∗ω. Then, for any element ϕ ∈



284 D. KOTSCHICK & S. MORITA

Sympc
0 Σ0

g, the 1-form λ − ϕ∗λ is a closed form with compact support.
Hence the corresponding de Rham cohomology class [λ − ϕ∗λ], which
can be shown to be independent of the choice of λ, is an element of the
first cohomology group H1

c (Σ0
g; R) of Σ0

g with compact support. It is

easy to see that H1
c (Σ0

g; R) is canonically isomorphic to H1(Σg; R), and
that under this isomorphism

(11) (j∗ Flux)(ϕ) = [λ − ϕ∗λ] ∈ H1
c (Σ0

g; R) ∼= H1(Σg; R)

for all ϕ ∈ Sympc
0 Σ0

g, see Lemma 10.14 of [16]. We obtain the following
commutative diagram:

(12)

Sympc
0 Σ0

g

j∗ Flux
−−−−→ H1

c (Σ0
g; R)

y
y∼=

Symp0 Σg −−−−→
Flux

H1(Σg; R).

From now on we identify H1
c (Σ0

g; R) with H1(Σg; R).
As was already mentioned in the Introduction, we proved in [13] that

the flux homomorphism (10) can be extended to a crossed homomor-
phism

(13) F̃lux: Symp Σg−→H1(Σg; R) ,

and that the extension is unique up to the addition of coboundaries. The
restriction of such a crossed homomorphism to the subgroup Sympc Σ0

g ⊂

Symp Σg, denoted j∗F̃lux, is of course an extension of the flux homo-
morphism j∗ Flux. However, we also have another extension of the same
flux homomorphism j∗ Flux to the group Sympc Σ0

g as follows.

Proposition 10. The map

F̃luxc : Sympc Σ0
g−→H1

c (Σ0
g; R) ∼= H1(Σg; R)

defined by F̃luxc(ϕ) = [(ϕ−1)∗λ−λ] ∈ H1
c (Σ0

g; R) is a crossed homomor-

phism which extends the flux homomorphism j∗ Flux. Its cohomology

class [F̃luxc] ∈ H1(Sympc Σ0
g; H

1(Σg; R)) is uniquely determined inde-

pendently of the choice of the 1-form λ such that dλ = −j∗ω.

Proof. First observe that, for any ϕ ∈ Sympc
0 Σ0

g, we have

[λ − ϕ∗λ] = (ϕ−1)∗[λ − ϕ∗λ] = [(ϕ−1)∗λ − λ]

because ϕ acts trivially on H1(Σg; R). Hence by (11) we have

F̃luxc(ϕ) = (j∗ Flux)(ϕ).
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Next, for any two elements ϕ, ψ ∈ Sympc Σ0
g, we have

F̃luxc(ϕψ) = [((ϕψ)−1)∗λ − λ]

= [(ϕ−1)∗λ − λ + (ϕ−1)∗(ψ−1)∗λ − (ϕ−1)∗λ]

= [(ϕ−1)∗λ − λ] + [(ϕ−1)∗((ψ−1)∗λ − λ)]

= F̃luxc(ϕ) + (ϕ−1)∗F̃luxc(ψ).

Therefore F̃luxc is a crossed homomorphism which extends j∗ Flux.
Finally, let λ′ be another 1-form on Σ0

g satisfying dλ′ = −j∗ω, and let

F̃lux
′

c be the corresponding crossed homomorphism. Then a = λ′ − λ is
a closed 1-form defining a de Rham cohomology class [a] ∈ H1(Σ0

g; R) ∼=

H1(Σg; R). Now

F̃lux
′

c(ϕ) = [(ϕ−1)∗λ′ − λ′]

= [(ϕ−1)∗(λ + a) − (λ + a)]

= [(ϕ−1)∗λ − λ] + [(ϕ−1)∗a − a]

= F̃luxc(ϕ) + (ϕ−1)∗[a] − [a] ∈ H1(Σg; R).

This shows that the difference F̃lux
′

c−F̃luxc is a coboundary, completing
the proof of the proposition. q.e.d.

We have proved that the restriction j∗ Flux of the flux homomor-
phism (10) to the subgroup Sympc

0 Σ0
g has two extensions to the group

Sympc Σ0
g as a crossed homomorphism. One is the restriction j∗F̃lux of

F̃lux, and the other is F̃luxc. We will show that these two crossed homo-
morphisms are essentially different. More precisely, we will show that
the difference of these two crossed homomorphisms can be expressed by
an element of the cohomology group

(14) H1(Mg,1; H
1(Σg; R)).

It was proved in [20] that H1(Mg,1; H
1(Σg; Z)) is isomorphic to Z for

all g ≥ 2. It follows that the above group (14) is isomorphic to R and if

k : Mg,1−→H1(Σg; Z)

is any crossed homomorphism whose cohomology class is a generator of
H1(Mg,1; H

1(Σg; Z)), then the associated crossed homomorphism

kR : Mg,1−→H1(Σg; R)

represents the element 1 ∈ H1(Mg,1; H
1(Σg; R)) ∼= R. Let p∗kR ∈

H1(Sympc Σg; H
1(Σg; R)) be the class induced from kR by the projection

p : Sympc Σg→Mg,1.
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Theorem 11. For any g ≥ 2, there exists an isomorphism

H1(Sympc Σ0
g; H

1(Σg; R)) ∼= R ⊕ HomZ(R, R)

such that p∗kR and [j∗F̃lux] represent the classes 1 ∈ R and id ∈
HomZ(R, R) respectively.

Proof. The top extension in (9) gives rise to an exact sequence

0 −→ H1(Mg,1; H
1(Σg; R)) ∼= R

p∗

−→

H1( Sympc Σg; H
1(Σg; R))−→H1(Sympc

0 Σg; H
1(Σg; R))Mg,1−→· · · .

It was proved in [13] that j∗ Flux induces an isomorphism

j∗ Flux: H1(Sympc
0 Σ0

g; Z) ∼= H1
c (Σ0

g; R) = H1(Σg; R) .

Hence, by an argument similar to the one given for Symp0 Σg in [13],
we have an isomorphism

H1(Sympc
0 Σ0

g; H
1(Σg; R))Mg,1 ∼= HomZ(R, R),

and clearly j∗[F̃lux] corresponds to id ∈ HomZ(R, R). The result follows
from this. q.e.d.

Theorem 12. We have the identity

[F̃luxc] = j∗[F̃lux] − p∗kR

in H1(Sympc Σ0
g; H

1(Σg; R)).

Proof. Since both crossed homomorphisms F̃luxc and j∗F̃lux are ex-
tensions of the flux homomorphism j∗ Flux, the proof of Theorem 11
implies that

[F̃luxc] = j∗[F̃lux] + a p∗kR

for some constant a ∈ R. Let Ig,1 ⊂ Mg,1 denote the Torelli subgroup
consisting of mapping classes which act trivially on homology. We set
I Sympc Σ0

g = p−1(Ig,1) ⊂ Sympc Σ0
g. If we restrict the crossed ho-

momorphims F̃luxc and F̃lux to this subgroup I Sympc Σ0
g, then they

become homomorphisms which depend only on the cohomology classes

[F̃luxc] and j∗[F̃lux], and not on the particular crossed homomorphisms
representing these cohomology classes. This is because any crossed ho-
momorphism which is a coboundary is trivial on I Sympc Σ0

g. It was

proved in [20] that a generator of the group H1(Mg,1; H
1(Σg; Z)) ∼= Z

is characterized by the fact that the Poincaré dual of its value on a
single non-trivial element ϕ ∈ Ig,1 is equal to ±Cτ(ϕ), where
τ : Ig,1→ Λ3H1(Σg; Z) denotes the (first) Johnson homomorphism and
C : Λ3H1(Σg; Z)→H1(Σg; Z) denotes the contraction. Hence we only

have to compute the values of F̃luxc and F̃lux on some particular ele-
ment ϕ̃ ∈ I Sympc Σ0

g. We choose such element as follows.
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. . .
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F C 1

C 2

E

F1 2

Figure 1.

Consider an embedded disk D′ in Σ0
g = Σg \D as depicted in Figure 1

and set Σ00
g = Σg \ (D∪D′). We also consider two disjoint simple closed

curves C1, C2 ⊂ Σ00
g as shown in Figure 1. Let τi (i = 1, 2) denote the

Dehn twist along Ci and choose lifts τ̃i ∈ Sympc Σ0
g of τi with supports

in small neighborhoods of the Ci. Now we set

ϕ̃ = τ̃1τ̃
−1
2 .

Since ϕ = τ1τ
−1
2 belongs to the Torelli group Ig,1 ⊂ Mg,1, its lift ϕ̃ is

an element of the subgroup I Sympc Σ0
g. We would like to compute the

difference

F̃luxc(ϕ̃) − F̃lux(ϕ̃) = a p∗kR(ϕ̃)(15)

= a k(ϕ) ∈ H1
c (Σ0

g; R) ∼= H1(Σg; R).

Now we consider the long exact sequence

0−→H1(Σg; R)
i∗
−→H1(Σ00

g ; R)−→(16)

H2(Σg, Σ
00
g ; R) ∼= R2−→H2(Σg; R)−→0

of the pair (Σg, Σ
00
g ). Also consider the following short exact sequences

0−→H1
c (Σ0

g; R) ∼= H1(Σg; R)
j∗

−→H1(Σ00
g ; R)−→R−→0(17)

0−→H1
c (Σg \ D′; R) ∼= H1(Σg; R)

(j′)∗

−→H1(Σ00
g ; R)−→R−→0.

In view of the above exact sequences (16) and (17), we can determine the
value of (15) in the group H1(Σ00

g ; R) because both groups H1
c (Σ0

g; R)

and H1(Σg; R) are embedded in it. Choose 1-forms λ and λ′ on Σ0
g =

Σg \ D and Σg \ D′ respectively, such that

dλ = −j∗ω, dλ′ = −(j′)∗ω

where j : Σ0
g→Σg and j′ : Σg \ D′→Σg are the inclusions. Then d(λ −

λ′) = 0 so that ν = λ − λ′ is a closed 1-form on Σ00
g . We have the
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identity

(ϕ̃−1)∗λ − λ = (ϕ̃−1)∗(λ′ + ν) − (λ′ + ν)

= (ϕ̃−1)∗λ′ − λ′ + (ϕ̃−1)∗ν − ν.

Hence we have the equality

(18) [(ϕ̃−1)∗λ − λ] = [(ϕ̃−1)∗λ′ − λ′] + [(ϕ̃−1)∗ν − ν]

in the group H1(Σ00
g ; R). By the definition of F̃luxc, we have

(19) F̃luxc(ϕ̃) = [(ϕ̃−1)∗λ − λ] ∈ H1
c (Σ0

g; R) ⊂ H1(Σ00
g ; R).

Next we compute F̃lux(ϕ̃). For this, observe that ϕ̃ is isotopic to the
identity as an element of Sympc(Σg \ D′) ⊂ Symp Σg, although it is
not isotopic to the identity as an element of Sympc(Σg \ D). Hence

ϕ̃ ∈ Sympc
0(Σg \ D′) and F̃lux(ϕ̃) = ((j′)∗ Flux)(ϕ̃). By replacing D

with D′ in equation (11), we obtain

((j′)∗ Flux)(ϕ̃) = [λ′ − ϕ̃∗λ′](20)

=[(ϕ̃−1)∗λ′ − λ′] ∈ H1
c (Σg \ D′; R) ⊂ H1(Σ00

g ; R).

By combining the equations (15), (18), (19) and (20), we shall prove

(21) [(ϕ̃−1)∗ν − ν] = ak(ϕ̃) = ak(ϕ) = aPD ◦ Cτ(ϕ),

where PD denotes the Poincaré duality isomorphism.
Clearly (ϕ̃−1)∗ν − ν is a closed 1-form on Σg whose support is con-

tained in a neighborhood of C1 ∪C2. Hence the Poincaré dual of the de
Rham cohomology class [(ϕ̃−1)∗ν − ν] ∈ H1(Σg; R) is a multiple of the
homology class [C1] ∈ H1(Σg; Z) represented by the simple closed curve
C1 with a fixed orientation depicted in Figure 1. However, according to
Johnson [9], we have

τ(ϕ) = (x1 ∧ y1 + · · · + xg−1 ∧ yg−1) ∧ [C1]

where x1.y1, . . . , xg−1, yg−1 is a symplectic basis of the homology group
of the left hand subsurface of Σg obtained by cutting Σg along the simple
closed curve F2 depicted in Figure 1. It follows that

Cτ(ϕ) = 2(g − 1)[C1].

This checks the equality (21), for some constant a.
To determine this constant, it is enough to compute the value of the

cohomology class [(ϕ̃−1)∗ν − ν] on the homology class represented by
the oriented simple closed curve E depicted in Figure 1. Observe that
the homology class ϕ̃−1

∗[E] − [E] ∈ H1(Σ
00
g ; Z) can be represented by

the oriented simple closed curve F1 also depicted in Figure 1. Let D̃
denote the right hand compact subsurface of Σg obtained by cutting

along F1. Thus D̃ is diffeomorphic to a disk which contains the original
embedded disk D in its interior. Also let Σ = Σg \ IntD̃.
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Now we compute

[(ϕ̃−1)∗ν − ν]([E]) = ν((ϕ̃−1)∗[E]) − ν([E])

= ν([F1]) =

∫

F1

λ − λ′

=

∫

∂Σ
λ −

∫

−∂ eD

λ′

=

∫

Σ
dλ +

∫

eD

dλ′

=

∫

Σg

−ω = 2 − 2g.

Thus we can conclude that a = −1, completing the proof. q.e.d.

5. The second homology group of Sympc,δ Σ0
g

In this section, we generalize the claim of Theorem 4 about the second
homology, i. e. for k = 1, to the case of the open surface Σ0

g. We have
the cohomology class

j∗α̃ ∈ H2(Sympc,δ Σ0
g; S

2
QR)

induced by the inclusion j : Σ0
g→Σg.

Theorem 13. The characteristic classes e1 and j∗α̃ induce a surjec-

tive homomorphism

H2(Sympc,δ Σ0
g; Z)−→Z ⊕ S2

QR

for any g ≥ 3. For g = 2, the class j∗α̃ induces a surjection

H2(Sympc,δ Σ0
2; Z)−→S2

QR.

The proof of this theorem, which occupies the rest of this section,
consists of a rather long and delicate argument. We first describe the
reason why the easy proof of Theorem 4 in the case k = 1, which treated
the case of closed surfaces, does not work for Theorem 13, thereby
making the difficulty in the case of open surfaces explicit.

Consider the top extension

(22) 1−→Sympc
0 Σ0

g
ic
−→Sympc Σ0

g

p
−→Mg,1−→1

in the commutative diagram (9). We have the following proposition,
contrasting with our discussion of the closed case in Section 2.

Proposition 14. For any g ≥ 2 the image of the homomorphism

(j∗ Flux)∗ : H2(Sympc,δ
0 Σ0

g; Z)−→H2(H
1(Σg; R)δ; Z) ∼= Λ2

ZH1(Σg; R)

induced by the restriction j∗ Flux of the flux homomorphism to the sub-

group Sympc
0 Σ0

g is equal to the kernel of the natural intersection pairing

Λ2
ZH1(Σg; R)−→R.
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Proof. Recall that we have an extension

(23) 1−→Hamc Σ0
g−→Sympc

0 Σ0
g

j∗ Flux
−→ H1(Σg; R)−→1,

where Hamc Σ0
g denotes the subgroup consisting of Hamiltonian sym-

plectomorphisms with compact supports (see [16] as well as [13]). Also
recall that there is a surjective homomorphism

Cal : Hamc Σ0
g−→R

called the (second) Calabi homomorphism (see [3]). Banyaga [1] proved
that the kernel of this homomorphism is perfect. Hence we have an
isomorphism

H1(Hamc,δ Σ0
g; Z) ∼= R.

Now we consider the Hochschild–Serre exact sequence

H2(Sympc,δ
0 Σ0

g; Z)
j∗ Flux∗

−→ H2(H
1(Σg; R)δ; Z)

∂
−→H1(Hamc,δ Σ0

g; Z)H1

R

∼= R

−→H1(Sympc,δ
0 Σ0

g; Z)

j∗ Flux∗

−→ H1(H
1(Σg; R)δ; Z)−→0

of the group extension (23). We proved in [13] (Proposition 11 and
Corollary 12) that the last homomorphism j∗ Flux∗ in the above se-
quence is an isomorphism, and that the boundary operator ∂ coincides
with the intersection pairing. The result follows. q.e.d.

Corollary 15. The restriction of α ∈ H2(Sympδ Σg; R) to the sub-

group Sympc,δ
0 Σ0

g is trivial.

Proof. This follows from Proposition 14 and the definition of the co-
homology class α. q.e.d.

Thus, in order to prove the non-triviality of α on the group Sympc Σ0
g,

we must combine the roles of the two groups Mg,1 and Sympc,δ
0 Σ0

g. This
contrasts sharply with the case of closed surfaces treated in Section 2.

Let {Er
p,q} be the Hochschild–Serre spectral sequence for the integral

homology of the extension (22). This gives rise to two short exact
sequences

0−→Ker−→H2(Sympc,δ Σ0
g; Z)−→E∞

2,0−→0(24)

0−→E∞
0,2−→Ker−→E∞

1,1−→0,

where E∞
2,0 ⊂ H2(Mg,1; Z) concerns the first Mumford-Morita-Miller

class already discussed in [13]. Proposition 14 shows that the image of
the map

E∞
0,2 = Im

(
H2(Sympc,δ

0 Σ0
g; Z)→H2(Sympc,δ Σ0

g; Z)
)
−→S2

QR
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defined by the Kronecker product with α̃ is precisely the kernel of the
natural map S2

QR→R. It remains to determine the E∞
1,1-term. We have

(25) E2
1,1 = H1(Mg,1; H1(Sympc,δ

0 Σ0
g; Z)) ∼= H1(Mg,1; H1(Σg; R))

because, as was already mentioned above, it was proved in [13] that

j∗ Flux induces an isomorphism H1(Sympc,δ
0 Σ0

g; Z) ∼= H1(Σg; R).
We now recall a result which was essentially proved in [20]. Without

repeating everything done in [20], we want to give a precise statement
and proof of what is needed in the sequel. We use the Lickorish genera-
tors for the mapping class group Mg,1, denoted λi, µi, νi as in Figure 1
of [20], and a symplectic basis x1, . . . , xg, y1, . . . , yg of H1(Σg; Z). In
particular

(26) νi(xi) = xi − yi + yi+1, µi(xi) = xi − yi

which we record here for later use.

Proposition 16. For any g ≥ 2, we have an isomorphim

H1(Mg,1; H1(Σg; Z)) ∼= Z.

Furthermore, for any i = 1, 2, . . . , g − 1, the element

c = νi ⊗ xi − µi ⊗ xi + µi+1 ⊗ xi+1

is a 1-cycle of Mg,1 with twisted coefficients in H1(Σg; Z) and it repre-

sents a generator of the above infinite cyclic group.

Proof. The group extension

1−→π1Σg−→Mg,∗−→Mg−→1,

where Mg,∗ denotes the mapping class group of Σg relative to a basis
point, yields the Hochschild–Serre exact sequence

(27) H2(Mg; H)−→(H ⊗ H)Mg
−→H1(Mg,∗; H)−→H1(Mg; H)−→0.

Here and henceforth H is a shorthand for H1(Σg; Z). It is easy to see
that the intersection pairing induces an isomorphism (H ⊗ H)Mg

∼= Z
and the element x1 ⊗ y1, for example, represents a generator. It was
proved in [20] that

H1(Mg,∗; H
1(Σg; Z)) ∼= Z, H1(Mg; H

1(Σg; Z)) ∼= Z/(2g − 2)Z.

If we apply the crossed homomorphism f : Mg,∗→H1(Σg; Z) given in
the above cited paper, which detects a generator of the above infinite
cyclic group, to the element x1 ⊗ y1 considered as a cycle of Mg,∗ with
coefficients in H, we obtain

f(x1)(y1) = 2 − 2g.

On the other hand, c is a cycle because

∂c = xi − νi(xi) − xi + µi(xi) + xi+1 − µi+1(xi+1) = 0
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by (26), and it was shown that

(28) f(c) = f(νi)(xi) − f(µi)(xi) + f(µi+1)(xi+1) = 1 ,

see [20] for details. In view of the exact sequence (27), we can conclude
that H1(Mg,∗; H) ∼= Z. Finally, it is easy to deduce from the central
group extension 0→Z→Mg,1→Mg,∗→1 that we have an isomorphism
H1(Mg,1; H) ∼= H1(Mg,∗; H). This finishes the proof. q.e.d.

Going back to the E2
1,1-term in (25), we have

E2
1,1

∼= H1(Mg,1; H ⊗ R) ∼= R

by Proposition 16. Now consider the exact sequence

E2
3,0

∼= H3(Mg,1; Z)
d2

−→ E2
1,1

∼= R−→E3
1,1 = E∞

1,1−→0.

Harer [7] determined the third stable rational cohomology group

lim
g→∞

H3(Mg,1; Q)

of the mapping class group to be trivial1 . It follows that E2
3,0 is a finite

group for all sufficiently large g. Hence we can conclude that E∞
1,1

∼= R
for such g. It is natural to expect that this R will recover the missing R
in E∞

0,2 so that we obtain the surjectivity of the α̃-factor in Theorem 13.
It turns out that this is indeed the case, and below we shall give a
proof of this fact which does not use Harer’s result mentioned above.
Before doing so, we have to prepare some general facts concerning group
(co)homology in small degrees.

Consider a group extension

(29) 1−→K−→G−→Q−→1,

and suppose we are given a 1-cycle c =
∑

i qi⊗ui ∈ Z1(Q; H1(K)) of the
group Q with coefficients in the abelianization H1(K) of K considered
as a natural Q-module, where qi ∈ Q and ui ∈ H1(K).

Lemma 17. For any choices of lifts q̃i ∈ G of the qi and representa-

tives ki ∈ K with [ki] = ui, the element

c̃ =
∑

i

{
(q̃i, ki) + (q̃iki, q̃

−1
i ) − (q̃i, q̃

−1
i ) − (id, id)

}
+ d

is a 2-cycle of G, where d is a 2-chain of the group K such that

∂d =
∑

i

{
(q̃ikiq̃

−1
i ) − (ki)

}
.

1There is now a final result on the stable cohomology of Mg due to Madsen and
Weiss [15].
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Furthermore, p∗([c̃]) = 0 ∈ H2(Q; Z), where p : G→Q denotes the pro-

jection, and in the short exact sequence

0−→E∞
0,2−→Ker

(
H2(G; Z)

p∗
−→H2(Q; Z)

)

−→E∞
1,1

(
∼= H1(Q; H1(K))/d2(E2

3,0)
)
−→0

arising from the Hochschild–Serre spectral sequence of (29) the class

[c̃] ∈ Ker is a lift of [c] ∈ H1(Q; H1(K)).

Proof. Since c is a cycle by the assumption, we have

∂c =
∑

i

(qi(ui) − ui) = 0 ∈ H1(K).

It follows that there exists a 2-chain d ∈ C2(K; Z) with the property
described in the statement of the lemma. Then a direct computation
shows that ∂c̃ = 0. Clearly p∗(c̃) = 0 and it is easy to check the rest of
the required assertions. q.e.d.

The following can be proved by a standard argument in the cohomol-
ogy theory of groups, see [2].

Lemma 18. Let G be a group and M a G-module. Assume we have

a G-invariant skew-symmetric bilinear pairing

ι : M × M−→A,

where A is an abelian group with trivial G-action, and we are given two

crossed homomorphisms

fi : G−→M (i = 1, 2)

so that fi(gh) = fi(g) + g∗fi(h) for all g, h ∈ G. Then the assignment

G × G ∋ (g, h) 7−→ ι(f1(g), g∗f2(h)) ∈ A,

which we denote by f1 · f2, is a 2-cocycle of G with values in A and its

cohomology class in H2(G; A) depends only on the cohomology classes

[fi] ∈ H1(G; M) of the crossed homomorphisms fi. Furthermore, f2 · f1

is cohomologous to f1 · f2, so that [f2 · f1] = [f1 · f2] ∈ H2(G; A).

Now in the situation of Lemma 18, we consider the case where G =
Sympc Σ0

g, M = H1(Σg; R) and ι is the intersection pairing. Then we
have three crossed homomorphisms

j∗F̃lux, F̃luxc, p∗kR : Sympc Σ0
g−→H1(Σg; R)

and, by the definition of α, we have j∗α = [j∗F̃lux · j∗F̃lux].

Proposition 19. In the above notation, we have [F̃luxc · F̃luxc] = 0
and

j∗α = 2[p∗kR · F̃luxc] − p∗e1.
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Proof. Define a map

C̃al : Sympc Σ0
g−→R

by the formula

C̃al(ϕ) =

∫

Σ0
g

(ϕ−1)∗λ ∧ λ.

The restriction of this map to the subgroup Hamc Σ0
g is a homomor-

phism, which, suitably normalized, is called the (second) Calabi homo-
morphism (see [3]). In our previous paper [13], we examined how the

restriction of C̃al to the subgroup Sympc
0 Σ0

g fails to be a homomor-

phism. Here we extend this discussion to the whole group Sympc Σ0
g.

For any two elements ϕ, ψ ∈ Sympc Σ0
g, we claim that

(30) C̃al(ϕψ) = C̃al(ϕ) + C̃al(ψ) + F̃luxc(ϕ) · (ϕ−1)∗F̃luxc(ψ).

This is because

C̃al(ϕψ) =

∫

Σ0
g

((ϕψ)−1)∗λ ∧ λ

=

∫

Σ0
g

(ϕ−1)∗((ψ−1)∗λ − λ) ∧ λ + (ϕ−1)∗λ ∧ λ

=

∫

Σ0
g

(ϕ−1)∗F̃luxc(ψ) ∧ ((ϕ−1)∗λ − F̃luxc(ϕ)) + C̃al(ϕ)

=F̃luxc(ϕ) · (ϕ−1)∗F̃luxc(ψ) +

∫

Σ0
g

((ψ−1)∗λ − λ) ∧ λ + C̃al(ϕ)

=F̃luxc(ϕ) · (ϕ−1)∗F̃luxc(ψ) + C̃al(ψ) + C̃al(ϕ).

Equation (30) implies that the 2-cocycle F̃luxc · F̃luxc of the group

Sympc Σ0
g is a coboundary. Hence [F̃luxc · F̃luxc] = 0 as claimed.

The definition of α implies

j∗α = [j∗F̃lux · j∗F̃lux]

so that, by Theorem 12, we can write

(31) j∗α = [F̃luxc · F̃luxc] + [F̃luxc · p
∗kR] + [p∗kR · F̃luxc] + p∗[kR · kR].

By Lemma 18 we have [F̃luxc · p
∗kR] = [p∗kR · F̃luxc], and it was proved

in [21] that [kR · kR] = −e1. If we substitute these relations in (31), we
obtain the desired identity. q.e.d.

Proof of Theorem 13. In view of Proposition 14 and the discussion fol-
lowing Corollary 15, it suffices to show that there exist 2-cycles of the
group Sympc Σ0

g such that the evaluations of j∗α on them have as val-
ues any real number. To construct such 2-cycles, we use the 1-cycle c
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of Mg,1 with coefficients in H described in Proposition 16, which repre-
sents a generator of H1(Mg,1; H) ∼= Z. In order to adapt to the situation
here, we consider the dual cycle

c∗ = νi ⊗ y∗i − µi ⊗ y∗i + µi+1 ⊗ y∗i+1

with coefficients in H1(Σg; Z), where the x∗
1, . . . , x

∗
g, y

∗
1, . . . , y

∗
g denote

the dual basis of H1(Σg; Z). If k : Mg,1→H1(Σg; Z) is a crossed homo-
morphism which represents a generator of H1(Mg,1; H

1(Σg; Z)), then
we have

(32) k(c∗) = k(νi) · y
∗
i − k(µi) · y

∗
i + k(µi+1) · y

∗
i+1 = 1 .

For any real number r ∈ R, we consider the 1-cycle

c∗r = νi ⊗ ry∗i − µi ⊗ ry∗i + µi+1 ⊗ ry∗i+1

of Mg,1 with coefficients in H1(Σg; R). Now we apply Lemma 17 in the
case where G = Sympc Σ0

g, K = Sympc
0 Σ0

g, and Q = Mg,1. We proved
in [13] that the flux homomorphism induces an isomorphism

Flux: H1(Sympc
0 Σ0

g; Z) ∼= H1(Σg; R).

Therefore, c∗r can be considered as a 1-cycle of Mg,1 with coefficients in
the abelianization of Sympc

0 Σ0
g. Hence, if we choose elements

ν̃i, µ̃i ∈ Sympc Σ0
g, ϕr

i ∈ Sympc
0 Σ0

g

such that

(33) p(ν̃i) = νi, p(µ̃i) = µi, Flux(ϕr
i ) = Fluxc(ϕ

r
i ) = ry∗i ,

where p : Sympc Σ0
g→Mg,1 denotes the projection as before, then

c̃∗r =(ν̃i, ϕ
r
i ) + (ν̃iϕ

r
i , ν̃

−1
i ) − (ν̃i, ν̃

−1
i ) − (id, id)+

(µ̃i, ϕ
r
i ) + (µ̃iϕ

r
i , µ̃

−1
i ) − (µ̃i, µ̃

−1
i ) − (id, id)+

(µ̃i+1, ϕ
r
i+1) + (µ̃i+1ϕ

r
i+1, µ̃

−1
i+1) − (µ̃i+1, µ̃

−1
i+1) − (id, id) + d

is a 2-cycle of Sympc Σ0
g, where d is a 2-chain of the group Sympc

0 Σ0
g

such that

∂d = (ν̃iϕ
r
i ν̃

−1
i ) − (ϕr

i ) + (µ̃iϕ
r
i µ̃

−1
i ) − (ϕr

i ) + (µ̃i+1ϕ
r
i+1µ̃

−1
i+1) − (ϕr

i+1).

Now we claim that

(34) j∗α(c̃∗r) = 2r,

which will finish the proof of the theorem. To show this, observe first
that p∗e1(c̃

∗
r) = 0 because clearly p∗(c̃

∗
r) = 0. Hence, by Proposition 19,

j∗α(c̃∗r) = 2[p∗k · F̃luxc](c̃
∗
r).

Observe that

[p∗k · F̃luxc]
(
(ν̃iϕ

r
i , ν̃

−1
i ) − (ν̃i, ν̃

−1
i )

)
= 0,
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because p∗k(ν̃iϕ
r
i ) = p∗k(ν̃i) and ϕr

i acts trivially on the homology of
Σ0

g. The same is true for two other similar terms. Since d is a 2-chain

of Sympc
0 Σ0

g, the evaluation of [p∗k · F̃luxc] on it vanishes. Keeping in
mind equations (33) and (32), we can now conclude that

j∗α(c̃∗r) = 2[p∗k · F̃luxc](c̃
∗
r) = 2rp∗k(c̃∗) = 2r.

This proves (34) and hence the theorem. q.e.d.

6. Proofs of the main results

In this section we give the proofs of the main results described in
Section 2.

Proof of Theorem 4. Here we follow the argument of [19] and of our pre-

vious paper [13] to prove the non-triviality of the cup products ek
1α̃

(ℓ).
For this we first observe that, similar to the class e1, the class α̃ is stable,
with respect to g, and also that it is primitive in the following sense.
For each k, consider the genus kg surface Σkg,1 = Σkg \ IntD2 with one
boundary component as the boundary connected sum

Σkg,1 = Σg,1 ♮ · · · ♮ Σg,1

of k copies of Σg,1 = Σg \ Int D2. This induces a homomorphism

(35) fk : Sympc Σ0
g × · · · × Sympc Σ0

g−→Sympc Σ0
kg

from the direct product of k copies of the group Sympc Σ0
g to Sympc Σ0

kg.
Under this homomorphism we have the equality

f∗
k (α̃) = α̃ × 1 × · · · × 1 + · · · + 1 × · · · × 1 × α̃,

which follows easily from the definition of α̃. Now we can combine
Theorem 13 with the above property to show the required assertion in
the theorem. This finishes the proof. q.e.d.

Proof of Theorem 5.
The fact that the ideal generated by ω0 ∧ H1(T

2g; R) is contained in
the kernel of Flux∗ has already been proved in Proposition 8. To show
that Ker Flux∗ is precisely this ideal, we use the decomposition (3) of
Hk(T 2g; R) into irreducible summands given in Section 2. It is easy to
see that the quotient of this module divided by the ideal generated by
ω0 ∧ H1(T

2g; R) ⊂ H3(T
2g; R) is precisely

R ⊕

g⊕

k=1

[1k]R.

The R-summand in degree 2 corresponds to the class α and its non-
triviality has already been shown in Theorem 4. Hence, to prove the
assertion, it remains to show that Flux∗([1k]) is non-trivial for any
k ≤ g. The highest weight vector of the irreducible representation
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[1k] is x1 ∧ · · · ∧ xk, where x1, . . . , xg, y1, . . . , yg is a symplectic basis
of H1(Σg; Z) as before. Now the definition of the flux homomorphism
implies that, for any i, there exists an element ϕi ∈ Symp0 Σg such that
Flux(ϕi) = x∗

i . Here we can choose the support of ϕi to be contained in
an arbitrarily small neighbourhood of a simple closed curve which rep-
resents the homology class xi. Then the k elements ϕ1, . . . , ϕk mutually
commute because their supports are disjoint. Hence they form a cycle
of Symp0 Σg supported on a k-dimensional torus, and the cohomology

class Flux∗(x1 ∧ · · · ∧ xk) ∈ Hk(Sympδ
0 Σg; R) takes a non-zero value

(namely 1) on this cycle. This completes the proof. q.e.d.

Proof of Theorem 6. We consider the extension

1−→Ham Σg−→ Symp0 Σg
Flux
−→H1(Σg; R)−→1.

Let {Er
p,q} be the Hochschild–Serre spectral sequence for its homology.

Since Ham Σg is perfect by Thurston [25], see also [1], we have

E2
1,1

∼= H1(H
1(Σg; R)δ; H1(Hamδ Σg; Z)) = 0.

Hence the differential d2 : E2
3,0→E2

1,1 vanishes, so that

E3
3,0

∼= E2
3,0

∼= H3(H
1(Σg; R)δ; Z) ∼= Λ3

ZH1(Σg; R).

Similarly E2
2,1 = 0, so that the differential d2 : E2

2,1→E2
0,2 vanishes and

E3
0,2

∼= E2
0,2

∼= H0(H
1(Σg; R)δ; H2(Hamδ Σg; Z)) ∼= H2(Hamδ Σg; Z)H1

R
.

However, E∞
3,0 = E4

3,0 is equal to the image of the homomorphism

Flux∗ : H3(Sympδ
0 Σg; Z)−→H3(H

1(Σg; R)δ; Z).

Now we can conclude that the exact sequence

E∞
3,0 = E4

3,0−→E3
3,0−→E3

0,2 = E2
0,2

yields an exact sequence

(36) H3(Sympδ
0 Σg; Z)−→H3(H

1(Σg; R)δ; Z)−→H2(Hamδ Σg; Z)H1

R
.

By the same computation as above in the dual context of cohomology,
we obtain an exact sequence

(37) H2(Hamδ Σg; R)H1

R−→H3(H1(Σg : R)δ; R)
Flux∗

−→H3(Sympδ
0 Σg; R).

Proposition 8 (see also Theorem 5) implies that the continuous coho-
mology classes

ω̃0 ∧ H1(Σg; R) ⊂ H3(H1(Σg : R)δ; R)

vanish under the homomorphism Flux∗ so that they can be lifted to

elements of H2(Hamδ Σg; R)H1

R by (37). Now consider the cycles

ω0 ∧ H1(Σg; R) ⊂ Λ3
ZH1(Σg; R) ∼= H3(H

1(Σg; R)δ; Z),
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where ω0 ∈ Λ2
ZH1(Σg; R), and also their images in H2(Hamδ Σg; Z)H1

R
in

the exact sequence (36). If we consider the Kronecker products of these
cycles with the above lifted cohomology classes, we can conclude that
ω0∧H1(Σg; R) maps injectively into H2(Hamδ Σg; Z)H1

R
. This completes

the proof. q.e.d.

Remark 20. It would be interesting to obtain explicit group cocycles
of Ham Σg which represent the above degree two cohomology classes.
There should also be a relation to the work of Ismagilov [8]. We shall
pursue this elsewhere.

7. Further discussion

As in Section 3, let e, v ∈ H2(ESympδ Σg; R) be the Euler class and
the transverse symplectic class, respectively. By analogy with the defi-
nition e1 = π∗(e

2), where

π∗ : H4(ESympδ Σg; R)−→H2(Sympδ Σg; R)

denotes the integration over the fiber, we can define a cohomology class

v1 ∈ H2(Sympδ Σg; R)

by setting v1 = π∗(ev). After we conjectured that v1 is a linear com-
bination of the two classes α and e1, Kawazumi [10] kindly provided
a proof. More precisely, he pointed out that the contraction formula,
Theorem 6.2 of [12], can be adapted to the case of the cohomology class
α of the group ESympδ Σg, and that the following equality holds:

(38) α = −π∗

(
(e + v)2

)
= −e1 − 2v1.

Since we know by [13] that e2 6= 0, we could also apply integration
over the fiber to the cohomology class e2v in order to obtain some more
cohomology. However, e2v vanishes in H6(ESympδ Σg; R) by the Bott
vanishing theorem.

A more promising approach to find more cohomology for the sym-
plectomorphism groups is the following. Consider the extension

(39) 1−→Symp0 Σg−→Symp Σg
p

−→Mg−→1.

On the one hand, Theorem 5 shows that we have an injection

(40)

g⊕

k=1

[1k]R ⊂ H∗(Sympδ
0 Σg; R).

On the other hand, Looijenga [14] determined the stable cohomology
H∗(Mg; V ) of the mapping class group with coefficients in any irre-
ducible representation V of the algebraic group Sp(2g; Q). In particu-
lar, the cohomology groups H∗(Mg; [1

k]) are highly non-trivial. In the
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spectral sequence for the cohomology of the extension (39), there are
many non-trivial E2-terms

Ep,q
2 = Hp(Mg; H

q(Sympδ
0 Σg; R)).

For example, it was proved in [22] that H1(Mg; [1
3]R) ∼= R, and an

explicit computation using Looijenga’s formula shows H2(Mg; [1
2]R) ∼=

R. Hence we have injections

R ⊂ E1,3
2 = H1(Mg; H

3(Sympδ
0 Σg; R))

R ⊂ E2,2
2 = H2(Mg; H

2(Sympδ
0 Σg; R))

for all sufficiently large g. It seems likely that these two copies of R
survive to the E∞ term, so that they define certain cohomology classes
in H4(Sympδ Σg; R). More generally, the summands (40) and the non-

trivial cohomology groups H∗(Mg; [1
k]R) should give rise to infinitely

many cohomology classes in H∗(Sympδ Σg; R).

Problem 21. Prove that these cohomology classes are non-trivial.

Next, there are completely different candidates for possible classes in
H∗(Sympδ Σg; R) coming from the cohomology of the Lie algebra Vn of
formal Hamiltonian vector fields on R2n first studied by Gelfand, Kalinin
and Fuks in [5]. This Lie algebra Vn contains sp(2n, R) as a subalgebra
consisting of vector fields corresponding to linear symplectomorphisms.
Let BΓ̄

ω
2 be the Haefliger classifying space for the pseudogroup of lo-

cal symplectomorphisms of R2 with respect to the standard symplectic
form. Then there is a natural homomorphism

(41) H∗
c (V1; sp(2, R))−→H∗(BΓ̄

ω
2 ; R)

from the continuous cohomology of V1 relative to the subalgebra sp(2, R)
to the real cohomology group of BΓ̄

ω
2 .

There is also an obvious continuous mapping

K(ESympδ Σg, 1)−→BΓ̄
ω
2

which classifies the transversely symplectic codimension 2 foliation on
the classifying space for the group ESympδ Σg, that is the total space

of the universal foliated Σg-bundle over BSympδ Σg. This induces ho-
momorphisms

(42) H∗(BΓ̄
ω
2 ; R)−→H∗(ESympδ Σg; R)

π∗−→H∗−2(Sympδ Σg; R),

where the last homomorphism is the integration along the fibre. Com-
bining (41) and (42) we obtain a homomorphism

(43) H∗
c (V1; sp(2, R))−→H∗−2(Sympδ Σg; R).

Now, Gelfand, Kalinin and Fuks [5] found a new cohomology class
in H7

c (V1; sp(2, R)). Later, Metoki [17] extended their computation and
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found another exotic class in H9
c (V1; sp(2, R)). It seems to be widely

believed that there should exist infinitely many such exotic classes.

Problem 22. Study the cohomology classes in H∗(Sympδ Σg; R) in-
duced from exotic classes in H∗+2

c (V1; sp(2, R)). In particular, prove
that the two elements in H5(Sympδ Σg; R) and H7(Sympδ Σg; R) in-
duced from the classes found by Gelfand, Kalinin and Fuks and by
Metoki, are non-trivial.

Recall that Harer [6] proved that the homology groups of the mapping
class groups Mg stabilize with respect to the genus g in a certain stable
range. In view of the fact that all the characteristic classes we introduced
in this paper are stable with respect to g, we would like to propose
the following problem, although it appears to be beyond the range of
available techniques at the moment:

Problem 23. Determine whether the homology groups of Sympδ Σg

stabilize with respect to g, or not. In particular, is it true that

H2(Sympδ Σg; Z) ∼= Z ⊕ S2
QR

for all g ≥ 3 ?

Appendix: Proof of Proposition 2

To prove Proposition 2, observe first that the second exterior power
Λ2

Z H1 (Σg; R) over Z is naturally isomorphic to the same power
Λ2

QH1(Σg; R) over Q because H1(Σg; R) is a uniquely divisible abelian

group. Choose a Hamel basis aλ (λ ∈ A) of R as a vector space over Q.
Then we can write

H1(Σg; R) =
∑

λ

aλH1(Σg; Q).

Hence

Λ2
QH1(Σg; R) =

∑

λ

aλΛ2
QH1(Σg; Q) ⊕

∑

λ<µ

aλH1(Σg; Q) ⊗ aµH1(Σg; Q),

where we choose a total order in the index set A. Clearly, this is a
decomposition of Mg-modules. It is easy to see that the intersection
pairing gives rise to an isomorphism

(
Λ2

QH1(Σg; Q)
)
Mg

∼= Q.

We also have
(
H1(Σg; Q) ⊗ H1(Σg; Q)

)
Mg

∼=
(
S2H1(Σg; Q) ⊕ Λ2H1(Σg; Q)

)
Mg

∼= Q.

Here we have used the fact that
(
S2H1(Σg; Q)

)
Mg

= 0,
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which is true because the action of Mg on S2H1(Σg; Q) factors through
that of the algebraic group Sp(2g, Q), and S2H1(Σg; Q) is a non-trivial
irreducible Sp(2g, Q)-module.

Thus we obtain an isomorphism

(
Λ2

ZH1(Σg; R)
)
Mg

∼=

(
∑

λ

aλ ⊗ aλQ

)
⊕


∑

λ<µ

aλ ⊗ aµQ


 .

It is easy to see that the right-hand side of the above expression can be
naturally identified with S2

QR. This completes the proof.
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forme symplectique, Comment. Math. Helv. 53 (1978) 174–227, MR 0490874,
Zbl 0393.58007.

[2] K.S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87,
Springer Verlag, 1982, MR 1324339, Zbl 0584.20036.

[3] E. Calabi, On the group of automorphisms of a symplectic manifold, in ‘Prob-
lems in Analysis’ (ed. R. Gunning), Princeton University Press, 1970, 1–26,
MR 0350776, Zbl 0209.25801.

[4] W. Fulton & J. Harris, Representation Theory, Graduate Texts in Mathematics,
129, Springer Verlag, 1991, MR 1153249, Zbl 0744.22001.

[5] I.M. Gelfand, D.I. Kalinin, & D.B. Fuks, The cohomology of the Lie algebra

of Hamiltonian formal vector fields (Russian), Funkcional. Anal. i Prilozen.
6 (1972) 25–29; English trans. in Functional Anal. Appl. 6 (1972) 193–196,
MR 0312531, Zbl 0259.57023.

[6] J. Harer, Stability of the homology of the mapping class group of an orientable

surface, Ann. of Math. 121 (1985) 215–249, MR 0786348, Zbl 0579.57005.

[7] , The third homology group of the moduli space of curves, Duke Math. J.
63 (1992) 25–55, MR 1106936, Zbl 0725.57005.

[8] R.S. Ismagilov, Inductive limits of area-preserving diffeomorphism groups (Rus-
sian), Funktsional. Anal. i Prilozhen. 37 (2003) 36–50, 95; Engl. trans. in Funct.
Anal. Appl. 37 (2003) 191–202, MR 2020413, Zbl 1047.22022.

[9] D. Johnson, An abelian quotient of the mapping class group Ig, Math. Ann. 249

(1980) 225–242, MR 0579103, Zbl 0409.57009.

[10] N. Kawazumi, private communication.

[11] N. Kawazumi & S. Morita, The primary approximation to the cohomology of the

moduli space of curves and cocycles for the stable characteristic classes, Math.
Research Letters 3 (1996) 629–641, MR 1418577, Zbl 0889.14009.

[12] , The primary approximation to the cohomology of the moduli space of

curves and cocycles for the Mumford-Morita-Miller classes, preprint.

[13] D. Kotschick & S. Morita, Signatures of foliated surface bundles and the sym-

plectomorphism groups of surfaces, Topology 44 (2005) 131–149, MR 2104005.

[14] E. Looijenga, Stable cohomology of the mapping class group with symplectic co-

efficients and of the universal Abel-Jacobi map, J. Algebraic Geometry 5 (1996)
135–150, MR 1358038, Zbl 0860.57010.



302 D. KOTSCHICK & S. MORITA

[15] I. Madsen & M. Weiss, The stable moduli space of Riemann surfaces: Mumford’s

conjecture, preprint math.AT/0212321 v3 14Jul2004.

[16] D. McDuff & D. Salamon, Introduction to Symplectic Topology, second edition,
Oxford University Press, 1998, MR 1698616, Zbl 1066.53137.

[17] S. Metoki, Non-trivial cohomology classes of Lie algebras of volume preserving

formal vector fields, thesis, University of Tokyo, 2000.

[18] S. Morita, Discontinuous invariants of foliations, Adv. Stud. Pure Math. 5

(1985) 169–193, MR 0877332.

[19] , Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551–
577, MR 0914849, Zbl 0608.57020.

[20] , Families of Jacobian manifolds and characteristic classes of surface

bundles, I, Ann. Inst. Fourier 39 (1989) 777–810, MR 1030850, Zbl 0672.57015.

[21] , Families of Jacobian manifolds and characteristic classes of surface

bundles, II, Math. Proc. Camb. Phil. Soc. 105 (1989) 79–101, MR 0966142,
Zbl 0775.57001.

[22] , The extension of Johnson’s homomorphism from the Torelli group to

the mapping class group, Invent. Math. 111 (1993) 197–224, MR 1193604,
Zbl 0787.57008.

[23] , A linear representation of the mapping class group of orientable surfaces

and characteristic classes of surface bundles, in ‘Proceedings of the Taniguchi
Symposium on Topology and Teichmüller Spaces’ held in Finland, July 1995,
World Scientific, 1996, 159–186, MR 1659679, Zbl 0939.32011.

[24] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120

(1965) 286–294, MR 0182927, Zbl 0141.19407.

[25] W. Thurston, On the structure of volume-preserving diffeomorphisms, unpub-
lished manuscript.

[26] T. Tsuboi, The Calabi invariant and the Euler class, Trans. Amer. Math. Soc.
352 (2000) 515–524, MR 1487633, Zbl 0937.57023.

Mathematisches Institut
Ludwig-Maximilians-Universität München

Theresienstr. 39, 80333 München
Germany

E-mail address: dieter@member.ams.org

Department of Mathematical Sciences
University of Tokyo

Komaba, Tokyo 153-8914
Japan

E-mail address: morita@ms.u-tokyo.ac.jp


