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ON THE COMPLEX STRUCTURE OF KAHLER
MANIFOLDS WITH NONNEGATIVE CURVATURE

ALBERT CHAU & LUEN-FAI TAM

Abstract

We study the asymptotic behavior of the Kéhler-Ricci flow on
Kahler manifolds of nonnegative holomorphic bisectional curva-
ture. Using these results we prove that a complete noncompact
Kahler manifold with nonnegative and bounded holomorphic bi-
sectional curvature and maximal volume growth is biholomorphic
to complex Euclidean space C". We also show that the volume
growth condition can be removed if we assume the Kahler man-
ifold has average quadratic scalar curvature decay and positive
curvature operator.

1. Introduction

The classical uniformization theorem says that a simply connected
Riemann surface is either the Riemann sphere, the open unit disk or
the complex plane. On the other hand, there is a close relation between
the complex structure and the geometry of a Riemann surface. An im-
portant case of this is that a complete noncompact Riemannian surface
with positive Gaussian curvature is necessarily conformally equivalent
to the complex plane. In higher dimensions, there is a long standing
conjecture predicting similar results. In its most general form, the con-
jecture is due to Yau [43], and it states: A complete noncompact Kdihler
manifold with positive holomorphic bisectional curvature is biholomor-
phic to C™. In fact, the conjecture is part of a program proposed by
Yau in 1974 to study complex manifolds of parabolic type, see [43].

The first result supporting this conjecture was due to Mok-Siu-Yau
[28]. There, the authors proved that if M™ is a complete noncom-
pact Kéhler manifold with nonnegative bisectional curvature, maximal
volume growth and faster than quadratic scalar curvature decay, then
M™ is isometrically biholomorphic to C". Later, Mok [26] proved that
if M™ has positive bisectional curvature, maximal volume growth and
quadratic scalar curvature decay, then M is an affine algebraic vari-
ety. As a consequence, if n = 2 and the sectional curvature is positive,
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then M™ is biholomorphic to C? by a result of Ramanujan [35]. In
this case, dimension 2, it is known that the condition on the sectional
curvature can be relaxed and the decay of the scalar curvature can also
be removed, see [11, 13, 30]. In higher dimensions and in general, the
conjecture is still very open, and until now, this has been so even if M"”
is assumed to have bounded curvature and maximal volume growth. In
this paper (Corollary 1.1) we show that the conjecture is true in all
dimensions provided M™ has bounded curvature and maximal volume
growth.

In his thesis [38], Shi used the following Ricci flow of Hamilton [20] to
better understand the uniformization conjecture in the case of (M™, g)
as in Mok’s paper [26]:

(11) %gw—(l',t) = —Rij(ib',t)

9iz(,0) = giz()-

On a Kéhler manifold, (1.1) is referred to as the Ké&hler-Ricci flow.
In [38, 37], Shi obtained several important results for this flow includ-
ing short time existence for general solutions, and long time existence
together with many useful estimates in the above case; see Theorem 2.1
for more details. Although the results in [38] did not actually prove
uniformization in this case! , their importance remains fundamental to
the study of Yau’s Conjecture; in particular, in the above mentioned
works [11], [13], [30] as well as the present paper.

In this paper, by studying the asymptotic behavior of the Kéhler-
Ricci flow (1.1) in more detail, we will prove the following uniformization
theorem:

Theorem 1.1. Let (M™,q) be a complete noncompact Kdihler man-
ifold with nonnegative and bounded holomorphic bisectional curvature.
Let R be the scalar curvature of M. Suppose

(i) Vol(B(p,r)) > C1r?"; Vr €[0,00) for somep € M,
(ii) #(T) fBz(r) R< % for all x € M and for all r > 0,

for some positive constants C1,Co. Then M is biholomorphic to C™.
Moreover, condition (i) can be removed if M has positive curvature op-
erator.

In [43], Yau conjectured that (i) actually implies (ii). This has re-
cently been confirmed by Chen-Tang-Zhu [11] for the case of dimension
2, Chen-Zhu [13] for higher dimensions under the additional assump-
tion of nonnegative curvature operator and recently by Ni [30] for all
dimensions. Hence we have:

!This was observed later on in [10]. Also see [7].
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Corollary 1.1. Let (M"™,q) be a complete noncompact Kdhler man-
ifold with nonnegative and bounded holomorphic bisectional curvature
and mazximal volume growth. Then M is biholomorphic to C".

Also, under only assumption (ii) in Theorem 1.1, and assuming the
curvature operator is nonnegative, one can prove that the universal cover
of M is biholomorphic to C".

In order to prove Theorem 1.1, we first obtain some results on the
long time behavior of the Kahler-Ricci flow (1.1) which may be of inde-
pendent interest. For these, it will be more convenient to consider the
normalized K&ahler-Ricci flow

0
(1.2) 59(0) = —Re(t) — (1)
where g(t) = e~ 'g(e!) (for g(t) as in (1.1)) and Rc(t) is the Ricci curva-
ture of g(¢). Under the assumptions of Theorem 1.1 we have:

Theorem 1.2. Let (M™,q) be as in Theorem 1.1 with either mazimal
volume growth or positive curvature operator, and let g(x,t) be as in
(1.2). Let p € M be any point. Then the eigenvalues of Rec(p,t) with
respect to g(p,t) will converge as t — co. Moreover, if pu1 > g > -+ >
W are the distinct limits of the eigenvalues, then V = TIELO)(M”) can
be decomposed orthogonally with respect to g(0) as Vi @ --- @V so that
the following are true:

(i) If v is a nonzero vector in V; for some 1 < i <, and let v(t) =

v/|v|g), then
Tim Re(u(), (1)) = p

and thus )
lim L1 Pl _ _ "
oot oy

Moreover, both convergences are uniform over all v € V; \ {0}.
(ii) For 1 <14,j <1 and for nonzero vectors v € V; and w € V; where
i # j, limy oo (v(t), w(t))r = 0 and the convergence is uniform
over all such nonzero vectors v, w.
(iii) dimc(V;) = ny — ni—1 for each i (see §4 for definition of n;).
(iv)
: . .1 det(g,;(t))
;( pi = 1) dime Vi = lim 7 log Goro o)

In terms of the Kéhler-Ricci flow, the theorem says that (M™, g(t))
asymptotically behaves like a gradient Kahler-Ricci soliton of expanding
type at p; see Proposition 3.2 for more details. We remark that the first
example of gradient expanding Kéhler-Ricci soliton was constructed by
Cao [6]. Also, conclusions (i) and (ii) basically say that Rc(p,t) can be
‘simultaneously diagonalized’ near ¢ = oo in some sense. From the point
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of view of dynamical systems, conclusions (i), (iii) and (iv) together
basically say that g(t) is Lyapunov regular; see [1].

A main theme in the proof of Theorem 1.1 is the connection between
the Kahler-Ricci flow and a certain class of dynamical systems. This
can be sketched as follows. By Theorem 2.1 in next section, we can
construct a biholomorphism from each element in a sequence of open
sets exhausting M onto a fixed ball in C*. By sequentially identify-
ing these open sets, the results in Theorem 1.2 can be interpreted in
terms of the dynamics of a randomly iterated sequence of biholomor-
phisms as in [23]. Using the results of Theorem 1.2 in this setting, and
using techniques developed by Rosay-Rudin [36] and Jonsson-Varolin
[23], we then proceed to assemble these biholomorphisms into a global
biholomorphism from M to C".

The paper is organized as follows. In §2 we review the main results
on the Kéhler-Ricci flow (2.1) which we use later. In §3 and §4 we study
the asymptotic behavior of the Kéhler-Ricci flow on M as t — oo. The
focus of §3 will primarily be on the global asymptotics of the K&hler-
Ricci flow on M while that of §4 will be purely local. We believe that
these asymptotics should be of independent interest to the study of the
Kahler-Ricci flow. Finally, in §5 we will prove Theorem 1.1 and its
corollaries.

The authors would like to thank Richard Hamilton and Shing-Tung
Yau for helpful discussions

2. The Kahler Ricci flow

In this section we will collect some known results on Kéhler-Ricci flow
which will be used in this work. Recall that on a complete noncompact
Kéhler manifold (M™, gi;(x)), the Kéhler-Ricci flow equation is:

(2.1) %gi](a:,t) = —Rij(z,1)
Gi7(x,0) = Giz(x).

Theorem 2.1. Let (M™,g) be a complete noncompact Kdhler man-
ifold with bounded nonnegative holomorphic bisectional curvature. Sup-
pose there is a constant C' > 0 such that its scalar curvature R satisfies

1 ~ C
RAV, < ——
Vx(T) /Bz(r) 9= 1+T‘2

for all x € M and for all r > 0. Then the Kdhler-Ricci flow (2.1) has a
long time solution g,z(x,t) on M x [0,00). Moreover, the following are
true:

(2.2)

(i) For any t > 0, g(x,t) is Kdhler with nonnegative holomorphic
bisectional curvature.
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(ii) For any integer m > 0, there is a constant Cy depending only on
m and the initial metric such that
- C
2 1
V™ B, < i
forallz € M and for allt > 0, where V is the covariant derivative
with respect to g(t) and the norm is also taken in g(t).

(iii) If in addition (M,g(0)) has either mazximum volume growth or
positive curvature operator, then there exists a constant Cy > 0
depending only on the initial metric such that the injectivity radius
of §(t) is bounded below by Cot'/? for all t > 1.

Proof. (i) and (ii) are mainly obtained by Shi [37, 38, 40] (also see
[33]). To prove (iii), suppose g(0) has positive curvature operator. Then
by [22] we know that positive curvature operator is preserved under
(2.1), and thus g¢(t) has positive sectional curvature at every time ¢.
From this and the estimates in (ii), we can conclude by the results in
[19] that (iii) is true in the case of positive curvature operator. (See
[14, p. 14] for a description of how to prove this.) In the case of
maximal volume growth, (iii) has been observed in [10]. In fact, if
Volo(By(r)) > Cr*" for some C > 0 for the initial metric, then we also
have Voly(B,(r)) > Cr?" for the metric g(t) for all ¢ > 0 with the same
constant C, see [10] for example. Combining this with the curvature
estimates (ii) and the injectivity radius estimates in [9], (iii) follows in
this case. q.e.d.

We now consider the following normalization of (2.1):

0
(2.3) agij(%t) = —Ri3(z,t) — giz(x, ).
It is easy to verify that if g(x,t) solves (2.1), then

(24) g($, t) = e_tf](x, et)
is a solution to (2.3). Thus for §(z,t) as in Theorem 2.1, g(x,t) in (2.4)
is defined for —oo < t < co. Note that lim;._ g(z,t) = g(z) which is
the initial data of (2.1). The results in Theorem 2.1 can be translated
to the following results for a solution to (2.3):

Corollary 2.1. Let g(x,t) be as in Theorem 2.1 and let g(z,t) be
given by (2.4). Then the following are true:
(i) For any —oo < t < oo, g(z,t) is Kdihler with nonnegative holo-
morphic bisectional curvature.
(ii) For any integer m > 0, there is a constant Cy depending only on
m and the initial metric such that

IV™ Rml|*(z,t) < Cy,

for allxz € M and for allt > 0, where V is the covariant derivative
with respect to g(t) and the norm is also taken in g(t).
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(iii) If in addition (M,q(0)) has either mazimum volume growth or
positive curvature operator, then there exists a constant Cy > 0
depending only on the initial metric such that the injectivity radius
of g(t) is bounded below by Cy for all t > 0.

We shall need the following.

Proposition 2.1. Let (M",g) be a complete Kihler manifold with
nonnegative holomorphic bisectional curvature such that |Rm|+ |V Rm)|
< C1 and the injectivity of M is larger than rq. Then there exist positive
constants r1,ro and Co depending only on Ci, ro and n such that for
each p € M, there is a holomorphic map ® from the Fuclidean ball
B\o(rl) at the origin of C™ to M satisfying the following:

(i) ® is a biholomorphism from By(r1) onto its image;

(i) ®(0) = p;
(it}) ©*(9)(0) = g.; A
(iV) %96 < (I)*(g) < T29¢ in B(Oarl)'

where g s the standard metric on C".

Proof. This is in fact a special case of Proposition 1.2 in [42], see also
[40, 10]. For the sake of completeness, we sketch the proof as follows.

By the assumption on the injectivity radius, let x1, ..., 2, be normal
coordinates on By () so that if z; = x;++v/—12,4; are standard complex

coordinates of C", then 8%1- form a basis for 7, él’o)(M ) at p. Hence there

is a diffeomorphism F' from B, (rp) onto Bo(ro) such that F(p) = 0 and

dF o J = JodF at 0 where J is the standard complex structure on C"
and J is the complex structure of M. By [21], the components of the
metric g with respect to coordinates x; satisfies

1
|5ij - gij’ < CQ|-'E’2, 5(5@']' < Gij < 26ij7

82

———gii| < C:
(%kazlg” =2

and

0
- Y9ij

<
59| () < Cala

in By(r1) for some positive constants 1, Co depending only on C1, 79
and n. Here |z|> = 3. (x;)?. In the following C;’s and r;’s always denote
positive constants depending only on C}, rg and n. Hence if r; small
enough, /—19001og p? > —Csw and the eigenvalues of the Hessian of
p? are bounded below by C4. Here p is the distance from p and w is
the Kihler form. One can prove that |J — J| < Csp?, where we also
denote the pull back of J under F with .J, see [10]. The i-th component
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zi = xj++/—1ay; of the map F when considered as a map from By (7o)
to C™ satisfies

(25) ‘EZA < 06/)2-
As in [29], by Corollary 5.3 in [15], using the weight function ¢ =

(n+2)log p? + Cqp? for some Cy so that v/—199p > Cgw, one can solve
OJu; = 0z; in By(r1) with

(2.6) / lu;|2e™% < i/ 10227 < Cy
By(r1) Cs JB,(m)

for some Cy. Here we have used the fact that Ric > 0 and (2.5). From
this, it is easy to see that u;(p) = 0 and du,(p) = 0. Moreover, from the
fact that z; — u; is holomorphic one can prove that on By(r1/2),

]uz\ + ]Vuz\ + ‘VQUi’ < Cqg

by (2.6), mean value inequality in [25], gradient estimates and Schauder
estimates. Hence we have |Vu;| < Ci1p and |u;| < C11p?. So the map
® given by @' = (21 — u1,..., 2, — u,) will satisfy the conditions in
the proposition if 1 is small enough and ry is large enough. q.e.d.

Using this and Corollary 2.1, we have the following (also see [42, 40]).

Corollary 2.2. Let (M™,g(0)) and g(z,t) be as in Corollary 2.1 such
that (M, g(0)) has either maximum volume growth or positive curvature
operator. Let p € M be a fized point. Then there are constants r1 and
ro depending only on the initiai metric such that for every t > 0 there
exists a holomorphic map ®, : Bo(r1) C C" — M satisfying:

(i) ®; is a biholomorphism from By(ry) onto its image;

(i) ®4+(0) = p;
(iii) @7 (9(t))(0) = ge; R
(iv) 759¢ < 7 (g(t)) < rage in Bo(ri);
where g. is the standard metric on C", and Eo(m) 1s the Buclidean ball
of radius r1 with center at the origin in C*. Moreover, the following are
true:
(v) For any ty, — oo and for any 0<r<ri, the family {q)tk(go(r))}kzl
ezhausts M and hence M is simply connected.
(vi) If T is large enough, then Fiiq = @&IH)T o ®;7 maps By(r1) into
By(r1) for each i, and there is 0 < § < 1,0 < a <b<1 such that
|Fip1(2)] < 6lz]
for all z € By(r1), and
alv| < |Fiy1(0)(v)] < bJo]

for all v for all i.
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Proof. (i)—(iv) follows immediately from Proposition 2.1 and Corol-
lary 2.1. To prove (v), observe that B}(r/r) C ®,(Bo(r)) by (i) and
(iv), where B!(R) is the geodesic ball of radius R with respect to g(t)
with center at p. On the other hand, by (2.3), ]vlz(t) < e*t]v\é(o) and so
BY(R) C Bt(e"*/2R). From this it is easy to see that (v) is true.

To prove (vi), let v be a (1,0) vector on M and denote |v|; to be the
length of v with respect to ¢g(¢). By (2.3) and Corollary 2.1

d
(2.7) —[ol} = Zlol?
= —Rcz(v,v) — g(v,v)
~C1§(v,v) — (v, v)
> —(Cy + 1)Jvf?

for some constant C7; > 0 which is independent of v and ¢. Hence for
any T'> 0 and ¢ > 1,

v

2
vlir
Since

®;7(Bo(r)) C B;T(rgrl) C B:l(,i"'l)T(e_T/Qrer),

and (I)(i+1)T(§0(T1)) D BZ(JHl)T(rl/rg), it follows that Fj; is defined on
Bo(r1) and Fyy1(Bo(r1)) C Bo(r1) if T is large enough. From (iv) and
(2.8), it is easy to see that there is 0 < § < 1, such that

[Fira(2)| < 9]2|

for all z € Eo(rl) for all ¢ if T" is large. From (ii), (iii) and (2.8), we can
also find 0 < @ < b < 1 such that

alv| < |Fiy1(0)(v)] < bJo]

for all v and for all . This completes the proof of the corollary. q.e.d.

In §5, we will use the maps ®; to construct a biholomorphism from
M to C™.

3. Asymptotic behavior of Kihler Ricci flow (I)

Let (M™, gi3(z)) be as in Theorem 2.1 satisfying (2.2). Let g(z,t) and
g(z,t) be the corresponding solutions to (2.1) and (2.3) respectively.
Then for any point p € M, we will show that the eigenvalues of Re(p,t)
relative to g(p,t) actually converge to a fixed set of numbers as t — co.
Here Re(p,t) is the Ricci tensor of g(t) at p. If in addition (M, g) has
maximal volume growth with positive Ricci curvature or has positive
curvature operator, then we will show that for any p € M, (M, g(x,t),p)
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approaches an expanding gradient Kéahler-Ricci soliton as ¢ — oo in the
sense of limiting solutions to the Kéhler-Ricci flow ([21]).

Proposition 3.1. Let (M", gi3(x)), g(x,t), g(x,t) be as in Theorem
2.1 satisfying (2.2). Let p € M be a fixed point in M and let \i(t) >
<+ > A (t) > 0 be the eigenvalues of Riz(p,t) relative to giz(p,t).

(i) For any T > 0,

det(Riz(p,t) + 76;5)
det(giz(p, 1))

18 nondecreasing in t.

(i) Assume in addition that gi;(x) has positive Ricci curvature. Then
there is a constant C > 0 such that A\, (t) > C for all t.

(iii) For 1 <i <mn the limit lim;_o \;(t) exists.

(iv) Let py > -+ >y > 0 be the distinct limits in (iii) and let p > 0
be such that [ux — p,pi + p), 1 < k < 1 are disjoint. For any
t, let Ex(t) be the sum of the eigenspaces corresponding to the
eigenvalues \i(t) such that \i(t) € (pg — p, pi + p). Let Pi(t) be
the orthogonal projection (with respect to g(t)) onto Ex(t). Then
there exists T > 0 such that if t > T and if w € Tlgl’o)(M),
| P (t)(w)|¢ is continuous in t, where | - |, is the length measured
with respect to the metric g(p,t).

Proof.
(i): By the Li-Yau-Hamilton (LYH) inequality in [3] and in [4, The-
orem 2.1], if
OR;z

(3.1) Ziy =5 + 9" RiRy; + Ry
then
(3.2) Zw'w! >0
for any w € TWO(M). For any 7 > 0, denote
b(t) = det(dRZ-] +‘77'gi]—)
et(gi)

at (p,t). Denote p;; = R;;+7g;7 as in [3] and note that (p;;) is invertible
and denote its inverse by (p”). We have
(3.3)

9 9 9
9 — 7L — g1
g; 1089 = P75,y = 97 5.9

i (9 i7
=p" (aRiJ —7(Riz + 9i])) + 97 (Riz + 9i7)

Y

pij (—gklRiz’Rkj — Rij7 — T(Rij + gij)) + 9’7 (Rij + gij)

=97 (~g" Rl — (7 + i) + 77935+ 97 (Rig + 9.7
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where we have used (3.1) and (3.2). Now at the point (p,t), we choose a

unitary basis such that g;; = d;; and R;; = A\id;5. Then pi; = (X + 7)d;5
and p”7 = ()\; + 7)16;;. Hence we have

(3.4) _102;(15_ Z)\ T—i—ln—i-z/\

- -2 72
= L —_ )\’L
;(Ai+7 T+)\i+7'+ )

=0.

From this (i) follows.

N . det(R;5(p,
(ii): By (i), we conclude that %

has been proved in [3]). Moreover,

- det(Rig(pt) _ det(Ris(p))
t——oo det(gi7(p,t)) det(gi;(p))

where the right side is in terms of the initial metric g for (2.1). Since
det(R;5(p,t)

5 Wjj(pvt)) > Cl for some

positive constant C for all . On the other hand, by Corollary 2.1 there

is a constant Co independent of ¢ such that A\ (¢) < Cs. From these two

facts, part (ii) of the proposition follows.

is nondecreasing (this fact

the Ricci curvature is assumed to be positive

(iii): Choose a unitary basis vy, ...,v, for T}SLO)(M) with respect
to the metric g(p,0). Using the Gram-Schmidt process, we can obtain
a unitary basis v1(f),...,v,(t) for g(p,t). Since g(t) is smooth in ¢,
we conclude that the v;(t)’s are smooth in ¢. That is to say, v;(t) is a
linear combination of a fixed basis of TIEI’O) (M) with smooth coefficients.
Denote by Ri;(t) = Rc(vi(t),v;(t)) the components of Rec(p,t) with
respect to this basis. Then R;;(t) is also smooth in ¢. By (i) and
Corollary 2.1, for any 7 > 0,

(3.5) tlggo det(Riz(t) + 7d;5) = (1)
exists.

Now \;(t) are uniformly bounded functions in ¢. To prove (iii), it is
sufficient to prove that if ¢, — oo, t}, — 0o and

lim A\ (ty) = 73, lim N\(t;) = 7/
k—o00 k—o0

for all 4, then 7; = 7.
By (3.5), we have
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for all 7 > 0. Since 77 > -+- > 7, and 74 > --+ > 7,, we must have
7; = 7/. This completes the proof of (iii).

(iv): By (iii), if T is large enough, for each i we have \;(t) € (ux —
p, i + p) for some k for all t > T. Hence dim Ej(t) is constant in ¢
for t > T. Let Py (t) be the orthogonal projection (with respect to g(t))
onto Fj(t). We also denote the matrix of this projection, with respect
to the basis v1(t),...,v,(t) in (iii), by Pg(¢). Then

1
Pk(t) = —271_7\/__1 /0(sz — zéij)*ldz.
where C' is a circle on the complex plane with center at uz and radius
p, see [24, p. 40] for example. It is easy to see that the matrix valued
function Py (t) is continuous in ¢. Hence (iv) is true. q.e.d.

Remark 1. The facts that the scalar curvature R(t) and det(R;;(t))/
det(g;5(t)) are nondecreasing have been proved in [3]

Next, we will study the global asymptotic behavior of the manifolds
(M™, g(t)) as t — oo. We will need the following lemma from [16]:

Lemma 3.1. Let (M", g;7) be a complete noncompact Kdhler mani-
fold with bounded curvature. Suppose there is a smooth function f such
that \/=100f = Rc. Let g;3(t) and Gi;(t) be two solutions of (2.1) on
M x [0,T], T > 0 with the same initial data g;; such that

(3.6) ¢ giz(x) < gig(x, 1), Giglw, 1) < cgigl)
for some constant ¢ > 0 for all (x,t) € M x [0,T]. Then gi(z,t) =
Giz(z,t) on M x [0,T1.

In [4] it was proved by Cao that for any t; — oo, if |R(pg,tr)| is
the maximum of the scalar curvature on M at ¢, then the blow down
limit of g(t) along (pg, tx) is an expanding gradient Kahler-Ricci soliton.
Recently, it is shown by Ni in [31] that the result is still true for an
arbitrary sequence pp € M, tp — oo. In the special case that the
sequence pr = p is fixed at an arbitrary p € M, the result follows from
a rather simple observation and the argument in [4], which we present
below.

Proposition 3.2. Assume the conditions and notation of Proposition
3.1. In addition, assume the initial metric g(x,0) = gi;(x) of (2.1)
has either maximal volume growth with positive Ricci curvature or has
positive curvature operator. Let p € M be a fized point. The given
any tr — 0o, we can find a subsequence also denoted by ti, a complete
noncompact complex manifold N™, and a family of Kahler metrics h(t)
on N satisfying (2.3) for all t € R such that (M™, gi(t)), where gi(t) =
g(ty +t) for all t € R, converges to (N,h(t)) in the following sense:
There exists a family of diffeomorphisms Fy : U, C N — M with the
following properties.
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(i) Each Uy contains o where o € N is a fized point and Fi(o) = p.
(ii) Uy is open and the Uy’s exhaust N.
(iil) (U, Fi(gx(t))) converges in C*° norm uniformly on compact sets
to h(t) in N x R.

Moreover (N, h(t)) is a gradient Kdhler-Ricci soliton. More precisely,
there is a family of biholomorphisms ¢y of N determined by the gradient
of some real valued function such that o is a fized point of each ¢, and

@7 (h(0)) = h(t) for allt > 0.

Proof. The existence of t;, N, h(t) and Fy satisfying (i)—(iii) is a
consequence of Theorem 2.1 and the compactness theorem of Hamilton
[21].

We now prove the last assertion in the Proposition. Begin by noting
that lim; .o, R(t) exists by Proposition 3.1, where R(t) is the scalar
curvature of g(t) at p. Let R"(t) be the scalar curvature of h(t) at o.
Then for any ¢, ¢/

(3.7) RM't) = Jim R(ty + ) = lim Rty + t')y = RMt).

Now consider the metric h(t) = th(logt) for t > 1. Then h is a solution
0 (2.1) on N x[1,00). Also, since g(t) has uniformly bounded curvature
in spacetime by Corollary 2.1, h(t) also has uniformly bounded curvature
in spacetime. By Proposition 3.1 (ii), the Ricci curvature of h(t) at p
is positive. Moreover, by Theorem 2.1, the facts that M is simply
connected and that the metrics g(t) are decreasing in ¢, we can conclude
that N is simply connected. By [5], it is easy to see that h(t) and
hence h(t) have positive Ricci curvature. Now (3.7) implies that tR( ) is

constant where R(t) is the scalar curvature of i (t) at p. Hence 2 5 (tR) =
0 for all ¢, and by the proof of Theorem 4.2 in [4], there is a real valued

function f such that fi;(x) = ﬁij—(x, 1) +7Lij(x, 1) on N with f;; =0 and
Vf()=0

Let ¢y(z) be the integral curve of —2Vf on N with initial point
x. We claim that ¢.(z) is defined for all z and ¢t. Let hAB and RAB

be the Riemannian metric 2Re(hu) and Ricci curvature of hqp. Then
faB = Rap + hap. Observe that as in ([22, §20]), we have

(3.8) IVf2+ R =2f +2C,

where R is the scalar curvature of ﬁ(l) and C] is a constant.
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Now, as long as ¢;(z) is defined in on [—T,0] for T > 0, then for
0<t<LT

39 Joala) = S@) = [ L)

= [ {6 oo ) i
=5 [ 19rG-n s

< /0 F(6o(2))ds + Cit

by (3.8). Hence we have f(¢_i(x)) < Cy for some constant depending
only on 7', C7 and f(z). One can also prove that f(¢:(x)) < f(x) for
t > 0 as long as ¢(z) is defined up to t. Since f is an exhaustion
function by ([7], Lemma 3.1), we conclude that f(¢:(x)) remains in a
fixed compact set on any bounded interval of R as long as ¢, is defined
on that interval. From this it is easy to see that ¢;(z) is defined for all
t. Since V f is a holomorphic vector field, ¢; is in fact a biholomorphism
on N for alltz. _

Let hi(t) = ¢7(h(1)) = ¢;(h(0)) and let hi(t) = thi(logt) for t > 1.
We will show that hq(t) = h(t) for t > 1. Since h(t) has nonnegative
holomorphic bisectional curvature such that its scalar curvature is uni-
formly bounded in spacetime, h(t) also has nonnegative holomorphic
bisectional curvature with tﬁ(t) being uniformly bounded in spacetime
where R(t) is the scalar curvature of h(t). By [33, Theorem 2.1] and
[32, Theorem 5.1], we can find a potential function for the Ricci ten-
sor of h(1). Since the curvature of & and h; are uniformly bounded on
M x [0,T] for fixed T > 0, it is easy to see that they satisfy (3.6). By
Lemma 3.1, we conclude that hy(t) = h(t) for t > 1. Hence hy(t) = h(t)
for all ¢ > 0. This completes the proof of the proposition. q.e.d.

Let t;, — oo such that (M, gi(t)) converges to (N, h(t)) as in Proposi-
tion 3.2. We will describe this convergence in terms of the convergence
of certain specific quantities. For simplicity, we identify (M, gx(t)) near
p with (U, Fj(gx(t)) for some open set U C N containing o. Let Jj be
the complex structure on U given by the pullback of the complex struc-
ture of M under Fj and let J be the complex structure of N. By taking
a subsequence we may also assume that Jp — J. Let wy € ngl’o) (M)
with |wglg,0) = 1 and let wi(t) = wi/|wklg, ) for t > 0. Denote
wy = ) — v —1J(zx) where zj is in the real tangent space of M at
p which is identified with the real tangent space of N at o. Assume
that z;, — x. Then Ji(zx) — J(z). Let u = v — v/—1J(z) and let
u(t) = u/|u|pqy for t > 0. Note that |u[pq) = 1.
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Assume the conditions and notation of Proposition 3.2 and Proposi-
tion 3.1. Then we can see that by the propositions, the eigenvalues of
the Ricci curvature of h(t) with respect to h(t) at o are g > -+ > p; >0
such that the multiplicity of y; is dim E;(t) for ¢ large enough.

Let E!(t) be the eigenspace of the Ricci tensor of h(t) corresponding
to the eigenvalue ;.

We want to prove the following:

Lemma 3.2. With the assumptions as in Proposition 3.2 and with
the above notations. Suppose wy(t) = Zi‘:l wy,i(t) where wy ;(t) is the
orthogonal projection of wi(t) onto E;(t + tr) with respect to gi(t) =
g(ty +t) and suppose u(t) = Zé:l u;(t) where u;(t) is the orthogonal
projection of u(t) onto E!(t) with respect to h(t). Then for any T > 0,
the following are true:

(i) wi(t) converges uniformly to u(t) on t € [0,T] in the sense that
the real parts and the imaginary parts of wi(t) converge uniformly
to the real part and imaginary part of u(t) respectively.

(ii) ReckF(wy(t),wr(t)) converges uniformly to Rel(u(t),u(t)) on t €
[0, T] where Rck is the Ricci tensor of gi(t) at p and Rc} is the
Ricci tensor of h(t) at o.

(iii) By passing to a subsequence if necessary, for 1 < i <1, |wyi(t)|g, )
converge uniformly to |u;(t)|nq) ont € [0,T7.

Proof.

(i): Since gi(t) converges uniformly to h(t) on [0,T] at o and since
wy, — U, [Wilg, (1) converge to |uly uniformly on [0, 7. From this it is
easy to see that (i) is true.

(ii): Since gg(t) converges uniformly on U x [0, 7] in C* norm, by (i)
it is easy to see that (ii) is true.

(iii): Let U](CI), cey v](cn) be a unitary basis for ngl’o)(M) with respect
to gx(0). Passing to a subsequence if necessary, we may assume that
they converge to a unitary basis v, ... u(™ of To(l’o)(N) with respect
to h(0). Using the Gram-Schmidt process, we claim that we can obtain
v,(cl)(t), e ,v,in) (t) to be a unitary basis for T,SI’O)(M) with respect to
gx(t) and a unitary basis u(M (¢), ..., u™(t) of To(l’o)(N) with respect to
h(t) such that v,(:) (t) converges to u(?(t) uniformly on [0,7]. Observe
that since gx(t) converge to h(t) uniformly on [0,7] and v,il) — D),
\v,(cl)]gk(t) — \u(l)\h(t) uniformly on [0,7]. Thus if we define v,gl)(t) =
,U](gl)/|vl(€1)|gk(t) and u(M (t) =u® /|u) |n(t), then v,(:)(t) converge to u(! (t)
uniformly on [0,7]. Now suppose we have found v,(:) t),1<i<m
and v (t), 1 < i < m such that (a) v,(;)(t), 1 < i < m are unitary

with respect to gi(t) and are linear combinations of U](;), 1 << m
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(b) u(t), 1 <4 < m are unitary with respect to h(t) and are linear
combinations of u, 1 < i < m; and (c) v,(;)(t) converge to u()(t)
uniformly on [0, 7] for 1 < i < m. Define

m m m+1 7 7
v(m+1)(t) _ Ul(c - Zi:l(vl(c i )7”12)@)) (t)vl(g)( t)
k - m m m+1 7 (2
o = S " o2 (), 00k Ol
and define

wm ) — 5 (D @ (), u D (2)

u(mH) — 57 (w0 ul@ (£)) gy ul® (£) [
Then it is easy (a), (b) and (c) are still true with m replaced by m + 1.

(m+1) (t)

Hence by induction, we can construct v,(f) (t) and u(t) as claimed.

Let RE(t) = Ref (v} (1), 07 (t)) and let RE(t) = Re(u® (1), a)(1)).
Then as in (ii), we can prove that R%(t) converge to R%(t) uniformly on
[0, 7). Denote by PF(t) the matrix with respect to the basis v,gl)(t), cee
’U](Cn) (t) of the orthogonal projection onto E;(t+tx) with respect to gx(t).
Denote by P;(t) the matrix with respect to the basis u(M(¢),...,u(™(t)
of the orthogonal projection onto E(t) with respect to h(t). As in the
proof of Proposition 3.1(iv),

(3.10) PE(t) = —ﬁ /C (RE(t) — 26;) "\ dz

and

(3.11) Py(t) = _%\1& /C(R{.;(t) — 26,) "\

where C' is a circle on the complex plane with center at us and radius
p. Since R%(t) converge to th]-(t) uniformly on [0, 77, (iii) follows from
(3.10), (3.11) and (i). q.e.d.

4. Asymptotic behavior of Kihler Ricci flow (IT)

Let (M™,g) be as in Theorem 2.1 with either maximal volume growth
or positive curvature operator and let g(x,t) be the corresponding so-
lution to (2.3). As before, we denote the eigenvalues of Rc(p,t) by
Ai(t) for @ = 1,...,n and we let pp, Ex(t) and Py(t) for k = 1,...,1
be as in Proposition 3.1. We let n,, for m = 0,...,1 — 1 be such that
Me(t) € (ma1 — py pem+1 + p) for all n,, < k < nypeq and ¢ sufficiently
large such that the intervals [p,m, — p, m + p] are disjoint as in Proposi-
tion 3.1 part (iv). For any nonzero vector v € TZ}’O(M), let v(t) = v/|vl;
where |v|¢ is the length of v with respect to g(t) and v;(t) = P;(t)v(t).

The goal of this section will be to prove that Re(p,t) can be ‘diag-
onalized’ simultaneously near infinity in a certain sense and that g(t)
is ‘Lyapunov regular’, to borrow a notion from dynamical systems (see
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[1]). In the following lemmas we assume that the initial metric g(0) in
(2.1), and thus by Proposition 3.1 g(z,t) for all (z,t), has positive Ricci
curvature.

Let (N,h(t)) be a gradient K&hler-Ricci soliton as in Proposition
3.2 and let 0 € N, ¢ and E(t) also be as in the Proposition. For
any nonzero vector w € Ty '(N) let w(t) = w/|wlpey and w;(t) be
the projection of w(t) onto EM(t). We begin by making the following
observation.

Let ¢, be the flow along —1Vf where f;;(z) = R%(af,O) + hiz(x,0)
and f;; = 0. Near o, we may choose local coordinates z; such that
0; = 8%1- are unitary at o which diagonalize f;; at 0. We also assume
that the origin corresponds to o. Then pu; > ps > --- > p; > 0 are
distinct eigenvalues of Ric at t = 0 with respect to h(0). Since 9; are
eigenvectors of f;;, for each i we have

(4.1) (61)(01) = e~ 2011,

)
for some j at 0. Because of (4.1) and the fact that 0; are also eigenvectors
of Riat oand t =0, EZh(O) = Elh(t) and w;(t) = w;(0)/|w]p)-

Lemma 4.1. Let (N,h(t)) be a gradient Kdhler-Ricci soliton and
w € To(l’o)(N) with |w|y) = 1 as above. Let 1 < m < I, and suppose
a< Eé‘:m+1 \wj(O)]%L(O) <1—a for some 0 <a<1. Then fort>0,

l l
D j=mt1 |wj(t)‘i(t) S D jmmt ]wj(0)|i(0)
ZTzl |wj (t)|i(t) B ZTzl |wj(0)|}2l(0)

In particular,

. e(ﬂ'm —Hm+1 )t

l l

STy = S Twi0) g,

fort > 0. Moreover, for any > 0, there is a tg depending only on the
a, fhm, Uma1 and & such that for all t > tg,

Y lwi®fhg =1-0

Proof. For simplicity, let us denote | - |, simply by | - [;.

[(60)=(5(0)) I3
(60 ()
_ Dy (0))3

jwl?

(4.2) w;(®)I =
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Hence for ¢t > 0
(4.3)

S 0 = Sra e O < T O
t = <
2l uf ol
because 11 > --- > py. Similarly,
! S (=1 =Dy (0)|2
= 1 0
(4.4) Y lwi)lf = = Ca—
j=m+1 [wli
— — l
eHm =S et [wi ()]
- wl?
The lemma then follows from (4.3) and (4.4). q.e.d.

Because of Proposition 3.2 and Lemma 3.2, we expect to have similar
behavior for g(¢) for ¢ large. More precisely, we have the following:

Lemma 4.2. Let vy, € Tlgl’o)(M) be a sequence such that |vg|o = 1 for
each k. Lett) — oo be a sequence in time. Define fi,(t) := |P;(t)vr(t)]3.

(i) Suppose there exists a > 0 and 1 < m < for which
(4.5) > finlts) = a

>m
for all k. Then for any sequence sy > t;, we have
o ' S
(4.6) hkriggf Z fik(sk) > a.
i>m

(ii) Suppose there exists 1 > a >0 and 1 < m < for which

(4.7) a< ) fulty) <1-a.
>m
for all k. Then for any 1 > § > 0 there exists T' > 0 such that
4. lim inf et +T)>1—6.
(4.8) im in ;nfk(k‘f‘ ) >

Proof. Suppose (i) is false. Then m > 1 and there exists a subse-
quence of t; which we will also denote by t;, a sequence s > t, and
some € > 0 for which

(4.9) > fin(sk) <a—e

i>m
for all k. Thus by the continuity of f;x(¢) in ¢ for each i (see Proposition
3.1(iv)), there is a sequence t;, < T} < s such that

(4.10) N fu(Te) = a— g

i>m
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and

(4.11) S falt) <a—

>m

¢
2

for all t € [Tk, Sk].

Now define gi(t) = g(1x +t). Then we may assume that (M, gi (%))
converges to a soliton (N, h(t)) as in Proposition 3.2 such that p cor-
responds to the stationary point o. We may also assume that vg(7})
converges to a vector w in Ty ’O(N ) where w has length 1 in with respect
to h(0). Then by Lemma 3.2(iii), for any 7" > 0, we have

(4.12) Jim S (T4 = wit)]ne

>m >m

uniformly for all ¢ € [0,T], where w(t) = w/|wl|yy) and w;(t) is the
orthogonal projection of w(t) onto the eigenspace of Ric"(t) at o of the
eigenvalue p; with respect to h(t).

We claim that sy — Ty > 7 for some 7 > 0. Otherwise, we may assume
that s — T — 0, and thus from (4.9), (4.10) and (4.12) we may draw
the contradiction that

€
a— — =
2

> wi(0)|po) < a—e.

>m

This proves the claim. Thus from (4.10), (4.11) and (4.12) we may
conclude that

(4.13) Z w;(0) =a — ¢

: 2
>m
and
€
(4.14) dowil) <a-3
>m

for all t € [0,7]. But (4.13) and (4.14) contradict Lemma 4.1. This
completes the proof of (i) by contradiction.

We now suppose (ii) is false. Note that m > 1 because 0 < a < 1.
Then there exists a § > 0 with the property that: given any T > 0,
there exists a subsequence of t;, which we also denote by t;, for which

(4.15) d falts+T)<1-0.

i>m

for all k.
Now we define gi(t) = g(tx + t) and assume (M, gi(t)) converges to
a soliton (N, h(t)) as in the proof of (i). We also assume that vg(tx)

converges to a vector w in Ts ’O(N ) where w has length 1 with respect
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to h(0). Then by taking a limit as in the proof of (i), using Lemma
3.2(iii), (4.7) and (4.15), we have

(4.16) a<) wi(0)<1-a

i>m
and
(4.17) > wi(T)<1-4.
i>m

But for T sufficiently large depending only on a, fiy,—1, fm and 0, (4.16)
and (4.17) contradict Lemma 4.1. This complete our proof of (ii) by
contradiction. q.e.d.

We are ready to prove the main theorem in this section.

Theorem 4.1. Let (M",q) be as in Theorem 2.1 with either maxi-
mal volume growth or positive curvature operator, and let g(x,t) be the
corresponding solution to (2.3). With the same notation as in the be-
ginning of this section, V = ngl’o)(M) can be decomposed orthogonally
with respect to g(0) as V1 @ - - - ® V] so that the following are true:

(i) Ifv is a nonzero vector in V; for some 1 <i<l, then limy_.o |v;(t)|¢

=1 and thus lim;_,o Re(v(t),v(t)) = i and
L1 Joff
lim —log —5 = —p; — 1.
Jim, 3 log 5 =~
Moreover, the convergences are uniform over all v € V; \ {0}.

(ii) For 1 <14,j <1 and for nonzero vectors v € V; and w € V; where
i # 7, limy oo (v(t), w(t))r = 0 and the convergence is uniform
over all such nonzero vectors v, w.

(iii) dimc(V;) = n; — ni—1 for each i.

(iv)

!
1. det(g;;(1))
—p; — 1)dime V; = lim - log ——2-~=.
;( 27 ) mgc Vi tirgo t 0og det(glg(())

Proof. We first assume that the initial metric g(0) in (2.1), and thus
g(x,t) for all (z,t), has positive Ricci curvature by Proposition 3.1.

To prove (i), let v € T,,(M) be a fixed nonzero vector and let f;(t) =
|v;(t)[?. We claim that limy e fm(t) = 1 for some m, and thus

lim fi(t) =0

t—o00
for all k& # m. To prove our claim it will be sufficient to prove the follow-
ing for every m (by (ii) of the previous Lemma): Suppose lim;_. f;(t) =
0 for all 7 < m. Then either

(4.18) tim f (1) = 1
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or
(4.19) Tim fi (1) = 0.

If m = [, then we must have lim;_,o, f,(t) = 1 under the supposition.
Suppose 1 <m < [ and lim;_, fj(t) = 0 for all j < m and that neither
(4.18) nor (4.19) holds. By the continuity of f;(t), we can find t — oo
such that

(4.20) a< Y filt<1-a
i>m+1

for some 0 < a < 1. By letting vpy = v for all k, it follows from
Lemma 4.2(ii), we can find T' > 0, such that passing to a subsequence
if necessary we have

(4.21) S filtr+T)=1-
i>m+1
For each j, we can find k; such that 5, > ¢; +T'. Since
a
> filty+T) > 1-3

i>m+1

a
) .

and
Y filty)<1-a
i>m+1

for all j, we may derive a contradiction from part (i) of Lemma 4.2.
Thus our initial assumption was false, and for any v € T,(M) and m,
either (4.18) or (4.19) holds. Thus for any nonzero v € T),(M) we have
limy—,o0 frn(t) = 1 for some m

Now suppose lim;_,o fr(t) = 1. Using (2.3), Proposition 3.1, the
definition of u; and the definition of f;(¢), a straight forward calculation
gives

1
lim = log |[v]? = —p, — 1.
t—oo t
Note that if
.1 2
lim - log |v|f = —p; — 1
t—oo t
and )
. 2
tlggo n log [wli = —p; — 1

and i < j (so that —p; > —p;), then
1
(4.22) lim ~ log|av 4 bw|? < —p;j — 1.
t—oo t

provided av + bw # 0.
Let V1 be the subspace of V' = TISLO)(M ) defined by

.1
Vi={ve VA0 fim f1og o = -~ 1} U0}
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It is easy to see that V; is a subspace by (4.22). Let VIJ- be the orthogonal
complement of V; with respect to g(0). Then by the definition of V7,
for any nonzero v € Vi, we have

o1
Jim —logvlf = —p; — 1
for some j > 1. Define
1
Vo = {v e vit\ {0} tlirn glog]vﬁ = —pg — 1} U {0}.

Continuing in this way, we can decompose V as V = Vi @ --- @V,
orthogonally with respect to ¢g(0), such that if v € V,,,, then

(4.23) T f(t) = 1,
and
N N Gl

It remains to prove that both convergences are uniform on V;,, \ {0}. It
is sufficient to prove the convergence in (4.23) is uniform. Suppose the
convergence is not uniform over V,,, \ {0}. Then there exist vy € Vi,
tp — 00, € > 0 such that |vg|g = 1, vy converge to some vector v € V,,
and

(4.25) fmk(tk) = ’Pm(tk)vk(tk)‘?k < 1 — be.

Since fr(t) = |Ppn(t)op(t)|? — 1 ast — oo for all k, we can find rj, > ty,
such that

(4.26) Jmk(re) =1 —€.
On the other hand, for each fixed s, limg oo fruk(s) = |Pm(s)v(s)|%.
Moreover, limg_,o | P (s)v(s)|? = 1 because v € V,,, and |v|g = 1. Hence

passing to a subsequence if necessary, we can find s — oo such that
Sp <t and

(4.27) Jmk(sk) 21 —€.
Now we claim that there exists kg such that if k¥ > kg then
(4.28) > fult) 21— 2

>m

for all ¢t > s;. Otherwise, we can find s, > s;, for infinitely many k such
that

(4.29) > firlsh) <1 -2
>m

But (4.27), (4.29) and the fact that s} > s; contradicts Lemma 4.2(3).
Hence (4.28) is true.
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If m =, then for k > ko, (4.28) contradicts (4.25) because tj, > s.
Suppose 1 < m < [, then by (4.25) and (4.28), for k > ko, we have

(4.30) > Frn(te) = 3e.

i>m+1
and from (4.26)

(4.31) > fuklre) < e

i>m+1

for k large enough. Since 1 > tx, (4.30) and (4.31) contradicts Lemma
4.2(i) again. This completes the proof of part (i).

Part (ii) of the theorem follows directly from the definition of v(t)
and w(t), the orthogonality of the spaces Ej(t) with respect to g(t) and
part (i).

To prove (iii), we begin by showing the following: Fix 1 < m < [.
Let vi € E1(sk) + -+ -+ Ep(sk) with sy — oo such that |vg|o = 1 and vy,
converge to a vector u € TZSLO)(M ) of unit length with respect to g(0).
Then

(4.32) Jin Juj (£)]: = 0

for all j > m, where u;(t) = P;j(t)u(t) and u(t) = u/|u|; as before.
Suppose this is false. Then by (i), we have

(4.33) lim Y ju(fF = 1.

j>m+1
Let f;,(t) = |P;j(t)vg(t)|7. Since for fixed t,

Jim fi4(6) = Ju; (0

as before, given any % > ¢ > 0 we may choose a subsequence of s also
denoted by si, and a sequence t; < s for which ¢ — oo and

(4.34) Y fltr) >1—e
j>m+1
for all k. But > 5,4y fjx(sk) = 0 for all k by definition. This is
impossible by Lemma 4.2(i). Thus (4.32) is true for all j > m.
We now show that for all 1 < m < [, dim¢ Vi, = nyp, — 1 which
is equal to dim¢ E,,(t) for t large enough. Let d; = dimV;. We claim
that for any 1 <m </,

(4.35) di+ - +dm > npy,.
Fix 1 < m <. Choose t;, — oo. We may assume that dim E;(t;) =
nj—n;_1 for all j and k. Hence we can choose a basis vy (tx), . . ., Un,, (tx)

of Z;n:1 E;(ty). Using Gram-Schmidt process, we may assume that

v1(te) /|1 ()l g(0)s - - - s Vngn (B / [V, (B1) g 0)
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are unitary with respect to g(0). Moreover, we may assume that for
k — oo, vj(ty)/|vj(tk)|o converge to some w; for all 1 < j < n,,. Hence
we have n,, vectors wy, ..., wy,,. They satisfy the following:

(a) They are unitary with respect to g(0) by construction.
(b) For each 1 < j < mn,,

1
Jim - Tog w; (O} < —pum — 1

by (4.32).

For each w; (1 < j < np), w; = 22:1 wj 1, where w; i, € Vi, If there is
a k > m such that w;; # 0, then by (i) and the fact that —pu, > —uy,
and the definition of Vi, we have

1
lim — log |w;(t)|7 > —pp — 1> —pim — 1,
t—oo t

contradicting (b). Thus w; € Vi @ --- @V}, for 1 < j < ny,. From this
(4.35) follows because the w; are linearly independent by (a).

Choose a unitary basis vj1,...,v;4, of V; with respect to g(0) for all
1 < j <. This gives a unitary basis with respect to ¢(0) for Tlgl’o)(M).
Let gi5(t) be components of g(t) with respect to this basis. Then

1 dj
det(gi;(t H 1T ikl
j=1k=1

Since lim—o R(t) = Zgzl(nj —mnj_1)i; by Proposition 3.1 where R(t)

is the scalar curvature of g(¢), by (2.3) and the above inequality we have

l
(4.36) > (nj —nj1)(—p; — 1) = = lim R(t) —

= t—o0
1. det(gi;(t))
lim - log —— 200
T t % det(gi5(0))
[ dj 1
< ;;}g& Jlog o2
J= =

!
= Z dj(—
j=1
Let us denote n; —n;_1 by kj;, then we have
l l
> hi(=m) < Z
= =

and Y70 dj > Y700 Ky for all 1 <m <1 by (4.35). Also ZJ 1dj =
Zé k; =n. Since —p1 < —p2 < -+ < —py, we must have d; = k; for all
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j- In fact, if this is not the case, since di > k1, and >0, dj > 377 | k;
for all 1 < m < [, then we can find m to be the first m such that
dm > kpy and d; = kj for j < m. We have

l
(4.37) > dj(—p
7j=1
=3kl Fon (= tm) + (dim = k) (=) + Y dj(—

j<m ji>m
< Z kj(—pg) + (dm — km + dmy1) (= fm+1) Z d;(
Jj<m j>m4+1

because — iy, < —pmr1 and dp, — k> 0. If we let d; =kjfor1<j<
m, d;- =dj for j >m+1, and d;,, | = dm — ki + dipy1 then we have

l !
> ki(—pg) <Y di(—py)
j=1 j=1
and 30 di > 3% kj for all 1 < p <1 by (4.35). Also Zj & =
Z; kj =mn, and d; = k; for all 1 < j < m. By induction, we will end
up with

l
> k(=) <Y ki(—py)
j=1

j=1

which is impossible. This completes the proof of part (iii).

Part (iv) follows directly from part (iii) and the first two equalities
n (4.36).

We have thus proved that Theorem in the case that (M, g) satisfied
the additional assumption of positive Ricci curvature. Now if the Ricci
curvature is not strictly positive on M, we can use the results in [5] to
reduce back to the case of positive Ricci curvature. This completes the
proof of the theorem. q.e.d.

5. Uniformization

Let (M™,g) be as in Theorem 2.1 and assume (M, g) has either max-
imum volume growth or positive curvature operator. Let g(¢) be the
solution of the K&hler-Ricci flow (2.1) and let g(¢) be the corresponding
solution of the normalized flow (2.3). Fix a point p € M. Then by Corol-
lary 2.2, there exist 1 > r; and 72 > 0 such that for all £ > 0, there is a
holomorphic map ®; : D(r;) — M (where D(r1) = {z € C"| |z] < 1}),
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satisfying the following:
(5.1)
d, is biholomorphism from D(r;) onto its image.

04(0) =

( (t ))( ) = g, where g, is the standard Euclidean metric of C".
5 9¢ < 7 (g(t)) < rage in D(r1).

By Corollary 2.2, we will choose T' > 0 such that if F;;; = <I>&_1H)T o

®,7, then for each i, F; is a holomorphic map from D(r1) into C™ and
is a biholomorphism onto its image. Moreover,

(5.2) Fi(D(r1)) € D(r1), |Fi(2)] < d|z| for some 0 < § < 1.

Let A; = F/(0) be the Jacobian matrix of F; at 0. Since R;; > 0 for all
t and is uniformly bounded, we have

(5.3) alo] < |A(v)] < blo]

for some 0 < a < b < 1 for all . Here a,b,d are independent of i.
We will now modify(decompose) the maps F; as in [36] and [23], then
assemble them to obtain a global biholomorphism from M to C™.

We begin by fixing some notation. As in Proposition 3.1, let 0 <
A (t) < Aa(t) < ... < Ay(t) be the eigenvalues of R;;(t) with respect to
g(t) and let 0 < py < po -+ < wy be their limits. Let p > 0 and E(t),
1 < k < also be as in Proposition 3.1 and let Pj(t) be the orthogonal
projection onto Ej(t) with respect to g(t). Let 1, = e~ (DT 1 <k <
[. Note that for convenience, we have reversed the order of \; and hence
the order of py.

By Theorem 4.1, TISLO)(M ) can be decomposed orthogonally with
respect to the initial metric as E1 @ --- @ Ej such that if v € E} and
w € Ej are nonzero vectors and if v(t) = v/|v|s, w(t) = w/|w|; where
| - |+ is the norm taken with respect to g(t), then for 1 < k <[ and for
J#k
(5.4) lim |Py(t)v(t)| =1, and lim (v(t),w(t)); = 0.

t—o0 t—o0
where (-,-); is the inner produce with respect to g(t). Moreover, the
convergences are uniform over all nonzero vectors in E; and Fj,.

For any 4, let E;; = d®,7(Ey), 1 <k < 1. Denote A(i) = A;--- A;
and A(Z—I—j, Z) = Ai+j R Ai—‘rl- Then Ei,k = A(Z)(El,k) and Ai+1(Ei,k) =
Eit1k.

Lemma 5.1. Given € > 0, there exists ig such that if i > ig, then
the following are true:

(1) (1 =€) v]? < Ai(0)]? < (1 + €)1 [v]? for allv € E;y and 1 <

k <1, where 1, = e~ (st 1T
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(ii) For any nonzero vector v € C"

(t-9< =t <qa+g
—6)< —5——— < €
> k=1 vkl
where v = 2221 vy, 8 the decomposition of v in E;1 @ --- @ E;.

Proof.
(i) Let 1 <k <I. By (5.4), given € > 0, there exists top > 0 such that

|Pr(t)(w)]e =1 —€

for all w € Ej \ {0} and for all ¢ > ¢y. By the definition of Ej and
Proposition 3.1, we have that |Ric(w(t),w(t)) — ux| < € for all w €
Ex \ {0}, provided tg is large enough. Suppose ig > to/T. Then for
i > g and v € E; 1\ {0}, there is w € E;\ {0} with d®;; (w) = v. Hence

A;i(v) = d@&}rl)T(w). By (5.1), [v| = |w|ir and [A;(v)] = |w|G1)r- By
the Kahler-Ricci flow equation we have
Ai v 2 |w‘21 nrT
log P 1S|2> } + (ux + 1)T = log [ﬁ + (ur +1)T
iT

(i+1)T
— [ e Ric(u(®) w(t)) dr.

T
Since |Ric(w(t),w(t)) — pr| < € and T is fixed, it is easy to see that (i)
is true.

(ii) Let v € C™ be nonzero and let v = 2221 vk be the decomposition
ofvin Bj1 &---® E;;. Let w e Tél’o)(M) be such that d®,; (w) = v
and similarly decompose w = 22:1 wyg with respect to 1 & --- & Fj.
Then vy, = d®; 7 (w). Since (vj,v;) = (wj, w) gy and [v|* = \wlz(iT)
by (5.1), (ii) follows from (5.4). q.e.d.

Let us fix more notation. Let ® be a polynomial map from C" into
C"™, which means that each component of ® is a polynomial. Suppose
® is of homogeneous of degree m. That is to say, each component of &
is a homogeneous polynomial of degree m > 1. We define
|@(v)]

™

|| = sup
veC™ w#£0 ‘U

In general, if @ is a polynomial map with ®(0) =0, let & = >¢ | &,
be the decomposition of ® such that ®,, is homogeneous of degree m,

then ||®|| is defined as
q
2] =" 1®mnl-
m=1

If we decompose C" as E;1 @ --- ® E;;, we will denote C" by C7.
Let @ : C} — C},; be a map. Then we decompose ® as ®(v) =
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22:1 Pp(v) =01 ®--- @ P where ®y(v) € Ejpq k. Let a = (ai1,...,q7)
be a multi-index such that |«| = 22:1 ar =m > 1. Then a polynomial
map @ is said to be homogeneous of degree o if

P(civ1 @ D auy) = P(v1 D - D),

where vy, € E; ;. Note that if ® homogeneous of degree «, then ® is
homogeneous of degree |a| in the usual sense. & is said to be lower
triangular, if ®(v1 @ -+ D vy) = vk + Vp(v1 B -+ D vg—_1).

Lemma 5.2. Let ® : C — C}, be homogeneous of degree o =
(a1y...,qp) with |a] =m. Then

[@(v1 @ - - B or)| < TP Jor[* - o™
Here by convention if a; = 0, then |v;|% =1 for all v;.
Proof. Let v =v; @ --- @ v such that |vg| =1 for all 1 < k <, then
[@(v)] < ([ @ o™ < I"[|®]].
Hence if vy, # 0 for all k, then

V1 (s
[@(v)] = [®(Jv1]=& - & || =) <T@ Jor|[* - - Jo*.
|01 vl
From this the lemma follows. q.e.d.

Note that 71 > --- > 7;. Choose 1 > ¢ > 0 small enough such that
b*(1 —€)~Y(1 4+ ¢€) < 1 where b < 1 is the constant in (5.3). Since we
are interested in the maps F; for large ¢, without loss of generality, we
assume the conclusions of Lemma 5.1 are true for all ¢ with this e. Let
mg > 2 be a positive integer such that a=1b™0 < %, where 0 <a <b< 1
are the constants in (5.3).

We now begin to assemble the maps F; to produce a global biholo-
morphism from M to C". The constructions follow those in [36] and
[23]; in particular those in [23] where the authors study the dynamics
of a randomly iterated sequence of biholomorphisms.

Lemma 5.3. Let ®;41 : C — C}\ |, 1 < i < oo, be a family ho-
mogeneous polynomial maps of degree m > 2 such that sup; ||®;|| < oco.
Then there exist homogeneous polynomial maps H;11 and Qi1 of de-
gree m from C' to C?', | such that ®;11 = Qi1+ Hit1— A;_:2Hi+2Ai+l.
Moreover, Hi11 and Q41 satisfy the following:

(i) sup; [|Hi]| < oo and sup; [|Qi]| < oo.

(i) Qit1 =0 if m > my.
(iil) Q41 is lower triangular:
Qit1(v1 @ - D)
=08 Qit1,2(v1) ® Qix13(v1 Bv2) B+ B Qi1(v1 & -+ D v—1)

where v € E;j, and Qi1 : Cf — Eiyqp.
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Proof. For each i, let 85 be a unitary basis for E;; with respect to
the standard metric of C'. Let v € C} and if v = 22:1 >

weﬁk aww,
then l
CrlllP <) Y fawl? < Cafof?
k=1 wepy
for some constant C; independent of ¢ by Lemma 5.1(ii). Hence if
we decompose ®;;1 into a-homogeneous parts ®;i1,, || = m, then

|Piv1,all < Co||Piy1| for some constant Cy independent of ®;41 and
i. Moreover, if we decompose ;11,0 = Pit1,0,1 D -+ D Pjp1,0; With
Pit1.a,k(v) € Eit1k, then by Lemma 5.1(ii) again,

[ @it 1,0kl < Csl|Pit1all

for some constant C3 independent of i. Hence in order to prove the
lemma, we may assume that ®;,; is homogeneous of degree

a=(ay,...,qp)
with |a| = m and ®;41(v) € Eiy1 for all i for some 1 <k <[
Suppose m > mg. Then we define ;41 = 0 and let

Hip1=®;11+ Z AZ+2 Z+S+2(I)i+s+2Az'+s—|—1 o Ay

To see H;yq is Well—deﬁned, by (5.3) we have that for any v € C7',

|Piyst2divers - A1 ()] < [[Pipspal (07 o])™
and
AL AL o ®irsia Airsrt - A1 (0)] < [ @rpspa]l (a0™) o]
<277 [Py g o]
Hence H;; is well-defined, homogeneous of degree m and || H;11]] < Cy4
for some constant Cy independent of ¢. It is easy to see that H;+1 and

Qi+1 satisfy the required conditions.

Now suppose 2 < m < mg. Decompose ®;;1 as CIDEEl + @E?l where
<I>§El(v1 DDy = Pip1(1 B - Dvg_1 ®0--- B 0) consisting of
terms that depending only on vy,...,v;_1 and <I>l(i)1 =0 — (I>z(+)1 Let
Qir1 = (IDSF)l. Since ®;11(v) € Ejy1, it is easy to see that Q41 satisfies
condition (iii) in the lemma. It is also easy to see that ||Q;t1|| < ||Pit1]l-

Suppose a; = 0 for all j > k. Then <I>Z(-2) = 0, and in this case we let
H;1 1 =0. Then Q;+1 and H;y; satisfy the required conditions.

Suppose there is j > k with «; > 1. Then define

2
(5.5)  Hiy =07 + Z Ay Al @ o Asiann - Aiga,
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To prove H,i; is well-defined and ||H;y1| is uniformly bounded, we
observe that

2 1
(5.6) 198, 1ol < 198, 1ol + 1P asall < 2] @4 sl

Let v € C} and let w = w1 @ --- @ w; = A(i + s+ 1,4)(v) and let
u=A(i+s+2,i+ 1)*1(<I>§_2~_)S+2(w)). Note that if v = v1 @ - - - © v; with
vg € Ej 4, then A;,(vq) € Eitrq. Hence by Lemma 5.2, Lemma 5.1(i)
and (5.3)

2 2
1082 o (w)] <T@ | w1 fuy |

< 2Dy gyl

< 2|y B [(1 4 )y ol
Since <I>Z(_2F)S+2w € Eits12k, by Lemma 5.1(i) and the fact that
A;il(E,urLk) = E,, for all 7, we have

(5.7) Jul = |A(i+5+2,i+1)"1 (@2 ,w)|

<[1-am) 7 8P

z+s+2w|

< 2" Pis 2BV (1= T F (14 m] T [l
s+1
< 20| Pipsra| [P (1 =€) (1 + )] 2
since 7, > 7j for j > k, m > 2 and b < 1. Since we have chosen € such
that b%(1 — €)~(1 4+ ¢) < 1, from (5.5)(5.7), we conclude that H;q
is well-defined and ||H;+1|| are uniformly bounded. Note that H;i; is
homogeneous of degree m. Then ;41 and H;iq satisfy the required
conditions. q.e.d.

Lemma 5.4. Given any m > 2, we can find constants C(m) > 0 and
r1 > 1T > 0 and families of holomorphic maps T; y, from D(ry,) C CI to
D(rm) C C} and Giy1,m from C} to C}\, with the following properties:
(i) For each i, Tiy1,m is a polynomial map of degree m — 1 which is
biholomorphic to its image, Ti11,m(0) = 0, T;,,,(0) = Id and
ITisimll < Cm). )

(ii) Gizi,m = Ait1 + Gig1,m where Giy1m is a polynomial map of
degree m — 1,

Giim(v1 ® - D uy)
=00 Git1m2(01) ® - ® Gip1ma(v1 @ S v_y)

is lower triangular, and |Git1m|| < C(m), Giy1,m(0) = 0 and
G, (0) = 0. Moreover, Giy1m = Git1mo for all m > my,
where my is the integer in Lemma 5.3.
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(iii) Fix1(D(rm)) C D(ry,) and
Tiv1mFit1(v) = GiprmTim (v)] < C(m)|v]™
in D(ry). Here Tiy1mFit1—Giv1mTim means Tip1mo Fip1 —Giv1mo

Proof. Note that since A;41 is nonsingular, Gi41,, will be a biholo-
morphism. We will construct the maps by induction. For m = 2, let
Tiv1i,m = Id, Git1,m = Aiy1. Since Fj1(D(r1)) C D(r1) and is holo-
morphic, by (5.2) we can take ry = %7“1, then it is easy to see that one
can find C(2) satisfies the required conditions. Suppose we have found
Ti+1,m, Git1,m, C(m) and r,,, which have the required properties. Since

’T’i-l-l,m-Fi-&—l(v) - Gi—i—l,mﬂ,m(”)’ < C(m)|v|m

we have ||®;41] < €y for some Cy which is independent of i, where ®;;

is the homogeneous polynomial of degree m which is the m-th power

terms of the Taylor series of T;y2mFir1 — Git1,m+1Ti+1,m- By Lemma

5.3, we can find H;y; and Q41 such that both are homogeneous of

degree m, H;11 and ();4+ satisfies conditions (i)—(iii) in Lemma 5.3 and
Dip1 = Qiy1 + Hipr — Ay Hi0Ai1.

Now define T mi1 = Tim + A Hiv1 and Gig1mi1 = Gigim + Qig.
Note that if m > mg, then @Q;+; = 0. By the induction hypothesis,
Lemma 5.3 and (5.3), it is easy to see that Tj41 m+1 and Giy1 m+1 satisfy
(i) and (ii) of the lemma for some constants C(m+1) and rm41 < 57m.
It remains to check condition (iii). We proceed as in [36].

In the following, O(m + 1) will denote some function h such that
|h(v)| < Clv|™* for |v| < Lry,, where C is a constant independent of i.

(5.8)
Tit1m+1Fiv1 — Givtm+1Tim+1
= (Ti1m + A7 5 Hi2) Fipt — (Gigim + Qi) (Tim + A Hivr)
= [Tiv1,mFiv1 — GiprmTim]| + Gici.mTim
— Git1m(Tign + A Hit)
— Qit1(Tym + AZ Higr) + AL Hiyo .

Since F; (D (ry)) C D (ry,), and ||T; || and ||Gj | are uniformly
bounded,

TivimEiv1 — GigimTim
= (I>Z'+1 + O(m + 1)
= Qit1 + Hiy1 — AL Hiya A + O(m + 1),
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Combining this with (5.8), we have
(5.9) Tiv1m+1Fiv1 — Gigtm+1 T mv1
= Qiy1+ Hip1 — A Hi o Air + GigimTim
— Gitim(Tign + A Hit)
— Qi1(Tim + A;llHiH) + A;JFIQHHze‘H +O0(m+1)
= [GisimTim — Gigim (Tim + A;rllHiH) + Hi1)
+ [Qir1 — Qis1(Tym + A Hig)]
+ (A Hivo Fin — AL Hia Aiy]
+O0(m+1).
Denote the differential of a map h by h’. Then
HioF; 1 — Hip2Ai

1
d
= /0 £<Hi+1(SFi+1 — (1= s)Ait1)ds

1
= /O [H 1 (sFip1 — (1= s)Ai1)] (Fig1r — Aig1)ds

where the multiplication of the terms under the last integral sign is
matrix multiplication. By (5.2), (5.3), the definition of A;+; and the
fact that |[H;+1]| are uniformly bounded and homogeneous of degree
m > 2, we have

(510) Hi+2F¢+1 — Hi+2Ai+1 = O(m + 1)

Using (5.3) and the facts that ||Qi+1]|, [|Z5m|| and || H;41| are uniformly
bounded, Q;+1 is homogeneous of degree m > 2 and that Tz-cm(O) = Id,
we can prove similarly that

(5.11) Qit1 — Qit1(Tim + A Hitr) = O(m + 1).
Finally,
Git1mTim — Gigtm(Tign + A Hir) + Higa

1

d _

= —/0 s (Gig1m(Tim + SAi_|_11Hi+1)) ds + Hjq
1

= —/0 ([Gltm(Tim + sA7Z Hig1)] (A7 Hir) — Ai1 A7 Hig) ds

1
= —/0 ([Giirm(Tom + A Hivt) — Aia] (A7 Hig)) ds.
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Again the multiplication of the terms under the last two integral signs
are matrix multiplications. Using (5.3) and the facts that G7,, ,,(0) =
Ait1, that ||Git1m||, ||Hit1]| are uniformly bounded, and that H;4; is
homogeneous of degree m we conclude that
(5.12)  Git1mTim — Git1m(Tim + A Hiva) + Hipa = O(m 4 1).
From (5.9)—(5.12), we conclude that

Tt 1mi1Fi1(v) = Gigrmyr Timpa (0)] < C(m+ 1) o™

This completes the proof of the lemma. q.e.d.

Let m > mg and denote G414, simply by G;41 and denote éi+1,m by

Gt ete. Note that G;41 is independent of m and is a biholomorphism
on C" and that the degree of each G;41 is m — 1. For any positive
integers 4, j, let G(i + j, i) = Gitj - - Git1.

Lemma 5.5. Let G;1 as above, then its inverse is a polynomial map
of degree (m — 1)'=1 and satisfies:
—1 -1
Gipn = Ay +Sim

where Siyq : C | — CF' with

Siv1(w1 @ --- D wy)

=0® Sit12(w1) ® -+ ® Sip1 (w1 @ -+ Dwp_q).
Moreover, ”G;hH is bounded by a constant independent of i.

Proof. Let w1 & --- ®w € Eip11 @ - @ By = C . Let vy =
A wr, v = A (we — Gig12(v1)),. .., 0 = é;}l(wl — Gig1,(v1 &
.- ‘@vlfl)). Let Siﬂ,k(wl D-- '@’wkfl) = —Ai_JrllGiJrl,k(Ul ©b-- '@kal),
2 <k <. It is easy to see that Sj;y is well-defined and Sjyq (w1 ®
- @wg_1) € E; ), because Aij11(E; ) = Eit1 . Moreover, the degree
of each Sj11x is at most (m — 1)*~1. Tt is also easy to see that

Gin=Ai + Sin
where S;y 1 =0® Si112® -+ @ Siq1,.

Let w1 @---@w; € C}; with |wy| <Tland vy @--- Qv = G;_ll(wl@
<+« @ wy). We claim that |vg| is bounded by a constant independent
of i for each k. If this is true, then by Lemma 5.1 and (5.3) again,
we can conclude that HG;rllH is bounded by a constant independent
of 7. To prove the claim, by (5.3) have |vi| = |A;+11 (w1)] is uniformly
bounded for |w;| < 1. Since ||G;41] is uniformly bounded by a constant
independent of i, the same is true for ||éz‘+1,k” by Lemma 5.1(ii) and

(5.3). Now suppose we have proved that |vq],...,|vk_1| are bounded by
a constant independent of ¢. Then it follows that

[Sigih(wr @ @ wp1)| = A7 Gipr k(01 @ - S wy 1)
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and hence |vi| are also bounded by a constant independent of i. The
proof of the lemma then follows by induction. q.e.d.

Lemma 5.6. Let D(1) be the unit ball in C™ with center at the origin.
Then the following are true:

(i) There exist 3 > 0 such that for all z,2' € D(1) and for any positive
integers ¢ and j,
G+ 7,07 (2) = Gli+4.0) 7 ()] < F | = 2.
(ii) For any positive integer i and for any open set U containing the
origin,
o

U (i +4,3)" 1 (U) = C".

Proof.
(i) Let us first assume that ¢ = 0. Let us write

G(,00 ' =Gyt - Gl Hj1&---®Hj

with Hj,(v) € E1j. By Lemma 5.2 and the Schwartz lemma, it is
sufficient to prove that

(5.13) |Hjp(v)] < &

for some constant 3 and for all k£ and j provided |v| < 1. By Lemma 5.5,
Gi_1 = Ai_1 + S; where S; satisfies the conclusions in the lemma. Let
v =& --@uv € C}. Then [Hj1(v)] = [A; - AT (v1)] < ad|vr| < 207,
where we have used Lemma 5.1(ii). Hence (5.13) is true for £ = 1.
Suppose (5.13) is true for 1,...,k — 1. We may assume that 3 > a~!
By Lemma 5.2 and 5.5, we know that ||.S;|| is uniformly bounded. Let
Cj = maxp{max,j<y [Hjx(v)], 1} Since G (w) = A (wy) + (w1 &
-+ @ wg_1), we have

Cj<a 'Cj_y +CpU—IN
< QCj—lﬂ{_l

where N = (m — 1)/~ which is the degree of S;, C > 1 is a constant
dependent only on ||S;|| and N, and 3; = CBY > a~!, where we have
used the fact that Cj_; > 1. Hence C; < (2531)’"'Cy. From this the
lemma follows for ¢ = 0. For general i, the proof is similar. Note that
the constants in the proof do not depend on 1.

(ii) The proof is similar to the proof of (i). We only prove the case
that ¢ = 0 and the other cases are similar. Let us write G;j---G1 =
Kj,l D-- '@K]’J. Then Kj,l(vl D-- -@’UZ) = AJ’ R Al(Ul). Hence Kj,l(v)
converge to zero uniformly on compact sets. Suppose Kj1,..., K 1
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converge uniformly to 0 on compact sets. Let €2 be a compact set and
let s; = sup,cq |Kj k|- Then as before,

sj < bsj1+ sup |Gk (Kj1,1(v), o Ko g1 (0)]-
v

Hence

limsup s; < blimsup s;_1
j—00 j—00
because Héij are uniformly bounded with uniformly bounded degrees
and Kj_p,(v) — 0 uniformly on Q for 1 < p < k — 1. From this it is
easy to see that s; — 0 as j — oo. Hence G ---G1 — 0 uniformly on
compact sets. From this (ii) follows. q.e.d.

Let 3 be the constant in Lemma 5.6. Note that 3 does not depend
on ¢ and m provided m > myg, where mg > 2 is the integer in Lemma
5.3. This is because G;,, = Gim, for all m > mg. Fix m > mg such
that

(5.14) om< =gt

Do | =

where 1 > 6 > 0 be the constant in (5.2). Let Gj, Tjm be the maps
given in Lemma 5.4 which are defined on D(ry,), 0 < rp, <71 < 1. Let
us denote G, by G, T}, by T; and 7y, by 7.

In the following, a holomorphic map ® from a complex manifold to
another is said to be nondegenerate if it is injective and so that it is a
biholomorphism onto its image. We apply the method in [36] to obtain
the following.

Lemma 5.7. Let k > 0 be an integer. Then

. ~1 -1 -1
U :lhm Gri1°Grig0 oG 0Ty 0 Fpppo---0Fgi90Fpp
— 00

exists and is a nondegenerate holomorphic map from D(r) into C".
Moreover, there is a constant v > 0 which is independent of k such
that

(5.15) 7 ID(r) € Ui (D(r)) C vD(r).

Proof. Let ©; = G,;iloG,;izo- . ‘OG;iZOTkHOFkHO' <0Fy190Fky.

By the construction in Lemma 5.4, ©; is a nondegenerate holomorphic
map on D(r) and ©;(0) = 0. For any z € D(r), let w = Fyyjo0---0
Fiy1(2). Then |w| < 6'r by (5.2). Hence Tiyi(w), Thyir1 © Frpir1(w),
G,;}Hl 0 Thyit1 © Fryir1(w), and Giyi41 0 Tiqy(w) are all in D(1) for
[ > Iy for some Iy depending only on 4 and m by Lemmas 5.4 and 5.5.
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By Lemmas 5.4(iii) and 5.6, we have

1 1 1
G0 0G 0G0 0Tk 0 Feqagn © Fig 0 Fipa(2)

—1 —1
—Gk_Ho--~on+loTk+loFk+lo-~-oFk+1(z)

-1 -1 -1
= ‘Gk+1 0:-+0 Gk—H o Gk+l+1 o] Tk:+l+1 ¢} Fk+l+1(w)
-G} GyoT
k100 Gy o T (w)

< g

Gritiir © Dotz © Frgiga (w) — Tk+l(U})‘

< ﬁl+1

Tieti+1 © Frprgr(w) = Grpagr © Tk-i—l(w)'

< Clﬁl+1‘w|m

< ClﬁlJrl(slm

l
<8 (%)

by (5.14) for some constant C independent of k£ and I. From this it
is easy to see that Wy = lim;_,,, ®; exists and is holomorphic on D(r).
Moreover

Wk (2)] < [O1,(2)] + C18-

Using (5.2) and the fact that ||G;|| and ||T;|| are uniformly bounded, we
can find v > 1 independent of k and [ such that Wi (D(r)) C vD(r).
Since ®(0) = Id, ¥, (0) = Id. By the gradient estimates of holomor-
phic functions, |®}(z) — Id| < Cs|z| on $D(r) for some constant Co
independent of k. Hence there exists r > r’ > 0 independent of k such
that ®; is nondegenerate in D(r') and ¥(D(r)) D v~ 1D(r) provided
v is large enough independent of k. To prove that W, is nondegenerate
on D(r), let I; be such that Fyyy, -+ 0 Fg1(D(r)) € D(r'). Then

-1 -1
\I/k :GkJrlO---OGkJrll O\IlkJrll OFk+l1 O~--Fk+1.

Since Fyy, - - -0 Fyy1 is nondegenerate on D(r), ¥4, is nondegenerate
on D(r'), and G,;il o~ -oG,;ill is a biholomorphism of C", we conclude
that Uy is nondegenerate on D(r). q.e.d.

Now we are ready to prove the following uniformization theorem.
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Theorem 5.1. Let (M™,q) be a complete noncompact Kéhler man-
ifold with nonnegative and bounded holomorphic bisectional curvature.
Suppose the scalar curvature of M satisfies

1 C
5.16 R< ——
( ) Vx(T) /Bw(r) — 142

for some constant C' for all x € M for all r. Suppose (M,g) has maz-
imal volume growth. Then M is biholomorphic to C*. Moreover, the
assumption of maximal volume growth can be removed if M has positive
curvature operator.

Proof. If g satisfies the given conditions, then one can solve the
Kahler-Ricci flow (2.3) and construct ®; and F; as in the beginning
of this section. We can also construct G;, T; as in Lemma 5.3 so that
Lemmas 5.6 and 5.7 are true. Let Q; = ®;7(D(r)) where r > 0 is the
constant in Lemma 5.7. By (5.1) and the fact that the solution g(t) of
(2.3) decays exponentially, {€2;}i>1 exhausts M. Consider the following
holomorphic maps from ; to C™:

Si=Gilo -Gl oTi0 .

7

For each fixed k, and [ > 1

Sk41

P L | -1
=G| o OGk+loTk+lo(I)(k+l)T

:Gl_lo---oG];lo [G,;ilou-oG,;iloTk+loFk+lo---oFk+1] o@;%.
By Lemma 5.7, we conclude that S = lim; ., .5; exists and is a nonde-
generate holomorphic map from M into C". Moreover, S = Gl_1 0---0

G,;l oW, o0 (D,;Tl on ) where Wy is the nondegenerate holomorphic map
in Lemma 5.7. Hence

S(Q) =Gl o 0G Lo U(D(r)) DGy o0 G (Y TED(r))
by Lemma 5.7, for some v independent of k. Therefore S(M) = C" by
Lemma 5.6(ii). This completes proof of the theorem. q.e.d.

By a recent result of Ni [30], if M has maximal volume growth, then
(5.16) is satisfied automatically. Hence we have:

Corollary 5.1. Let (M",q) be a complete noncompact Kdihler man-
ifold with nonnegative and bounded holomorphic bisectional curvature.
Suppose M has mazimal volume growth, then M is biholomorphic to
cm.

We also have the following uniformization theorem.
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Theorem 5.2. Let (M™,q) be a complete noncompact Kdihler mani-
fold with nonnegative curvature operator such that the scalar curvature
R of M satisfies (5.16). Then the universal cover of M is biholomorphic
to C™.

Proof. Let g(t) be the corresponding solution to the Kéhler-Ricci flow
2.1. Let M be the universal cover of M. We then lift the flow g(t) to
M and denote the lifted flow by h(t).

By the result in [5] and the De Rham decomposition theroem, one
may assume that M = C* x Ny x --- x N isometrically and holomor-
phically so that each Nj; is irreducible and has nonnegative curvature
operator and positive Ricci curvature. Note that the flow h(t) still sat-
isfies the Kahler-Ricci flow equation when restricted on each N;. Now
suppose there is a positive constant C' such that for ¢ large enough, the
injectivity radius of A(t) is bounded below by C't'/2. Then by the proof
of Theorem 5.1, it is not hard to show that in this case we can still
have the results of sections §3, §4 and §5 for the restriction of h(t) to
any N;, thus proving Theorem 5.2. We now proceed to show the above
injectivity radius bound.

We claim that each INV; is noncompact. In fact, by the curvature
assumption on M, there exists u such that /—100u = Ricyy; see [32].
Let @ be the lift of u to M. Then V—100u = Ricy;. In particular, u is
strictly plurisubharmonic on each N;. Hence N; is noncompact.

By the proof in [13, pp. 25-26], one can conclude that for any ¢ty > 0,
there is a 4 > 0 such that h(t) has positive sectional curvature for
to < t < to + d when restricted to N;. Using the result of Gromoll-
Meyer as before and using the fact that the curvature of N; is bounded
above by C1t~! by Theorem 2.1, one can conclude that the injectivity
radius of h(t) on N; is bounded below by Cyt'/2 for some constant
C1 > 0 independent of ¢, ty and j. From this we can conclude that the
injectivity radius of h(ty) on Nj is bounded below by Cyt'/2. Hence
the injectivity radius of h(t) on M is bounded below by Ct? for some
constant C' > 0 independent of ¢t. This completes the proof of the
theorem. q.e.d.
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