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Abstract

For a finite rank projective bundle over a compact manifold, so
associated to a torsion, Dixmier-Douady, 3-class, w, on the mani-
fold, we define the ring of differential operators ‘acting on sections
of the projective bundle’ in a formal sense. In particular, any ori-
ented even-dimensional manifold carries a projective spin Dirac
operator in this sense. More generally the corresponding space of
pseudodifferential operators is defined, with supports sufficiently
close to the diagonal, i.e., the identity relation. For such elliptic
operators we define the numerical index in an essentially analytic
way, as the trace of the commutator of the operator and a para-
metrix and show that this is homotopy invariant. Using the heat
kernel method for the twisted, projective spin Dirac operator, we
show that this index is given by the usual formula, now in terms
of the twisted Chern character of the symbol, which in this case
defines an element of K-theory twisted by w; hence the index is a
rational number but in general it is not an integer.

The Atiyah-Singer index theorem for an elliptic (pseudodifferential)
operator gives an integrality theorem; namely a certain characteristic
integral is an integer because it is the index of an elliptic operator. No-

tably, for a closed spin manifold Z, the Â genus,
∫
Z Â(Z) is an integer

because it is equal to the index of the Dirac operator on Z. When Z is
not a spin manifold, the spin bundle S does not exist, as a vector bun-
dle, and when Z has no spinC structure, there is no global vector bundle
resulting from the patching of the local bundles S ⊗ Li, where the Li

are line bundles. However, as we show below, S is a always a projective
vector bundle associated to the the Clifford algebra Cl(Z), of the cotan-
gent bundle T ∗Z which is an Azumaya bundle cf. [10]. Such a (finite
rank) projective vector bundle, E, over a compact manifold has local
trivializations which may fail to satisfy the cocycle condition on triple
overlaps by a scalar factor; this defines the Dixmier-Douady invariant
in H3(Z, Z). If this torsion twisting is non-trivial there is no, locally
spanning, space of global sections. The Dixmier-Douady invariant for
Cl(Z) is the third integral Stieffel-Whitney class, W3(Z). In particular,
the spin Dirac operator does not exist when Z is not a spin manifold.
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Correspondingly the Â genus is a rational number, but not necessarily
an integer. In this paper we show that, in the oriented even-dimensional
case, one can nevertheless define a projective spin Dirac operator, with
an analytic index valued in the rational numbers, and prove the ana-
logue of the Atiyah-Singer index theorem for this operator twisted by
a general projective bundle. In fact we establish the analogue of the
Atiyah-Singer index theorem for a general projective elliptic pseudo-
differential operator. In a subsequent paper the families case will be
discussed.

For a compact manifold, Z, and vector bundles E and F over Z
the Schwartz kernel theorem gives a one-to-one correspondence between
continuous linear operators from C∞(Z, E) to C−∞(Z, F ) and distribu-
tions in C−∞(Z2, Hom(E, F )⊗ΩR). Here Hom(E, F ) is the ‘big’ homo-
morphism bundle over Z2 with fibre at (z, z′) equal to hom(Ez′ , Fz) ≡
Fz ⊗ E′

z′ , and ΩR is the density bundle lifted from the right factor.
Restricted to pseudodifferential operators of order m, this becomes an
isomorphism to the space, Im(Z2, Diag; Hom(E, F )⊗ΩR), of conormal
distributions with respect to the diagonal, cf. [7].

This fact motivates our definition of projective pseudodifferential op-
erators when E and F are only projective vector bundles associated to
a fixed finite-dimensional Azumaya bundle A. The homomorphism bun-
dle Hom(E, F ) is then again a projective bundle on Z2 associated to the
tensor product AL⊗A′

R of the pull-back of A from the left and the con-
jugate bundle from the right. In particular if E and F have DD invariant
τ ∈ H3(Z; Z) then Hom(E, F ) has DD invariant π∗

Lτ−π∗
Rτ ∈ H3(Z2; Z).

Since this class is trivial in a tubular neighborhood of the diagonal it is
reasonable to expect that Hom(E, F ) may be realized as an ordinary vec-
tor bundle there. In fact this is the case and there is a canonical choice,
HomA(E, F ) of extension. This allows us to identify the space of projec-
tive pseudodifferential operators, with kernels supported in a sufficiently
small neighborhood Nǫ of the diagonal, Ψ•

ǫ (Z; E, F ) with the space of
conormal distributions I•ǫ (Nǫ, Diag; HomA(E, F )⊗ΩR). Despite not be-
ing a space of operators, this has precisely the same local structure as
in the untwisted case and has similar composition properties provided
supports are restricted to appropriate neighborhoods of the diagonal.
The space of projective smoothing operators Ψ−∞

ǫ (Z; E, F ) is therefore
identified with C∞

c (Nǫ; HomA(E, F )⊗π∗
RΩ). The principal symbol map

is well defined for conormal distributions so this leads directly to the
symbol map on Ψm

ǫ (Z; E, F ) with values in smooth homogeneous sec-
tions of degree m of hom(E, F ), the ‘little’ or ‘diagonal’ homomorphism
bundle which is a vector bundle. Thus ellipticity is well defined, as
the invertibility of this symbol. The ‘full’ symbol map is given by the
map to the quotient Ψ•

ǫ (Z; E, F )/Ψ−∞
ǫ (Z; E, F ). The usual calculus can

then be applied and ellipticity, as invertibilty of the principal symbol,
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implies invertibility of the image of an operator in this quotient. Any
lift, B, of the inverse is a parametrix for the given elliptic operator, A.
The analytic index of the projective elliptic operator is then defined by

(1) inda(A) = Tr(AB − IdF ) − Tr(BA − IdE) = Tr([A, B])

where the last expression, though compact, is slightly misleading. Di-
rectly from this formula it appears that inda(A) might be complex val-
ued. Using the homotopy invariance discussed below it can be see
directly to be real; from the index formula it follows that inda(A) is
rational.

In fact we further extend this discussion by allowing twisting by line
bundles defined over the bundle of trivializations of the Azumaya bun-
dle; these are Nth roots of line bundles over the base and have actions
of SU(N) arising from fibre-holonomy. This allows us to include in the
same general framework the case of spinC Dirac operators on non-spin
manifolds. Thus we define projective spinC Dirac operators even when
there is no spinC structure.

Within the projective pseudodifferential operators, acting between
two projective bundles associated to the same Azumaya bundle, there
is always a full algebra of differential operators, with kernels supported
within the diagonal. On an even-dimensional oriented manifold the Clif-
ford bundle is an Azumaya bundle and has associated to it projective
spin bundles, S±. The choice of a compatible connection gives a pro-
jective spin Dirac operator. Such a projective Dirac operator, ð, can
be coupled to any unitary projective vector bundle E over Z associated
to an Azumaya algebra A. Thus S ⊗ E is a projective vector bundle
associated to the Azumaya algebra Cl(Z) ⊗ A. This coupled operator,
ð+

E , is elliptic and its analytic index, in the sense defined above, is
∫

Z
Â(Z) ∧ ChA(E)

where ChA : K0(Z,A) → Heven(Z, Q) is the twisted Chern character.
When Z is even dimensional, K0

c (T ∗Z, π∗A)⊗ Q is generated by the
classes of symbols of such coupled signature operators. We conclude
from this, essentially as in the untwisted case, that for a general projec-
tive elliptic pseudodifferential operators T ∈ Ψ•

ǫ (Z; E, F ) with principal
symbol σm(T ),

inda(T ) =

∫

T ∗Z
Td(T ∗Z) ∧ ChA(σm(T )).

This in turn shows the rationality of the analytic index and we conclude
by providing several examples where inda is not an integer, but only a
fraction, as justification for the title of the paper.

In the first section below the ‘big’ homomorphism bundle is con-
structed, near the diagonal, for any two projective bundles associated
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to the same Azumaya bundle. In Section 2 we discuss a more general
construction of such ‘big’ homomorphism bundles which corresponds to
twisting by a line bundle, only the Nth power of which is well-defined
over the base. The projective spin bundle is discussed in the next sec-
tion as is its relationship to the spin bundle when a spin structure exists
and to spinC bundles when they exist. In Sections 4 and 5 the notion
of smoothing, and then general pseudodifferential, operators between
projective bundles (and more generally twisted projective bundles) is
introduced and for elliptic operators the index is defined. The homotopy
invariance of the index is shown directly in Section 6 and in Section 7
projective Dirac operators are defined and the usual local index formula
is used to compute the index in that case. Much as in the usual case this
formula is extended to general pseudodifferential operators in Section 8.
Some examples in which the index is truly fractional are given in the
final section.

1. Homomorphism bundles

Let A be a finite-dimensional (star) Azumaya bundle over a compact
manifold Z; see [10] for more details. By definition A is a complex vec-
tor bundle over Z with fibres having algebra structures and with local
(algebra) trivializations as N × N matrix algebras. Since the automor-
phism group of the star-algebra of N × N matrices is PU(N) (acting
by conjugation) the bundle of all such trivializations, P, is a princi-
pal PU(N)-bundle. From the Azumaya perspective, the ‘trivial’ case is
where A⊗hom(A1) = hom(A2) is ‘stably’ the homomorphism bundle of
a vector bundle over Z and this corresponds to the existence of a stable
lifting of P to a U(M)-principal bundle.

A projective vector bundle, E, over Z can be defined (a different ini-
tial approach is taken in [10]) as a projection-valued section of A⊗K,
for the algebra K of compact operators on some Hilbert space H. Any
projection in Az ⊗K is of finite rank, so over a set in which A is trivial
this yields a vector bundle. However, the phases of the transition maps
between trivializations are not determined, and cannot, in general, be
chosen to satisfy the cocycle condition, so in general these are not vector
bundles. The transpose Azumaya bundle At is A with multiplication re-
versed and A⊗At is trivial as an Azumaya bundle, since it has structure
group acting through the adjoint representation, PU(N) −→ PU(N2),
which lifts canonically to a U(N) action. For any two projective vector
bundles E and F associated to A it follows that hom(E, F ), since it is
associated to A⊗At, is a true vector bundle.

The lift of A to an Azumaya bundle over P is trivial, i.e., is a ho-
momorphism bundle, and correspondingly the lift of a projective vec-
tor bundle E associated to A to P is a finite-dimensional subbundle,
Ẽ ⊂ CN ⊗ H, over P which is equivariant for the standard action of
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U(N) on CN , interpreted as covering the PU(N) action on P. Since the

action of U(N) on hom(Ẽ, F̃ ), for the lifts of any two projective vector
bundles associated to A, is through conjugation we see that this is a
bundle over P invariant under the PU(N) action and hence, again, we
see that it descends to hom(E, F ), as a well-defined vector bundle on Z.

On the other hand the ‘big’ homomorphism bundle Hom(Ẽ, F̃ ) is only a
projective vector bundle over Z2; it is associated to the external tensor
product A ⊠ At over Z2. Since at the diagonal it is a vector bundle,
reducing there to hom(E, F ) it is reasonable to expect it be represented
by a vector bundle in a neighbourhood of the diagonal. For our pur-
poses it is vitally important that this extension be made in such a way
that the composition properties also extend.

For a given metric on Z set

(2) Nǫ = {(z, z′) ∈ Z2; dg(z, z′) < ǫ}.

The projective unitary group, PU(N), can be written as a quotient
of the group, SU(N), of unitary matrices of determinant one:

(3) ZN −→ SU(N) −→ PU(N).

In the following result, which is the foundation of subsequent develop-
ments, we use the discreteness of the fibres of (3).

Proposition 1. Given two projective bundles, E and F, associated

to a fixed Azumaya bundle and ǫ > 0 sufficiently small, the exterior

homomorphism bundle Hom(Ẽ, F̃ ), descends from a neighborhood of the

diagonal in P × P to a vector bundle, HomA(E, F ), over Nǫ extending

hom(E, F ). For any three such bundles there is a natural associative

composition law

(4) HomA
(z′′,z′)(F, G) × HomA

(z,z′′)(E, F ) ∋ (a, a′)

7−→ a ◦ a′ ∈ HomA
(z,z′)(E, G), (z, z′′), (z′′, z′) ∈ Nǫ/2

which is consistent with the composition over the diagonal.

Remark 1. Applying this result to the projective vector bundle given
by IdA⊗π1, where π1 is the projection onto the first basis element of H,

gives a bundle, which we denote Â, which extends A from the diagonal
to some neighborhood Nǫ and which has the composition property as
in (4)

(5) Â(z′′,z) × Â(z,z′′) −→ Â(z,z′).

We regard this as the natural extension of A.

Proof. Consider again the construction of hom(E, F ), always for two
projective bundles associated to the same Azumaya bundle, A. The
dual bundle Ẽ′ is associated to the adjoint Azumaya bundle; or as a
subbundle of CN ⊗H over P it is associated with the adjoint action of
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SU(N) on CN . The external tensor product over the product of P with

itself, as a bundle over Z2, F̃ ⊠Ẽ′ is therefore a subbundle of hom(CN )⊗
hom(H) over P × P equivariant for the action of SU(N) × SU(N) over
PU(N) × PU(N). Restricted to the diagonal, P × P has the natural

diagonal subbundle P. The restriction of F̃ ⊠ Ẽ′ to this submanifold
has a PU(N) action, and so descends to the bundle hom(E, F ) over

Diag ≡ Z, since for A ∈ PU(N) we can take the same lift Ã to SU(N)
in each factor and these different diagonal lifts lead to the same operator
through conjugation.

In a neighborhood, Nǫ, of the diagonal there is a corresponding ‘near
diagonal’ submanifold of P × P; for instance we can extend P over the

diagonal to a subbundle P̃ ⊂ P × P by parallel transport normal to

the diagonal for some connection on A. Now, any two points of P̃ in
the same fibre over a point in Nǫ are related by the action of (A′, A) ∈
PU(N) × PU(N) where A′A−1 is in a fixed small neighborhood of the
diagonal, only depending on ǫ. It follows from the discreteness of the
quotient SU(N) −→ PU(N) that, for ǫ > 0 sufficiently small, on lifting

A to Ã ∈ SU(N) there is a unique neighboring lift, Ã′, of A′. The

conjugation action of these lifts on F̃ ⊠ Ẽ′ is therefore independent of
choices, so defining HomA(E, F ) over Nǫ. This bundle certainly restricts
to hom(E, F ) over the diagonal.

In fact this construction is independent of the precise choice of P̃.
Namely if Hom(Ẽ, F̃ ) ≡ F̃ ⊠ Ẽ′ is restricted to a sufficiently small
open neighborhood, N, of P as the diagonal in P × P, then the part
of PU(N) × PU(N) acting on the fibres of N lifts to act linearly on

Hom(Ẽ, F̃ ), so defining HomA(E, F ) as a bundle over the projection
of N into Z2. It follows that this action is consistent with the compo-
sition of Hom(Ẽ, F̃ ) and Hom(F̃ , G̃) for any three projective bundles
associated to A. This leads to the composition property (4). q.e.d.

As a bundle over P, the projective bundle Ẽ can be given an SU(N)

invariant connection. A choice of such connections on Ẽ and F̃ induces,
as in the standard case, a connection on Hom(Ẽ, F̃ ) over P × P and
hence a connection on HomA(E, F ) over Nǫ.

Remark 2. Since H is a fixed Hilbert space we can also identify
K as a trivial bundle over Z2. The construction about then identifies
HomA(E, F ) as a subbundle of Â ⊗ K, as a bundle over Nǫ, with the
composition (4) induced from (5).

Remark 3. A particularly important case of an Azumaya bundle is
the Clifford bundle on any oriented even-dimensional manifold (in the
odd-dimensional case the complexified Clifford bundle is not quite an
Azumaya bundle but rather the direct sum of two). On a manifold
of dimension 2n this is locally isomorphic to the algebra of 2n × 2n
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matrices. Letting PCl be the associated principal PU(2n)-bundle of
trivializations, we call the trivial bundle, C2n

, over PCl the projective

spin bundle; the relationship to the usual spin bundle is explained in
Section 3. Proposition 1 and Remark 1, give an extension of the Clifford

bundle to a bundle, Ĉl, in neighborhood of the diagonal as the ‘big’
homomorphism bundle of this projective spin bundle. The discussion
below shows that this allows us to define a projective spin Dirac operator
even when no spin (or even spinC) structure exits. However, it is an
element of an algebra of ‘differential operators’ which does not have any
natural action.

2. Twisting by a line bundle over P

In Proposition 1 we have described a canonical extension of a given

Azumaya algebra A to a bundle Â near the diagonal. In general this
canonical extension, the existence of which is based on the discreteness
of the cover of PU(N) by SU(N), is not unique as an extension with the
composition property (5). Rather, it is based on the selection, natural

as it is, of the trivial bundle Ẽ = P × CN with its natural SU(N)

action, as generating A through hom(Ẽ). In this section we consider

the possibility of other choices of bundle in place of Ẽ and hence other
extensions of A.

To motivate this discussion, consider the case of an Azumaya bundle
which is trivial, in the sense that it is isomorphic to hom(W ) for an
Hermitian vector bundle W. The frame bundle W of W is a principal
U(N) bundle to which hom(W ) lifts to be the trivial bundle of N × N
matrices on which U(N) acts through conjugation. Thus the center acts
trivially, so hom(W ) can also be identified with the trivial bundle of N×
N matrices over P = W/ U(1). The circle bundle, L, over P with total
space W has an induced SU(N) action and W can be identified with
the bundle LW ⊗CN over P, where LW is the line bundle corresponding
to L. Abstracting this situation we arrive at the corresponding notion
for a general Azumaya bundle.

Definition 1. A representing bundle for a star Azumaya bundle A
is a vector bundle Ṽ over P equipped with an action of SU(N) which is
equivariant for the PU(N) action on P with the center acting as scalars

and with an isomorphism, as bundles of algebras, of A and hom(Ṽ ) as
a bundle over the base.

When appropriate we consider the unique U(N) action on Ṽ for which
the center also acts as scalars and such that the only elements of the
center acting trivially are elements of ZN ⊂ SU(N). Note that this is
consistent with the ‘trivial’ case discussed above.

We consider two such representing bundles, Ṽ1, Ṽ2, to be equivalent
if there is a bundle isomorphism between them which intertwines the
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SU(N) actions and projects to intertwine the isomorphisms with A. To
understand the non-equivalent representing bundles we study the line
bundles on P. The fibres of P are diffeomorphic to PU(N) so all line
bundles over P have flat connections over the fibres.

Proposition 2 (cf. Kostant [9] and Brylinski [3]). The total space

of any line bundle on P admits a ‘fibre holonomy’ action by SU(N)
which is equivariant for the PU(N) action on P, is linear between the

fibres and in which the centre acts as the fibre holonomy; this canonical

SU(N) action is unique up to conjugation by a bundle isomorphism.

As for representing bundles we consider the unique U(N) action on
the line bundle for which the center acts also acts as scalars and such
that the only elements of the center acting trivially are elements of
ZN ⊂ SU(N).

Proof. Let L be a given line bundle on P; choose some connection,
∇, on it with curvature ω ∈ C∞(P; Λ2). Each fibre of P is diffeomorphic
to PU(N). Since H2(PU(N), R) = {0} the restriction of ω to each fibre
is exact. Thus we can find a smooth 1-form, α, on P such that ω − dα
vanishes on each fibre. It follows that the connection ∇−α has vanishing
curvature on each fibre of P.

Now, the SU(N) action on L is given by parallel transport with re-
spect to such a connection. For each smooth curve c : [0, 1] −→ PU(N)
with c(0) = Id and each point l ∈ Lp consider the curve c(t)p in the fibre
through p ∈ P and let s(l) ∈ Lc(1)p be obtained by parallel transport
along L over c(t)p. This certainly gives a smooth map s(c) on the total
space of L which is linear on the fibres. Furthermore, since the curva-
ture on each fibre vanishes, s(c) depends only on the homotopy class of
c in PU(N) as a curve from Id to g = c(1) ∈ PU(N) and composition
of curves leads to the composite map. Thus in fact s is an action of the
universal covering group, SU(N), of PU(N) on the total space of L as
desired. The centre, ZN , of SU(N) gives the fibre holonomy essentially
by definition.

Any two connections on L which are fibre-flat differ by a 1-form
β which is closed on each fibre. Again, since H1(PU(N), R) = {0},
we may choose f ∈ C∞(P) such that β − df vanishes on each fibre.
Parallel transport along curves in PU(N) as discussed above, for the
two connections, is then intertwined by the bundle isomorphism exp(f).
Thus the SU(N) action defined by parallel transport on the fibres is
well-defined up to bundle isomorphism. q.e.d.

Remark 4. An alternate proof of Proposition 2 uses Cheeger-Simons
characters, and will be described here. As in the proof of Proposition
2,



FRACTIONAL ANALYTIC INDEX 273

1) given a line bundle L over P, we can always find a connection with
curvature F with the property that F restricted to the fibers is
trivial.

2) SU(N)-actions on L that cover the PU(N) action on P are ob-
tained from characters of ZN via the holonomy of flat connections
on line bundles along PU(N).

3) Consider the exact sequence

(6) 0 → H1(P, R)/H1(P, Z) → Ȟ2(P) → A2(P) → 0

where Ȟ2(P) denotes the Cheeger-Simons characters of 1-cycles
on P and

A2(P) =
{

(c1, F ); where F is a closed 2-form on P representing c1,

which is in the image of H2(P, Z) in H2(P, R)
}

,

cf. p. 25, middle formula of equation (3.3), in [6].

Take any pair (c1(L), F ) as in (1) above. Then there exists a Cheeger-
Simons character χ : Z1(P) → R/Z, whose value on a closed curve is
the holonomy of some connection with curvature equal to F . Now the
exact sequence (6) when restricted to any fiber of P reduces to,

0 → Ȟ2(PU(N)) → H2(PU(N), Z) → 0.

Therefore the Cheeger-Simons characters of 1-cycles on PU(N), are in
one-to-one correspondence with line bundles on PU(N). So we deduce
that the map from line bundles on P to SU(N)-actions on L that cover
the PU(N) action on P, is simply given by the map

H2(P, Z) ∋ c1 → r∗c1 ∈ H2(PU(N), Z)

where r is the restriction map to any fiber.

One consequence of Proposition 2 is that any line bundle on P is
necessarily the Nth root of a line bundle on the base.

Lemma 1. If L̃ is a line bundle on P for a given Azumaya bundle

then L̃⊗N descends to a line bundle L over the base Z.

Proof. It follows from the equivariance that the center ZN of SU(N)

acts on the fibre L̃q, q ∈ P, at each point as multiplication by Nth roots

of unity. Thus, in the induced action on L̃⊗N the center acts trivially, so
L̃⊗N has an induced PU(N)-action over P and so descends to a bundle
on the base. q.e.d.

Lemma 2. Any line bundle over P has a connection with curva-

ture which is the lift of the form 1
N π∗ωL from the base where ωL is the

curvature on the base of a connection on L = L̃⊗N .
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Proof. Following the discussion in the proof of Proposition 2 a given
line bundle L carries a connection with curvature, ω, which is PU(N)-
invariant and vanishes on the fibres. Taking a smooth lift of any vector
field, v, to a vector field v∗ on P the form iv∗ω is well-defined indepen-
dent of the lift, and closed on each fibre. Since H1(PU(N), R) = {0},
it follows that the connection may be further modified, by a smooth
1-form which vanishes on each fibre, so that the curvature is a basic and
PU(N)-invariant form, i.e., is the lift of a form from the base. Comput-
ing in any local trivialization of P gives the curvature in terms of the
induced connection on the Nth power. q.e.d.

Remark 5. Given a line bundle L over a compact manifold M, the
problem of finding an N -th root of L which is also a line bundle on M can
be approached as follows. One can take the N -th root of the transition

functions of L with respect to a good cover Ua, g
1/N
ab : Uab → U(1). On

triple overlaps, this gives a cocycle

(7) tabc = g
1/N
ab g

1/N
bc g1/N

ca : Uabc → ZN

where ZN = ker(s), s being the second homomorphism in the short
exact sequence

(8) ZN → U(1) → U(1)

which is given by s(z) = zN . Then the obstruction to the existence of
an N -th root for L is given by the connecting homomorphism in the
corresponding long exact sequence in cohomology

(9) · · · → H1(M, U(1))
β
→ H2(Z, ZN )

→ H2(M, U(1)) → H2(M, U(1)) → · · ·

i.e., the obstruction class is β(L) ∈ H2(M, ZN ). In fact, β(L) =
c1(L) (mod N). If L has an Nth root L0 then all of the other Nth roots
of L are of the form L0 ⊗ R, where R is a line bundle on Z such that
R⊗N = 1. Hence the set of Nth roots of L is a ZN -affine space with
associated vector space H1(M, ZN ).

Applying this to the case M = P it follows that all of the line bundles
which have Nth powers a given bundle L over the base are of the form
L̃⊗R, where R⊗N = 1, so form a ZN -affine space with associated vector
space H1(P, ZN ).

Recall that a principal PU(N) bundle π : P → M has an invariant,
t(P) ∈ H2(M, ZN ), which measures the obstruction to lifting P to a
principal SU(N) bundle. This obstruction is obtained via the connecting
homomorphism of the exact sequence in cohomology associated to the
short exact sequence of sheaves of groups on M,

1 → ZN → SU(N) → PU(N) → 1,
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namely t(P) = δ(P), where δ : H1(M, PU(N)) → H2(M, ZN ) and is
the mod N analogue of the 2nd Stieffel-Whitney class. Then a theorem
of Serre (cf. [4]) asserts that given any class t ∈ H2(M, ZN ), there
is a principal PU(mN) bundle π′ : Q → M (for some m ∈ N) such
that t(Q) ∈ H2(M, ZmN ) maps to t ∈ H2(M, ZN ) under the standard
inclusion of the coefficient groups. Such a bundle Q is by no means
unique.

In particular, given any line bundle L on M, by the theorem of Serre
[4], discussed above we know that there is a principal PU(mN) bundle
π′ : Q → M (for some m ∈ N) such that t(Q) = β(L) ∈ H2(M, ZN ).
Since t(Q) and β(L) are characteristic classes,

0 = π′∗(t(Q)) = t(π′∗(Q)) = β(π′∗(L)) ∈ H2(Q, ZN ),

that is, there is a line bundle L̃ on Q which isomorphic to an Nth root
of the lifted line bundle π′∗(L) on Q, i.e., L̃⊗N ∼= π′∗(L).

Note that the exact sequence

1 → Z → Z → ZN → 1,

where the middle arrow is multiplication by N , determines the change of
coefficients long exact sequence in cohomology, where d : H2(M, ZN ) →
H3(M, Z) is one of the connecting homomorphisms. Then d(t(P)) ∈
H3(M, Z) is equal to the Dixmier-Douady invariant, which measures
the obstruction to lifting P to a principal U(N) bundle over M . Of
course, this is a less stringent requirement.

The proof of Proposition 1 applies just as well to the line bundle
L̃ ⊠ L̃−1 over P × P.

Lemma 3. If L̃ is a line bundle over P, the bundle L̃⊠ L̃−1 descends

from a neighborhood of the diagonal submanifold of P × P to a well-

defined line bundle L̂ over a neighborhood of the diagonal in Z2.

In general a line bundle over P with its SU(N) action, and the cor-
responding U(N) action, represents a ‘partial trivialization’ of the Azu-

maya bundle. If the ZN action on the fibres of L̃, arising from the centre
of SU(N), is injective then in fact the circle bundle associated to L̃ is a
lift of the principal PU(N)-bundle, P, to a principal U(N)-bundle. If,

at the other extreme, this ZN action is trivial then L̃ is simply the lift
of a line bundle from the base.

Proposition 3. Any representing bundle for an Azumaya bundle is

equivalent to L̃⊗Ẽ with the induced SU(N) action, where Ẽ is the trivial

bundle with standard SU(N) action and L̃ is a line bundle on P with

its fibre-holonomy SU(N) action.

Proof. Let Ṽ be a representing bundle for the Azumaya bundle A. By
assumption Ṽ is a bundle over P. Let F be the frame bundle for Ṽ . This



276 V. MATHAI, R.B. MELROSE & I.M. SINGER

is the principal U(N)-bundle with fibre at a point p ∈ P the space of

trivializations of Ṽp. Now, as part of the data of a representing bundle,

we are given an identification of A with hom(Ṽ ) as a bundle over the
base. Since a point of P is an identification of the fibres of A with N×N
matrices, this data picks out a U(1) subbundle L ⊂ F , consisting of the

isomorphisms between Ṽp and CN which realize this identification at

that point. Since the equivariant U(N) action on Ṽ has center acting
as scalars, L has an induced equivariant U(N) action coming from the

equivariant U(N) action on Ṽ and the standard U(N) action on the

trivial bundle. If we let L̃ be the line bundle over P associated to L
then it has a U(N) action and the restriction of this to SU(N) must be

the SU(N) action. The frame bundle of L̃−1 ⊗ Ṽ has a natural U(N)-

invariant section over P, so Ṽ is equivalent, as a representing bundle,
to L̃ ⊗ Ẽ where Ẽ is the standard, trivial, representing bundle. q.e.d.

In view of this result we generalize projective bundles slightly by
allowing twisting by line bundles over P.

Definition 2. For any Azumaya bundle A and line bundle, L̃, over
P an associated (L̃−)twisted projective bundle is a subbundle of (L̃ ⊗
CN ) ⊗ H which is invariant under the tensor product SU(N) action,

arising from the SU(N) action on L̃ and the standard SU(N) action on
CN interpreted as covering the PU(N) action on P.

Proposition 4. Any choice of representing bundle, Ṽ ≡ L̃ ⊗ Ẽ, for

an Azumaya bundle A over Z gives rise to a vector bundle ÂL̃ which is

defined in a neighborhood of the diagonal of Z2, extends A = hom(V )
from the diagonal, has the composition property (5) and lifts canonically

to Hom(Ṽ ) over a neighborhood of the diagonal on P × P; with its

composition maps (5) it is isomorphic to Â ⊗ L̂ where L̃ is given by

Proposition 3.

Proof. The proof of Proposition 1 may be used directly, since no use
is made of the fact that the SU(N) action there is the standard one.

q.e.d.

Remark 6. The same argument also gives an extension HomA,L̃(E,

F ) of hom(E, F ) for any two L̃-twisted projective bundles Ẽ and F̃ for
the same line bundle over P.

Remark 7. Applying Proposition 4 to the ‘trivial’ case of an Azu-
maya bundle A = hom(W ) for a vector bundle W we recover recover

ÂW = HomA,L̃ = Hom(W ) in a neighborhood of the diagonal.
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3. Trivialization and spin structures

Corresponding to (3), the principal PU(N)-bundle P of local triv-
ializations of the Azumaya bundle A may have a lift to a principal
SU(N)-bundle, or to a principal U(N)-bundle,

(10) SU(N) //

²²

PSU(N)

²²
PU(N) // P

or U(N) //

²²

PU(N)

²²
PU(N) // P.

In either case the Dixmier-Douady invariant of A vanishes; conversely
the vanishing of the invariant implies the existence of such a lifting to
a U(pN)-bundle for A⊗ hom(G) for some bundle G (and so with rank
a multiple of N.)

Since it is of primary concern below, consider the special case of the
Clifford bundle. Namely, a choice of metric on Z defines the bundle of
Clifford algebras, with fibre at z ∈ Z the (real or complexified) Clifford
algebra
(11)

Clz(Z) =

(
∞⊕

k=0

(T ∗
z Z)k

)
/〈α ⊗ β + β ⊗ α − 2(α, β)g, α, β ∈ T ∗

z Z〉,

Clz(Z) = C ⊗ Clz(Z).

If dimZ = 2n, this complexified algebra is isomorphic to the matrix
algebra on C2n

. A local smooth choice of orthonormal basis over an
open set Ω ⊂ Z identifies T ∗Ω with Ω × R2n and so identifies Cl(Ω)
with Ω × Cl(R2n) as Azumaya bundles. Choosing a fixed identification
of Cl(2n) with the algebra of complex 2n × 2n matrices therefore gives
a trivialization of Cl(Z), as an Azumaya bundle, over Ω. As noted in
[10], its Dixmier-Douady invariant is W3(Z).

In particular the Clifford bundle is an associated bundle to the met-
ric coframe bundle, the principal SO(2n)-bundle F , where the action
of SO(2n) on the Euclidean Clifford algebra Cl(2n) is through the spin
group. Thus, the spin group may be identified within the Clifford alge-
bra as

(12) Spin(2n) = {v1v2 · · · v2k ∈ Cl(2n); vi ∈ R2n, |vi| = 1}.

The non-trivial double covering of SO(2n) comes through the mapping
of v to the reflection R(v) ∈ O(2n) in the plane orthogonal to v

(13) p : Spin(2n) ∋ a = v1 · · · v2k 7−→ R(v1) · · ·R(v2k) = R ∈ SO(2n).

Thus P may be identified with the bundle associated to F by the action
of SO(2n) on Cl(2n) (or in the real case Cl(2n)) where R in (13) acts
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by conjugation by a

(14) Cl(2n) ∋ b 7−→ aba−1 ∈ Cl(2n).

We therefore have a map of principal bundles

(15) F −→ P.

Recall that the projective spin bundle on P is just the bundle associated
to the natural action of Cl(n) on itself; it can therefore be identified
with the trivial bundle over P with an equivariant SU(N) action, where
N = 2n.

Now, a spin structure on Z, corresponds to an extension, FS , of the
coframe bundle to a Spin bundle,

(16) Spin(2n) //

p

²²

FS

²²
SO(2n) // F .

Since Spin(2n) ⊂ SU(N), where SU(N) ⊂ Cl(2n), this in turn gives rise
to a lift of P to a principal SU(N) bundle:

(17) SU(N) // PSU(N)

²²

Spin(2n) //

p

²²

OO

FS

²²

;;

SO(2n) // F // P.

Thus the projective bundle naturally associated to the Clifford bundle
can reasonably be called the projective spin bundle since a spin structure
on the manifold gives a lift of Ẽ ⊗ M, where M is the Z2 bundle given
by the spin structure, to the usual spin bundle.

As in the standard case, the Levi-Civita connection induces a natural,
SU(N) equivariant, connection on the projective spin bundle over P.
We use this below to define the projective spin Dirac operator; a choice
of spin structure, when there is one, identifies it with the spin Dirac
operator.

Note that similar remarks apply to a spinC structure on the manifold
Z. The model group

(18) SpinC(2n)

= {cv1v2 · · · v2k ∈ Cl(2n); vi ∈ R2n, |vi| = 1, c ∈ C, |c| = 1}

= (Spin×U(1))/±,
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is a central extension of SO(2n),

(19) U(1) −→ SpinC(2n) −→ SO(2n)

where the quotient map is consistent with the covering of SO(2n) by
Spin(2n).

Thus a spinC structure is an extension of the coframe bundle to a
principal SpinC(2n)-bundle;

(20) U(1) //

²²

L

SpinC(2n) //

²²

FL

²²
SO(2n) // F .

where FL, the SpinC(2n) bundle, may be viewed as a circle bundle over
F . Since SpinC(2n) →֒ U(N) (but is not a subgroup of SU(N)) this
gives a diagram similar to (17) but lifting to a principal U(N) bundle

(21) U(N) // PU(N)

²²

SpinC(2n) //

p

²²

OO

FL

²²

<<

SO(2n) // F // P.

In this case the spinC bundle over Z is the lift of S⊗L from P to PU(N).
Note that the existence of a spin structure on Z is equivalent to

the condition w2 = 0. The Clifford bundle is then the homomorphism
bundle of the spinor bundle, so the existence of a spin structure implies
the vanishing of the Dixmier-Douady invariant of the Clifford bundle
(which is W3, the Bockstein of w2); the vanishing of W3 is precisely
equivalent to the existence of a spinC structure (without any necessity
for stabilization).

In the general case, even when W3 6= 0 and there is no spinC structure,
we shall show below that we can still introduce the notion of a ‘projective
spinC Dirac operator’ starting from the following notion.

Definition 3. On any even-dimensional, oriented manifold a projec-
tive spinC structure is a choice of representing bundle, in the sense of
Definition 1, for the complexified Clifford bundle.

Thus, by Proposition 3 such a representing bundle is always equiva-
lent to, and hence can be replaced by, S̃ ⊗ L̃ where L̃ is a line bundle
over the bundle of trivializations PCl of the Clifford bundle and S̃ is the
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projective spin bundle. As remarked above, this is consistent with the
standard case in which there is a spinC structure and Ṽ then descends
to a bundle on the base.

Remark 8. Any line bundle over PCl is necessarily a square root of
a line bundle from the base. This follows by restricting the line bundle
to the frame bundle, as a subbundle of PCl, and the U(N), N = 2n,
action to Spin(2n) showing that the centre acts through the subgroup
Z2 ⊂ ZN .

4. Smoothing operators

For two vector bundles E and F the space of smoothing operators
Ψ−∞(Z; E, F ) between sections of E and sections of F may be identified
with the corresponding space of kernels

(22) Ψ−∞(Z; E, F ) = C∞(Z2; Hom(E, F ) ⊗ π∗
RΩ)

where the section of the density bundle allows invariant integration.
Thus, such kernels define linear maps C∞(Z; E) −→ C∞(Z; F ) through

(23) Au(z) =

∫

Z
A(z, z′)u(z′).

Operator composition induces a product

Ψ−∞(Z; F, G) ◦ Ψ−∞(Z; E, F ) ⊂ Ψ−∞(Z; E, G),(24)

A ◦ B(z, z′′) =

∫

Z
A(z, z′)B(z′, z′′)

using the composition law (4). The right density factor in A is used in
(24) to carry out the integral invariantly.

Given the extensions in Proposition 1 and Proposition 4 of the homo-
morphism bundles it is possible to define the linear space of smoothing
operators with kernels supported in Nǫ for any pair E, F of projective
bundles (or twisted projective bundles) associated to a fixed Azumaya
bundle (and twisting) as

(25) Ψ−∞
ǫ (Z; E, F ) = C∞

c (Nǫ; HomA,L̃(E, F ) ⊗ π∗
RΩ)

where in case E and F are projective bundles, without twisting, L̃ is
trivial so is dropped from the notation. Note that the projective and
possibly twisted nature of E and F is implicit in the notation. Although
there is no action analogous to (23) the composition law (4) allows (24)
to be extended directly to define

(26) Ψ−∞
ǫ/2 (Z; F, G) ◦ Ψ−∞

ǫ/2 (Z; E, F ) ⊂ Ψ−∞
ǫ (Z; E, G)
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in the case of three projective bundles associated to the fixed A. For
sufficiently small supports this product is associative

(A ◦ B) ◦ C = A ◦ (B ◦ C)

if A ∈ Ψ−∞
ǫ/4 (Z; G, H), B ∈ Ψ−∞

ǫ/4 (Z; F, G), C ∈ Ψ−∞
ǫ/4 (Z; E, F ).

The trace functional extends naturally to these spaces

(27) Tr : Ψ−∞
ǫ (Z; E) =

∫

Z
tr A(z, z)

and vanishes on appropriate commutators

(28) Tr(AB − BA) = 0 if A ∈ Ψ−∞
ǫ/2 (Z; F, E), B ∈ Ψ−∞

ǫ/2 (Z; E, F )

as follows from Fubini’s theorem.

5. Pseudodifferential operators

Just as the existence of the bundle HomA,L̃(E, F ) over the neighbor-
hood Nǫ of the diagonal allows smoothing operators to be defined, it also
allows arbitrary pseudodifferential operators, with kernels supported in
Nǫ to be defined as the space of kernels

(29) Ψm
ǫ (Z; E, F ) = Im

c (Nǫ; Diag) ⊗C∞

c (Nǫ) C
∞
c (Nǫ; HomA,L̃(E, F )).

Here, E, F are either L̃-twisted projective bundles associated to
some Azumaya bundle A. These are just the conormal sections

of HomA,L̃(E, F ) ⊗ π∗
RΩ with support in Nǫ. Notice that for any small

δ < ǫ,

(30) Ψm
δ (Z; E, F ) + Ψ−∞

ǫ (Z; E, F ) = Ψm
ǫ (Z; E, F ).

The singularities of these kernels are unrestricted by the support con-
dition so there are the usual short exact sequences
(31)

Ψm−1
ǫ (Z; E, F ) −→ Ψm

ǫ (Z; E, F )
σm−→ C∞(S∗Z; hom(E, F ) ⊗ Nm)

Ψ−∞
ǫ (Z; E, F ) −→ Ψm

ǫ (Z; E, F )
σ

−→ ρ−mC∞(S∗Z; hom(E, F ))[[ρ]].

In the first case Nm is the bundle over S∗Z of the smooth functions
on T ∗Z \ 0 which are homogeneous of degree m; this sequence is com-
pletely natural and independent of choices. In the second sequence
ρ ∈ C∞(T ∗Z) is a defining function for the boundary and the image
space represents Taylor series at the boundary, with an overall factor
of ρ−m; this sequence depends on choices of a metric and connection to
give a quantization map.

The product for pseudodifferential operators extends by continuity
(using the larger spaces of symbols with bounds, rather than the clas-
sical symbols implicitly used above) from the product for smoothing
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operators and leads to an extension of (26)

Ψm
ǫ/2(Z; F, G) ◦ Ψm′

ǫ/2(Z; E, F ) ⊂ Ψm+m′

ǫ (Z; E, G),(32)

σm+m′(A ◦ B) = σm′(A)σm(B).

The induced product on the image space given by the second short exact
sequence in (31) is a star product as usual.

The approximability of general pseudodifferential operators by
smoothing operators, in the weaker topology of symbols with bounds,
also shows, as in the standard case, that (28) extends to

(33) Tr([A, B]) = 0 if A ∈ Ψm
ǫ/2(Z; F, E), B ∈ Ψ−∞

ǫ/2 (Z; E, F )

for any m.
Now, the standard symbolic constructions of the theory of pseudodif-

ferential operators carry over directly since these are all concerned with
the diagonal singularity and the symbol map.

Theorem 1. For any two projective bundles associated to the same

Azumaya bundle (or twisted projective bundles associated to the same

Azumaya bundle and the same line bundle over P), if A ∈ Ψm
ǫ/2(Z; E, F )

is elliptic, in the sense that σm(A) is invertible (pointwise), then there

exists B ∈ Ψ−m
ǫ/2 (Z; F, E) such that

(34)
B ◦A = Id−ER, A◦B = Id−EL, ER ∈ Ψ−∞

ǫ (Z; E), EL ∈ Ψ−∞
ǫ (Z; F )

and any two such choices B′, B satisfy B′ − B ∈ Ψ−∞
ǫ/2 (Z; E, F ).

Proof. Now absolutely standard. q.e.d.

If B′ and B are two such parametrices it follows that Bt = (1−t)B′+
tB, t ∈ [0, 1], is a smooth curve of parametrices. Furthermore

(35)
d

dt
[A, Bt] = [A, (B − B′)]

so, by (33), it follows that for any two parametrices

(36) Tr([A, B′]) = Tr([A, B])

since B′ − B is smoothing.

Definition 4. For an elliptic pseudodifferential operator A ∈
Ψm

ǫ/2(Z; E, F ) acting between projective bundles associated to a fixed

Azumaya bundle, or more generally between twisted projective bundles
corresponding to the same twisting line bundle over P, we define

(37) inda(A) = Tr(AB − IdF ) − Tr(BA − IdE)

for any parametrix as in Theorem 1.
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6. Homotopy invariance

Proposition 5. The index (37) is constant on a 1-parameter family

of elliptic operators.

Remark 9. Given the rationality proved in the next section this
follows easily. Here we use the homotopy invariance to prove the ratio-
nality!

Proof. For a smooth family At ∈ C∞([0, 1]; Ψm
ǫ/2(Z; E, F )) of ellip-

tic operators as discussed above, it follows as in the standard case that
there is a smooth family of parametrices, Bt ∈ C∞([0, 1]; Ψ−m

ǫ/2 (Z; E, F )).

Thus the index, defined by (37) is itself smooth, since [Bt, At] is a smooth
family of smoothing operators. To prove directly that this function is
constant we use the residue trace of Wodzicki, see [16], with an im-
provement to the definition due to Guillemin [5] and also the trace
defect formula from [13].

For a classical operator A of integral order, m, in the usual calcu-
lus the residue trace is defined by ‘ζ-regularization’ (following ideas of
Seeley) using the entire family of complex powers of a fixed positive (so
self-adjoint) elliptic operator of order 1 :

(38) TrR(A) = lim
z→0

z Tr(ADz)

where Tr(ADz) is known to be meromorphic with at most simple poles
at z = −k − dimZ + {0, 1, 2, . . . }. One of Guillemin’s innovations was
to show that the same functional results by replacing Dz by any entire
family D(z) of pseudodifferential operators of complex order z which is
elliptic and has D(0) = Id .

One way to construct such a family, which is useful below, is to choose
a generalized Laplacian on the bundle in question, which is to say a
second order self-adjoint differential operator, L, with symbol |ξ|2 Id,
the metric length function, and to construct its heat kernel, exp(−tL).
This is a well-defined (locally integrable) section of the homomorphism
bundle on [0,∞)t ×Z2 which is singular only at {t = 0}×Diag(Z) and
vanishes with all derivatives at t = 0 away from the diagonal. If L = D2

is strictly positive the heat kernel decays exponentially as t → ∞ and
the complex powers of L are given by the Mellin transform

(39) Lz = D2z =
1

Γ(z)

∫ ∞

0
t−z−1 exp(−tL)dt,

where the integral converges for Re z << 0 and extends meromorphi-
cally to the whole of the complex plane. The fact that D0 = Id arises
from the residue of the integral at z = 0, so directly from the fact that
exp(−tL) = Id at t = 0. It follows that if χ ∈ C∞

c ([0,∞) × Z2) and
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χ ≡ 1, in the sense of Taylor series, at {0} × Diag then

(40) D(2z) =
1

Γ(z)

∫ ∞

0
t−z−1H(t)dt, H(t) = χ exp(−tL)

is an entire family as required for Guillemin’s argument, that is D is
elliptic and D(0) = Id . Since the construction of the singularity of the
heat kernel for such a differential operator is completely symbolic (see
for instance Chapter 5 of [12]), quite analogous to the construction of
a parametrix for an elliptic operator, it can be carried out in precisely
the same manner in the projective case, so giving a family of the desired
type via (40).

Alternatively, for any projective vector bundle E, such a family can
be constructed using an explicit linear quantization map, with kernels
supported arbitrarily close to the diagonal

(41) DE(z) ∈ Ψz
ǫ/4(Z; E).

Thus we may define the residue trace and prove its basic properties
as in the standard case; in particular it vanishes on all operators of
sufficiently low order. It is also a trace functional

(42) TrR([A, B]) = 0, A ∈ Ψm
ǫ/4(Z; E, F ), B ∈ Ψm′

ǫ/4(Z; F, E).

The additional result from [13], see also [14], that we use here con-
cerns the regularized trace. This is defined to be

(43) TrDE
(A) = lim

z→0

(
Tr(ADE(z)) −

1

z
TrR(A)

)
.

For general A it does depend on the regularizing family, but for smooth-
ing operators it reduces to the trace. Therefore

(44) inda(A) = TrD([A, B]) = TrDF
(AB − IdF ) − TrDE

(BA − IdE)

for an elliptic operator A ∈ Ψm
ǫ/4(Z; E, F ) and B ∈ Ψm′

ǫ/4(Z; F, E) a

parametrix for A. It is not a trace function but rather the ‘trace defect’
satisfies

(45) TrD([A, B]) = TrR(BδDA)

where δD : Ψ•
ǫ (Z; E, F ) → Ψ•

ǫ (Z; E, F ) is defined as

δDA =
d

dz

∣∣∣
z=0

DF (z)ADE(−z)
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as in [11]. Then one computes,

inda(A) = lim
z→0

(Tr(ABDF (z)) − Tr(BADE(z)))(46)

− TrDF
(IdF ) + TrDE

(IdE)

= lim
z→0

(Tr(BDF (z)A) − Tr(BADE(z)))

− TrDF
(IdF ) + TrDE

(IdE)

= lim
z→0

(Tr(B(DF (z)ADE(−z) − A)DE(z)))

− TrDF
(IdF ) + TrDE

(IdE)

= TrR(a−1δDa) − TrDF
(IdF ) + TrDE

(IdE)

where a is the image of A in the full symbol space and we observe that
DE(z)DE(−z) = IdE +O(z2). Now δD also satisfies

(47) TrR(δDa) = 0 ∀ a,

and when E = F , it is a derivation acting on the full symbol algebra in
(31).

From these formulæ the homotopy invariance of the index in the
projective case follows. Namely

d

dt
inda(At) = TrR(a−1

t δDȧt) + TrR((
d

dt
a−1

t )δDat, )(48)

= −TrR(ȧtδDa−1
t ) − TrR(a−1

t ȧta
−1
t δDat) = 0.

Here, at is the image of At in the full symbol space in which the image
of Bt is a−1

t and (47) has been used. q.e.d.

Remark 10. A similar argument also proves the multiplicativity of
the index. Thus if Ai for i = 1, 2 are two elliptic projective operators
with the image bundle of the first being the same as the domain bundle
of the second, they can be composed if their supports are sufficiently
small. Let Bi be corresponding parametrices, again with very small
supports. Then B1B2 is a parametrix for A2A1 and the index of the
product is given by (45) in terms of the ‘full symbols’ ai of the Ai

inda(A2A1) = TrD([A2A1, B1B2]) = TrR(a−1
1 a−1

2 δD(a2a1))(49)

= TrR(a−1
1 δDa1) + TrR(a−1

2 δDa2)

= inda(A1) + inda(A2).

Remark 11. Another consequence of the homotopy invariance of the
index is, as noted after the definition, that it is necessarily real. We do
not use the reality in the proof of the index formula below, from which
it follows that the index is rational, so we only sketch the argument.

First observe that there is an elliptic operator of any order, on any
projective bundle, of index 0. Namely D(m), discussed above, has this
property, since it commutes with the regularizing family D(z) in the
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symbol algebra, so (when E = F ) the index vanishes from (46). Thus,
using the multiplicativity, we need only consider the case of operators
of order 0.

Next note that, using inner products on the projective bundles,
inda(P

∗) = − ind(P ) for any elliptic operator P. To see this, consider
the operator on the direct sum of the bundles

(50) P̃ =

(
0 P ∗

−P 0

)
.

If Q is a parametrix for P then
(

0 −Q
Q∗ 0

)
.

is a parametrix for (50). Inserting this into the definition of the index

it follows directly that the index of P̃ is inda(P ) + inda(P
∗).

Now, P̃ can be imbedded in the elliptic family

(51)

(
sin(θ) IdE cos(θ)P ∗

− cos(θ)P sin(θ) IdF

)
.

From the homotopy invariance it follows that the index is zero, thus
indeed inda(P ) = − inda(P

∗). However, simply taking the complex con-
jugate of (37) it then follows that

(52) inda(P ) = − inda(P
∗) = inda(P ) is real.

7. Projective Dirac operators

The space of differential operators ‘acting between’ two projective
bundles associated to the same Azumaya algebra is well defined, since
these are precisely the pseudodifferential operators with kernels with
supports contained in the diagonal; we denote by Diffk(Z; E, F ) the
space of these operators of order at most k.

Of particular interest is that, in this projective sense, there is a ‘spin
Dirac operator’ on every oriented even-dimensional compact manifold.
As discussed in Section 3 above, the projective bundle associated to the
spin representation is the projective spin bundle of Z, which we denote
by S; if Z is oriented it splits globally as the direct sum of two projective
bundles S±. There are natural connections on Cl(Z) and S± arising
from the Levi-Civita connection on T ∗Z. As discussed in Proposition 1,
the homomorphism bundle of S, which can be identified with Cl(Z),

has an extension to Ĉl(Z) in a neighborhood of the diagonal, and this
extended bundle also has an induced connection. The projective spin
Dirac operator may then be identified with the distribution

(53) ð = cl ·∇L(κId), κId = δ(z − z′) IdS .
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Here κId is the kernel of the identity operator in Diff∗(Z; S) and ∇L

is the connection restricted to the left variables with cl the contraction
given by the Clifford action of T ∗Z on the left. As in the usual case, ð

is elliptic and odd with respect to the Z2 grading of S and locally the
choice of a spin structure identifies this projective spin Dirac operator
with the usual spin Dirac operator.

More generally we can consider projective twists of this projective
spin Dirac operator. If E is any unitary projective vector bundle over
Z, associated to an Azumaya bundle A and equipped with a Hermitian
connection then S ⊗ E is a projective bundle associated to Cl(Z) ⊗ A
and it is a Clifford module in the sense that

Cl(Z) ⊂ hom(S ⊗ E).

The direct extension of (53), using the tensor product connection, gives
an element ðE ∈ Diff1(Z; S ⊗ E) which is again Z2 graded. In the
special case that S ⊗ E is a bundle a related construction is given by
M. Murray and M. Singer [15].

The relation between the index of twisted, projective spin Dirac op-
erators (or more generally, projective elliptic operators) and the distri-
bution index of transversally elliptic operators, will be discussed in a
subsequent paper.

Theorem 2. The positive part, ð+
E ∈ Diff1(Z; S+ ⊗ E, S− ⊗ E) of

the projective spin Dirac operator twisted by a unitary projective vector

bundle E, has index

(54) inda(ð
+
E) =

∫

Z
Â(Z) ∧ ChA(E)

where ChA : K0(Z;A) −→ Heven(Z; Q) is the Chern character in

twisted K-theory.

Proof. The proof via the local index formula, see [2] and also [12],
carries over to the present case. As discussed in section 6, the truncated
heat kernel H(t), formally representing exp(−tð2

E), near DiagZ ×{t =
0}, is well-defined as a smooth kernel on Z2 × (0,∞), with values in

HomCl ⊗ A (S ⊗ E) ⊗ ΩR, modulo an element of Ċ∞(Z2 × [0,∞);
HomCl⊗A(S ⊗ E) ⊗ ΩR); that is vanishing to all orders at t = 0. Then
we claim that the analogue of the McKean-Singer formula holds,

(55) inda(ð
+
E) = lim

t↓0
STr(H(t))

where STr is the supertrace, the difference of the traces on S+ ⊗E and
S− ⊗ E. The local index formula, as a result of rescaling, asserts the
existence of this limit and its evaluation (54).

In the standard case the McKean-Singer formula (55), for the actual
heat kernel, follows by comparison with the limit as t → ∞, which
explicitly gives the index. Indeed then the function STr(exp(−tð2

E)) is
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constant in t. In the present case the index is defined directly through
(1) so the argument must be modified. If H±(t) are the approximate
heat kernels of ð−

Eð+
E and ð−

Eð+
E respectively, then both approach the

identity as t ↓ 0. Thus for smoothing operators K± on the appropriate
bundles, H±(t)K± −→ K± as smoothing operators as t ↓ 0. Thus, from
the continuity of the trace on smoothing operators, the index can be
rewritten

inda(ð
+
E) = lim

t↓0
Tr

(
(ð+

EB − IdF )H−(t)
)
− lim

t↓0
Tr

(
(Bð+

E − IdE)H+(t)
)

where B is a parametrix for ð+
E .

For t > 0 these approximate heat kernels are smoothing, so the terms
can be separated showing that

inda(ð
+
E)(56)

= lim
t↓0

Tr
(
H+(t) − H−(t)

)
+ lim

t↓0
TrE

(
B(ð+H+(t) − H−(t)ð+

E)
)

= lim
t↓0

STr(H(t)).

Here we use the fact that the difference ð+H+(t)−H−(t)ð+
E is, again by

the (formal) uniqueness of solutions of the heat equation, a smoothing
operator which vanishes rapidly as t ↓ 0. This term therefore makes no
contribution to the index and we recover (55) and hence the local index
formula for projective Dirac operators. q.e.d.

Let P be the principal PU(N) bundle associated to A and P ′ be the
principal PU(N ′) bundle associated to Cl(Z), cf. Section 3. Twisting

by P and P ′-twisting line bundles L̃ and L̃′ respectively, does not affect
the local discussion, only the final formula. Thus if S̃L̃′ = S̃ ⊗ L̃′ is a

projective spinC bundle in the sense of Definition 3 and ẼL̃ = Ẽ ⊗ L̃ is
a projective vector bundle we may define the twisted projective spinC

Dirac operator on it by choice of an SU(N ′)-invariant connection on

the twisting bundle L̃′ and SU(N)-invariant connection on the twisting

bundle L̃, the Levi-Civita connection on S̃ and an SU(N)-invariant con-

nection on Ẽ. As usual we think of these bundles, SL′ , EL as twisted
projective bundles over the manifold, although they are in fact bundles
over P ′ and P respectively.

Theorem 3. The positive part, ð+
L′,EL

∈ Diff1(Z; S+
L′ ⊗EL, S−

L′ ⊗EL)

of the projective spinC Dirac operator corresponding to a general projec-

tive spinC structure and twisted by a unitary projective vector bundle E
has index

inda(ð
+
L′,EL

)(57)

=

∫

Z
Â(Z) ∧ exp

(
1

2
c1(L

′)

)
∧ ChA(E) ∧ exp

(
1

N
c1(L)

)
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where ChA : K0(Z;A) −→ Heven(Z; Q) is the Chern character in

twisted K-theory, c1(L) is the first Chern class of L, the N th power

of the line bundle L̃ over P and c1(L
′) is the first Chern class of L′, the

square of the line bundle L̃′ over P ′.

8. Index formula

Theorem 4. Given an Azumaya bundle, A, over an even dimen-

sional compact manifold Z, the analytic index defines a map

(58) inda : K0
c
(T ∗Z; π∗A) −→ Q

where inda(A) = inda(σ(A)) for elliptic elements of Ψǫ(Z; E, F ) for

projective vector bundles associated to A and

(59) inda(b) =

∫

T ∗Z
Td(T ∗Z) ∧ ChA(b), ∀ b ∈ Kc(T

∗Z; π∗(A)).

Proof. It has been shown above that inda(A), for elliptic elements
of Ψǫ(Z; E, F ) is additive, homotopy invariant and multiplicative on
composition. Thus it does descend to a map as in (58), just as in the
standard case, but with possibly real values. As such a real-valued
additive map on the twisted K-space Kc(T

∗Z; π∗(A)), inda must factor
through the Chern character, since it is an isomorphism over R (or Q).
Thus

(60) inda(b) = ĩnda(ChA)(b)), ĩnda : Heven
c (T ∗Z; Q) −→ R

being a well-defined map. However we may construct such elliptic pro-
jective pseudodifferential operators by twisting the signature operator
by a projective vector bundle associated to A. For these (54) gives the
index. From the Thom isomorphism in cohomology, we know that these

elements generate Heven
c (T ∗Z; Q) so suffice to compute the map ĩnda in

(60). Thus it suffices to show that the Riemann-Roch formula (54) is
consistent with (59), but this follows from the standard case of the index
formula and linearity. q.e.d.

In the non-oriented case we can pass to the oriented cover and deduce
the same formula. Similarly if we consider pseudodifferential operators
acting between L̃ twisted projective vector bundles corresponding to a
line bundle L̃ over the bundle of trivializations of an Azumaya bundle
A, and with Nth power L over the base, we arrive at the analogous
twisted formula generalizing (59) and (57)

(61) inda(Q) =

∫

T ∗Z
Td(T ∗Z) ∧ ChA(σ(Q)) ∧ exp

(
1

N
c1(L)

)
,

∀ Q ∈ Ψǫ(Z; E, F ) elliptic.
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In the odd-dimensional case we may use suspension to reduce to the
even-dimensional case and again arrive at (61). Namely take the ex-
terior tensor product with an untwisted operator of index one on the
circle. To do this it is necessary to generalize the discussion in Section 1
to 6 to such ‘product type’ operators, including the homotopy invari-
ance, enough to show that this exterior tensor product can be deformed,
through elliptic operators in the product sense, to a true (projective)
elliptic pseudodifferential operator. This is essentially a smooth ana-
logue of arguments already present in [1] and we forgo the details, since
geometrically the even dimensional case is the more interesting one.

9. Fractions and the index formula

On an oriented even-dimensional manifold, the vanishing of W3 is
equivalent to the existence of a spinC structure (cf. [8]); in particular
this follows if the manifold is almost complex. In the almost complex
case there is no spin structure unless the canonical bundle has a square
root. Nevertheless, there is always a projective spin Dirac operator and
Theorem 2 applied in this case case gives the usual formula

inda(ð
+) =

∫

Z
Â(Z).

We recall some well known examples of oriented but non-spin mani-

folds where
∫
Z Â(Z) is a fraction, justifying the title of the paper. The

simplest is Z = CP 2, in which case
∫
Z Â(Z) = −1

8 .
Also in the almost complex case with Hermitian metric, we have the

spinC Dirac operator

(62) ∂ + ∂
∗

: Λ0,evenZ −→ Λ0,oddZ.

Its index is
∫
Z Â(Z)e

1

2
c1 where c1 = c1(Z) is the Chern class of the

canonical line bundle. The integral is the formula for the top term in

the Todd polynomial written in terms of Â and c1.
An amusing corollary of Theorem 3 is that we can now interpret the

integral as the index of the projective Dirac operator coupled to a line
bundle which is a square root of the canonical bundle. Previously this
interpretation was only possible when Z was itself spin, when this square
root bundle exists as an ordinary line bundle on Z.

Another important class of examples is the following. Let V 2n(2d+1)
be hypersurfaces in CP2n+1. That is, in the homogeneous coordinates
[Z0, . . . , Z2n+1] for CP2n+1,

V 2n(2d + 1) =
{

[Z0, . . . , Z2n+1] ∈ CP 2n+1 : P (Z0, . . . , Z2n+1) = 0,

∇P (Z0, . . . , Z2n+1) 6= 0, (Z0, . . . , Z2n+1) 6= 0
}
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where P (Z0, . . . , Z2n+1) is a homogeneous polynomial of degree 2d + 1.
Then it is known that V 2n(2d + 1) is not a spin manifold, and that

∫

V 2n(2d+1)
Â(V 2n(2d + 1)) =

2−2n(2d + 1)

(2n + 1)!

n∏

k=1

((2d + 1)2 − (2k)2).

It is straightforward to see that for d ≥ n, the right hand side is equal
to a non-zero fraction that is not an integer.

Note that CP2 has positive scalar curvature and the Bochner-Lich-
nerowicz formula holds for the projective operator ð2, yet inda(ð) =∫
Z Â(Z) = −1

8 6= 0! The usual argument, by contradiction, to the

vanishing of the index, and hence Â genus, is not applicable since in the
twisted case there is no notion of global section of the projective spinor
bundle and therefore no way to construct harmonic spinors.

As we have observed before, Z has no spinC structure if W3(Z) 6= 0.
Nevertheless the projective Dirac operator exists and can have a nonzero
index. We thank M.J. Hopkins for examples of Z with both W3(Z) 6= 0,

and
∫
Z Â(Z) 6∈ Z. Here is one of his examples. Let S2 →֒ CP4 be

an embedding of degree 2. In homogeneous coordinates we can take
the embedding to be (x, y) 7→ (x2, y2, xy, 0, 0). To do surgery on the
embedded S2, we need to verify that its complex normal bundle N is
trivial as a six dimensional real vector bundle NR. It is not hard to show
that c1(N) ∈ H2(CP4, Z) ∼= Z is equal to −4. The obstruction to NR

being isomorphic to S2 × R6 is w2(NR). But w2(NR) = c1(N)mod 2 =
−4 mod 2 = 0.

We can now perform the surgery. A tubular neighborhood of the
embedded S2 is S2 ×Disc6 with boundary S2 × S5. Replace the tube by
Disc3×S5 gluing its boundary S2×S5 to the tube boundary. We obtain
a manifold Z that is oriented cobordant to CP4. Hence∫

Z
Â(Z) =

∫

CP4

Â(CP4) =
3

128
.

and Z is not a spin manifold, i.e. w2(Z) 6= 0. The surgery makes
H2(Z, Z) = 0. Hence W3(Z) 6= 0 from the usual long exact sequence,

. . . → H2(Z, Z) → H2(Z, Z) → H2(Z, Z2) → H3(Z, Z) → . . . ,

where the first arrow is multiplication by 2.
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