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NON-ABELIAN LOCALIZATION FOR CHERN-SIMONS

THEORY

Chris Beasley & Edward Witten

Abstract

We reconsider Chern-Simons gauge theory on a Seifert manifold
M (the total space of a nontrivial circle bundle over a Riemann
surface Σ). When M is a Seifert manifold, Lawrence and Rozan-
sky have shown from the exact solution of Chern-Simons theory
that the partition function has a remarkably simple structure and
can be rewritten entirely as a sum of local contributions from the
flat connections on M . We explain how this empirical fact fol-
lows from the technique of non-abelian localization as applied to
the Chern-Simons path integral. In the process, we show that the
partition function of Chern-Simons theory on M admits a topo-
logical interpretation in terms of the equivariant cohomology of
the moduli space of flat connections on M .

1. Introduction

Chern-Simons gauge theory is remarkable for the deep connections
it bears to an array of otherwise disparate topics in mathematics and
physics. For instance, Chern-Simons theory is intimately related to the
theory of knot invariants and the topology of three-manifolds [1, 2], to
two-dimensional rational conformal field theory [3] via a holographic
correspondence, to three-dimensional quantum gravity [4, 5, 6, 7], to
the open string field theory of the topological A-model [8], and via a
large N duality to the Gromov-Witten theory of non-compact Calabi-
Yau threefolds [9, 10, 11, 12, 13].

Of course, Chern-Simons theory is also a topological gauge theory,
though of a very exotic sort. In the case of a more conventional topo-
logical gauge theory such as topological Yang-Mills theory on a Riemann
surface or on a four-manifold (for a review of both topics, see [14]), the
theory can be fundamentally interpreted in terms of the cohomology ring
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of some classical moduli space of connections. In this sense, such gauge
theories are themselves essentially classical. In contrast, Chern-Simons
theory is intrinsically a quantum theory, and it is exotic precisely be-
cause it does not admit a general mathematical interpretation in terms
of the cohomology of some classical moduli space of connections.

Yet if we consider Chern-Simons theory not on a general three-man-
ifold M but only on three-manifolds which are of a simple sort and
which perhaps carry additional geometric structure, then we might ex-
pect Chern-Simons theory itself to simplify. In particular, we might
hope that the theory in this case admits a more conventional math-
ematical interpretation in terms of the cohomology of some classical
moduli space of connections.

For instance, in the very special case that M is just the product of
S1 and a Riemann surface Σ, so that M = S1 × Σ, then the parti-
tion function Z of Chern-Simons theory on M does have a well-known
topological interpretation. In this case, Z is the dimension of the Chern-
Simons Hilbert space, obtained from canonical quantization on R × Σ.
In turn, this Hilbert space can be interpreted geometrically as the space
of global holomorphic sections of a certain line bundle over the moduli
space M0 of flat connections on Σ.

If we consider for simplicity Chern-Simons theory with gauge group
G = SU(r + 1) at level k, then the relevant line bundle over M0 is
the k-th power of a universal determinant line L on M0. Of course,
the moduli space M0 is singular at the points corresponding to the re-
ducible flat connections on Σ. However, suitably interpreted, the index
theorem in combination with the Kodaira vanishing theorem for the
higher cohomology of Lk still yields a topological expression for Z,
(1.1)

Z(k) = dimH0(M0,Lk) = χ(M0,Lk) =

∫

M0

exp
(
k Ω′

)
Td(M0),

where Ω′ = c1(L) is the first Chern class of L and Td(M0) is the Todd
class of M0.

In this paper, we show that the Chern-Simons partition function has
an analogous topological interpretation on a related but much broader
class of three-manifolds. Specifically, we consider the case that M is
a Seifert manifold, so that M can be succinctly described as the total
space of a nontrivial circle bundle over a Riemann surface Σ,

(1.2) S1 −→ M
π−→ Σ,
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where, as we later explain, Σ is generally allowed to have orbifold points
and the circle bundle is allowed to be a corresponding orbifold bundle.

In this case, our fundamental result is to reinterpret the Chern-Simons
partition function as a topological quantity determined entirely by a
suitable equivariant cohomology ring on the moduli space of flat con-
nections on M . Because the moduli space of flat connections on M is
directly related to the moduli space of solutions of the Yang-Mills equa-
tion on Σ, our result implies that Chern-Simons theory on M can be
also be interpreted as a two-dimensional topological theory on Σ akin,
in a way which we make precise, to two-dimensional Yang-Mills theory.
This two-dimensional interpretation of Chern-Simons theory on M has
also been noted recently by Aganagic and collaborators in [15], where
the theory is identified with a q-deformed version of two-dimensional
Yang-Mills theory. For other work on relations between Chern-Simons
theory and two-dimensional Yang-Mills theory, see [16, 17, 18, 19].

Of course, physical Yang-Mills theory on a Riemann surface Σ also has
a well-known topological interpretation in terms of intersection theory
on the moduli space M0 of flat connections on Σ. This interpretation
follows from the technique of non-abelian localization, as applied to the
Yang-Mills path integral [20]. In an analogous fashion, we arrrive at
our new interpretation of Chern-Simons theory by applying non-abelian
localization to the Chern-Simons path integral,

(1.3) Z(k) =

∫
DA exp

[
i

k

4π

∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)]
.

As we recall in Section 4, non-abelian localization provides a method
for computing symplectic integrals of the canonical form

(1.4) Z(ǫ) =

∫

X
exp

[
Ω − 1

2ǫ
(µ, µ)

]
.

Here X is an arbitrary symplectic manifold with symplectic form Ω. We
assume that a Lie group H acts on X in a Hamiltonian fashion, with
moment map µ : X → h∗, where h∗ is the dual of the Lie algebra h of H.
Finally, (·, ·) is an invariant quadratic form on h and dually on h∗ which
we use to define the action S = 1

2(µ, µ), and ǫ is a coupling parameter.
As we briefly review in Section 2, the path integral of Yang-Mills

theory on a Riemann surface immediately takes the canonical form in
(1.4), where the affine space of all connections on a fixed principal bundle
plays the role of X and where the group of gauge transformations plays
the role of H. In contrast, the path integral (1.3) of Chern-Simons
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theory on a Seifert manifold is not manifestly of this required form.
Nonetheless, in Section 3 we show that this path integral can be cast
into the form (1.4) for which non-abelian localization applies. More
abstractly, we show that Chern-Simons theory on a Seifert manifold has
a symplectic interpretation generalizing the classic interpretation due
to Atiyah and Bott [21] of two-dimensional Yang-Mills theory.

Because the path integral of Chern-Simons theory on a Seifert man-
ifold M assumes the canonical form (1.4), we deduce as an immediate
corollary that the path integral localizes on critical points of the Chern-
Simons action, which are the flat connections on M . In fact, this obser-
vation has been made previously by Lawrence and Rozansky [22, 23]
(and later generalized by Mariño in [24]) as an entirely empirical state-
ment deduced from the known formula for the exact partition function.
For a selection of explicit computations of the Chern-Simons partition
function, see for instance [25, 26, 27, 28, 29, 30, 31, 32].

Considering SU(2) Chern-Simons theory on a Seifert homology sphere
M , Lawrence and Rozansky managed to recast the known formula for
Z(k), which initially involves an unwieldy sum over the integrable rep-
resentations of an SU(2) WZW model at level k, into a simple sum of
contour integrals and residues which can be formally identified with the
contributions from the flat connections on M in the stationary phase
approximation to the path integral.

A very simple example of a Seifert manifold is S3, by virtue of the
Hopf fibration over CP

1. The result of Lawrence and Rozansky in the
case of SU(2) Chern-Simons theory on S3 then amounts to rewriting
the well-known expression for Z(k) as below,

Z(k) =

√
2

k + 2
sin

(
π

k + 2

)
(1.5)

=
1

2πi
e− iπ

k+2

∫ +∞

−∞
dx sinh2

(
1

2
e

iπ
4 x

)
exp

(
−(k + 2)

8π
x2

)
.

We note that, when the hyperbolic sine is expressed as a sum of expo-
nentials, the integral in (1.5) becomes a sum of elementary Gaussian
integrals which conspire to produce the standard expression for Z(k).
Because the only flat connection on S3 is the trivial connection, the
integral over x in (1.5) is to be identified with the stationary phase
contribution from the trivial connection to the path integral.

So one immediate application of our work here is to provide an un-
derlying mathematical explanation for the phenomenological results in
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[22, 23, 24]. In fact, we will apply localization to the Chern-Simons
path integral to derive directly the expression of Lawrence and Rozan-
sky in (1.5) for the partition function on S3. One amusing aspect of this
computation is that we will see the famous shift in the level k → k + 2.

In order to perform concrete computations in Chern-Simons theory
using localization, we must have a thorough understanding of the local
symplectic geometry near each flat connection. As we will see, this
local geometry shares important features with the local geometry near
the higher, unstable critical points of Yang-Mills theory on a Riemann
surface.

Thus, as a warmup for our computations in Chern-Simons theory,
we begin in Section 4 by discussing localization for Yang-Mills theory.
We first review the computation in [20] of the contribution to the path
integral from flat Yang-Mills connections, corresponding to the stable
minima of the Yang-Mills action, and then we extend this result to
compute precisely the contributions from the higher, unstable critical
points as well. Localization at the unstable critical points of Yang-Mills
theory has been studied previously in the physics literature by Blau
and Thompson [33] and (most recently) in the mathematics literature
by Woodward and Teleman [34, 35], but we find it useful to supplement
these references with another discussion more along the lines of [20]. Of
course, the roots of our work on localization trace back to the beautiful
equivariant interpretation by Atiyah and Bott [36] of the Duistermaat-
Heckman formula [37].

In Section 5 we then apply localization to perform path integral com-
putations in Chern-Simons theory on a Seifert manifold. As mentioned
above, these computations depend on the nature of the local symplectic
geometry near each critical point, and for illustration we consider two
extreme cases.

First, we consider localization at the trivial connection on a Seifert
homology sphere. In this case, the first homology group of M is zero,
H1(M, Z) = 0, and the trivial connection is an isolated flat connection.
On the other hand, all constant gauge transformations on M fix the
trivial connection, and this large isotropy group, isomorphic to the gauge
group G itself, plays an important role in the localization. Here we
directly derive a formula found by Lawrence and Rozansky in [22] and
generalized by Mariño in [24].

Second, we consider localization on a smooth component of the mod-
uli space of flat connections. Such a component consists of irreducible
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connections, for which the isotropy group arises solely from the center
of G. In this case, we derive a formula originally obtained by Rozansky
in [23] by again working empirically from the known formula for the
partition function.

Finally, although we will not elaborate on this perspective here, one
of the original motivations for our study of localization in Chern-Simons
theory was to place computations in this theory into a theoretical frame-
work analogous to the framework of abelian localization in the topolog-
ical A-model of open and closed strings (see Chapter 9 of [38] for a
nice mathematical review of abelian localization in the closed string
A-model).

Special Note

We would like to thank Raoul Bott for his inspiration. Many of us
learned much of our differential topology from the book by Bott and
Tu [39]. The second author first learned of equivariant cohomology
from Bott, in 1983. This was in the context of Bott explaining the
mathematical context for certain results that had been suggested in
[40], following an earlier lecture given by Bott at a physics conference
[41] where the second author and many other physicists had heard of
Morse theory for the first time.

2. The Symplectic Geometry of Yang-Mills Theory on a

Riemann Surface

A central theme of this paper is the close relationship between Chern-
Simons theory on a Seifert manifold M and Yang-Mills theory on the
associated Riemann surface Σ. Thus, as a prelude to our discussion of
the path integral of Chern-Simons theory on M , we begin by recalling
how the path integral of Yang-Mills theory on Σ can be understood as
a symplectic integral of the canonical form (1.4).

In fact, we start by considering the path integral of Yang-Mills theory
on a compact Riemannian manifold Σ of arbitrary dimension, so that

Z(ǫ) =
1

Vol(G(P ))

(
1

2πǫ

)∆G(P )/2 ∫

A(P )
DA exp

[
1

2ǫ

∫

Σ
Tr (FA∧⋆FA)

]
,

(2.1)

∆G(P ) = dimG(P ).
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Here FA = dA+A∧A is the curvature of the connection A. We assume
that the Yang-Mills gauge group G is compact, connected, and simple. If
G = SU(r+1), then “Tr ” in (2.1) denotes the trace in the fundamental
representation. With our conventions, A is an anti-hermitian element
of the Lie algebra of SU(r+1), so that the trace determines a negative-
definite quadratic form. For more general G, “Tr ” denotes the unique
invariant, negative-definite quadratic form on the Lie algebra g of G
which is normalized so that, for simply-connected G, the Chern-Simons
level k in (1.3) obeys the conventional integral quantization. Of course,
the parameter ǫ is related to the Yang-Mills coupling g via ǫ = g2.

In order to define Z formally, we fix a principal G-bundle P over Σ.
Then the space A(P ) over which we integrate is the space of connections
on P . The group G(P ) of gauge transformations acts on A(P ), and we
have normalized Z in (2.1) by dividing by the volume of G(P ) and a
formal power of ǫ. As we review in Section 4, this normalization of Z is
the natural normalization when Σ is a Riemann surface and we apply
non-abelian localization to compute Z.

The space A(P ) is an affine space, which means that, if we choose
a particular basepoint A0 in A(P ), then we can identify A(P ) with its
tangent space at A0. This tangent space is the vector space of sections
of the bundle Ω1

Σ⊗ad(P ) of one-forms on Σ taking values in the adjoint
bundle associated to P . In other words, an arbitrary connection A on
P can be written as A = A0 + η for some section η of Ω1

Σ ⊗ ad(P ).
Of course, to discuss an integral over A(P ) even formally, we must

also discuss the measure DA that appears in (2.1). Because the space
A(P ) is affine, we can define DA up to an overall multiplicative constant
by taking any translation-invariant measure on A(P ).

In general, the Yang-Mills action is only defined once we choose a
metric on Σ, which induces a corresponding duality operator ⋆, as ap-
pears in (2.1). This duality operator ⋆ induces a metric on A(P ) such
that if η is any tangent vector to A(P ), then the norm of η is defined
by

(2.2) (η, η) = −
∫

Σ
Tr (η∧⋆η) .

Thus, a convenient way to represent the path integral measure and to fix
its normalization is to take DA to be the Riemannian measure induced
by the metric (2.2) on A(P ). We also use the operator ⋆ to define a
similar invariant metric on G(P ), which formally determines the volume
of G(P ).
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Although we generally require a metric on Σ to define physical Yang-
Mills theory, when Σ is a Riemann surface we actually need much less
geometric structure to define the theory. In this case, to define the Yang-
Mills action in (2.1) we only require a duality operator ⋆ which relates
the zero-forms and the two-forms on Σ. In turn, to define such an oper-
ator we require only a symplectic structure with associated symplectic
form ω on Σ, so that ⋆ is defined by ⋆1 = ω.

The symplectic form ω is invariant under all area-preserving dif-
feomorphisms of Σ, and this large group acts as a symmetry of two-
dimensional Yang-Mills theory. More precisely, this symmetry group
is “large” in the sense that its complexification is the full group of
orientation-preserving diffeomorphisms of Σ [42]. This fact is funda-
mentally responsible for the topological nature of two-dimensional Yang-
Mills theory.

Furthermore, when Σ is a Riemann surface, the affine space A(P )
acquires additional geometric structure. First, A(P ) has a natural sym-
plectic form Ω. If η and ξ are any two tangent vectors to A(P ), then Ω
is defined by

(2.3) Ω(η, ξ) = −
∫

Σ
Tr (η∧ξ) .

Clearly Ω is closed and non-degenerate. Second, A(P ) has a natural
complex structure. This complex structure is associated to the duality
operator ⋆ itself, since ⋆2 = −1 when acting on the tangent space of
A(P ). Finally, the metric on A(P ) is manifestly Kahler with respect
to this symplectic form and complex structure, since we see that the
metric defined by (2.2) can be rewritten as Ω( · , ⋆ · ).

An important consequence of the fact that the metric on A(P ) is
Kahler when Σ is a Riemann surface is that the Riemannian measure
DA on A(P ) is actually the same as the symplectic measure defined by
Ω. If X is a symplectic manifold of dimension 2n with symplectic form
Ω, then the symplectic measure on X is given by the top-form Ωn/n!.
This measure can be represented uniformly for X of arbitrary dimension
by the expression exp (Ω), where we implicitly pick out from the series
expansion of the exponential the term which is of top degree on X.
Consequently, because the Riemannian and the symplectic measures on
A(P ) agree, we can formally replace DA in the Yang-Mills path integral
(2.1) by the expression exp (Ω), as in the canonical symplectic integal
(1.4). This natural symplectic measure on A(P ) makes no reference to
the metric on Σ.
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The Yang-Mills Action as the Square of the Moment Map

Of course, as an affine space, A(P ) is pretty boring. What makes
Yang-Mills theory interesting is the fact that A(P ) is acted on by the
group G(P ) of gauge transformations. In fact, another special conse-
quence of considering Yang-Mills theory on a Riemann surface is that
the action of G(P ) on A(P ) is Hamiltonian with respect to the symplec-
tic form Ω.

To recall what the Hamiltonian condition implies, we consider the
general situation that a connected Lie group H with Lie algebra h acts
on a symplectic manifold X preserving the symplectic form Ω. The
action of H on X is then Hamiltonian when there exists an algebra ho-
momorphism from h to the algebra of functions on X under the Poisson
bracket. The Poisson bracket of functions f and g on X is given by
{f, g} = −Vf (g), where Vf is the Hamiltonian vector field associated
to f . This vector field is determined by the relation df = ιVf

Ω, where
ιVf

is the interior product with Vf . More explicitly, in local canoni-
cal coordinates on X, the components of Vf are determined by f as
V m

f = −(Ω−1)mn ∂nf , where Ω−1 is an “inverse” to Ω that arises by
considering the symplectic form as an isomorphism Ω : TM → T ∗M
with inverse Ω−1 : T ∗M → TM . In coordinates, Ω−1 is defined by
(Ω−1)lm Ωmn = δl

n, and {f, g} = ΩmnV m
f V n

g . The algebra homomor-
phism from the Lie algebra h to the algebra of functions on X under
the Poisson bracket is then specified by a moment map µ : X −→ h∗,
under which an element φ of h is sent to the function 〈µ, φ〉 on X, where
〈·, ·〉 is the dual pairing between h and h∗.

The moment map by definition satisfies the relation

(2.4) d〈µ, φ〉 = ιV (φ)Ω,

where V (φ) is the vector field on X which is generated by the infinitesi-
mal action of φ. In terms of µ, the Hamiltonian condition then becomes
the condition that µ also satisfy

(2.5) {〈µ, φ〉, 〈µ, ψ〉} = 〈µ, [φ, ψ]〉.
Geometrically, the equation (2.5) is an infinitesimal expression of the
condition that the moment map µ commute with the action of H on X
and the coadjoint action of H on h∗.

Returning from this abstract discussion to the case of Yang-Mills
theory on Σ, we first consider the moment map for the action of G(P )
on A(P ), as originally discussed in [21]. Elements of the Lie algebra of
G(P ) are represented by sections of the adjoint bundle ad(P ) on Σ, so
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if φ is such a section then the corresponding vector field V (φ) on A(P )
is given as usual by

(2.6) V (φ) = dAφ = dφ + [A, φ].

We then compute directly using (2.3),

(2.7) ιV (φ)Ω = −
∫

Σ
Tr (dAφ∧δA) =

∫

Σ
Tr (φ dAδA) = δ

∫

Σ
Tr (FAφ) .

Here we write δ for the exterior derivative acting on A(P ), so that, for
instance, δA is regarded as a one form on A(P ). Thus, the relation (2.4)
determines, up to an additive constant, that the moment map µ for the
action of G(P ) on A(P ) is

(2.8) µ = FA.

Here we regard FA, being a section of Ω2
Σ ⊗ ad(P ), as an element of the

dual of the Lie algebra of G(P ).
One can then check directly that µ in (2.8) satisfies the condition

(2.5) that it arise from a Lie algebra homomorphism, and this condition
fixes the arbitrary additive constant that could otherwise appear in µ
to be zero. Thus, G(P ) acts in a Hamiltonian fashion on A(P ) with
moment map given by µ = FA. In particular, if we introduce the obvious
positive-definite, invariant quadratic form on the Lie algebra of G(P ),
defined by

(2.9) (φ, φ) = −
∫

Σ
Tr (φ∧⋆φ) ,

then the Yang-Mills action S is proportional to the square of the moment
map,

(2.10) S = −1

2

∫

Σ
Tr (FA∧⋆FA) =

1

2
(µ, µ) .

As a result, the path integral of Yang-Mills theory on Σ can be recast
completely in terms of the symplectic data associated to the Hamilton-
ian action of G(P ) on A(P ),

(2.11) Z(ǫ) =
1

Vol(G(P ))

(
1

2πǫ

)∆G(P )/2 ∫

A(P )
exp

[
Ω − 1

2ǫ
(µ, µ)

]
,

precisely as in (1.4).
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3. The Symplectic Geometry of Chern-Simons Theory on a

Seifert Manifold

In this section, we explain how the path integral of Chern-Simons
theory on a Seifert manifold can be recast as a symplectic integral of
the canonical form (1.4) which is suitable for non-abelian localization.
More generally, we explain some beautiful facts about the symplectic
geometry of Chern-Simons theory on a Seifert manifold.

To set up notation, we consider Chern-Simons theory on a three-
manifold M with compact, connected, simply-connected, and simple
gauge group G. With these assumptions, any principal G-bundle P
on M is necessarily trivial, and we denote by A the affine space of
connections on the trivial bundle. We denote by G the group of gauge
transformations acting on A.

We begin with the Chern-Simons path integral,

Z(ǫ) =
1

Vol(G)

(
1

2πǫ

)∆G∫

A
DA exp

[
i

2ǫ

∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)]
,

(3.1)

ǫ =
2π

k
, ∆G = dimG.

We have introduced a coupling parameter ǫ by analogy to the canon-
ical integral in (1.4), and we have included a number of formal factors
in Z. First, we have the measure DA on A, which we define up to norm
as a translation-invariant measure on A. As is standard, we have also
divided the path integral by the volume of the gauge group G. Finally,
to be fastidious, we have normalized Z by a formal power of ǫ which, as
in (2.1), will be natural in defining Z by localization.

3.1. A New Formulation of Chern-Simons Theory. At the mo-
ment, we make no assumption about the three-manifold M . However,
if M is an S1 bundle over a Riemann surface Σ, or an orbifold thereof,
then to reduce Chern-Simons theory on M to a topological theory on Σ
we must eventually decouple one of the three components of the gauge
field A. This observation motivates the following general reformulation
of Chern-Simons theory, which proves to be key to the rest of the paper.

In order to decouple one of the components of A, we begin by choos-
ing a one-dimensional subbundle of the cotangent bundle T ∗M of M .
Locally on M , this choice can be represented by the choice of an every-
where non-zero one-form κ, so that the subbundle of T ∗M consists of
all one-forms proportional to κ. However, if t is any non-zero function,
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then clearly κ and t κ generate the same subbundle in T ∗M . Thus, our
choice of a one-dimensional subbundle of T ∗M corresponds locally to
the choice of an equivalence class of one-forms under the relation

(3.2) κ ∼ t κ.

We note that the representative one-form κ which generates the subbun-
dle need only be defined locally on M . Globally, the subbundle might
or might not be generated by a non-zero one-form which is defined ev-
erywhere on M ; this condition depends upon whether the sign of κ can
be consistently defined under (3.2) and thus whether the subbundle is
orientable or not.

We now attempt to decouple one of the three components of A.
Specifically, our goal is to reformulate Chern-Simons theory on M as a
theory which respects a new local symmetry under which A varies as

(3.3) δA = σκ.

Here σ is an arbitrary section of the bundle Ω0
M ⊗g of Lie algebra-valued

functions on M .
The Chern-Simons action certainly does not respect the local “shift”

symmetry in (3.3). However, we can trivially introduce this shift sym-
metry into Chern-Simons theory if we simultaneously introduce a new
scalar field Φ on M which transforms like A in the adjoint representation
of the gauge group. Under the shift symmetry, Φ transforms as

(3.4) δΦ = σ.

Now, if κ in (3.3) is scaled by a non-zero function t so that κ → t κ,
then this rescaling can be absorbed into the arbitrary section σ which
also appears in (3.3) so that the transformation law for A is well-defined.
However, from the transformation (3.4) of Φ under the same symmetry,
we see that because we absorb t into σ we must postulate an inverse
scaling of Φ, so that Φ → t−1Φ. As a result, although κ is only locally
defined up to scale, the product κΦ is well-defined on M .

The only extension of the Chern-Simons action which now incorpo-
rates both Φ and the shift symmetry is the Chern-Simons functional
CS( · ) of the shift invariant combination A − κΦ. Thus, we consider
the theory with action

(3.5) S(A, Φ) = CS(A − κΦ),
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or more explicitly,

(3.6) S(A, Φ) = CS(A) −
∫

M

[
2κ∧Tr (ΦFA) − κ∧dκ Tr (Φ2)

]
.

To proceed, we play the usual game used to derive field theory duali-
ties by path integral manipulations, as for T -duality in two dimensions
[43, 44] or abelian S-duality in four dimensions [45]. We have intro-
duced a new degree of freedom, namely Φ, into Chern-Simons theory,
and we have simultaneously enlarged the symmetry group of the theory
so that this degree of freedom is completely gauge trivial. As a result,
we can either use the shift symmetry (3.4) to gauge Φ away, in which
case we recover the usual description of Chern-Simons theory, or we can
integrate Φ out, in which case we obtain a new description of Chern-
Simons theory which respects the action of the shift symmetry (3.3) on
A.

A Contact Structure on M

Hitherto, we have supposed that the one-dimensional subbundle of
T ∗M represented by κ is arbitrary, but at this point we must impose
an important geometric condition on this subbundle. From the action
S(A, Φ) in (3.6), we see that the term quadratic in Φ is multiplied by the
local three-form κ∧dκ. In order for this quadratic term to be everywhere
non-degenerate on M , so that we can easily perform the path integral
over Φ, we require that κ∧dκ is also everywhere non-zero on M .

Although κ itself is only defined locally and up to rescaling by a
non-zero function t, the condition that κ∧dκ 6= 0 pointwise on M is a
globally well-defined condition on the subbundle generated by κ. For
when κ scales as κ → t κ for any non-zero function t, we easily see
that κ∧dκ also scales as κ∧dκ → t2 κ∧dκ. Thus, the condition that
κ∧dκ 6= 0 is preserved under arbitrary rescalings of κ.

The structure which we thus introduce on M is the choice of a one-
dimensional subbundle of T ∗M for which any local generator κ satisfies
κ∧dκ 6= 0 at each point of M . This geometric structure, which appears
so naturally here, is known as a contact structure [46, 47, 48]. More
generally, on an arbitrary manifold M of odd dimension 2n+1, a contact
structure on M is defined as a one-dimensional subbundle of T ∗M for
which the local generator κ satisfies κ∧(dκ)n 6= 0 everywhere on M .

In many ways, a contact structure is the analogue of a symplectic
structure for manifolds of odd dimension. The fact that we must choose
a contact structure on M for our reformulation of Chern-Simons theory
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is thus closely related to the fact, mentioned previously, that we must
choose a symplectic structure on the Riemann surface Σ in order to
define Yang-Mills theory on Σ.

We will say a bit more about contact structures on Seifert manifolds
later, but for now, we just observe that, by a classic theorem of Mar-
tinet [49], any compact, orientable1 three-manifold possesses a contact
structure.

Path Integral Manipulations

Thus, we choose a contact structure on the three-manifold M , and
we consider the theory defined by the path integral

(3.7) Z(ǫ) =
1

Vol(G)

1

Vol(S)

(
1

2πǫ

)∆G

×

×
∫

DADΦexp

[
i

2ǫ

(
CS (A)−

∫

M
2κ∧Tr (ΦFA)+

∫

M
κ∧dκTr

(
Φ2

))]
.

Here the measure DΦ is defined independently of any metric on M by
the invariant, positive-definite quadratic form

(3.8) (Φ, Φ) = −
∫

M
κ∧dκ Tr

(
Φ2

)
,

which is invariant under the scaling κ → t κ, Φ → t−1 Φ. We similarly
use this quadratic form to define formally the volume of the group S of
shift symmetries, as appears in the normalization of (3.7).

Using the shift symmetry (3.4), we can fix Φ = 0 trivially, with unit
Jacobian, and the resulting group integral over S produces a factor of
Vol(S) to cancel the corresponding factor in the normalization of Z(ǫ).
Hence, the new theory defined by (3.7) is fully equivalent to Chern-
Simons theory.

On the other hand, because the field Φ appears only quadratically in
the action (3.6), we can also perform the path integral over Φ directly.
Upon integrating out Φ, the new action S(A) for the gauge field becomes

(3.9) S(A) =

∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)
−

∫

M

1

κ∧dκ
Tr

[
(κ∧FA)2

]
.

We find it convenient to abuse notation slightly by writing “1/κ∧dκ”
in (3.9). To explain this notation precisely, we observe that, as κ∧dκ is

1We note that, because κ∧dκ → t2 κ∧dκ under a local rescaling of κ and because
t2 is always positive, the sign of the local three-form κ∧dκ is well-defined. So any
three-manifold with a contact structure is necessarily orientable.
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nonvanishing, we can always write κ∧FA = ϕ κ∧dκ for some function ϕ
on M taking values in the Lie algebra g. Thus, we set κ∧FA/κ∧dκ = ϕ,
and the second term in S(A) becomes

∫
M κ∧Tr (FAϕ). As our notation

in (3.9) suggests, this term is invariant under the transformation κ →
t κ, since ϕ transforms as ϕ → t−1 ϕ.

By construction, the new action S(A) in (3.9) is invariant under the
action of the shift symmetry (3.3) on A. We can directly check this
invariance once we note that, under the shift symmetry, the expression
κ∧FA transforms as

(3.10) κ∧FA −→ κ∧FA + σ κ∧dκ.

The partition function Z(ǫ) now takes the form

Z(ǫ) =
1

Vol(G)

1

Vol(S)

( −i

2πǫ

)∆G/2

×(3.11)

×
∫

A
DA exp

[
i

2ǫ

(∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)
−

−
∫

M

1

κ∧dκ
Tr

[
(κ∧FA)2

])]
,

where the Gaussian integral over Φ cancels some factors of 2πǫ in the
normalization of Z. As is standard, in integrating over Φ we assume
that the integration contour has been slightly rotated off the real axis,
effectively giving ǫ a small imaginary part, to regulate the oscillatory
Gaussian integral. Thus, the theory described by the path integral
(3.11) is fully equivalent to Chern-Simons theory, but now one compo-
nent of A manifestly decouples.

3.2. Contact Structures on Seifert Manifolds. Our reformulation
of Chern-Simons theory in (3.11) applies to any three-manifold M with
a specified contact structure. However, in order to apply non-abelian
localization to Chern-Simons theory on M , we require that M has ad-
ditional symmetry.

Specifically, we require that M admits a locally-free U(1) action,
which means that the generating vector field on M associated to the
infinitesimal action of U(1) is nowhere vanishing. A free U(1) action on
M clearly satisfies this condition, but more generally it is satisfied by
any U(1) action such that no point on M is fixed by all of U(1) (at such
a point the generating vector field would vanish). Such an action need
not be free, since some points on M could be fixed by a cyclic subgroup
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of U(1). The class of three-manifolds which admit a U(1) action of this
sort are precisely the Seifert manifolds [50].

To proceed further to a symplectic description of Chern-Simons the-
ory, we now restrict attention to the case that M is a Seifert manifold.
We first review a few basic facts about such manifolds, for which a
complete reference is [50].

M Admits a Free U(1) Action

For simplicity, we begin by assuming that the three-manifold M ad-
mits a free U(1) action. In this case, M is the total space of a circle
bundle over a Riemann surface Σ,

(3.12) S1 −→ M
π−→ Σ,

and the free U(1) action simply arises from rotations in the fiber of
(3.12). The topology of M is completely determined by the genus g
of Σ and the degree n of the bundle. Assuming that the bundle is
nontrivial, we can always arrange by a suitable choice of orientation for
M that n ≥ 1.

At this point, one might wonder why we restrict attention to the case
of nontrivial bundles over Σ. As we now explain, in this case M admits
a natural contact structure which is invariant under the action of U(1).
As a result, our reformulation of Chern-Simons theory in (3.11) still
respects this crucial symmetry of M .

To describe this U(1) invariant contact structure on M , we simply
exhibit an invariant one-form κ, defined globally on M , which satisfies
the contact condition that κ∧dκ is nowhere vanishing. To describe κ,
we begin by choosing a symplectic form ω on Σ which is normalized so
that

(3.13)

∫

Σ
ω = 1.

Regarding M as the total space of a principal U(1)-bundle, we take κ
to be a connection on this bundle (and hence a real-valued one-form on
M) whose curvature satisfies

(3.14) dκ = n π∗ω,

where we recall that n ≥ 1 is the degree of the bundle. For a nice,
explicit description of κ in this situation, see the description of the
angular form in [39, §6].

We let R (for “rotation”) be the non-vanishing vector field on M
which generates the U(1) action and which is normalized so that its
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orbits have unit period. By the fundamental properties of a connection,
κ is invariant under the U(1) action and satisfies 〈κ, R〉 = 1. Here we
use 〈 · , · 〉 generally to denote the canonical dual pairing. Thus, κ pulls
back to a non-zero one-form which generates the integral cohomology
of each S1 fiber of M , and we immediately see from (3.14) that κ∧dκ is
everywhere non-vanishing on M so long as the bundle is nontrivial.

For future reference, we note that the integral of κ∧dκ over M is
determined as follows. Because κ satisfies 〈κ, R〉 = 1, where R is the
generator of the U(1) action whose orbits correspond to the S1 fibers
over Σ in (3.12), the integral of κ over any such fiber is given by

(3.15)

∫

S1

κ = 1.

Upon integrating over the S1 fiber of M , we see from (3.13), (3.14), and
(3.15) that

(3.16)

∫

M
κ∧dκ = n

∫

M
κ∧π∗ω = n

∫

Σ
ω = n.

Orbifold Generalization

Of course, in the above construction we have assumed that M ad-
mits a free U(1) action, which is a more stringent requirement than
the condition that no point of M is completely fixed by the U(1) ac-
tion. However, an arbitrary Seifert manifold does admit an orbifold
description precisely analogous to the description of M as a principal
U(1)-bundle over a Riemann surface. This point of view is taken in a
nice paper by Furuta and Steer [51] for an application somewhat related
to ours, and we follow their basic exposition below.

To generalize our previous discussion to the case of an arbitrary
Seifert manifold, we simply replace the Riemann surface Σ with an orb-
ifold, and we replace the principal U(1)-bundle over Σ with its orbifold

counterpart. Concretely, the orbifold base Σ̂ of M is now described by
a Riemann surface of genus g with N marked points pj , j = 1, . . . , N ,
at which the coordinate neighborhoods are modeled not on C but on
C/Zαj

for some cyclic group Zαj
, which acts on the local coordinate z

at pj as

(3.17) z 7→ ζ · z, ζ = e 2πi/αj .

The choice of the particular orbifold points pj is topologically irrelevant,

and the orbifold base Σ̂ can be completely specified by the genus g and
the set of integers {α1, . . . , αN}.
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We now consider a line V -bundle over Σ̂. Such an object is precisely
analogous to a complex line bundle, except that the local trivialization

over each orbifold point pj of Σ̂ is now modeled on C × C/Zαj
, where

Zαj
acts on the local coordinates (z, s) of the base and fiber as

(3.18) z 7→ ζ · z, s 7→ ζβj · s , ζ = e 2πi/αj ,

for some integers 0 ≤ βj < αj .

Given such a line V -bundle over Σ̂, an arbitrary Seifert manifold M
can be described as the total space of the associated S1 fibration. Of
course, we require that M itself is smooth. This condition implies that
each pair of integers (αj , βj) above must be relatively prime so that
the local action (3.18) of the orbifold group Zαj

on C × S1 is free (in
particular, we require βj 6= 0 above).

The U(1) action on M again arises from rotations in the fibers over

Σ̂, but this action is no longer free. Rather, the points in the S1 fiber

over each ramification point pj of Σ̂ are fixed by the cyclic subgroup
Zαj

of U(1), due to the orbifold identification in (3.18).
Once the integers {β1, . . . , βN} are fixed, the topological isomorphism

class of a line V -bundle on Σ̂ is specified by a single integer n, the degree.
Thus, in total, the description of an arbitrary Seifert manifold M is given
by the Seifert invariants

(3.19)
[
g; n; (α1, β1), . . . , (αN , βN )

]
, gcd(αj , βj) = 1.

Because the basic notions of bundles, connections, curvatures, and
(rational) characteristic classes generalize immediately from smooth
manifolds to orbifolds [52, 53], our previous construction of an invariant
contact form κ as a connection on a principal U(1)-bundle immediately

generalizes to the orbifold situation here. In this case, if L̂ denotes the

line V -bundle over Σ̂ which describes M , with Seifert invariants (3.19),

then L̂ is nontrivial so long as its Chern class is non-zero (and positive
by convention),

(3.20) c1(L̂) = n +
N∑

j=1

βj

αj
> 0,

which generalizes our previous condition that n ≥ 1. In particular, n
can now be any integer such that the expression in (3.20) is positive.

In the Chern-Weil description of the Chern class, c1(L̂) is represented

by smooth curvature in the bulk of the orbifold Σ̂. In contrast, the
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degree n receives contributions from both the bulk curvature in Σ̂ and

from local, delta-function curvatures at the orbifold points of Σ̂. That is

why n is an integer but the orbifold first Chern class c1(L̂) is not. The
delta-function contributions to n are cancelled by the rational numbers

βj/αj appearing explicitly in the formula (3.20) for c1(L̂).
From (3.20), to define a contact structure on M we choose the con-

nection κ so that its curvature is given by

(3.21) dκ =


n +

N∑

j=1

βj

αj


 π∗ω̂,

where ω̂ is a symplectic form on Σ̂ of unit volume, as in (3.13). Then,
exactly as in (3.16), the integral of κ∧dκ over M is determined by the

Chern class of L̂,

(3.22)

∫

M
κ∧dκ = n +

N∑

j=1

βj

αj
.

For future reference, we also note that the Riemann-Roch formula for
a line bundle on a Riemann surface has a direct generalization to the
case of a line V -bundle on an orbifold [54], so that

(3.23) χ(L̂) = dimC H0(Σ̂, L̂) − dimC H1(Σ̂, L̂) = n + 1 − g,

which justifies calling n the degree of L̂.

In this discussion, we have used the notation Σ̂ and L̂ to distinguish
these orbifold quantities from their smooth counterparts Σ and L. In the
future, we will not make this artificial distinction, and in our discussion
of Chern-Simons theory we will use Σ and L to denote general orbifold
quantities.

3.3. A Symplectic Structure For Chern-Simons Theory. We
now specialize to the case of Chern-Simons theory on a Seifert manifold
M , which carries a distinguished U(1) action and an invariant contact
form κ. Initially, the path integral of Chern-Simons theory on M is an
integral over the affine space A of all connections on M . Unlike the case
of two-dimensional Yang-Mills theory, A is not naturally symplectic and
cannot play the role of the symplectic manifold X that appears in the
canonical symplectic integral (1.4).

However, we now reap the reward of our reformulation of Chern-
Simons theory to decouple one component of A. Specifically, we consider
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the following two-form Ω on A. If η and ξ are any two tangent vectors
to A, and hence are represented by sections of the bundle Ω1

M ⊗ g on
M , then we define Ω by

(3.24) Ω(η, ξ) = −
∫

M
κ∧Tr (η∧ξ) .

Because κ is a globally-defined one-form on M , this expression is well-
defined. Further, Ω is closed and invariant under all the symmetries.
In particular, Ω is invariant under the group S of shift symmetries,
and by virture of this shift invariance Ω is degenerate along tangent
vectors to A of the form σκ, where σ is an arbitrary section of Ω0

M ⊗ g.
However, unlike the gauge symmetry G, which acts nonlinearly on A,
the shift symmetry S acts in a simple, linear fashion on A. Thus, we
can trivially take the quotient of A by the action of S, which we denote
as A,

(3.25) A = A/S.

Under this quotient, the presymplectic form Ω on A descends imme-
diately to a symplectic form on A, which becomes a symplectic space
naturally associated to Chern-Simons theory on M . In the following, A
plays the role of the abstract symplectic manifold X in (1.4).

More About the Path Integral Measure

Our reformulation of the Chern-Simons action S(A) in (3.9) is in-
variant under the shift symmetry S, so S(A) descends to the quotient
A of A by S. But we should also think (at least formally) about the
path integral measure DA. As in Yang-Mills theory, we define DA up
to norm as a translation-invariant measure on A, and a convenient way
both to describe DA and to fix its normalization is to consider this mea-
sure as induced from a Riemannian metric on A. In turn, we describe
this metric on A as induced from a corresponding metric on M , so that
a tangent vector η to A has norm

(3.26) (η, η) = −
∫

M
Tr (η∧⋆η).

We normalize the volume of G in (3.1) using the similarly induced,
invariant metric on G.

We assume that U(1) acts on M by isometries, so that the metric on
M associated to the operator ⋆ in (3.26) takes the form

(3.27) ds2
M = π∗ds2

Σ + κ ⊗ κ.
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Here ds2
Σ represents any Kahler metric on Σ which is normalized so

that the corresponding Kahler form pulls back to dκ. As a result of this
normalization convention, the duality operator ⋆ defined by the metric
(3.27) satisfies ⋆1 = κ∧dκ.

Tangent vectors to the orbits of the shift symmetry S are described
by sections of Ω1

M ⊗ g which take the form σκ, where σ is any function

taking values in g on M . Similarly, tangent vectors to the quotient A
are naturally represented by sections of Ω1

M ⊗g which are annihilated by
the interior product ιR with the vector field R, the generator of the U(1)
action on M . When the metric on M takes the form in (3.27), the one-
forms annihilated by ιR are orthogonal to the one-forms proportional to
κ. Thus, the tangent space to S is orthogonal to the tangent space to
A in the corresponding metric (3.26) on A.

We can exhibit the orthogonal decomposition of the metric in (3.26)
explicitly as

(3.28) (η, η) = −
∫

M
κ∧dκ Tr

[
(ιRη)2

]
−

∫

M
κ∧Tr

[
Π(η)∧⋆2Π(η)

]
.

The first term in (3.28) describes the metric on S which we have already
introduced in (3.8), and the second term describes the induced metric
on A. The form of the first term follows immediately from the fact that
⋆κ = dκ.

In the second term of (3.28), we have introduced two natural oper-
ators. First, we introduce the the operator Π which projects from the
tangent space of A to the tangent space of A, so that Π is given by

(3.29) Π(η) = η − (ιRη) κ.

Trivially, ιR ◦ Π = 0.
Second, we introduce an effective “two-dimensional” duality operator

⋆2 on M which induces a corresponding complex structure on A. This
operator is defined globally on M by

(3.30) ⋆2 = −ιR ◦ ⋆.

Using that ⋆κ = dκ and ⋆1 = κ∧dκ, we see immediately that ⋆2 κ =
⋆2 (κ∧dκ) = 0 and that ⋆2 1 = −dκ. Also, one can easily check (for
instance by considering local coordinates) that ⋆2 satisfies (⋆2)

2 = −1
when acting on one-forms in the image of Π, representing tangent vec-
tors to A. This latter property is important, since it implies that ⋆2

defines a complex structure on A exactly as in two-dimensional Yang-
Mills theory.
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With this notation in place, the form of the second term in (3.28)
follows immediately from the simple computation below,

Π(η)∧⋆Π(η) = ιR

(
κ∧Π(η)

)
∧⋆Π(η),(3.31)

= −κ∧Π(η)∧ ιR

(
⋆Π(η)

)
,

= κ∧Π(η)∧⋆2Π(η).

In passing from the first to the second line of (3.31), we have “integrated
by parts” with respect to the operator ιR, as ιR (κ∧Π(η)∧⋆Π(η)) is
trivially zero on the three-manifold M by dimensional reasons.

We thus see from the second term in (3.28) that the induced metric
on A is Kahler with respect to the symplectic form Ω in (3.24) and the
complex structure ⋆2. Hence the Riemannian measure induced on A
from (3.28) is identical to the symplectic measure induced by Ω.

Finally, because the measure along the orbits of S in A is the same
as the invariant measure (3.8) which we defined on S itself, we can
trivially integrate over these orbits, which simply contribute a factor
of the volume Vol(S) to the path integral. Consequently, the Chern-
Simons path integral in (3.11) reduces to an integral over A with its
symplectic measure,

Z(ǫ) =
1

Vol(G)

( −i

2πǫ

)∆G/2 ∫

A
exp

[
Ω +

i

2ǫ
S (A)

]
,(3.32)

S(A) =

∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)
−

∫

M

1

κ∧dκ
Tr

[
(κ∧FA)2

]
.

3.4. Hamiltonian Symmetries of Chern–Simons Theory . To
complete our symplectic description of the Chern-Simons path integral
on M , we must show that the action S(A) in (3.32) is the square of a
moment map µ for the Hamiltonian action of some symmetry group H
on the symplectic space A.

By analogy to the case of Yang-Mills theory on Σ, one might naively
guess that the relevant symmetry group for Chern-Simons theory would
also be the group G of gauge transformations. One can easily check
that the action of G on A descends under the quotient to a well-defined
action on A, and clearly the symplectic form Ω on A is invariant under G.
However, one interesting aspect of non-abelian localization for Chern-
Simons theory is the fact that the group H which we use for localization
must be somewhat more complicated than G itself.
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A trivial objection to using G for localization is that, by construction,
the square of the moment map µ for any Hamiltonian action on A
defines an invariant function on A, but the action S(A) is not invariant
under the group G. Instead, the action S(A) is the sum of a manifestly
gauge invariant term and the usual Chern-Simons action, and the Chern-
Simons action shifts by integer multiples of 2π under “large” gauge
transformations, those not continuously connected to the identity in G.

This trivial objection is easily overcome. We consider not the dis-
connected group G of all gauge transformations but only the identity
component G0 of this group, under which S(A) is invariant.

We now consider the action of G0 on A, and our first task is to
determine the corresponding moment map µ. If φ is an element of the
Lie algebra of G0, described by a section of the bundle Ω0

M ⊗ g on M ,
then the corresponding vector field V (φ) generated by φ on A is given
by V (φ) = dAφ. Thus, from our expression for the symplectic form Ω
in (3.24) we see that

(3.33) ιV (φ)Ω = −
∫

M
κ∧Tr (dAφ∧δA) .

Integrating by parts with respect to dA, we can rewrite (3.33) in the
form δ〈µ, φ〉, where

(3.34) 〈µ, φ〉 =

∫

M
κ∧Tr

(
φFA

)
−

∫

M
dκ∧Tr

(
φ(A − A0)

)
.

Here A0 is an arbitrary connection, corresponding to a basepoint in A,
which we must choose so that the second term in (3.34) can be honestly
interpreted as the integral of a differential form on M . In the case that
the gauge group G is simply-connected, so that the principal G-bundle
over M is necessarily trivial, the choice of a basepoint connection A0

corresponds geometrically to the choice of a trivialization for the bundle
on M . We will say more about this choice momentarily, but we first
observe that the expression for µ in (3.34) is invariant under the shift
symmetry and immediately descends to a moment map for the action
of G on A.

The fact that we must choose a basepoint A0 in A to define the
moment map is very important in the following, and it is fundamentally
a reflection of the affine structure of A. In general, an affine space is
a space which can be identified with a vector space only after some
basepoint is chosen to represent the origin. In the case at hand, once
A0 is chosen, we can identify A with the vector space of sections η of the
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bundle Ω1
M⊗g on M , via A = A0+η, as we used in (3.34). However, A is

not naturally itself a vector space, since A does not intrinsically possess
a distinguished origin. This statement corresponds to the geometric
statement that, though our principal G-bundle on M is trivial, it does
not possess a canonical trivialization.

In terms of the moment map µ, the choice of A0 simply represents the
possibility of adding an arbitrary constant to µ. In general, our ability
to add a constant to µ means that µ need not determine a Hamiltonian
action of G0 on A. Indeed, as we show below, the action of G0 on A is
not Hamiltonian and we cannot simply use G0 to perform localization.

In order not to clutter the expressions below, we assume henceforth
that we have fixed a trivialization of the G-bundle on M and we simply
set A0 = 0.

To determine whether the action of G0 on A is Hamiltonian, we must
check the condition (2.5) that µ determine a homomorphism from the
Lie algebra of G0 to the algebra of functions on A under the Poisson
bracket. So we directly compute

{
〈µ, φ〉, 〈µ, ψ〉

}
= Ω

(
dAφ, dAψ

)
(3.35)

= −
∫

M
κ∧Tr (dAφ∧dAψ) ,

=

∫

M
κ∧Tr

(
[φ, ψ]FA

)
−

∫

M
dκ∧Tr

(
φdAψ

)
,

= 〈µ, [φ, ψ]〉 −
∫

M
dκ Tr

(
φdψ

)
.

Thus, the failure of µ to determine an algebra homomorphism is
measured by the cohomology class of the Lie algebra cocycle

c(φ, ψ) =
{
〈µ, φ〉, 〈µ, ψ〉

}
− 〈µ, [φ, ψ]〉,(3.36)

= −
∫

M
dκ∧Tr

(
φdψ

)

= −
∫

M
κ∧dκTr

(
φ£Rψ

)
.

In the second line of (3.36), we have rewritten the cocycle more sug-
gestively by using the Lie derivative £R along the vector field R on M
which generates the U(1) action. The class of this cocycle is not zero,
and no Hamiltonian action on A exists for the group G0.
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Some Facts About Loop Groups

The cocycle appearing in (3.36) has a very close relationship to a simi-
lar cocycle that arises in the theory of loop groups, and some well-known
loop group constructions feature heavily in our study of Chern-Simons
theory. We briefly review these ideas, for which a general reference is
[55].

When G is a finite-dimensional Lie group, we recall that the loop
group LG is defined as the group of smooth maps Map(S1, G) from S1

to G. Similarly, the Lie algebra Lg of LG is the algebra Map(S1, g)
of smooth maps from S1 to g. When g is simple, then the Lie algebra
Lg admits a unique, G-invariant cocycle up to scale, and this cocycle
is directly analogous to the cocycle we discovered in (3.36). If φ and ψ
are elements in the Lie algebra Lg, then this cocycle is defined by

(3.37) c(φ, ψ) = −
∫

S1

Tr
(
φdψ

)
= −

∫

S1

dt Tr
(
φ£Rψ

)
.

In passing to the last expression, we have by analogy to (3.36) intro-
duced a unit-length parameter t on S1, so that

∫
S1 dt = 1, and we have

introduced the dual vector field R = ∂/∂t which generates rotations of
S1.

In general, if g is any Lie algebra and c is a nontrivial cocycle, then
c determines a corresponding central extension g̃ of g,

(3.38) R −→ g̃ −→ g.

As a vector space, g̃ = g ⊕ R, and the Lie algebra of g̃ is given by the
bracket

(3.39)
[
(φ, a), (ψ, b)

]
=

(
[φ, ψ], c(φ, ψ)

)
,

where φ and ψ are elements of g, and a and b are elements of R.
In the case of the Lie algebra Lg, the cocycle c appearing in (3.37)

consequently determines a central extension L̃g of Lg. When G is simply
connected, the extension determined by c or any integral multiple of c
lifts to a corresponding extension of LG by U(1),

(3.40) U(1) −→ L̃G −→ LG.

Topologically, the extension L̃G is the total space of the S1 bundle over
LG whose Euler class is represented by the cocyle of the extension,
interpreted as an invariant two-form on LG. The fact that the Euler
class must be integral is responsible for the corresponding quantization
condition on the cocycle of the extension.
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When g is simple, the algebra Lg has a non-degenerate, invariant
inner product which is unique up to scale and is given by

(3.41) (φ, ψ) = −
∫

S1

dt Tr (φψ) .

On the other hand, the corresponding extension L̃g does not possess a

non-degenerate, invariant inner product, since any element of L̃g can be

expressed as a commutator, so that [L̃g, L̃g] = L̃g, and the center of L̃g

is necessarily orthogonal to every commutator under an invariant inner
product.

However, we can also consider the semidirect product U(1) ⋉ L̃G.

Here, the rigid U(1) action on S1 induces a natural U(1) action on L̃G
by which we define the product, and the important observation about

this group U(1)⋉ L̃G is that it does admit an invariant, non-degenerate
inner product on its Lie algebra.

Explicitly, the Lie algebra of S1
⋉ L̃G is identified with R ⊕ L̃g =

R ⊕ Lg ⊕ R as a vector space, and the Lie algebra is given by the
bracket

(3.42)
[
(p, φ, a), (q, ψ, b)

]
=

(
0, [φ, ψ] + p£Rψ − q£Rφ, c(φ, ψ)

)
,

where £R is the Lie derivative with respect to the vector field R gener-
ating rotations of S1. We then consider the manifestly non-degenerate

inner product on R ⊕ L̃g which is given by

(3.43)
(
(p, φ, a), (q, ψ, b)

)
= −

∫

M
dt Tr (φψ) − pb − qa.

One can directly check that this inner product is invariant under the
adjoint action determined by (3.42). We note that although this inner
product is non-degenerate, it is not positive-definite because of the last
two terms in (3.43).

Extension To Chern-Simons Theory

We now return to our original problem, which is to find a Hamiltonian
action of a group H on A to use for localization. The natural guess to
consider the identity component G0 of the gauge group does not work,
because the cocycle c in (3.36) obstructs the action of G0 on A from
being Hamiltonian.

However, motivated by the loop group constructions, we consider

now the central extension G̃0 of G0 by U(1) which is determined by the
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cocycle c in (3.36),

(3.44) U(1) −→ G̃0 −→ G0.

We assume that the central U(1) subgroup of G̃0 acts trivially on A, so
that the moment map for the central generator (0, a) of the Lie algebra
is constant. Then, by construction, we see from (3.36) and (3.39) that

the new moment map for the action of G̃0 on A, which is given by

(3.45) 〈µ, (φ, a)〉 =

∫

M
κ∧Tr (φFA) −

∫

M
dκ∧Tr (φA) + a,

satisfies the Hamiltonian condition

(3.46)
{〈

µ, (φ, a)
〉
,
〈
µ, (ψ, b)

〉}
=

〈
µ,

[
(φ, a), (ψ, b)

]〉
.

The action of the extended group G̃0 on A is thus Hamiltonian with
moment map in (3.45).

But G̃0 is still not the group H which we must use to perform non-
abelian localization in Chern-Simons theory! In order to realize the
action S(A) as the square of the moment map µ for some Hamiltonian
group action on A, the Lie algebra of the group must first possess a
non-degenerate, invariant inner product. Just as for the loop group

extension L̃G, the group G̃0 does not possess such an inner product.
However, we can elegantly remedy this problem, just as it was reme-

died for the loop group, by also considering the action of U(1) on M .

The U(1) action on M induces an action of U(1) on G̃0, so we consider

the associated semidirect product U(1) ⋉ G̃0. Then a non-degenerate,

invariant inner product on the Lie algebra of U(1) ⋉ G̃0 is given by

(3.47)
(
(p, φ, a), (q, ψ, b)

)
= −

∫

M
κ∧dκ Tr (φψ) − pb − qa,

in direct correspondence with (3.43). As for the loop group, this qua-
dratic form is of indefinite signature, due to the hyperbolic form of the
last two terms in (3.47).

Finally, the U(1) action on M immediately induces a corresponding
U(1) action on A. Since the contact form κ is invariant under this action,
the induced U(1) action on A descends to a corresponding action on the
quotient A. In general, the vector field upstairs on A which is generated

by an arbitrary element (p, φ, a) of the Lie algebra of U(1) ⋉ G̃0 is then
given by

(3.48) δA = dAφ + p£RA,



210 C. BEASLEY & E. WITTEN

where R is the vector field on M generating the action of U(1). Clearly
the moment for the new generator (p, 0, 0) is given by

(3.49)
〈
µ, (p, 0, 0)

〉
= −1

2
p

∫

M
κ∧Tr (£RA∧A) .

This moment is manifestly invariant under the shift symmetry and de-
scends to A.

In fact, the action of U(1) ⋉ G̃0 on A is Hamiltonian, with moment
map

(3.50)
〈
µ, (p, φ, a)

〉
= −1

2
p

∫

M
κ∧Tr (£RA∧A) +

+

∫

M
κ∧Tr (φFA) −

∫

M
dκ∧Tr (φA) + a.

To check this statement, it suffices to compute

(3.51)
{
〈µ, (p, 0, 0)〉, 〈µ, (0, ψ, 0)〉

}
,

which is the only nontrivial Poisson bracket that we have not already
computed. Thus,

{〈
µ, (p, 0, 0)

〉
,
〈
µ, (0, ψ, 0)

〉}
=(3.52)

= Ω
(
p£RA, dAψ

)

= −p

∫

M
κ∧Tr (£RA∧dAψ) ,

= p

∫

M
κ∧Tr (£Rψ FA) − p

∫

M
dκ∧Tr (£Rψ A) ,

=
〈
µ, (0, p£Rψ, 0)

〉
,

as required by the Lie bracket (3.42).

Thus, we identify H = U(1)⋉G̃0 as the relevant group of Hamiltonian
symmetries which we use for localization in Chern-Simons theory.

3.5. The Action S(A) as the Square of the Moment Map. By
construction, the square (µ, µ) of the moment map µ in (3.50) for the
Hamiltonian action of H on A is a function on A invariant under H.
The new Chern-Simons action S(A) in (3.9) is also a function on A
invariant under H. Given the high degree of symmetry, we certainly
expect that (µ, µ) and S(A) agree up to normalization. We now check
this fact directly and fix the relative normalization.
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We first observe that, in terms of the invariant form (·, ·) in (3.47)
on the Lie algebra of H, we can express the moment map dually as
determined by the inner product with the vector

(3.53)

(
−1, −

(
κ∧FA − dκ∧A

κ∧dκ

)
,

1

2

∫

M
κ∧Tr (£RA∧A)

)

in the Lie algebra of H, so that

(3.54)
〈
µ, (p, φ, a)

〉
=

=

((
−1,−

(
κ∧FA − dκ∧A

κ∧dκ

)
,
1

2

∫

M
κ∧Tr (£RA∧A)

)
, (p, φ, a)

)
.

Thus, by duality, the square of µ is determined to be

(µ, µ) =

〈
µ,

(
−1,−

(
κ∧FA − dκ∧A

κ∧dκ

)
,
1

2

∫

M
κ∧Tr (£RA∧A)

)〉
,

(3.55)

=

∫

M
κ∧Tr

(
£RA∧A

)
−

∫

M
κ∧dκ Tr

((κ∧FA − dκ∧A

κ∧dκ

)2
)
.

To simplify the first term of (3.55), we use the fact that the Lie
derivative £R can be expressed as an anti-commutator £R = {ιR, d},
so that

(3.56)

∫

M
κ∧Tr

(
£RA∧A

)
=

∫

M
κ∧Tr

(
{ιR, d}A∧A

)
.

We now observe that ιRA can be expressed as

(3.57) ιRA =
A∧dκ

κ∧dκ
.

Using this fact and integrating by parts2 with respect to the outermost
operator d or ιR in both of the two terms from the anti-commutator

2We observe that trivially ιR (κ∧Tr (dA∧A)) = 0.



212 C. BEASLEY & E. WITTEN

(3.56), we find that

∫

M
κ∧Tr

(
£RA∧A

)
=

∫

M

[
ιRκ∧Tr (dA∧A) − κ∧Tr (dA ιRA)+

(3.58)

+ dκ∧Tr (ιRA A) − κ∧Tr (ιRA dA)
]
,

=

∫

M

[
Tr (A∧dA) − 2κ∧Tr

(
dκ∧A

κ∧dκ
dA

)
+

+ dκ∧Tr

(
dκ∧A

κ∧dκ
A

)]
.

Consequently, after some algebra, we find that (3.55) becomes

(3.59) (µ, µ) = −
∫

M

1

κ∧dκ
Tr

((
κ∧FA

)2
)
+

+

∫

M
Tr

(
A∧dA

)
+ 2

∫

M
κ∧Tr

(
(ιRA)A∧A

)
.

In arriving at (3.59), we have observed that the terms involving κ in
(3.58) are cancelled by corresponding terms from the second term in

(3.55), arising from the perfect square ((κ∧FA − dκ∧A) /κ∧dκ)2, after
expanding FA = dA + A ∧ A. The last term in (3.59), cubic in A,
arises from the cross-term in this perfect square when we express FA =
dA + A∧A and we apply the identity (3.57).

To simplify the last term of (3.59), we observe that
(3.60)

0 = ιR

(
κ∧Tr (A∧A∧A)

)
= −3κ∧Tr

(
(ιRA)A∧A

)
+ Tr

(
A∧A∧A

)
,

so that
(3.61)

(µ, µ) = −
∫

M

1

κ∧dκ
Tr

((
κ∧FA

)2
)

+

∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)
.

We thus find the beautiful result,

(3.62) S(A) = (µ, µ).



NON-ABELIAN LOCALIZATION FOR CHERN-SIMONS THEORY 213

We finally write the Chern-Simons path integral as a symplectic integral
over A of the canonical form,

(3.63) Z(ǫ) =
1

Vol(G)

( −i

2πǫ

)∆G/2 ∫

A
exp

[
Ω +

i

2ǫ
(µ, µ)

]
.

4. Non-Abelian Localization and Two-Dimensional

Yang-Mills Theory

In this section, we recall following [20] how the technique of non-
abelian localization can be generally applied to study a symplectic in-
tegral of the canonical form
(4.1)

Z(ǫ) =
1

Vol(H)

(
1

2πǫ

)∆H/2 ∫

X
exp

[
Ω − 1

2ǫ
(µ, µ)

]
, ∆H = dim H.

Here X is a symplectic manifold with symplectic form Ω, and H is a Lie
group which acts on X in a Hamiltonian fashion with moment map µ.
Finally, ( · , · ) is an invariant, positive-definite3 quadratic form on the
Lie algebra h of H and dually on h∗ which we use to define the “action”
S = 1

2(µ, µ) and the volume Vol(H) of H that appear in (4.1).
Later in this section, we also review and extend the ideas of [20]

to apply non-abelian localization to Yang-Mills theory on a Riemann
surface.
4.1. General Aspects of Non-Abelian Localization . To ap-
ply non-abelian localization to an integral of the form (4.1), we first
observe that Z(ǫ) can be rewritten as

(4.2) Z(ǫ) =
1

Vol(H)

∫

h×X

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ)

]
.

Here φ is an element of the Lie algebra h of H, and [dφ] is the Euclidean
measure on h that is determined by the same invariant form ( ·, ·) which
we use to define the volume Vol(H) of H. The Gaussian integral over
φ in (4.2) leads immediately to the expression in (4.1). The measure
[dφ/2π] includes a factor of 1/2π for each real component of φ.

3In the case of Chern-Simons theory, the corresponding quadratic form (3.47) on
h has indefinite signature, due to the hyperbolic summand associated to the two
extra U(1) generators of H relative to the group of gauge transformations G0. Also,
invariance under large gauge transformations requires the Chern-Simons symplectic
integral (3.63) to be oscillatory, instead of exponentially damped. These features do
not essentially change our discussion of localization below, and we reserve further
comment until Section 5.
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A BRST Symmetry

The advantage of writing Z in the form (4.2) is that, once we intro-
duce φ, then Z becomes invariant under a BRST symmetry, and this
BRST symmetry leads directly to a localization formula for (4.2).

To describe this BRST symmetry, we recall that the moment map
satisfies

(4.3) d〈µ, φ〉 = ιV (φ)Ω,

where V (φ) is the vector field on X associated to the infinitesimal action
of φ. Because of the relation (4.3), the argument of the exponential in
(4.2) is immediately annihilated by the BRST operator D defined by

(4.4) D = d + i ιV (φ).

To exhibit the action of D locally, we choose a basis φa for h, and we
introduce local coordinates xm on X. We also introduce the notation
χm ≡ dxm for the corresponding basis of local one-forms on X, and we
expand the vector field V (φ) into components as V (φ) = φa V m

a ∂/∂xm.
Then the action of D in (4.4) is described in terms of these local coor-
dinates by

Dxm = χm,(4.5)

Dχm = i φa V m
a ,

Dφa = 0.

From this local description (4.5), we see that the action of D preserves
a ghost number, or grading, under which x carries charge 0, χ carries
charge +1, φ carries charge +2, and D itself carries charge +1.

The most important property of a BRST operator is that it squares
to zero. In this case, either from (4.4) or from (4.5), we see that D
squares to the Lie derivative along the vector field V (φ),

(4.6) D2 = i {d, ιV (φ)} = i£V (φ).

Thus, D2 = 0 exactly when D acts on the subspace of H-invariant
functions O(x, χ, φ) of x, χ, and φ.

For simplicity, we restrict attention to functions O(x, χ, φ) which are
polynomial in φ. Then an arbitrary function of this form can be ex-
panded as a sum of terms

(4.7) O(x)m1...mp a1...aq χm1 · · ·χmp φa1 · · ·φaq ,

for some 0 ≤ p ≤ dimX and q ≥ 0. (The restriction on p arises from the
fact that χ satisfies Fermi statistics, whereas φ satisfies Bose statistics.)
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Globally, each term of the form (4.7) is specified by a section of the
bundle Ωp

X ⊗ Symq(h∗) of p-forms on X which take values in the q-th
symmetric tensor product of the dual h∗ of the Lie algebra of H. Thus,
if we consider the complex (Ω∗

X ⊗ Sym∗ (h∗))H of all H-invariant differ-
ential forms on X which take values in the ring of polynomial functions
on h, then we see that D defines a cohomology theory associated to the
action of H on X. This cohomology theory is known as the Cartan
model of the H-equivariant cohomology of X. With the exception of
the last computation in Section 5.3, our applications will not require
a greater familiarity with equivariant cohomology than what we have
described here. However, in Section 5.3 we will need to use a few addi-
tional properties of equivariant cohomology that we discuss in Appendix
C, and we recommend [36, 56] as basic references.

Localization for Z

Because the argument of the exponential in (4.2) is annihilated by D
and because this argument is manifestly invariant under H, the inte-
grand of the symplectic integral Z determines an equivariant cohomol-
ogy class on X. Furthermore, by the usual arguments, Z is formally
unchanged by the addition of any D-exact invariant form to its inte-
grand. This formal statement can fail if X is not compact and Z suffers
from divergences, as we analyze in great detail in Appendix A, but for
the moment we ignore this issue and assume X is compact. Thus, Z
depends only on the equivariant cohomology class of its integrand.

We now explain how this fact leads immediately to a localization
formula for Z. We first observe that we can add to the argument of the
exponential in (4.2) an arbitrary term of the form t Dλ, where λ is any
H-invariant one-form on X and t is a real parameter, so that

(4.8) Z(ǫ) =
1

Vol(H)

∫

h×X

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ) + t Dλ

]
.

This deformation of the integrand of (4.2) is D-exact and does not
change Z. In particular, Z does not depend on t.

By definition, Dλ is given explicitly by

(4.9) Dλ = dλ + i 〈λ, V (φ)〉.
As before, 〈 · , · 〉 denotes the canonical dual pairing, so that in compo-
nents the last term of (4.9) is given by λmV m

a φa.
Thus, apart from a polynomial in t that arises from expanding the

term exp (t dλ), all of the dependence on t in the integrand of Z arises
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from the factor exp [i t 〈λ, V (φ)〉] that now appears in (4.8). So if we
consider the limit t → ∞, then the stationary phase approximation
to the integral is valid, and all contributions to Z localize around the
critical points of the function 〈λ, V (φ)〉.

We expand this function in the basis φa for h which we introduced
previously,

(4.10) 〈λ, V (φ)〉 = φa 〈λ, Va〉.

Thus, the critical points of 〈λ, V (φ)〉 arise from the simultaneous solu-
tions in h × X of the equations

〈λ, Va〉 = 0,(4.11)

φa d〈λ, Va〉 = 0.

The first equation in (4.11) implies that Z necessarily localizes on points
in h×X for which 〈λ, Va〉 vanishes. As for the second equation in (4.11),
we see that it is invariant under an overall scaling of φ in the vector
space h. Consequently, upon integrating over φ in (4.8), we see that
the critical locus of the function 〈λ, V (φ)〉 in h × X projects onto the
vanishing locus of 〈λ, Va〉 in X. So Z localizes on the subset of X where
〈λ, Va〉 = 0.

By making a specific choice of the one-form λ, we can describe the
localization of Z more precisely. In particular, we now show that Z
localizes on the set of critical points of the function S = 1

2(µ, µ) on X.
We begin by choosing an almost complex structure J on X. That is,

J : TX → TX is a linear map from TX to itself such that J2 = −1. We
assume that J is compatible with the symplectic form Ω in the sense
that Ω is of type (1, 1) with respect to J and the associated metric
G(·, ·) = Ω(·, J ·) on X is positive-definite. Such an almost complex
structure always exists.

Using J and S, we now introduce the invariant one-form

(4.12) λ = J dS = (µ, J dµ).

In components, λ = dxmJn
m∂nS = dxmµaJn

m∂nµa.
The integral Z now localizes on the subset of X where 〈λ, Va〉 = 0.

Comparing to (4.12), we see that this subset certainly includes all critical
points of S, since by definition dS = 0 at these points.

Conversely, we now show that if 〈λ, Va〉 = 0 at some point on X, then
this point is a critical point of S. To prove this assertion, we use the
inverse Ω−1 to Ω, which arises by considering the symplectic form as
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an isomorphism Ω : TM → T ∗M with inverse Ω−1 : T ∗M → TM . In
components, Ω−1 is defined by (Ω−1)lm Ωmn = δl

n.
In terms of Ω−1, the moment map equation (4.3) is equivalent to the

relation

(4.13) V = Ω−1 dµ,

or V m
a = (Ω−1)mn ∂nµa. Thus,

(4.14) Ω−1 dS =
(
µ, Ω−1dµ

)
= (µ, V ) ,

or (Ω−1)mn ∂nS = µaV m
a .

In particular, the condition that 〈λ, Va〉 = 0 implies that

(4.15) 0 = (µ, 〈λ, V 〉) = 〈λ, Ω−1dS〉 = 〈J dS, Ω−1dS〉,
or more explicitly,

(4.16) 0 = µaλmV m
a = λm (Ω−1)mn ∂nS = (Ω−1)mnJ l

m ∂lS ∂nS.

We recognize the last expression in (4.15) as the norm of the one-form
dS with respect to the metric G on X. As G is positive-definite, we
conclude that the condition 〈λ, Va〉 = 0 implies the vanishing of dS.
Thus, the symplectic integral Z localizes precisely on the critical set of
S.

4.2. Non-Abelian Localization For Yang-Mills Theory, Part I.

In the rest of this section, we apply non-abelian localization to perform
path integral computations in two-dimensional Yang-Mills theory on
a smooth Riemann surface Σ. These computations are an essential
warmup for our later computations in Chern-Simons theory.

As we discussed in Section 2, the Yang-Mills path integral is naturally
a symplectic integral of the canonical form (4.1), where the abstract
symplectic manifold X is now the affine space A(P ) of connections on a
fixed principal G-bundle P over Σ, and where the abstract group H is
now the group G(P ) of gauge transformations. Also, the moment map
for the action of G(P ) on A(P ) is simply the curvature of the connection,
µ = FA.

As a result of our general discussion above, the Yang-Mills path inte-
gral localizes on critical points of the Yang-Mills action. These critical
points fall into two qualitatively different sorts. Because the action
S = 1

2(µ, µ) is quadratic in the moment map µ, so that dS = (µ, dµ),
we see that the critical locus of S includes all points where µ vanishes, as
well as other points where µ is generally non-zero. The points at which
µ = 0 are clearly stable minima of S, and any other critical points at
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which µ 6= 0 are higher extrema of S, which in our applications are
unstable. In the case of Yang-Mills theory, the stable minima of the
action are the flat connections on Σ, and the higher extrema are con-
nections with non-zero curvature which represent classical solutions of
Yang-Mills theory, so that dA⋆FA = 0 with FA 6= 0.

For our application to Chern-Simons theory, we must understand
localization at both the flat and the non-flat solutions of classical Yang-
Mills theory. So in the rest of Section 4.2, we review following [20] how
non-abelian localization works for flat connections, and then in Section
4.3 we discuss the generalization for solutions of Yang-Mills theory with
curvature.

Localization on a Smooth Component of the Moduli Space of Flat Con-

nections

We assume that M0 is a smooth component of the moduli space
of flat connections on Σ. For ease of future notation, we make the
identifications

X = A(P ),(4.17)

H = G(P ),

µ = FA.

We now identify M0 abstractly as a symplectic quotient of the zero locus
µ−1(0) ⊂ X by the free action of the group H, so that M0 = µ−1(0)/H.

The fundamental result of [20], whose derivation we now recall, is
that the local contribution Z(ǫ)|M0 to the path integral from M0 is
given by the topological expression

(4.18) Z(ǫ)|M0 =

∫

M0

exp (Ω + ǫ Θ).

Here Ω is the symplectic form on M0 induced from the corresponding
symplectic form on X (also denoted previously by Ω), and Θ is a char-
acteristic class of degree four on M0 which appears explicitly as part of
the derivation of (4.18). In particular, when the coupling ǫ is zero, then
Z(0)|M0 is the symplectic volume of M0.

To derive (4.18) by localization, we start by considering the local
geometry of the zero set µ−1(0) in X. Thus, we let N be a small open
neighborhood of µ−1(0) in X, so that µ−1(0) ⊂ N ⊂ X. We assume
that this neighborhood is chosen so that N is preserved by the action of
H and so that N retracts equivariantly onto µ−1(0). By composing this
retraction with the quotient by the action of H, we define a projection
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pr : N → M0. Thus, denoting the fiber of pr by F , we have the
following equivariant bundle

(4.19) F −→ N
pr−→ M0.

The symplectic integral which describes the local contribution of M0

to Z is now given by
(4.20)

Z(ǫ)|M0 =
1

Vol(H)

∫

h×N

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ) + t Dλ

]
,

where λ is the invariant one-form that we introduced in (4.12) to localize
Z. Because N is noncompact, this integral in (4.20) is only defined by
localization, so that we require t 6= 0.

As explained in detail in [20], because N retracts equivariantly onto
M0 and because the action of H is free near µ−1(0), the equivariant
cohomology class of degree two4 represented by the expression Ω −
i 〈µ, φ〉 in (4.20) is simply the pullback by pr of the induced symplectic
form on M0. Similarly, the equivariant cohomology class of degree four
represented by −1

2(φ, φ) in (4.20) is the pullback by pr of an ordinary

cohomology class Θ of degree four on M0. Since H acts freely on µ−1(0),
Θ represents a degree four characteristic class of µ−1(0) regarded as a
principal H-bundle over M0.

Thus, as the only term appearing in the argument of the exponential
in (4.20) which does not pull back from M0 is t Dλ itself, to derive
(4.18) from (4.20) we must only show that the integral of exp (tDλ)
over the fiber F of (4.19) produces a trivial factor of 1,

(4.21)
1

Vol(H)

∫

h×F

[
dφ

2π

]
exp [t Dλ] = 1.

This computation is what we must essentially generalize to discuss lo-
calization at non-flat Yang-mills solutions, so we review it in detail.

A Local Model For F From Hodge Theory

In order to perform the direct computation of the integral in (4.21),
we first identify the correct local model for the geometry of F . By
assumption, the group H acts freely on F , so F must contain a copy
of H. Since F must also be symplectic, the simplest local model for F
is just the cotangent bundle T ∗H of H, with its canonical symplectic
structure.

4We recall that φ carries degree +2 with respect to equivariant cohomology.
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In fact, the simple guess that F = T ∗H is precisely correct, and
it has an important infinite-dimensional interpretation in the context
of Yang-Mills theory. To explain this interpretation, we consider the
tangent space to A(P ) at a point corresponding to a flat connection A.
As we have discussed, the tangent space to A(P ) at A can be identified
with the space of smooth sections Γ(Σ, Ω1

Σ ⊗ ad(P )) of the bundle of
one-forms on Σ taking values in the adjoint bundle ad(P ).

By definition, the flatness of A implies that the covariant derivative
dA satisfies d2

A = 0. Because of this fact, dA has many of the same
properties as the de Rham exterior derivative d, and the usual Hodge
decomposition for d has an immediate analogue for dA.

In the case of the covariant derivative dA, the Hodge decomposition
implies that the vector space Γ(Σ, Ω1

Σ ⊗ ad(P )) decomposes into three
subspaces, orthogonal with respect to the metric induced by ⋆ on A(P ),
of the form

(4.22) Γ(Σ, Ω1
Σ ⊗ ad(P )) = H1 ⊕ Im(dA) ⊕ Im(d†A).

Here d†A = −⋆ dA ⋆ is the standard adjoint to dA with respect to the
metric on A(P ). Also, H1 denotes the finite-dimensional subspace of
harmonic one-forms taking values in ad(P ), so that elements of H1

are annihilated by the Laplacian ∆A = dAd†A + d†AdA. Finally, Im(dA)

and Im(d†A) denote the images of dA and d†A when these operators act
respectively on sections of the bundles ad(P ) and Ω2

Σ ⊗ ad(P ) on Σ.
Concretely, the Hodge decomposition implies that, if η is any section

of Ω1
Σ ⊗ ad(P ), then η can be uniquely written as a sum of three terms,

all orthogonal,

(4.23) η = ξ + dAφ + d†AΨ,

where ξ satisfies ∆Aξ = 0 and where φ and Ψ are respectively sections
of the bundles ad(P ) and Ω2

Σ ⊗ ad(P ).
To interpret the Hodge decomposition (4.22) as a geometric state-

ment, we note that the finite-dimensional vector space H1 of harmonic
one-forms can be identified with the tangent space to the moduli space
M0 of flat connections at A. For instance, since d2

A = 0, we can consider
the cohomology of dA. As usual, we identify the harmonic forms in H1

as representatives of cohomology classes in H1(Σ, ad (P )). These coho-
mology classes describe infinitesimal deformations of the flat connection
A.
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On the other hand, since we assume that the gauge group G(P ) acts
freely at A, dA has no kernel when acting on sections of ad(P ). Oth-
erwise, if a section φ of ad(P ) did satisfy dAφ = 0, then the gauge
transformation generated by φ would fix A. Equivalently, we have that
H0(Σ, ad (P )) = 0.

Because dA has no kernel when acting on sections of ad(P ), dA can
be formally inverted and the image of dA in Γ(Σ, Ω1

Σ ⊗ ad(P )) identified
with the space of sections of ad(P ) itself. Of course, a section φ of ad(P ),
as appears in (4.23), is interpreted geometrically as a tangent vector to
the gauge group G(P ).

Similarly, we can also identify the image of the adjoint d†A with the
space of sections of the bundle Ω2

Σ ⊗ ad(P ). Such a section Ψ, as in
(4.23), is interpreted geometrically as a cotangent vector to the gauge
group G(P ).

Furthermore, if we recall the natural symplectic form Ω on A(P ) in
(2.3), we see that Im(dA) is isotropic with respect to Ω. For if φ and ψ
are any two sections of the bundle ad(P ) on Σ, then

(4.24) Ω(dAφ, dAψ) = −
∫

Σ
Tr (dAφ∧dAψ) =

∫

Σ
Tr (φd2

Aψ) = 0.

This fact crucially relies on the flatness of A, since we use that d2
A = 0 in

deducing the last equality of (4.24). Of course, the fact that Im(dA) is
isotropic with respect to Ω is mirrored by the fact that H is a Lagrangian
submanifold of T ∗H.

Thus, the Hodge decomposition (4.22) applied to Γ(Σ, Ω1
Σ ⊗ ad(P ))

locally reflects the geometric statement that F is modeled on the cotan-
gent bundle T ∗H. In this example, it may seem perverse to translate
the simple statement that F = T ∗H into the infinite-dimensional state-
ment of the Hodge decomposition. However, when we consider the
corresponding local geometry for higher critical points, this infinite-
dimensional perspective allows us to deduce directly how the simple
symplectic model based on T ∗H must be modified to describe higher
critical points of Yang-Mills theory.

Computing a Symplectic Integral on T ∗H

Having identified the symplectic model for F as the cotangent bundle
T ∗H, we compute in the remainder of this subsection the symplectic
integral

(4.25)
1

Vol(H)

∫

h×T ∗H

[
dφ

2π

]
exp [t Dλ].
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We review this short computation from [20] simply because we must
generalize it to discuss localization at non-flat Yang-Mills connections.

Thus, we consider the symplectic manifold T ∗H with its canonical
symplectic structure. By convention, the action of H on T ∗H is induced
from the right action of H on itself. By passing to a basis of right-
invariant one-forms and using the invariant metric (·, ·) on H, we identify
T ∗H ∼= H×h. Under this identification, we introduce coordinates (g, γ)
on H × h.

In these coordinates, the canonical right-invariant one-form on H
which takes values in h is given by

(4.26) θ = dgg−1.

In terms of θ, the canonical symplectic structure on T ∗H is given by
the invariant two-form

Ω = d(γ, θ) = (dγ, θ) + (γ, dθ),(4.27)

=

(
dγ +

1

2
[γ, θ], θ

)
,

where in passing to the second line of (4.27) we recall that dθ = θ∧θ =
1
2 [θ, θ]. Also, if φ is an element of h, then the corresponding vector field
V (φ) on T ∗H which is generated by the infinitesimal right-action of φ
is given by

(4.28) δg = −gφ, δγ = 0.

To proceed, we require an explicit formula for the invariant one-form
λ appearing in (4.25). Abstractly, λ = (µ, J dµ) is determined by the
moment map µ for the H-action on T ∗H and an almost complex struc-
ture J compatible with Ω in (4.27), both of which are easy to deter-
mine. A convenient formula for λ was obtained in [20]. In brief, one
has 〈µ, φ〉 = −(γ, gφg−1), and one defines a G-invariant almost complex
structure compatible with Ω by

(4.29) J(θ) = −
(

dγ +
1

2
[γ, θ]

)
, J

(
dγ +

1

2
[γ, θ]

)
= θ.

One then finds that (µ, J dµ) = (γ, θ) after using the fact that [γ, γ] = 0.
So finally

(4.30) λ = (µ, J dµ) = (γ, θ).

Thus, from (4.28), (4.30), and the definition of D in (4.4), we see that

(4.31) Dλ = Ω − i
(
γ, gφg−1

)
.
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Without loss, we set t = 1 in (4.25) and we change variables from φ
to gφg−1, under which the measure [dφ] on h is invariant. Then the
symplectic integral takes the simple form

(4.32)
1

Vol(H)

∫

h×T ∗H

[
dφ

2π

]
exp

[
Ω − i (γ, φ)

]
.

The integral over γ can be done using the fact that

(4.33)

∫ +∞

−∞
dy exp (−ixy) = 2π δ(x),

and the resulting multi-dimensional delta function can be used to per-
form the integral over φ. We note that the factors of 2π from (4.33)
nicely cancel the factors of 2π in the measure for φ. Finally, the re-
maining integral over g in H produces a factor of the volume Vol(H)
which cancels the prefactor in (4.32). Thus, assuming T ∗H is suitably
oriented, the symplectic integral over T ∗H is indeed 1, as claimed in
(4.21).

4.3. Non-Abelian Localization For Yang-Mills Theory, Part II.

We now study localization at the higher, unstable critical points of the
Yang-Mills action, which correspond to non-flat connections which solve
the Yang-Mills equation on Σ. Localization at the higher critical points
of two-dimensional Yang-Mills theory has recently been discussed from
a mathematical perspective by Woodward and Teleman [34, 35], but we
find it useful to proceed with a more naive discussion along the lines of
[20]. We begin with some generalities about non-flat connections which
solve the Yang-Mills equation on Σ.

We first introduce the notation f for the section of ad(P ) dual to the
curvature FA,

(4.34) f = ⋆FA.

Then, by definition, any Yang-Mills solution on Σ satisfies the classical
equation of motion

(4.35) dAf = 0.

This equation simply expresses the geometric condition that f be a
covariantly constant section of ad(P ), and we can consequently regard
f as an element of the Lie algebra g of G.

Because f is constant, f yields a reduction of the structure group
G of the bundle to the subgroup Gf ⊂ G which commutes with f . In
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physical terms, the background curvature breaks the gauge group from
G to Gf .

As a result of the reduction from G to Gf , any non-flat Yang-Mills
solution for gauge group G can be succinctly described as a flat connec-
tion for gauge group Gf which is twisted by a constant curvature line
bundle associated to the U(1) subgroup of G generated by f .

In general, we denote by Mf the moduli space of Yang-Mills connec-
tions whose curvature lies in the conjugacy class of f . We have already
discussed localization on the moduli space M0 of flat connections, for
which G0 = G. At the opposite extreme, f breaks G to a maximal
torus Gf commuting with f . We refer to such a Yang-Mills solution as
“maximally reducible,” and one basic goal in this section is to obtain
an explicit formula, as in (4.18), for the contribution to the path inte-
gral from the corresponding moduli space Mf of maximally reducible
Yang-Mills solutions. Of course, we could also consider the local contri-
butions from Yang-Mills solutions between the extremes of the flat and
maximally reducible connections, but this further generalization is not
necessary for our discussion of Chern-Simons theory.

Because f is constant, the adjoint action of f determines a bundle
map from ad(P ) to itself, and a good idea is to decompose ad(P ) under
this action. With our conventions, f is anti-hermitian, so following [21]
we introduce a hermitian operator Λ,

(4.36) Λ = i [f, · ] ,
which acts on a section φ of ad(P ) as Λ φ = i [f, φ].

When we consider the action of Λ, it is natural to work with complex,
as opposed to real, quantities. So we now consider in place of the
real bundle ad(P ) the complex bundle adC(P ) = ad(P ) ⊗ C. When
we complexify ad(P ), the (1, 0) and (0, 1) parts of an ad(P )-valued
connection become independent complex variables. After picking a local
complex coordinate z on Σ, these can be written locally as Az and Az.

Under the action of Λ, the bundle adC(P ) decomposes into a direct
sum of subbundles, each associated to a distinct eigenvalue of Λ. For
our purposes, we need only consider the decomposition of adC(P ) into
the positive, zero, and negative eigenspaces of Λ,

(4.37) adC(P ) = ad+(P ) ⊕ ad0(P ) ⊕ ad−(P ),

where ad±(P ) and ad0(P ) denote respectively the subbundles of adC(P )
associated to these eigenspaces. The eigenspace decomposition of
adC(P ) in (4.37) will play an important role shortly.
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Example: G = SU(2)

As a simple example of these ideas, we consider the higher Yang-
Mills critical points when the gauge group G is SU(2). In this case, all
non-flat Yang-Mills solutions are maximally reducible, since any f 6= 0
reduces the structure group to a maximal torus U(1) ⊂ SU(2).

The rank-one case G = SU(2) of Yang-Mills theory is also the es-
sential case to understand for our application to Chern-Simons gauge
theory, with gauge group of arbitrary rank. As we explain in Section 5,
near a flat Chern-Simons connection on the three-manifold M , the local
geometry in the symplectic manifold A of (3.25) can be modeled on the
geometry of infinitely-many copies of the geometry near a higher SU(2)
Yang-Mills critical point. This correspondence arises heuristically by
identifying the background Yang-Mills curvature f , which generates the
torus U(1) ⊂ SU(2), with the geometric curvature of M regarded as a
principal U(1)-bundle over the surface Σ.

In the case of Yang-Mills theory, since f reduces the structure group
of the SU(2) bundle to U(1), the SU(2) bundle on Σ splits as a direct
sum of line bundles. As f itself is associated to a constant curvature
line bundle on Σ, up to conjugacy f takes the form

(4.38) f = 2πi

(
n 0
0 −n

)
,

for some integer n 6= 0. Because the Weyl group of SU(2) acts on f by
sending n → −n, without loss we can assume that n > 0.

Introducing the standard generators of su(2) regarded as a complex
Lie algebra,

(4.39) σz =

(
i 0
0 −i

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
,

we see that Λ acts on su(2), and hence on adC(P ), with eigenvalues 0
and ±4πn. Thus, in this case the general decomposition of adC(P ) in
(4.37) takes the simple form

(4.40) adC(P ) = L−1(−2n) ⊕O ⊕ L(2n).

Here O is the trivial line bundle on Σ, L is an arbitrary flat line bundle
on Σ, and we use the standard notation L(2n) = L ⊗O(2n), where
O(2n) is the 2n-th tensor power of a fixed line bundle O(1) of degree
one on Σ.

Thus, for each n > 0, the choice of a non-flat connection solving the
Yang-Mills equation on Σ is determined by the choice of the flat line
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bundle L on Σ. Such a line bundle is specified by the U(1) holonomy
of its connection, and hence the moduli space of flat line bundles on Σ
is parametrized by a complex torus, the Jacobian of Σ. If Σ has genus
g, with 2g periods, then the Jacobian has complex dimension g. Thus,
for fixed f 6= 0, the moduli space Mf of higher critical points of SU(2)
Yang-Mills theory on Σ is simply a complex torus of dimension g.

More generally, if we consider an arbitrary gauge group G of rank r
such that f breaks G to a maximal torus, then the corresponding moduli
space Mf is again a complex torus of dimension g r which describes the
holonomy in U(1)r.

The Partition Function of SU(2) Yang-Mills Theory

One of our basic goals in the rest of this section is to compute directly
the contributions from higher critical points to the partition function
Z of SU(2) Yang-Mills theory. Of course, Z can be computed exactly
[57], and we can readily extract from the known expression for Z a
formula for the local contributions from the higher critical points. So
before we delve into our path integral computation, we present now the
answer which we expect to reproduce and we preview its most interesting
features.

In general, if the gauge group G is simply-connected, then the par-
tition function of Yang-Mills theory on a unit area Riemann surface of
genus g is given by a sum over representations R of G of the form

(4.41) Z(ǫ) = (Vol(G))2g−2
∑

R

1

dim(R)2g−2
exp

(
−1

2
ǫ C̃2 (R)

)
.

Here C̃2(R) is a renormalized5 version of the quadratic Casimir associ-
ated to the representation R, and the volume Vol(G) of G is determined
in our conventions by the invariant form −Tr on the Lie algebra g. We
recall that for G = SU(r+1), “Tr ” denotes the trace in the fundamental
representation.

Finally, because of the possibility of weighting the Yang-Mills path
integral on Σ by a purely topological factor exp (c (2g − 2)) for an ar-
bitrary constant c, we have fixed the prefactor in (4.41) so that Z(0)
agrees, at least up to a sign which we will not try to fix, with the
symplectic volume of the moduli space M0 of flat connections on Σ

5The renormalized quadratic Casimir eC2(R) differs from the usual quadratic
Casimir solely by an additive constant.
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as computed in [58] from the theory of Reidemeister-Ray-Singer tor-
sion. Our choice of c differs from the choice in [58] simply because the
symplectic form Ω in (2.3) which we use here is related to the integral
symplectic form Ω′ used in [58] by Ω = 4π2 Ω′.

We now evaluate (4.41) in the case G = SU(2). In this case, each rep-
resentation is labelled by its dimension, so we denote by Rn the SU(2)
representation of dimension n. The renormalized quadratic Casimir of
Rn, which is just the usual quadratic Casimir with an additive constant,
is then

(4.42) C̃2(Rn) =
1

2
n2.

Finally, using the metric on SU(2) determined by −Tr , the volume of

SU(2) is given6 by Vol(SU(2)) = 25/2π2. Thus, the partition function
(4.41) of SU(2) Yang-Mills theory on Σ becomes

(4.43) Z(ǫ) =
(
32π4

)g−1
∞∑

n=1

1

n2g−2
exp

(
−ǫ n2

4

)
.

In order to extract the contributions of the higher critical points from
(4.43), we first differentiate Z(ǫ) with respect to ǫ to cancel the prefactor

n−2(g−1) in the summand of (4.43),

∂g−1Z(ǫ)

∂ǫg−1
=

(
−8π4

)g−1
∞∑

n=1

exp

(
−ǫ n2

4

)
(4.44)

=
1

2

(
−8π4

)g−1

(
−1 +

∑

n∈Z

exp

(
−ǫ n2

4

))
.

To obtain a manifestly convergent expression in the weak coupling
regime of small ǫ, we apply Poisson summation to the last term of
(4.44) to obtain
(4.45)

∂g−1Z(ǫ)

∂ǫg−1
=

1

2

(
−8π4

)g−1

(
−1 +

√
4π

ǫ

∑

n∈Z

exp

(
−(2πn)2

ǫ

))
.

Finally, to identify the contribution in (4.45) from higher Yang-Mills
critical points, we observe that at a higher critical point of degree n, the

6This fact follows immediately if we recall that the volume of an S3 of unit radius
is 2π2. However, in our metric on SU(2), the U(1) subgroup associated to the

normalized generator Tz = 1√
2

σz, as in (4.39), has length 2π
√

2, so SU(2) has radius

r =
√

2 in our metric.
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classical Yang-Mills action Sn determined by f in (4.38) is given by Sn =
(2πn)2/ǫ (assuming Σ has unit area). The semiclassical contribution to
Z from such a critical point is weighted by the usual exponential factor
exp (−Sn), which we see directly in the last term of (4.45). Thus, the
locus Mn of higher critical points of degree n contributes to the sum in
(4.45) as

(4.46)
∂g−1Z(ǫ)

∂ǫg−1

∣∣∣∣∣
Mn

=
(
−8π4

)g−1

√
4π

ǫ
exp

(
−(2πn)2

ǫ

)
.

We note that a trivial factor of two in (4.46) arises from the action of
the Weyl group, since the two terms in (4.45) for both ±n arise from
the higher critical points of degree n.

This expression (4.46) is what we compute using localization, and
it has a number of interesting features. Most fundamentally, we see
that the natural quantity to consider is not Z but its derivative
∂g−1Z(ǫ)/∂ǫg−1. In discussing the higher critical points, we lose nothing
by considering this derivative, since any terms in Z that are polynomial
in ǫ, and hence are annihilated by the derivative, arise as contributions
from the moduli space M0 of flat connections. Moreover, although
the formula in (4.46) is expressed in terms of elementary functions, its
integral with respect to ǫ cannot be expressed so simply.

We also see from (4.46) that the local contributions from the higher
critical points to ∂g−1Z(ǫ)/∂ǫg−1 are essentially independent of g and n,
apart from a numerical prefactor and the usual exponential dependence
on the classical action Sn.

Finally, we see that the only dependence on ǫ in (4.46) besides the
classical dependence on Sn is through the prefactor proportional to
ǫ−1/2. As we will see, this prefactor reflects the geometric fact that
the gauge group does not act freely on the locus of non-flat Yang-Mills
solutions. To explain this fact, we note that for any Yang-Mills solution
the section f of ad(P ) satisfies dAf = 0, so that f 6= 0 generates a U(1)
subgroup of the gauge group G(P ) that fixes the corresponding point of
A(P ).

This geometric observation about higher critical points of Yang-Mills
theory is actually a general property of any higher critical points of the
abstract symplectic model with quadratic action S = 1

2(µ, µ). Namely,
the abstract Hamiltonian group H can never act freely at a higher crit-
ical point of S.
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By definition, such a higher critical point x0 in the symplectic man-
ifold X is described by the conditions dS = (µ, dµ) = 0 with µ 6= 0 at
x0. To show that H does not act freely at x0, we now exhibit a Hamil-
tonian vector field which vanishes at x0. We first recall the quantity
V = Ω−1dµ which we introduced in Section 4.1. Geometrically V , or
V m

a = (Ω−1)mn∂nµa in components, is a linear map from the Lie al-
gebra h of H to the space of Hamiltonian vector fields on X. From
(4.13) and (4.14), we see that V trivially satisfies (µ, V ) = µaV m

a = 0 at
x0. But since µ(x0) is non-zero, we can consider on X the Hamilton-
ian vector field generated by µ(x0) itself. This vector field is given by
(µ(x0) , V ) = µ(x0)

a V m
a , and by our observations above it vanishes at

x0.

The Hodge Decomposition at a Higher Yang-Mills Critical Point

In many respects, localization at an irreducible, flat Yang-Mills solu-
tion is precisely opposite to localization at a maximally reducible, non-
flat Yang-Mills solution. In both cases, the local geometry in A(P ) near
these critical points can be described as the total space N of an equivari-
ant bundle with infinite-dimensional fiber F over a finite-dimensional
moduli space Mf ,

(4.47) F −→ N
pr−→ Mf .

However, in the case of a flat connection the interesting contributions to
the integral over N arise from the moduli space M0 itself, and the in-
tegral over the infinite-dimensional fiber F = T ∗H contributes a trivial
factor of 1. In contrast, for a maximally reducible Yang-Mills solution,
the integral over Mf is essentially trivial, and the interesting contri-
butions arise from the fiber F . Therefore, the most important aspect
of our discussion of non-abelian localization at higher critical points
in Yang-Mills theory is to identify the correct symplectic model for F ,
analogous to the identification F = T ∗H used previously.

At this point, we can immediately see that a local symplectic model
for F based on T ∗H does not correctly describe the geometry near Mf

if f 6= 0. First, as we have already observed, the gauge group does
not act freely at points on Mf , as we used in identifying F with T ∗H
when we considered the geometry near M0. Second, if φ and ψ are any
two sections of ad(P ) representing tangent vectors to G(P ), then the
computation in (4.24) shows that the symplectic form Ω at a point on
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Mf satisfies

Ω(dAφ, dAψ) = −
∫

Σ
Tr (dAφ∧dAψ)(4.48)

=

∫

Σ
Tr (φd2

Aψ) =

∫

Σ
Tr (φ [FA, ψ]) .

Here we just use the fact that d2
A = FA is nonzero, and we observe that

the last expression in (4.48) need not vanish for suitable φ and ψ. Thus,
the orbit of G(P ) through any point on Mf is no longer an isotropic
submanifold of A(P ), as would be required to model this orbit on H
embedded in the cotangent bundle T ∗H with its canonical symplectic
structure.

Now, the fact that F is not modelled on T ∗H at a higher critical
point of Yang-Mills theory must be reflected in a breakdown of the
naive Hodge decomposition for the corresponding covariant derivative
dA, so that

(4.49) Γ(Σ, Ω1
Σ ⊗ ad(P )) 6= H1 ⊕ Im(dA) ⊕ Im(d†A).

Thus, a natural strategy to determine the correct symplectic model for
F is just to consider how the Hodge decomposition is modified when A
is a non-flat solution of the Yang-Mills equation.

In expanding around a flat connection, the tangent space to the mod-
uli space M0 of flat connections is given by H1

dA
(Σ, ad (P )). For a non-

flat Yang-Mills connection, dA only squares to zero when restricted to
ad0(P ), the subspace of ad(P ) that commutes with f . On the other
hand, deformations of a Yang-Mills solution automatically preserve f
up to gauge transformation, simply because f automatically has inte-
gral eigenvalues. So tangent vectors to Mf can always be represented
by ad0(P )-valued one-forms, which represent deformations of the Yang-
Mills solution by flat connections valued in the subgroup of G that com-
mutes with f . So the tangent space to Mf is H1 = H1

dA
(Σ, ad0(P )).

By standard Hodge theory, this can also be defined as

(4.50) H1 = H1
∂
(Σ, ad0(P )).

Similarly, the Lie algebra of the unbroken subgroup Gf , which leaves
fixed the given Yang-Mills connection, is

(4.51) H0 = H0
dA

(Σ, ad0(P )) = H0
∂
(Σ, ad0(P )).
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What we have said so far is a fairly direct generalization of the usual
statements in the flat case. However, if A is a non-flat Yang-Mills so-
lution, then the usual Hodge theory needs to be modified from the flat
case in two essential ways. First, once we get out of ad0(P ), the image of

dA and the image of d†A are no longer transverse. They have a nonzero,
finite-dimensional intersection that we will call E0:

(4.52) Im(dA) ∩ Im(d†A) = E0.

Second, the image of dA plus the image of d†A plus the tangent space
H1 to the moduli space no longer generates TP = Γ(Σ, Ω1

Σ ⊗ ad(P )).

The quotient TP /(Im(dA)⊕Im(d†A)) is another finite-dimensional vector
space E1. The bundles E0 and E1 both have natural complex structures.
They will turn out to be

E0 = H0
∂
(Σ, ad+(P )) ,(4.53)

E1 = H1
∂
(Σ, ad+(P )) ⊕ H1

∂
(Σ, ad−(P )).

We will often regard these complex vector spaces as real vector spaces
of twice the dimension.

Thus, the correct generalization of (4.49) is informally

(4.54) Γ(Σ, Ω1
Σ ⊗ ad(P )) = H1 ⊕ Im(dA) ⊕ Im(d†A) ⊖ E0 ⊕ E1.

As indicated by our use of “⊖”, the expression in (4.54) is to be inter-

preted somewhat in the sense of K-theory. Since Im(dA) and Im(d†A)
have a non-trivial intersection E0, this extra copy of E0 must be removed
to get the right description of Γ(Σ, Ω1

Σ ⊗ ad(P )).
The definition of the Dolbeault cohomology groups in (4.53) requires

a complex structure on Σ. Abstractly, this complex structure is induced
from the duality operator ⋆ on Σ. Because ⋆2 = −1 when ⋆ acts on any
one-form on Σ, we can define the bundles Ω0,1 and Ω1,0 of complex one-
forms of either type on Σ by the respective +i and −i eigenspaces of
⋆. This decomposition by type determines the complex structure and
hence the Dolbeault ∂ operator appearing in (4.53).

However, for the following we find it useful to give an explicit formula
for the operator ∂, acting on the bundle adC(P ), in terms of ⋆ and the

covariant derivative dA. We define the operators ∂(p) acting on complex
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p-forms on Σ taking values in adC(P ) by

∂(0) = dA − i ⋆dA,(4.55)

∂(1) = −i dA + dA⋆,

∂(2) = 0.

Again because ⋆2 = −1 when acting on one-forms on Σ, one can easily
check the essential requirement that ∂(1)◦∂(0) = 0. From the expression
for ∂(1) in (4.55), we also see that ∂(1) annihilates all one-forms in the
+i eigenspace of ⋆, which we have identified with the space of one-forms
of type (0, 1).

The subbundle ad0(P ) has a de Rham cohomology (with respect to
dA) that we have already encountered. The subbundles ad+(P ) and
ad−(P ) do not have de Rham cohomology, but they have Dolbeault
cohomology groups
(4.56)
H0

∂
(Σ, ad+(P )), H0

∂
(Σ, ad−(P )), H1

∂
(Σ, ad+(P )), H1

∂
(Σ, ad−(P ))

that we should expect will enter somehow. Of these cohomology groups,
H0

∂
(Σ, ad−(P )) is zero by the Kodaira vanishing theorem [21], which

is the reason that E0 in (4.53) only involves ad+(P ). (We also note
parenthetically that H1

∂
(Σ, ad+(P )) is similarly zero for critical points

associated to line bundles of sufficiently high degree.) So we are left
to show that E0 corresponds to the finite-dimensional intersection of

Im(dA) and Im(d†A) and E1 describes the tangent vectors to A(P ) not

contained in Im(dA) ⊕ Im(d†A) ⊕H1.
We identify E0 as described in (4.52) immediately from our formula

for ∂(0) in (4.55). It is convenient to write ad(P ) = ad0(P ) ⊕ ad⊥(P ),
with ad⊥(P ) (whose complexification is ad+(P ) ⊕ ad−(P )) the ortho-
complement of ad0(P ). By standard Hodge theory, if we restrict to

ad0(P ), Im(dA) ∩ Im(d†A) = 0. So the nontrivial intersection of Im(dA)

and Im(d†A) occurs in ad⊥(P ). Such an intersection arises if there is

φ ∈ Γ(Σ, ad⊥(P )) and Ψ ∈ Ω2(Σ, ad⊥(P )) such that dAφ = d†AΨ. If

so, let ψ = ⋆Ψ, whereupon, since d†A = −⋆dA⋆ and ⋆2 = −1, we have

dAφ = −⋆dAψ. So if ϕ = φ + iψ, we have ∂(0)ϕ = (dA − i⋆dA)ϕ = 0.
Hence ϕ ∈ H0

∂
(Σ, ad+(P )⊕ad−(P )). But by Kodaira vanishing, ad−(P )

does not contribute, and ϕ ∈ H0
∂
(Σ, ad+(P )). This argument can also
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be run backwards, to map H0
∂
(Σ, ad+(P )) to E0. This explains the claim

that E0 = H0
∂
(Σ, ad+(P )).

Finally, we can identify E1, the subspace of Γ(Σ, ad⊥(P )) that is or-

thogonal to the image of dA and the image of d†A. We begin with the
tautological observation that the orthocomplement of the image of dA

is precisely the kernel of d†A, and similarly the orthocomplement of the

image of d†A is precisely the the kernel of dA. Thus, E1, the orthocomple-

ment to the image of dA and d†A, consists of forms annihilated by both

d†A and dA.7 Given the formula ∂(1) = −idA + dA⋆, it follows that ∂(1)

annihilates E1. Moreover, ∂
†(1), the ∂

†
operator acting on one-forms, is

∂
†(1) = d†A−id†A⋆, and so annihilates E1. This reasoning can also be read

backwards to show that a form annihilated by ∂(1) and its adjoint ∂
†(1)

is annihilated by dA and d†A and hence is contained in E1. By Hodge

theory, the joint kernel of ∂ and ∂
†

is the same as the cohomology of ∂.
So finally, E1 = H1

∂
(Σ, ad+(P ) ⊕ ad−(P )), as we have claimed.

A New Symplectic Model For Localization

The Hodge decomposition (4.54) implicitly describes the local sym-
plectic model to use at a higher Yang-Mills critical point. We now
present this model and compute via localization the canonical symplec-
tic integral in this case.

Abstractly, our local model for F now differs in two ways from the
model based on the cotangent bundle T ∗H. First, H no longer acts
freely at the given critical point. We let H0 ⊂ H denote the subgroup
of H which fixes the critical point. Thus, the orbit of H through the
critical point can be identified with H/H0. In the case of Yang-Mills
theory, the vector space H0 of harmonic sections of ad0(P ) is abstractly
identified with the Lie algebra h0 of H0.

Second, because of the appearance of E0 and E1 in the Hodge decom-
position in (4.54), the naive model based on the cotangent bundle of the
orbit H/H0 must be modified in the following way. If we simply wanted
to discuss the cotangent bundle of the orbit H/H0, then we could again
pass to a basis of right-invariant forms and use the invariant metric (·, ·)

7Notice that although d2
A and d†

A
2 are nonzero in general, they annihilate

Ω1(Σ, ad⊥(P )) for dimensional reasons, as a result of which dA and d†
A can have

a kernel!
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on h to present T ∗(H/H0) as a homogeneous bundle

(4.57) T ∗(H/H0) ∼= H ×H0 (h ⊖ h0) .

Here h ⊖ h0 denotes the orthogonal complement to h0 in h, and “×H0”
indicates that we identify points (g, γ) in the product H×(h⊖h0) under
the following action of H0,

(4.58) h · (g, γ) =
(
hg, hγh−1

)
, h ∈ H0.

To incorporate the appearance of E0 and E1 in (4.54), we now intro-
duce abstractly a subspace E0 of the Lie algebra h which has a trivial
intersection with h0 and is preserved under the adjoint action of H0,
so that infinitesimally [h0, E0] ⊆ E0. This condition certainly holds in
Yang-Mills theory for the vector space E0. Similarly, we introduce an-
other vector space E1 on which H0 acts in some representation. We
assume that, like the subspace E0, the representation E1 admits a met-
ric invariant under the action of H0.

We now describe our model for F as a homogeneous bundle over the
orbit H/H0 which generalizes (4.57). To describe this bundle, we need
only specify the fiber of F over the identity coset of H/H0 and the action
of H0 on the fiber. Thus, as in the modified Hodge decomposition (4.54),
we subtract E0 from the cotangent fiber of H/H0 in (4.57), meaning that
we take the orthogonal complement to E0 in h ⊖ h0, and we also add
E1 to the cotangent fiber of H/H0. So the resulting fiber of F over the
identity is given by h ⊖ h0 ⊖ E0 ⊕ E1. By our assumptions on E0 and
E1, this vector space transforms as a representation of H0.

In summary, the local model for F is given abstractly by the following
homogeneous bundle over H/H0,

(4.59) F = H ×H0 (h ⊖ h0 ⊖ E0 ⊕ E1) .

We now use γ to denote an element of the orthogonal complement h⊥

to h0 ⊕ E0 in h,

(4.60) γ ∈ h⊥ = h ⊖ h0 ⊖ E0,

and we use v to denote a vector in E1. So in (4.59), we identify points
(g, γ, v) in the product H × (h⊥ ⊕ E1) under the following action of H0,

(4.61) h · (g, γ, v) =
(
hg , hγh−1, h · v

)
, h ∈ H0.

To specify completely our local model, we must also discuss the sym-
plectic structure and the Hamiltonian H-action on F . We will be some-
what brief, since we are just applying standard techniques to construct
symplectic bundles, as explained for instance in Ch. 35–41 of [59].
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In order to construct a symplectic structure on F , we must make
some additional assumptions about the representations E0 and E1 of
H0. We first introduce an element γ0 of h0. Abstractly, γ0 corresponds
to the value of the moment map at the given critical point, and in the
Yang-Mills context γ0 is identified with f .

As in Yang-Mills theory, we assume that the hermitian operator Λ,

(4.62) Λ = i [γ0, · ] ,
annihilates h0 and acts on the vector spaces E0 and E1 with strictly
non-zero eigenvalues. The first assumption implies that γ0 is central in
h0 and is invariant under the adjoint action of H0,

(4.63) H0 γ0 H−1
0 = γ0.

Because the action of γ0 preserves the invariant metrics on E0 and E1,
the action of γ0 is represented by a real, anti-symmetric matrix. By our
second assumption above, this matrix is non-degenerate. Consequently,
the decomposition of E0, and similarly E1, into the positive and negative
eigenspaces of Λ defines a complex structure which is invariant under
the action of H0 and for which the invariant metric (·, ·) is hermitian.

Having introduced γ0, we now describe the symplectic structure on
F . As in Section 4.2, we let θ be the canonical right-invariant one-form
on H taking values in h,

(4.64) θ = dgg−1.

We recall that in the case of the cotangent bundle T ∗H or T ∗(H/H0),
we can immediately describe the sympletic structure with the manifestly
closed and non-degenerate two-form Ω0,

(4.65) Ω0 = d(γ, θ),

which reduces on the orbit H/H0, where γ = 0, to the canonical form
(dγ, θ).

Similarly, when we consider the homogeneous bundle F in (4.59), Ω0

in (4.65) still descends to a closed two-form on F . However, because γ
now takes values in h⊥ as in (4.60), the restriction of Ω0 to the orbit
H/H0 is degenerate on the subspace E0 of the tangent space to the
orbit. Thus, if we ignore the vector space E1 for the moment, then to
construct a symplectic structure on the homogeneous bundle with fiber
h⊥ over H/H0 we must supplement the canonical two-form Ω0 with an
additional two-form which is non-degenerate on E0.

What other two-form should we consider? For motivation, while keep-
ing E1 = 0, let us consider the opposite case from the cotangent bundle.
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As the cotangent bundle has E0 = 0, the other extreme is for E0 to be
all of h ⊖ h0, so that h ⊖ h0 ⊖ E0 = 0 and F = H/H0. Since we have
postulated that γ0 acts non-degenerately on E0, while commuting with
h0, it follows in this case that h0 is precisely the subalgebra of h that
commutes with γ0. Therefore, H/H0 is precisely the orbit of γ0 in the
Lie algebra of H. Such an orbit is called a coadjoint orbit (for compact
Lie groups the difference between the adjoint representation and its dual
is not important here) and has a natural symplectic structure, namely

(4.66) Ω1 = d(γ0, θ) =
1

2
(θ, [γ0, θ]) ,

where we observe that dθ = θ∧θ = 1
2 [θ, θ] in deducing the second equal-

ity of (4.66). Because γ0 is invariant under the adjoint action of H0 in
(4.63), Ω1 is also invariant under the action of H0 in (4.61) and descends
to a manifestly closed and nondegenerate two-form on H/H0. Indeed,
coadjoint orbits are the basic examples of homogeneous symplectic man-
ifolds.

In fact, we have already seen the coadjoint form Ω1 arise in the context
of Yang-Mills theory. We recall from (4.48) that the restriction of the
Yang-Mills symplectic form Ω on the affine space A(P ) to the orbit of
G(P ) through a non-flat Yang-Mills solution is given by

(4.67) Ω(dAφ, dAψ) =

∫

Σ
Tr (φ [FA, ψ]) .

Upon identifying the abstract element γ0 with f , we see that Ω1 in
(4.66) precisely represents (4.67).

The general case, still with E1 = 0, is a mixture of the cotangent
bundle and the coadjoint orbit. We thus naturally add the two two-
forms that arise in those two cases and consider the sum

(4.68) Ω0 + Ω1 = d(γ + γ0, θ),

which restricts on the orbit H/H0, where γ = 0, to the simple expression

(4.69) (Ω0 + Ω1) |H/H0
= (dγ, θ) +

1

2
(θ, [γ0, θ]) .

We see immediately from (4.69) that Ω0 + Ω1 defines a symplectic form
on a neighborhood of H/H0 in the homogeneous bundle with fiber h⊥.
For instance, since the expression in (4.68) is manifestly invariant under
the right action of H on H/H0, we need only consider (4.69) as re-
stricted to the tangent space (h⊖ h0)⊕ h⊥ of the bundle at the identity
coset on H/H0. The top power of (4.69) on this tangent space is then
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manifestly non-zero, since all tangent vectors in h⊥ are paired by Ω0

and the remaining tangent vectors to the orbit in E0 are paired by Ω1.
Finally, we need to include E1. By assumption, E1 has a metric and

a complex structure invariant under the action of H0, so that E1 has an

associated symplectic form Ω̃ invariant under H0.

In order to pass from the symplectic form Ω̃ on E1 to a closed two-
form on F which is non-degenerate on the E1 fiber at the identity coset
of H/H0 and compatible with the bundle structure of F , we must further
suppose that H0 acts on E1 in a Hamiltonian fashion with moment map
µ̃. We can always choose µ̃ to vanish at the origin of E1. We also observe
that since the action of H0 on E1 is linear, of the form δv = ψ · v for v
in E1 and ψ in h0, the moment map µ̃ depends quadratically on v and
satisfies dµ̃ = 0 at the origin of E1.

With these observations in hand, we consider the two-form Ω2 defined
below,

(4.70) Ω2 = Ω̃ + d〈µ̃, θ〉.
This two-form is manifestly closed, as Ω̃ is closed. It also is clearly
invariant under the action of H0 in (4.61).

Finally, to explain the appearance of the second term in (4.70), we
note that the action of h0 on F can be described as follows. For ψ ∈ h0,
the corresponding vector field V (ψ) on F acts by

(4.71) δg = ψg, δγ = [ψ, γ] , δv = ψ · v.

In order that Ω2 descend under the quotient by H0 which defines the
bundle, we require that Ω2 be invariant under H0 (as we have al-
ready seen) and that Ω2 be annihilated by contraction with V (ψ). By

the defining moment map relation, the contraction of V (ψ) with Ω̃ is

ιV (ψ)Ω̃ = d〈µ̃, ψ〉. As for the second term in (4.70), the one-form 〈µ̃, θ〉 is
invariant under the action of H0 and hence annihilated by the Lie deriv-
ative £V (ψ) = {d, ιV (ψ)}. Thus we see that ιV (ψ) d〈µ̃, θ〉 = −d ιV (ψ)〈µ̃, θ〉
= −d〈µ̃, ψ〉, which cancels the contraction of ιV (ψ) with Ω̃.

Because µ̃ = dµ̃ = 0 at the origin of E1, the restriction of Ω2 to the

orbit H/H0 in F is simply the symplectic form Ω̃ on E1. Thus, the sum
of Ω0, Ω1, and Ω2 defines a symplectic form Ω on a neighborhood of the
orbit H/H0 in F ,

Ω = Ω0 + Ω1 + Ω2,(4.72)

= d (γ + γ0, θ) + d〈µ̃, θ〉 + Ω̃.
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Having placed a symplectic structure on F , we are left to consider
the action of H on F . As in the model based on the cotangent bundle,
we assume that H acts from the right on the orbit H/H0 in F , so that

(4.73) h · (g, γ, v) = (gh−1, γ, v), h ∈ H.

The corresponding element φ in h generates the vector field

(4.74) δg = −gφ, δγ = 0, δv = 0.

Since the one-form θ appearing in Ω is right-invariant, the symplectic
form Ω is manifestly invariant under H.

Finally, using (4.72) and (4.74), one can easily check that the action
of H on F is Hamiltonian with moment map µ given by

(4.75) 〈µ, φ〉 =
(
γ + γ0, gφg−1

)
+

〈
µ̃, gφg−1

〉
.

In particular, we see that the value of µ at the point corresponding to
the identity coset on the orbit H/H0 is just the dual of γ0 in h∗, as we
have claimed.

Computing the Symplectic Integral over F

For our applications to both Yang-Mills theory and Chern-Simons
theory, we now compute the canonical symplectic integral over F ,

(4.76) Z(ǫ) =
1

Vol(H)

∫

h×F

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ) + t Dλ

]
.

In this expression, λ is the canonical one-form defined as in (4.12) by
λ = J dS, where S = 1

2(µ, µ) and J is a compatible almost-complex
structure, and t is a non-zero parameter.

Before we delve into computations, let us make a few remarks about
how this symplectic integral over F is to be interpreted. We start by
considering the canonical symplectic integral (4.8) of the same form as
(4.76) but defined as an integral over a compact symplectic manifold
X instead of F . Because X is compact, this integral is convergent for
arbitrary t, including t = 0, and does not depend on either t or λ.

By our general analysis of Section 4.1, in the limit t → ∞ and for λ
of the canonical form, the integral over X localizes on the critical set
of S and reduces to a finite sum of contributions from the components
of this set. Although the global integral over X is perfectly defined,
independent of t and λ, the contributions from the critical locus of S
are only defined via localization, with t 6= 0 and λ of the canonical
form. For instance, at a higher critical point of S, for which we model
the normal symplectic geometry on F , the unstable modes of S make the
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integral over the non-compact fibers of F ill-defined when t = 0. Thus,
the symplectic integral Z(ǫ) over F as in (4.76) represents a definition

of the local contribution from an unstable critical point of S in X.
Although we use the canonical one-form λ = J dS to define via local-

ization the integral over F in (4.76), we are free to compute Z(ǫ) using
any other invariant form λ′ which is homotopic to λ on F . In particular,
though λ is defined globally on X, λ′ need only be defined locally on F .

The reason that we might want to compute Z(ǫ) using some alterna-
tive form λ′ instead of the canonical one-form λ is just that generically
the integral over F defined by λ is not Gaussian even in the limit t → ∞
and cannot be easily evaluated in closed form. See the appendix of [20]
for a simple example of this behavior. However, by making a convenient
choice for λ′, we can greatly simplify our computation and essentially
reduce it to the evaluation of Gaussian integrals.

So in order to compute Z(ǫ) in (4.76), we first make a convenient
choice for λ′. Since the motivation for our choice is fundamentally to
simplify the evaluation of Z(ǫ), we next evaluate (4.76) using λ′ in place
of λ. Finally, in Appendix A, we perform the analysis required to show
that Z(ǫ) as defined using the canonical one-form λ can be equivalently
evaluated using λ′.

To describe our choice for λ′, we introduce a projection Πh0 onto h0

and a projection ΠE0 onto E0 in the Lie algebra h of H. We define these
projections using the invariant metric on h, so that they are invariant
under the adjoint action of H0 on h. We then introduce the quantities

θh0 = Πh0(θ) , (gφg−1)h0 = Πh0(gφg−1),(4.77)

θE0 = ΠE0(θ), (gφg−1)E0 = ΠE0(gφg−1).

We now define λ′ as

(4.78) λ′ = (γ, θ) − i
(
θE0 , gφg−1

)
+

+ i
((

gφg−1
)
h0

· v, dv
)
− i

((
gφg−1

)
h0

· v, θh0 · v
)

.

The first term in (4.78) has the same form as the canonical one-form
which we used for localization on T ∗H. However, we recall that now
γ takes values not in h but in h⊥ = h ⊖ h0 ⊖ E0. As before, this first
term has degree one under the grading on equivariant cohomology. The
other three terms are associated to the new vector spaces E0 and E1

that appear at a higher critical point. Since φ carries charge +2 under
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the grading on equivariant cohomology, these terms are all of degree
three.

The most basic requirement that λ′ must satisfy is that it descends
to an invariant form on F under the quotient by H0 which defines the
homogeneous bundle. So we first observe that λ′ is manifestly invariant
under the action of H0 in (4.61). Furthermore, if V (ψ) denotes the vec-
tor field on the product H × (h⊥ ⊕ E1) generated by ψ in h0 as in (4.71),
then the first two terms in λ′ are trivially annihilated upon contraction
with V (ψ) since both γ and θE0 take values in the orthocomplement to
h0. Because of the identity

(4.79) ιV (ψ) dv = ψ · v =
(
ιV (ψ)θh0

)
· v,

the last two terms in λ′ are also annihilated upon contraction with V (ψ).
So λ′ descends to a well-defined form on F .

Finally, to check that λ′ is invariant under the action of H on F in
(4.73), we simply note that φ transforms under the adjoint action of H
so that the quantity gφg−1 is invariant. Since θ is also invariant under
the action of H, λ′ is manifestly invariant.

To motivate our definition (4.78), we now use λ′ to compute the
symplectic integral over F . We first compute Dλ′. As we saw when
we considered localization on T ∗H, the final expression for Dλ′ will
only involve φ in the invariant combination gφg−1. Thus, even before
presenting our formula for Dλ′, we make the change of variables from
φ to gφg−1 in the symplectic integral in order to simplify slightly our
result. If we recall that D = d+ i ιV (φ) and we use the formula in (4.74)
for V (φ), we find by a straightforward computation that

Dλ′ = (dγ, θ) − i (γ, φ) − i (θE0 , [φh0 , θE0 ]) − (φE0 , φE0)+(4.80)

+ i (φh0 · dv, dv) − (φh0 · v, φh0 · v) + X .

Here X consists of extra terms in Dλ′ that will not actually contribute
to the symplectic integral in the limit t → ∞. Explicitly,

X =

(
γ,

1

2
[θ, θ]

)
− i

(
1

2

[
θ⊥, θ⊥

]
, φE0

)
− i

([
θ⊥, θE0

]
, φ⊥

)
−

(4.81)

− i

(
1

2
[θE0 , θE0 ] , φ

⊥

)
− i

(
φh0 · v,

1

2
[θ, θ]h0

· v
)

mod θh0 .

(Terms involving θh0 in Dλ′, some of which are omitted here, actually

cancel since Dλ′ is a pullback from F .) We use the fact that dθ = 1
2 [θ, θ]
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to simplify somewhat the form of X , and we use the natural notation
θ⊥ and φ⊥ to denote the projections of θ and φ onto h⊥.

In (4.80), the first two terms arise from the action of D on the first
term in λ′, the next two arise from the action of D on the second term
in λ′, and the final two terms arise from the action of D on the last two
terms in λ′. We remark that our choice of the i’s that appear in the
definition (4.78) of λ′ was made to ensure that the quadratic terms in
(4.80) involving φE0 and φh0 · v are both negative-definite.

We now consider the canonical symplectic integral in (4.76) with λ′

in place of λ and in the limit t → ∞. This symplectic integral is an
integral over the product h × F . We can perform this integral over
h × F in two steps. First, we hold the projection φh0 of the variable
φ in h0 ⊂ h fixed, and we perform the integral over the remaining

variables in F̃ = (h ⊖ h0) × F . This integral produces a measure on
h0, which we then use to perform the remaining integral over h0. The
utility of this way of performing the symplectic integral is that, with
our ansatz for λ′, we will see that the first integral over (h⊖h0)×F can
be performed directly as a Gaussian integral in the limit t → ∞ and
under the assumption that φh0 acts in a non-degenerate fashion on E0

and E1.
To prove this fact, we first consider the symplectic integral over

F̃ = (h ⊖ h0) × F which arises if X is omitted from Dλ′. So we con-
sider the integral

I(φh0) =
1

Vol(H)

∫

eF

[
dφ

2π

]
exp

[
t (dγ, θ) − it (γ, φ)−(4.82)

− it (θE0 , [φh0 , θE0 ]) − t (φE0 , φE0)
]
×

× exp
[
it (φh0 · dv, dv) − t (φh0 · v, φh0 · v)

]
.

For fixed φh0 acting non-degenerately on E0 and E1, this integral (4.82)
is a Gaussian integral, which we now evaluate. In performing this in-
tegral, we recall that the vector spaces E0 and E1 carry a complex
structure, invariant under the action of φh0 , for which the metric (·, ·)
is hermitian.

Assuming E1 is suitably oriented, the Gaussian integral over v in E1

first produces a factor

(4.83) det

(
φh0

2π

∣∣∣
E1

)−1

.
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This expression does not depend on t, due to a cancellation between the
factors of t that arise from the Gaussian integral over v and the factors
of t that appear in the measure on E1.

The remainder of the integration is similar, but is actually perhaps
more easily explained if we adopt a physicist’s notation rather than the
mathematical notation in which (4.82) has been written. In mathemat-
ical notation, θ = dg g−1 is a one-form; we are supposed to expand the
exponential to produce a top-form which is then integrated. In physics
notation, θ is understood as a fermionic variable, and (4.82) must be
reexpressed to contain an extra factor dg dθ in the measure.

In the physics notation, we now perform the Gaussian integrals over
φE0 and θE0 . The powers of t cancel, just as in the integration over v
(which in physics notation would have been an integral over v and an
independent fermionic variable v̂ = dv), and we are left with a determi-
nantal factor

(4.84) det

(
φh0

2π

∣∣∣
E0

)
,

which now appears in the numerator as it comes from a fermionic in-
tegration. The factors of 2π come from the Gaussian integral together
with the measure [dφ/2π].

Similarly, in physics notation, γ and γ̂ = dγ are treated as indepen-
dent bosonic and fermion variables and the measure contains an extra
factor dγ dγ̂. Likewise, we integrate separately over H/H0 and over
fermionic variables θ. In fact, we have already performed the integra-
tion over θE0 , so we are only left with the component of θ in h⊥. The
integral over γ gives a delta function setting to zero the projection of
φ to h⊥. The integral over γ̂ gives a delta function setting to zero
the component of θ in h⊥, and canceling the power of t generated by
the γ integral. Finally, the integration over H/H0 produces a factor of
Vol(H)/Vol(H0).

So finally, simplifying the notation by setting ψ = φh0 , the result
arising from the Gaussian integration is

(4.85) I(ψ) =
1

Vol(H0)
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

, ψ ∈ h0.

Of course, a conventional mathematical exposition of the calculation
would arrive at the same result after grouping the factors a little differ-
ently.
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The result (4.85) for the integral (4.82) is independent of t. We now
observe that the terms in X which we omitted from Dλ′ when comput-
ing (4.85) are all of at least third order in the integration variables on

F̃ = (h ⊖ h0) × F (which do not include the constant φh0). Thus, upon

rescaling all the integration variables by t−
1
2 so that the quadratic terms

in (4.82) become independent of t, we see that any contributions from

terms in X to the symplectic integral fall off at least as fast as t−
1
2 for

large t. Thus, our Gaussian evaluation of the symplectic integral over

F̃ is exact as t → ∞.
So we are left to consider the remaining integral over h0, which is now

given formally by

Z ′(ǫ) =
1

Vol(H0)

∫

h0

[
dψ

2π

]
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

×(4.86)

× exp
[
−i (γ0, ψ) − ǫ

2
(ψ, ψ)

]
.

In obtaining this expression, we recall from (4.75) that the value of the
moment map µ at the identity coset on the orbit H/H0 is γ0. Also,
we denote this quantity as Z ′(ǫ), instead of Z(ǫ), to emphasize that we
compute it with λ′ instead of the canonical form λ that defines the local
contributions to Z(ǫ).

Now, this formal integral over h0 in (4.86) might or might not actually
be defined. Due to the exponential factor in the integrand of (4.86), the
integral is certainly convergent at large ψ. However, on the locus in
h0 where the determinant of ψ acting on E1 vanishes (for instance at
the origin of h0), the measure I(ψ) in (4.85) might be singular if there
is no compensating zero from the determinant of ψ acting on E0. If
I(ψ) is singular, then the integral in (4.86) could fail to be convergent
at the singularity. Since Z(ǫ) as defined using the canonical one-form λ
is always finite, our computation using λ′ cannot generally be valid.

On the other hand, because E0 and E1 are both finite-dimensional
vector spaces, with

(4.87) dimC E0 = d0, dimC E1 = d1,

the determinants appearing in I(ψ) in (4.85) are just invariant polyno-
mials, homogeneous of degrees d0 and d1, of ψ in h0. For our application
to SU(2) Yang-Mills theory, for which H0 = U(1), we need only con-
sider the simplest case that h0 = R is one-dimensional. In this case, the
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invariant polynomials are just monomials

(4.88) det

(
ψ

2π

∣∣∣
E0

)
= c0 ψd0 , det

(
ψ

2π

∣∣∣
E1

)
= c1 ψd1 ,

for some constants c0 and c1.
Assuming (4.88), we see that (4.86) becomes

(4.89)

Z ′(ǫ) =
1

Vol(H0)

∫

h0

[
dψ

2π

] (
c0

c1

)
ψd0−d1 exp

[
−i (γ0, ψ) − ǫ

2
(ψ, ψ)

]
.

Although this expression in (4.89) is ill-defined if d1 > d0, we can still
apply our previous work to compute using λ′ a completely well-defined
integral. Namely, instead of considering the symplectic integral Z ′(ǫ),
we introduce the differential operator Q,

(4.90) Q =

(
−2

∂

∂ǫ

) 1
2
(d1−d0)

,

and we consider instead the quantity

Q · Z ′(ǫ) =
1

Vol(H)

∫

h×F

[
dφ

2π

]
(φ, φ)

1
2
(d1−d0) ×(4.91)

× exp
[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ) + t Dλ′

]
.

Using the same definition for λ′ and proceeding exactly as before, we
compute

Q · Z ′(ǫ) =
1

Vol(H0)

∫

h0

[
dψ

2π

] (
c0

c1

)
exp

[
−i (γ0, ψ) − ǫ

2
(ψ, ψ)

]
,

(4.92)

=
1

Vol(H0)

(
c0

c1

)
1√
2πǫ

exp

[
−(γ0, γ0)

2ǫ

]
.

The fact that the differential operator Q in (4.90) can be used to
cancel the determinants of ψ in (4.88) that arise from localization is
a special consequence of our assumption that dim h0 = 1. For an ar-
bitrary Lie algebra h0, we cannot generally express these determinants
as functions of only the quadratic invariant (ψ, ψ) that appears in the
canonical symplectic integral. As a result, in the general case we cannot
cancel such determinants simply by differentiating Z(ǫ) with respect to
the coupling ǫ. Though we will not require the generalization for this
paper, we explain in Appendix B how to extend the discussion above to
the case of general h0.
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We see from (4.92) that, although our computation using λ′ does not
always give a sensible answer for Z ′(ǫ), it does give a sensible answer
for the derivative Q · Z ′(ǫ). Knowledge of this derivative implicitly
determines the contribution of a higher critical point to Z ′(ǫ), as the
only ambiguity in integrating (4.92) is a polynomial in ǫ which cannot
arise from a higher critical point. Finally, as we show in Appendix
A, the quantity Q · Z ′(ǫ) in (4.92) defined using λ′ agrees with the
corresponding quantity Q ·Z(ǫ) defined using the canonical one-form λ.
Hence, provided we take derivatives when necessary, we can use λ′ for
localization computations on F .

Our computation also shows that it may be easier to consider the
contributions of higher critical points not to Z(ǫ) but to the derivative
Q · Z(ǫ). We have already seen an example of this phenomenon in our
discussion of SU(2) Yang-Mills theory. In that case, we found it more
natural to compute the contributions of higher Yang-Mills critical points
to the derivative ∂g−1Z(ǫ)/∂ǫg−1 in (4.46) as opposed to Z(ǫ) itself.

Application to Higher Critical Points of Yang-Mills Theory

To finish this section, we apply our abstract study of localization on
F to compute the path integral contributions from maximally reducible
Yang-Mills solutions. We focus on the specific case of SU(2) Yang-Mills
theory, for which we reproduce the explicit expression in (4.46) for the
contributions from the locus Mn of degree n critical points.

As we have discussed, if f = ⋆FA is the curvature of a maximally re-
ducible Yang-Mills solution for gauge group G of rank r, then f breaks
the gauge group to a maximal torus Gf = U(1)r. In terms of our
abstract model, we thus identify the stabilizer group H0 with the sub-
group U(1)r ⊂ G(P ) of constant gauge transformations in this maximal
torus. As we have also discussed, this fact implies that the correspond-
ing moduli space Mf of maximally reducible Yang-Mills solutions is
just a complex torus of dimension gr.

Now, our description of the local symplectic model F for the normal
geometry over a higher Yang-Mills critical point is completely general,
since in deriving the model for F we did not make any assumptions
about the reducibility of the connection. However, if we wish to use
this local model to compute contributions from arbitrary higher Yang-
Mills critical points, we will generally find that both the integral over F
and the integral over the associated moduli space Mf make nontrivial
contributions to Z(ǫ) which depend on ǫ.
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In contrast, if we restrict to the special case that Mf describes max-
imally reducible Yang-Mills solutions, then only the integral over F is
nontrivial, and the integral over the torus Mf contributes a multiplica-
tive factor Vol(Mf ) independent of ǫ, where

(4.93) Vol (Mf ) =

∫

Mf

exp (Ω).

From a physical perspective, the contribution from Mf to Z(ǫ) does
not involve the coupling ǫ because abelian gauge theory is free. From
a mathematical perspective, the Donaldson theory of U(1) bundles is
simple, as the corresponding universal bundle is a line bundle having
only a first Chern class, which is proportional to Ω.

In the case of SU(2) Yang-Mills theory, the stabilizer group H0 is just
U(1), and h0 has dimension one. Thus, we can apply our computation of
the integral over F in (4.92) to conclude that the local contribution from
the moduli space Mn of higher critical points of degree n is described
by
(4.94)(

−2
∂

∂ǫ

) 1
2
(d1−d0)

· Z(ǫ)
∣∣∣
Mn

=
Vol(Mn)

Vol(H0)

(
c0

c1

)
1√
2πǫ

exp

[
−(2πn)2

ǫ

]
.

We immediately see that this expression has the same form as the ex-
pression that appeared earlier in (4.46).

To make a precise comparison of our formula (4.94) to (4.46), we
must compute the various constants appearing in (4.94). To start, we
introduce the normalized generator T0 of H0,

(4.95) T0 =
1√
2

σz =
1√
2

(
i 0
0 −i

)
,

which satisfies Tr (T 2
0 ) = −1. From (4.95), we immediately see that the

volume of H0 in our metric on h0 is

(4.96) Vol(H0) = 2π
√

2.

In the case of SU(2) Yang-Mills theory, we have already identified in
(4.40) the bundles ad±(P ) with the line bundles L(+2n) and L−1(−2n).
Thus, from (4.53), the complex vector spaces E0 and E1, abstractly
identified with E0 and E1, are now given by the following Dolbeault



NON-ABELIAN LOCALIZATION FOR CHERN-SIMONS THEORY 247

cohomology groups,

E0 = H0
∂
(Σ,L(2n)),(4.97)

E1 = H1
∂
(Σ,L(2n)) ⊕ H1

∂
(Σ,L−1(−2n)).

The index theorem, in combinating with the vanishing of
H0

∂
(Σ,L−1(−2n)), implies that

χ(L(2n)) = dimC H0
∂
(Σ,L(2n)) − dimC H1

∂
(Σ,L(2n)) = 2n + 1 − g,

(4.98)

χ(L−1(−2n)) = dimC H1
∂
(Σ,L−1(−2n)) = 2n − 1 + g.

Thus, from (4.98) we determine the exponent 1
2(d1 − d0) appearing in

(4.94) to be

(4.99)
1

2
(d1 − d0) =

1

2

[
χ

(
L−1(−2n)

)
− χ (L(2n))

]
= g − 1.

To fix the ratio c0/c1 appearing in (4.94), which is determined by
the determinant of ψ/2π acting on E0 and E1 as in (4.88), we recall
that L(2n) and L−1(−2n) arise from the standard generators σ± of the
complex Lie algebra of SU(2), as in (4.39). Since σz in (4.95) acts with
eigenvalues ±2i on σ±, we see that ψ ≡ ψ · T0 acts on sections of L(2n)
and L−1(−2n) with eigenvalues ±i

√
2 ψ. Thus, in this case,

det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

=

(
i
√

2 ψ

2π

)2n+1−g (
−i

√
2 ψ

2π

)−2n+1−g

,

(4.100)

=

(
ψ2

2π2

)1−g

.

So

(4.101)

(
c0

c1

)
= (2π2)g−1.

Finally, we must compute the symplectic volume Vol(Mn). This is
equivalent to the moduli space of flat connections for the group U(1),
and appears with the same symplectic structure as if we were doing
U(1) gauge theory. The symplectic form is hence equivalent to Ω =∑g

i=1 dxi ∧ dyi, where our normalization is such that each of dxi and

dyi have period 2π
√

2 on the appropriate one-cycle. (This is the same
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factor that appeared in (4.96).) Thus,

(4.102) Vol(Mn) =
(
8π2

)g
.

So from (4.96), (4.99), (4.101), and (4.102), we evaluate (4.94) as

(4.103)
∂g−1Z(ǫ)

∂ǫg−1

∣∣∣
Mn

=
(
−8π4

)g−1

√
4π

ǫ
exp

(
−(2πn)2

ǫ

)
,

which agrees with (4.46).

5. Non-Abelian Localization For Chern-Simons Theory

We now discuss non-abelian localization for Chern-Simons theory on
a Seifert manifold M . As we recall from Section 3, the Chern-Simons
path integral then takes the symplectic form

(5.1) Z(ǫ) =
1

Vol(G)

(
1

2πiǫ

)∆G/2 ∫

A
exp

[
Ω − 1

2iǫ
(µ, µ)

]
.

Our general discussion in Section 4 implies that Z(ǫ) localizes on critical
points of the action S = 1

2(µ, µ). Explicitly,

(5.2) S =

∫

M
Tr

(
A∧dA +

2

3
A∧A∧A

)
−

∫

M

1

κ∧dκ
Tr

[
(κ∧FA)2

]
.

Our first task is thus to classify the critical points of S. We claim that,
up to the action of the shift symmetry, the critical points of S correspond
precisely to the flat connections on M . To prove this statement, we
simply observe that the critical points of S satisfy the equation of motion

(5.3) FA −
(

κ∧FA

κ∧dκ

)
dκ − κ∧dA

(
κ∧FA

κ∧dκ

)
= 0,

where the first term of (5.3) arises from the variation of the Chern-
Simons functional and the last two terms arise from the variation of
the last term in (5.2). To classify solutions of (5.3), we recall that S is
invariant under the shift symmetry δA = σκ, where σ is an arbitrary
function on M taking values in the Lie algebra g of the gauge group G.
Under the shift symmetry, the quantity κ∧FA transforms as

(5.4) κ∧FA −→ κ∧FA + σ κ∧dκ.

Thus, since κ∧dκ is everywhere non-zero on M , we can unambiguously
fix a gauge for the shift symmetry by the condition

(5.5) κ∧FA = 0.
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In this gauge, any solution of the equation of motion (5.3) is precisely a
flat connection on M . So, as we certainly expect, the Chern-Simons path
integral localizes around points of A which represent flat connections on
M .

It is interesting to contrast this situation to the case of Yang-Mills
theory on a Riemann surface Σ. In that case, the path integral receives
contributions from two qualitatively different kinds of critical points,
for which the moment map µ = FA satisfies either µ = 0 or µ 6= 0, and
the critical point is respectively stable or unstable. Since the critical
points of Chern-Simons theory are described by flat connections on M ,
one might naively suppose that these critical points are analogous to
the stable critical points of Yang-Mills theory, which are also described
by flat connections. However, let us recall our expression from Section
3 for the Chern-Simons moment map,

(5.6)
〈
µ, (p, φ, a)

〉
= −1

2
p

∫

M
κ∧Tr (£RA∧A) +

+

∫

M
κ∧Tr (φFA) −

∫

M
dκ∧Tr (φA) + a.

The last term of (5.6) is simply a constant piece of µ dual to the gener-
ator a of the central extension of the group G0, and this generator acts
trivially on A. As a result of this term, the Chern-Simons moment map
is everywhere non-zero, and the critical points of Chern-Simons theory
are actually of the same kind as the higher, unstable critical points of
Yang-Mills theory.

Our goal in the rest of the paper is now to compute the local con-
tributions to Z(ǫ) from two especially simple sorts of flat connections
on M . First, we compute the contribution to Z(ǫ) from the trivial con-
nection when M is a Seifert homology sphere. Second, we compute the
contribution to Z(ǫ) from a smooth component in the moduli space of
irreducible flat connections when M is a principal U(1)-bundle over a
Riemann surface. As we will see, these local computations in Chern-
Simons theory are direct generalizations of the local computation at
a higher critical point of two-dimensional Yang-Mills theory. The two
cases we consider are the extreme cases in which the connection is either
trivial or irreducible. Other cases are intermediate between these.

The Normalization of Z(ǫ)

Before we perform any detailed computations, we must make a few
general remarks about the normalization of Z(ǫ). As we see from (5.1),
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we have normalized the Chern-Simons path integral with the formal
prefactor

(5.7)
1

Vol(G)

(
1

2πiǫ

)∆G/2

, ∆G = dimG,

which is defined in terms of the group G of gauge transformations.
On the other hand, as we discussed in Section 3, the Hamiltonian

group which we use for localization in Chern-Simons theory is not G
but rather the group H = U(1) ⋉ G̃0, where G̃0 is a central extension by
U(1) of the identity component G0 of G. We also introduce the group

H′ = U(1) ⋉ G̃, which arises from the corresponding central extension

G̃ of the full group G of all gauge transformations.
When we apply non-abelian localization to Chern-Simons theory, the

path integral which we compute most directly is not given by (5.1) but
by the canonically normalized symplectic integral

(5.8) Z0(ǫ) =
1

Vol(H′)

∫

h×A

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − iǫ

2
(φ, φ)

]
,

as we computed abstractly in Section 4. The appearance of the volume
of the disconnected group H′ in (5.8), as opposed to the connected group
H, accounts for the action of gauge transformations in the disconnected
components of G on critical points in A. Also, because the Chern-Simons
path integral is oscillatory, an imaginary coupling iǫ now appears in
(5.8).

If we perform the Gaussian integral over φ in (5.8), then Z0(ǫ) be-
comes
(5.9)

Z0(ǫ) =
i

Vol(H′)

(
1

2πiǫ

)∆H/2 ∫

A
exp

[
Ω − 1

2iǫ
(µ, µ)

]
, ∆H = dimH.

In computing this integral over φ, we must be careful to remember
that the quadratic form ( · , · ) on the Lie algebra h of H is the direct
sum of a positive-definite form on the Lie algebra of the gauge group
G and a hyperbolic form (with signature (+,−)) on the two additional
generators in H relative to G. Had the form on h been positive-definite,
the Gaussian integral over each generator in h would have contributed

an identical factor (2πiǫ)−
1
2 to the prefactor in front of (5.9). However,

due to the hyperbolic summand in ( · , · ), the phases that result from
the Gaussian integral over the two generators in the hyperbolic subspace
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of h actually cancel. To account for this cancellation, we include the
extra factor of ‘i’ appearing in (5.9).

Although Z0(ǫ) in (5.9) takes the same form as the physical Chern-
Simons path integral Z(ǫ) in (5.1), evidently the prefactor (5.7) which
fixes the normalization of Z(ǫ) differs from the corresponding prefactor
in Z0(ǫ) by the ratio

(5.10)
Vol(H′)

iVol(G)
·
(

1

2πiǫ

) 1
2
(∆G−∆H)

= Vol(U(1)2) · 2πǫ.

The finite factors Vol(U(1)2) and 2πǫ arise in the obvious way from the
two extra generators in H relative to G.

When we perform localization computations in Chern-Simons theory,
we apply our abstract localization computations in Section 4 to compute
Z0(ǫ). By our observation above, for the purpose of computing the
physical Chern-Simons path integral Z(ǫ), we must multiply the results
from our abstract local computations by the finite factor in (5.10). As we
will see, this expression turns out to cancel nicely against corresponding
factors from the local computation.

5.1. A Two-Dimensional Interpretation of Chern-Simons The-

ory on M . Our symplectic interpretation of Chern-Simons theory on
M fundamentally relies on the fact that the shift symmetry decouples
one component of the gauge field A. As a result, we can essentially
perform Kaluza-Klein reduction over the S1 fiber of M to the base Σ
to express Chern-Simons theory as a two-dimensional topological theory
on Σ. From this two-dimensional perspective, we can immediately apply
our localization computations in Section 4 to Chern-Simons theory.

In fact, the two-dimensional topological theory on Σ arising from
Chern-Simons theory on M is closely related to Yang-Mills theory on
Σ, a point also recently emphasized in [15]. At the level of the classical
moduli spaces, the relationship between Chern-Simons theory on M
and Yang-Mills theory on Σ was noted long ago by Furuta and Steer
in [51]. These authors identify a correspondence between the moduli
space of flat connections on M and certain components of the moduli
space of Yang-Mills solutions on Σ. Since the relationship between flat
connections on M and Yang-Mills solutions on Σ underlies our study of
Chern-Simons theory, we now explain the fundamental aspects of this
correspondence.
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Flat Connections on M From Yang-Mills Solutions on Σ

We start by considering the moduli space of flat connections on M .
As before, we suppose that the gauge group G is compact, connected,
simply-connected, and simple.

A flat connection on M is determined by its holonomies, and the
moduli space of flat connections on M , up to gauge equivalence, can
be concretely described as the space of group homomorphisms from the
fundamental group π1(M) to G, up to conjugacy. Hence the structure
of the moduli space of flat connections on M is determined by π1(M).

On the other hand, because M is a Seifert manifold, and hence gen-
erally a U(1) V -bundle over an orbifold Σ, the structure of π1(M) is
closely tied to the structure of the orbifold fundamental group π1(Σ).
This topological fact underlies the close relationship between flat con-
nections on M and Yang-Mills solutions on Σ, and to explain it we now
present the group π1(M).

As in Section 3, we describe M using the Seifert invariants

(5.11)
[
g; n; (α1, β1), . . . , (αN , βN )

]
, gcd(αj , βj) = 1.

We recall that g is the genus of Σ, n is the degree of the U(1) V -bundle
over Σ, and the relatively prime integers (αj , βj) for j = 1, . . . , N specify
the local geometry of M near the N orbifold points on Σ.

To present π1(M), we introduce elements

ap, bp, p = 1, . . . , g,(5.12)

cj , j = 1, . . . , N,

h.

Then π1(M) is generated by these elements in (5.12) subject to the
following relations,

[ap, h] = [bp, h] = [cj , h] = 1,(5.13)

c
αj

j hβj = 1,

g∏

p=1

[ap, bp]
N∏

j=1

cj = hn.

We will not give a formal proof of this presentation of π1(M), which
follows from the standard surgery construction of M and which can be
found in [50], but we will describe the geometric interpretation of the
generators in (5.12). The generator h, which is a central element of
π1(M) by the first line of (5.13), arises from the generic S1 fiber over
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Σ. Since Σ has genus g, the generators ap and bp for p = 1, . . . , g arise
from the 2g non-contractible cycles on Σ. Finally, the generators cp

for p = 1, . . . , N arise from small one-cycles in Σ about each of the
orbifold points. We note that from the presentation of π1(M) in (5.12)
and (5.13) one can immediately compute the corresponding homology
group H1(M, Z) as the abelianization of π1(M).

For example, with a view to our application below, let us determine
the condition to have H1(M) = 0. This requires g = 0 (or the homology
of Σ will appear in H1(M)). So π1(M) has generators cj , j = 1, . . . , N ,

and c0 = h. There are N +1 relations, namely c
αj

j c0
βj = 1, j = 1 . . . , N ,

and
∏N

j=1 cj · c0
−n = 1. So we can write the relations in the general

form
∏N

j=0 c
Kj,l

j = 1 in terms of an N + 1×N + 1 matrix K. A general

element of H1(M) of the form
∏N

j=0 c
vj

j is trivial if and only if one can

write vj =
∑

j′ Kjj′wj′ for some integer-valued vector w. So H1(M) is

trivial if and only if det(K) = ±1. With the actual form of K, one can
work out this determinant and find that the condition is that

(5.14) n +
N∑

j=1

βj

αj
= ±

n∏

j=1

1

αj
.

The left hand side is also equal to the orbifold first Chern class c1(L) of
the line V -bundle L discussed in Section 3.2.

With the presentation of π1(M) in (5.12) and (5.13), we can imme-
diately present π1(Σ) as well. Thus, π1(Σ) is generated by the elements
ap, bp, and cj in (5.12), omitting the generator h which arises from the
S1 fiber, and the relations in π1(Σ) are given by the relations in (5.13)
upon setting h = 1. A very succinct description of this relation between
π1(M) and π1(Σ) is to recognize π1(M) as a central extension of π1(Σ),

(5.15) 1 −→ Z −→ π1(M) −→ π1(Σ) −→ 1,

where h is the generator of Z above.
Given the close relationship between the groups π1(M) and π1(Σ)

expressed in (5.15), we can immediately deduce a relationship between
flat connections on M and Yang-Mills solutions on Σ. To describe this
relationship, we consider a homomorphism ρ,

(5.16) ρ : π1(M) −→ G,

which describes the holonomies of a given flat connection on M .
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Because h is central in π1(M), the image of ρ must lie in the central-
izer Gρ(h) of the element ρ(h) in G. To simplify the following discus-
sion, we suppose that ρ(h) actually lies in the center Γ of G, implying
that Gρ(h) = G. This condition is necessary whenever the connection
described by ρ is irreducible, and it certainly holds also when the con-
nection is trivial, which are the two main cases we consider when we
perform computations in Chern-Simons theory. We refer to [51] for a
discussion of the general case.

Clearly if ρ(h) = 1, so that the corresponding flat connection on M
has trivial holonomy around the S1 fiber over Σ, then ρ factors through
the extension (5.15) to induce a homomorphism from π1(Σ) to G. Hence
ρ describes a flat connection on M that pulls back from a flat Yang-Mills
connection on Σ.

More generally, when ρ(h) is non-trivial in Γ, then the corresponding
flat connection on M has non-trivial holonomy around the S1 fiber of
M and is not the pull back of a flat G-connection on Σ. However, if we
pass from G to the quotient group G = G/Γ, so that we consider the
connection on M as a flat connection on the trivial G-bundle, then the
holonomy of this connection around the S1 fiber of M becomes trivial.

As a result, the homomorphism ρ can be interpreted as describing a
flat connection on M which arises from the pull back of a flat Yang-Mills
connection on a generally non-trivial V -bundle over Σ whose structure
group is now G, as opposed to G. In general, a flat connection on a
non-trivial G-bundle over Σ can be described as a flat connection on
the trivial G-bundle over Σ such that the connection has non-trivial
monodromies in Γ around the orbifold points as well as around one
additional, arbitrarily chosen smooth point of Σ. These monodromies
represent the obstruction to smoothly extending the given flat connec-
tion to the trivial G-bundle over all of Σ, and hence they describe the
non-trivial G-structure on the bundle.

In the case at hand, we see from the relations (5.13) which describe
π1(M) as an extension of π1(Σ) that the relevant monodromies are
determined by the holonomies of the connection on M associated to the
elements hβj and hn, so that these holonomies determine the topology
of the corresponding G-bundle on Σ. For instance, if we consider the
simplest case that the gauge group G is SU(2) and M arises from a
principal U(1)-bundle over a smooth Riemann surface Σ such that the
degree n is odd, then flat connections on M whose holonomies satisfy
ρ(h) = ρ(h)n = −1 correspond bijectively to flat SU(2) connections on
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Σ which have monodromy −1 around a specified puncture. Such flat
SU(2) connections can then be identified with flat connections on the
topologically non-trivial principal SO(3)-bundle over Σ.

On the other hand, if the degree n of the principal U(1)-bundle is
even, then ρ(h)n = 1 for both ρ(h) = ±1, so points in both of these
components of the moduli space of flat connections on M are identified
with flat SU(2) connections on Σ.

The Local Symplectic Geometry Near a Critical Point of Chern-Simons

Theory

The discussion above shows that irreducible flat connections on M
can be identified with corresponding flat Yang-Mills connections on Σ.
We now extend this observation to give a “two-dimensional” description
of the local symplectic geometry in A around such a critical point of
Chern-Simons theory.

Because A is the quotient of the affine space A by the shift symmetry
S, we are free to work in any convenient gauge for S. For instance, in
order to identify the critical points of the new Chern-Simons action S
in (5.2), we found it convenient to impose the gauge condition (5.5).

However, in order to describe the local geometry in A in terms of
geometric quantities on Σ, we make a new gauge choice for S, corre-
sponding to the gauge condition

(5.17) ιRA = 0.

Because A transforms under the shift symmetry as δA = σ κ, the quan-
tity ιRA transforms as ιRA → ιRA + σ, and the gauge condition in
(5.17) is unambiguous.

To describe a critical point of the action S in the gauge (5.17), we
consider as above a flat Yang-Mills connection B0 on a generally non-
trivial V -bundle with structure group G over Σ. Then, in the gauge
(5.17), the full tangent space to the symplectic manifold A at B0 is
described by the space of sections ξ of the bundle Ω1

M ⊗ g which satisfy
the gauge condition

(5.18) ιRξ = 0.

Because our symplectic description of Chern-Simons theory respects
the geometric U(1) action on M , we naturally consider the decomposi-
tion of the tangent space to A under the action of this U(1). In terms of
the section ξ, this statement simply means that we consider the Fourier
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decomposition of ξ into eigenmodes of the operator £R. Thus we write

(5.19) ξ =
+∞∑

t=−∞

ξt,

where, in addition to the gauge condition (5.18), each eigenmode ξt

satisfies

(5.20) £Rξt = −2πit · ξt.

We can similarly perform this Fourier decomposition on the tangent
space to the group of gauge transformations G. Thus, if φ is a section
of Ω0

M ⊗ g, we write

(5.21) φ =
+∞∑

t=−∞

φt,

where

(5.22) £Rφt = −2πit · φt.

To describe these eigenmodes ξt and φt geometrically on Σ, we recall
that L denotes the line V -bundle over Σ associated to the Seifert man-
ifold M . Since non-trivial representations of the U(1) action on M are
associated to non-zero powers of L on Σ, we can describe the modes ξt

and φt geometrically on Σ as being respectively sections of the bundles
Ω1

Σ ⊗ ad(P )⊗Lt and Ω0
Σ ⊗ ad(P )⊗Lt. Here we have also replaced the

trivial bundle g on M by the possibly nontrivial G-bundle ad(P ) on Σ.
So, at least formally, the tangent space to A at B0 decomposes into

the following sum of spaces of sections on Σ,

(5.23) TA =
+∞⊕

t=−∞

Γ
(
Σ, Ω1

Σ ⊗ ad(P ) ⊗ Lt
)
,

and similarly for the Lie algebra of G,

(5.24) TG =

+∞⊕

t=−∞

Γ
(
Σ, Ω0

Σ ⊗ ad(P ) ⊗ Lt
)
.

By assumption, the covariant derivative dB0 commutes with the Lie
derivative £R, [dB0 ,£R] = 0, so these decompositions are compatible
with the action of dB0 .
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As in Section 4.2, the local structure of the space of fields over which
we integrate near a given component M of the moduli space of critical
points is a fibration

(5.25) F −→ N
pr−→ M.

As before, F is given by a symplectic bundle

(5.26) F = H×H0 (h ⊖ h0 ⊖ E0 ⊕ E1) ,

where the invariance group H0 and the exceptional bundles E0 and E1

must be identified. As we observed at the start of this section, because
the Chern-Simons moment map is non-vanishing, the local model is
analogous to the geometry near a higher critical point of Yang-Mills
theory, with some E0 and E1.

In the model (5.26) for F , H = U(1) ⋉ G̃0 is the Hamiltonian group
which we use for localization, and H0 is the subgroup of H which fixes
B0. In general, H0 is a finite-dimensional group of the form

(5.27) H0 = U(1)2 × K0.

One U(1) factor in H0 arises from the action of £R on A, which fixes
B0 by assumption, and the other U(1) factor arises from the central

U(1) in G̃0. This U(1) acts trivially on all of A. Finally, K0 denotes the
group of gauge transformations acting on ad(P ) which fix B0. These
gauge transformations are generated by covariantly constant sections φ
of ad(P ) ⊗ L0, so that φ is annihilated by £R, and consequently K0

commutes with both U(1) factors in H0.

To identify E0 and E1, we must look at the images of dB0 and of ⋆2dB0

mapping TG to TA. The bundle ad(P )⊗Lt has connection C = B0+tκ
(κ is the constant curvature connection on L introduced in Section 3.2).
For fixed t, the three-dimensional operators dB0 and ⋆2dB0 reduce to
two-dimensional operators dC and ⋆dC . As B0 is flat, the connection
C has curvature equal to t times a positive two-form. So the analysis
of the intersection and unions of the images of dC and ⋆dC precisely
follows Section 4.3, with the following dictionary between quantities
in the two-dimensional analysis of that section and quantities in the
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present three-dimensional problem:

ad0(P ) ←→ ad(P )(5.28)

ad+(P ) ←→
⊕

t>0

ad(P ) ⊗ Lt

ad−(P ) ←→
⊕

t<0

ad(P ) ⊗ Lt.

In two dimensions, we decomposed ad(P ) into ad0(P ), ad+(P ), and
ad−(P ) according to the sign of the curvature. Here, curvature comes
only from L. So finally, we get

E0 =
⊕

t6=0

H0
∂
(Σ, ad(P ) ⊗ Lt) =

⊕

t≥1

H0
∂
(Σ, ad(P ) ⊗ (Lt ⊕ L−t)),(5.29)

E1 =
⊕

t6=0

H1
∂
(Σ, ad(P ) ⊗ Lt) =

⊕

t≥1

H1
∂
(Σ, ad(P ) ⊗ (Lt ⊕ L−t)).

Unlike in the case of Yang-Mills theory, these exceptional bundles E0

and E1 now have infinite dimension, since the cohomology groups in
(5.29) are non-zero for infinitely many t’s.

5.2. Localization at the Trivial Connection on a Seifert Ho-

mology Sphere. We are finally prepared to carry out a computation
in Chern-Simons theory using non-abelian localization. We consider lo-
calization at the trivial connection when M is a Seifert manifold that
also is a homology sphere, that is, it has H1 = 0. We start by stating
some necessary facts about the topology of M in this case.

Seifert Homology Spheres and a Slight Generalization

We recall that we generally characterize M with the Seifert invariants

(5.30)
[
g; n; (α1, β1), . . . , (αN , βN )

]
, gcd(αi, βi) = 1.

As we have explained above, M is a homology sphere, with H1(M, Z)=0,
if and only if the invariants in (5.30) satisfy

(5.31) g = 0, c1(L0) = n +
N∑

j=1

βj

αj
= ±

N∏

j=1

1

αj
.

Here L0 denotes the line V -bundle over the orbifold Σ which describes
M .
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To interpret geometrically the condition on L0 in (5.31), we note that
this condition implies the arithmetic condition that the numbers αj be
pairwise relatively prime, so that

(5.32) gcd(αj , αj′) = 1, j 6= j′.

In turn, as explained in Section 1 of [51], this arithmetic condition on
the orders of the orbifold points of Σ implies that the Picard group of
line V -bundles on Σ is isomorphic to Z, just as for CP

1. In analogy
to the case of S3, which arises from a generator of the Picard group of
CP

1, the condition on c1(L0) in (5.31) is then precisely the condition
that L0 generate the Picard group of Σ.

As previously, we orient M so that c1(L0) is positive, and we in-
troduce the notation β0

j to distinguish the orbifold invariants of this
fundamental line V -bundle L0 on Σ,

(5.33) c1(L0) = n +
∑

j=1

β0
j

αj
=

N∏

j=1

1

αj
.

The reason that we distinguish the invariants β0
j of L0 is that, more

generally, we will also consider the case that M arises not from the
fundamental line V -bundle L0 on Σ but from some multiple Ld

0 for
d ≥ 1. In this case, we simply require that g = 0 in (5.31) and that the
invariants αj be relatively prime to each βj and also pairwise relatively

prime, as in (5.32). The Seifert manifold arising from Ld
0 is a quotient by

the cyclic group Zd of the Seifert manifold associated to L0, and in this
case H1(M, Z) = Zd. So the integer d can be characterized topologically
as the order of H1(M, Z),

(5.34) d = |H1(M, Z)|.

These Seifert manifolds are still rational homology spheres, with
H1(M, R) = 0, and the trivial connection on M is an isolated flat con-
nection.

We note that when the Seifert manifold M is described by a smooth,
degree n line-bundle over CP

1, then M is a lens space, and the Seifert
invariant n coincides with d in (5.34).
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The Result of Lawrence and Rozansky

Our basic results on localization for Chern-Simons theory imply that
the Chern-Simons partition function Z can be expressed as a sum of lo-
cal contributions from the flat connections on M . In the case G = SU(2)
and with M as above, Lawrence and Rozansky [22] have already made
this simple structure of Z explicit by working backwards from the pre-
viously known formula for Z. Our goal here is to compute directly one
term in their formula, the local contribution from the trivial connection.
However, because the general result in [22] is both very elegant and very
suggestive, we now pause to present it.

To express8 Z as in [22], we find it useful to introduce the numerical
quantities

ǫr =
2π

k + 2
,(5.35)

P =
N∏

j=1

αj if N ≥ 1, P = 1 otherwise,

θ0 = 3 − d

P
+ 12

N∑

j=1

s(βj , αj).

Here ǫr is the renormalized coupling incorporating the famous shift k →
k + 2 in the level in the case G = SU(2), and s(β, α) is the Dedekind
sum,

(5.36) s(β, α) =
1

4α

α−1∑

l=1

cot

(
πl

α

)
cot

(
πlβ

α

)
.

For brevity, we also introduce the analytic functions

F (z) =
(
2 sinh

(z

2

))2−N
·

N∏

j=1

(
2 sinh

(
z

2αj

))
,(5.37)

G(l)(z) =
i

4ǫr

(
d

P

)
z2 − 2π l

ǫr
z.

8Our notation differs somewhat from [22], and we have normalized Z(ǫ) so that
the partition function on S2 × S1 is 1, whereas the authors of [22] normalize the
partition function on S3 to be 1.
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Then, from the results of [22], the partition function Z(ǫ) of Chern-
Simons theory on M can be written as

Z(ǫ) = (−1)
exp

(
3πi
4 − i

4θ0ǫr

)

4
√

P

{
d−1∑

l=0

1

2πi

∫

C(l)

dz F (z) exp
[
G(l)(z)

]
−

(5.38)

−
2P−1∑

m=1

Res


F (z) exp

[
G(0)(z)

]

1 − exp
(
−2π

ǫr
z
)




∣∣∣∣∣
z=2πi m

−

−
d−1∑

l=1

[ 2Pl
d

]∑

m=1

Res
(
F (z) exp

[
G(l)(z)

]) ∣∣∣∣∣
z=−2πi m

}
.

Here C(l) for l = 0, . . . , d − 1 denote a set of contours in the complex
plane over which we evalute the integrals in the first line of (5.38). In

particular, C(0) is the diagonal line contour through the origin,

(5.39) C(0) = e
iπ
4 × R,

and the other contours C(l) for l > 0 are diagonal line contours parallel
to C(0) running through the stationary phase point of the integrand,
given by z = −4πi l (P/d). Also, “Res” denotes the residue of the given
analytic function evaluated at the given point.

We now wish to point out a few general features of this result (5.38)
from the perspective of non-abelian localization.

First, the d contour integrals in the first term of (5.38) are identified
in [22] with the local contributions from the d reducible flat connections
on M . In particular, the integral arising from l = 0 above is the local
contribution from the trivial connection, which takes the form

Z(ǫ)
∣∣∣
{0}

= (−1)
exp

(
3πi
4 − i

4θ0ǫr

)

4
√

P
×(5.40)

× 1

2πi

∫

C(0)

dz exp

[
i

4ǫr

(
d

P

)
z2

]
×

×
(
2 sinh

(z

2

))2−N
·

N∏

j=1

(
2 sinh

(
z

2αj

))
.
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For instance, one can directly check that, in the case M = S3, the
integral in (5.40) reduces to our much simpler expression for Z(ǫ) in
(1.5).

Similarly, the integrals for l > 0 arise from reducible flat connections
whose holonomies lie in a maximal torus of SU(2), and hence these
connections are fixed by a U(1) subgroup of the gauge group. As we
generally saw in Section 4 when we considered higher critical points of
Yang-Mills theory, non-abelian localization at a reducible connection
leads to an integral over the Lie algebra h0 of the stablizer group H0.
This integral over h0 is represented by the contour integrals above.

In contrast, the residues in the remaining terms of (5.38) are identified
in [22] with the local contributions from the irreducible flat connections
on M . As we show later, at least in the non-orbifold case N = 0 and
g > 0, the local path integral contribution from a smooth component
M in the moduli space of irreducible flat connections on M is given by
a computation in the cohomology ring of M. In the context of two-
dimensional Yang-Mills theory, cohomology computations on M are
often expressed in the form of residues, and we expect the residues in
(5.38) to arise in this fashion.

Finally, the phase of Z(ǫ) in (5.38) is quite subtle. As explained in
[60], this phase can be defined given the choice of a 2-framing on M ,
meaning a trivialization of TM ⊕TM , and for each three-manifold M a
canonical choice of 2-framing exists. The partition function can thus be
presented with a canonical phase, as originally computed in [25, 27] and
as given in (5.38). The phase of Z(ǫ) which arises naturally when we
define Chern-Simons theory via localization differs from this canonical
phase, and we discuss this fact at the end of the section.

Localization at the Trivial Connection

We now compute using localization the contribution from the trivial
connection to Z(ǫ) when M is a Seifert homology sphere. Although the
results of Lawrence and Rozansky in (5.38) hold for gauge group G =
SU(2), Mariño has presented in [24] an expression for the contribution
from the trivial connection for an arbitrary simply-laced gauge group
G. With our methods, the generalization from G = SU(2) to arbitrary
simply-laced G is immediate, so we also consider the general case.

At the trivial connection, the moduli space M is trivial, so the local
geometry in A is entirely described by the normal symplectic fiber F in
(5.26), with the appropriate h0, E0, and E1. So we need only evaluate
the canonical symplectic integral over F for this case.



NON-ABELIAN LOCALIZATION FOR CHERN-SIMONS THEORY 263

We first observe that the stabilizer subgroup H0 ⊂ H for the trivial
connnection is given as in (5.27) by

(5.41) H0 = U(1)2 × G,

where the factor G arises from the constant gauge transformations on
M . Because H0 decomposes as a product, we decompose an arbitrary
element ψ of its Lie algebra h0 = R ⊕ g ⊕ R as

(5.42) ψ = p + φ + a,

where p and a generate the U(1) factors of H0 and φ is an element of
g, according to the notation of Section 3.

As in (5.29), the exceptional bundles E0 and E1 at the trivial connec-
tion are now given by

E0 =
⊕

t≥1

H0
∂
(Σ, g ⊗ (Lt ⊕ L−t)),(5.43)

E1 =
⊕

t≥1

H1
∂
(Σ, g ⊗ (Lt ⊕ L−t)).

Here L = Ld
0 is the line V -bundle on Σ which describes M .

From our localization formula (4.86) in Section 4, the contribution
of the trivial connection to Z(ǫ) is now given formally by the following
integral over h0,

(5.44) Z(ǫ)
∣∣∣
{0}

=
(2πǫ)

Vol(G)

∫

h0

[
dψ

2π

]
e(ψ) exp

[
−i (γ0, ψ) − iǫ

2
(ψ, ψ)

]
,

where e(ψ) is an infinite-dimensional determinant,

(5.45) e(ψ) = det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

.

In normalizing (5.44), we have cancelled the factor Vol(U(1)2) that ap-
pears in the relative normalization (5.10) against a corresponding factor
in 1/ Vol(H0) from the localization formula (4.86), leaving the factor
1/ Vol(G). We have also included the factor (2πǫ) from (5.10).

Evaluating e(ψ)

We first evaluate e(ψ), which turns out to be the only non-trivial
piece of our computation. From (5.45), we see that e(ψ) is described
formally by the determinant of the operator ψ acting on the infinite-
dimensional vector spaces E0 and E1. So to evaluate e(ψ), we will have
to decide how to define such a determinant.
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Here we employ the standard analytic technique of zeta/eta-function
regularization to define the various infinite products that represent the
determinant e(ψ). This choice is somewhat ad hoc, and our best justi-
fication for it is the fact that it eventually leads to agreement with the
results of Lawrence and Rozansky. However, this method of regulariza-
tion does feature in the usual perturbative approach to Chern-Simons
gauge theory, for instance in the one-loop computation in [1]. So, op-
timistically, one might be able to better justify the use of zeta/eta-
function regularization here by comparing the localization computation
with conventional perturbation theory. We make a few further remarks
in Section 5.3.

Since the general element of H acts on A as

(5.46) δA = dAφ + p£RA,

we see that the determinants in e(ψ) can be written concretely in terms
of p and φ in (5.42) as
(5.47)

e(ψ)=e(p, φ)=det

[
1

2π
(p£R − [φ, · ])

∣∣∣
E0

]
det

[
1

2π
(p£R − [φ, · ])

∣∣∣
E1

]−1

.

In particular, e(p, φ) does not depend on a in h0, since this generator
acts trivially. This fact is important later.

As £R acts on sections of Lt with eigenvalue −2πit, we rewrite e(p, φ)
as a product over the non-zero eigenvalues of £R as

(5.48) e(p, φ) =
∏

t6=0

det




(
−itp − [φ, · ]

2π

) ∣∣∣∣∣
g




χ(Lt)

.

Here χ(Lt) is the Euler character of Lt, so that we incorporate the
cancellation between the action of ψ on elements of E0 and E1, and
the determinant in (5.48) indicates the determinant with respect to the
action on g.

We now evaluate this finite-dimensional determinant on g. This de-
terminant is invariant under the adjoint action on g, and without loss
we assume that φ lies in the Lie algebra t of a maximal torus T of G.
In this case, if β denotes a root of g and gβ the corresponding generator
of g, then the adjoint action of φ on gβ is given by [φ, gβ ] = i 〈β, φ〉 gβ .
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Thus diagonalizing the adjoint action of φ, we see that

det

(
−itp − [φ, · ]

2π

)∣∣∣∣∣
g

= (−itp)∆G
∏

β

(
1 +

〈β, φ〉
2πtp

)
,(5.49)

= (−itp)∆G
∏

β>0

(
1 −

(〈β, φ〉
2πtp

)2
)

.

Here ∆G denotes the dimension of G. In the first line of (5.49), the
product runs over all the roots β of g, whereas in the second line of
(5.49), we have grouped together the two terms arising from the roots
±β and rewritten the product over a set of positive roots.

Now from (5.48) and (5.49), we rewrite e(p, φ) as
(5.50)

e(p, φ) = exp

(
− iπ

2
η

)
·
∏

t≥1

∣∣∣∣∣∣
(tp)∆G

∏

β>0

(
1 −

(〈β, φ〉
2πtp

)2
)∣∣∣∣∣∣

χ(Lt)+χ(L−t)

.

Here exp
(
− iπ

2 η
)

represents the phase of e(p, φ), which involves an infi-
nite product of factors ±i, and the product written explicity in (5.50)
represents the norm. We first evaluate this norm, as the quantity η is
much more delicate to determine.

To start, we evaluate the exponent that appears in (5.50). By the
Riemann-Roch theorem in (3.23),

(5.51) χ(Lt) + χ(L−t) = deg(Lt) + deg(L−t) + 2.

In general, the degree of a line V -bundle is not multiplicative, so that
deg(Lt) 6= t deg(L), and the first two terms on the right of (5.51) do not
necessarily cancel as they do for ordinary line bundles.

So we must work a little bit to simplify (5.51). As we now show, this
exponent can be simplified as

(5.52) χ(Lt) + χ(L−t) = 2 − N +
N∑

j=1

ϕαj
(t),

where ϕαj
(t) is an arithmetic function which takes the value 1 if αj

divides t and is 0 otherwise,

ϕαj
(t) = 1 if αj | t,(5.53)

= 0 otherwise.
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To deduce (5.52), we suppose that the line V -bundle Lt is character-
ized on Σ by isotropy invariants γj , where

(5.54) γj ≡ t βj mod αj , 0 ≤ γj < αj ,

and, as before, the isotropy invariants βj characterize the line V -bundle
L itself. From (5.14), the degree of Lt is given in terms of the first Chern
class, which is multiplicative, and γj as

(5.55) deg(Lt) = t c1(L) −
N∑

j=1

γj

αj
.

On the other hand, the isotropy invariants γj for the inverse line

V -bundle L−t are given by

(5.56) γj ≡ −t βj mod αj , 0 ≤ γj < αj ,

so that in terms of γj ,

γj = αj − γj if γj 6= 0,(5.57)

= γj = 0 otherwise.

We note from (5.54) that γj vanishes whenever tβj ≡ 0 mod αj . Be-
cause βj is relatively prime to αj by assumption, the vanishing of γj is
then equivalent to the condition that αj divide t, so that

(5.58) γj = 0 ⇐⇒ αj | t.

Thus, using the arithemetic function ϕαj
(t) defined in (5.53) in con-

junction with (5.57) and (5.58), we see that the degree of L−t can be
written as

deg(L−t) = −t c1(L) −
N∑

j=1

γj

αj
,(5.59)

= −t c1(L) −
N∑

j=1

(
1 − γj

αj
− ϕαj

(t)

)
.

From (5.51), (5.55), and (5.59), we immediately deduce (5.52).
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Consequently, e(p, φ) now becomes

e(p, φ) = exp

(
− iπ

2
η

)
×

(5.60)

×
∏

t≥1

∣∣∣∣∣∣
(tp)∆G

∏

β>0

(
1 −

(〈β, φ〉
2πtp

)2
)∣∣∣∣∣∣

2−N+
PN

j=1 ϕαj
(t)

,

= exp

(
− iπ

2
η

)
· f0(p, φ)2 ·

N∏

j=1

∣∣∣∣
fαj

(p, φ)

f0(p, φ)

∣∣∣∣ ,

where

(5.61) f0(p, φ) =
∏

t≥1


(tp)∆G

∏

β>0

(
1 −

(〈β, φ〉
2πtp

)2
)

 ,

and fαj
is related to f0 by

(5.62) fαj
(p, φ) = f0(αj · p, φ).

In deducing (5.60) from (5.61) and (5.62), we apply the following arith-
metic identity, which holds for an arbitrary function f(t),

(5.63)
∏

t≥1

f(t)ϕαj
(t) =

∏

t≥1

f(αj · t).

We finally evaluate the infinite product which defines f0(p, φ). We
use the well known identity below,

(5.64)
sin(x)

x
=

∏

t≥1

(
1 − x2

π2t2

)
,

and we use the Riemann zeta-function ζ to define trivial, but infinite,
products

∏

t≥1

p∆G = exp (∆G ln p · ζ (0)) = p−∆G/2,(5.65)

∏

t≥1

t∆G = exp
(
−∆G · ζ ′(0)

)
= (2π)∆G/2.
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So from (5.64) and (5.65), we evaluate f0(p, φ) to be

f0(p, φ) =
( p

2π

)−∆G/2 ∏

β>0

[
2p

〈β, φ〉 sin

(〈β, φ〉
2p

)]
,(5.66)

= (2π)∆G/2 p−∆T /2
∏

β>0

[
2

〈β, φ〉 sin

(〈β, φ〉
2p

)]
.

Here ∆T denotes the dimension of the maximal torus T of G (hence the
rank of G), and in passing to the second line of (5.66) we just pull the
factors of p outside the product over the positive roots of G.

From (5.60), (5.62), and (5.66), we finally evaluate e(p, φ) to be

e(p, φ) = exp

(
− iπ

2
η

)
· (2π)∆G

(p
√

P )∆T

×

(5.67)

×
∏

β>0

〈β, φ〉−2

∣∣∣∣2 sin

(〈β, φ〉
2p

)∣∣∣∣
2−N N∏

j=1

∣∣∣∣2 sin

(〈β, φ〉
2αjp

)∣∣∣∣ ,

where P is defined in (5.35) as the product of all the αj .

Evaluating η and the Quantum Shift in the Chern-Simons Level

We now evaluate the phase factor exp
(
− iπ

2 η
)
, from which we will

find the famous quantum shift in the Chern-Simons level k → k + čg,
where čg is the dual Coxeter number of g. For instance, we recall that
in the case G = SU(r + 1), čg = r + 1.

To start, we consider the operator

(5.68)
i

2π
(p£R − [φ, · ]) ,

acting on the vector spaces E0 and E1 in (5.43). The spectrum of this
operator is real, so at least formally, we see from the definition of e(p, φ)
in (5.47) that the phase η is given by

(5.69) η ≈
∑

λ(0) 6=0

sign(λ(0)) −
∑

λ(1) 6=0

sign(λ(1)),

where λ(0) and λ(1) range, respectively, over the eigenvalues of the op-
erator in (5.68) acting on E0 and E1.

We have not written (5.69) with an equality because the sums on
the right of (5.69) are ill-defined without a regulator. To regulate these
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sums, we follow the philosophy of [61] and introduce the eta-function

(5.70) η(p,φ)(s) =
∑

λ(0) 6=0

sign(λ(0)) |λ(0)|−s −
∑

λ(1) 6=0

sign(λ(1)) |λ(1)|−s.

Here s is a complex variable. When the real part of s is sufficiently large,
the sums in (5.70) are absolutely convergent so that η(p,φ)(s) is defined
in this case. Otherwise, η(p,φ)(s) is defined by analytic continuation in
the s-plane. Assuming that the limit s → 0 exists, we then set

(5.71) η = η(p,φ)(0).

Thus, η is basically the classic eta-invariant of [61] which is here associ-
ated to the operator in (5.68) acting on the virtual vector space E0⊖E1,
where the “⊖” simply indicates the relative sign in (5.70).

In our problem, because we explicitly know the spectrum of the oper-
ator in (5.68), we can directly evaluate η(p,φ)(0) without too much work.
One advantage of this direct approach is that it very concretely displays
the origin of the finite shift in the Chern-Simons level k, a very subtle
quantum effect to understand otherwise.

Ultimately this shift in k arises because, despite what might be one’s
naive expectation from (5.69), η depends nontrivially on p and φ. To
isolate this interesting functional dependence of η(p,φ)(0) on p and φ, we
observe that, for s = 0, the sum in (5.70) is invariant under an overall
scaling of the eigenvalues λ(0) and λ(1), so that η(p,φ)(0) is invariant
under an overall scaling of the operator itself in (5.68). In particular,
so long as p > 0 (as holds when we later set p = 1/ǫ), we are free to
rescale the operator in (5.68) by 1/p without changing η.

As a technical convenience, we thus introduce another eta-function
η′(p,φ)(s) which is defined as in (5.70) but is associated to the rescaled
operator

(5.72)
i

2π

(
£R −

[
φ

p
, ·

])
.

Because η = η(p,φ)(0) = η′(p,φ)(0), we see from (5.72) that η can only

depend on p and φ in the combination φ/p.
We also introduce the eta-function η0(s) which is associated to the

constant operator i£R/2π, and to isolate the functional dependence of
η on p and φ we define

(5.73) δη(p, φ) = η′(p,φ)(0) − η0(0).
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As we now compute directly,

(5.74) δη(p, φ) = − čg

2(πp)2

(
d

P

)
Tr (φ2) mod 2.

The role of the mod 2 terms is to remove the absolute value bars | · |
that appear in (5.67), so that e(p, φ) depends analytically on p and φ
as its definition suggests.

Of course, η itself is given by η = δη(p, φ) + η0(0). We also discuss
η0(0), though this constant is much less interesting than δη(p, φ).

A Warmup Computation on S1

Before we directly evaluate δη, η0(0), and η for the case at hand, we
find it useful to warm up with a simpler example, originally presented
in [61, II]. Thus, we consider the eta-function ην(s) which is associated
to the operator Dν acting on functions on S1,

(5.75) Dν =
i

2π

d

dx
+ ν.

Here ν is a real parameter in the interval 0 < ν < 1, and x is a coordinate
on S1 with period 2π. If we wish, we can equivalently consider Dν as
the covariant derivative acting on sections of a flat U(1) bundle over S1

whose connection has holonomy parametrized by ν.
Clearly the eigenvalues λ of Dν are given by λ = t + ν as t runs over

all integers. So we compute

ην(s) =
∑

λ

sign(λ) |λ|−s,(5.76)

=
∑

t≥0

1

(t + ν)s
−

∑

t≥1

1

(t − ν)s
,

=
1

νs
−

∑

t≥1

2νs

ts+1
+

∑

t≥1

s · O
(

1

ts+2

)
.

In passing from the second to the third lines of (5.76), we apply the
binomial expansion, and we collect into O(1/ts+2) the terms in this
expansion for which the sum over t is absolutely convergent near s = 0.
Thus, when we evaluate ην(s) at s = 0, the last term of (5.76) vanishes.

On the other hand, for the term involving the sum over 1/ts+1, we
have

(5.77)
∑

t≥1

2νs

ts+1
= 2νs ζ(1 + s).
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Because ζ(1 + s) has a simple pole with residue 1 at s = 0, we see that
(5.77) makes a non-zero contribution to ην(0), and

(5.78) ην(0) = 1 − 2ν.

Physically the term involving ν arises as a finite renormalization effect,
due to the divergence in the sum over eigenvalues in (5.77).

The Computation of η on M

Given the formal similarity of the operators in (5.72) and (5.75), we
now evaluate η(p,φ)(0) just as in our warmup computation on S1. In
the case at hand, we must consider the eigenvalue multiplicities which
are associated to the dimensions of the Dolbeault cohomology groups
H0

∂
(Σ,Lt) and H1

∂
(Σ,Lt), and as in our earlier computation we must also

consider the eigenvalues of the adjoint action of φ on g. Taking these
considerations into account, we find the following compact expression
for η′(p,φ)(s),

η′(p,φ)(s) =
+∞∑

t=−∞

∑

β

χ(Lt) sign (λ (t, β)) |λ(t, β)|−s,(5.79)

λ(t, β) = t +
〈β, φ〉
2πp

.

Here the sum over β is again a sum over the roots of g, including the
roots β = 0 from the Cartan subalgebra. We note that the appearance
of the Euler character χ(Lt) in (5.79) accounts both for the multiplicities
and the relative signs of the eigenvalue contributions from E0 and E1 in
(5.70).

We can give a similar, simpler expression for η0(s),

η0(s) =
∑

t6=0

∑

β

χ(Lt) sign(t) |t|−s,(5.80)

=
∑

t≥1

∑

β

χ(Lt) − χ(L−t)

ts
.

In the general orbifold case, the index difference χ(Lt) − χ(L−t) that
arises in (5.80) appears to be a somewhat complicated arithmetic func-
tion of t, in contrast to our simple expression for the index sum in (5.52),
and we will not evaluate η0(0) in complete generality here.

However, if we consider the special case of a degree d line-bundle
L over a smooth Riemann surface Σ, then the Riemann-Roch theorem
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immediately implies that

(5.81) χ(Lt) − χ(L−t) = 2dt,

independent of the genus of Σ. So in this special case, we have from
(5.80) that

η0(s) = ∆G

∑

t≥1

2dt

ts
,(5.82)

= 2d∆G ζ(s − 1).

Thus,

(5.83) η0(0) = 2d∆G ζ(−1) = −d∆G

6
.

Having discussed η0(0), we now compute the more interesting quan-
tity δη(p, φ) in (5.73). Upon expressing (5.79) as in (5.80) and collecting
terms, we find that

η′(p,φ)(s) − η0(s) =
∑

t≥0

∑

β>0

(
χ(Lt) − χ(L−t)

)
·


 1(

t + 〈β,φ〉
2πp

)s − 1

ts


 +

(5.84)

+
∑

t≥1

∑

β>0

(
χ(Lt) − χ(L−t)

)
·


 1(

t − 〈β,φ〉
2πp

)s − 1

ts


 .

In writing this expression, we assume without loss that the condition
below holds for each positive root β,

(5.85) 0 <
〈β, φ〉
2πp

< 1.

Otherwise, when the quantity in (5.85) undergoes an integral shift, then
the overall phase exp (−iπη/2) of e(p, φ) simply picks up a sign so as to
effectively remove the absolute value bars | · | appearing in (5.67). Hence
e(p, φ) depends analytically on p and φ.

We now observe from our general expressions (5.55) and (5.59) for
deg(Lt) and deg(L−t) that the index difference in (5.84) depends gen-
erally on t as

(5.86) χ(Lt) − χ(L−t) = 2t

(
d

P

)
+ O(t0).
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We have used the fact that c1 (L) = d / P , since L = Ld
0, and

c1(L0) =
∏

j 1/αj = 1/P .
If we now consider the binomial expansion of the denominators in

(5.84), we see immediately that no contribution at s = 0 can arise from
the terms of order t0 in (5.86). The leading terms in the expansion which

arise from these O(t0) terms are proportional to ±〈β, φ〉/(2πp) · t−(s+1),
and such terms linear in φ cancel between the two sums in (5.84). The
same cancellation occurs between the leading expansion terms which
arise from the term linear in t in (5.86), and fundamentally these can-
cellations reflect the fact that no invariant linear function of φ exists.

Thus, expanding the denominators in (5.84) to second order, we find

(5.87) η′(p,φ)(s) − η0(s) = 2

(
d

P

) ∑

t≥1

∑

β>0

(〈β, φ〉
2πp

)2

· s(s + 1)

ts+1
+

+
∑

t≥1

∑

β>0

s · O
(

1

ts+2

)
.

We evaluate (5.87) at s = 0 to determine δη(p, φ), which is thus given
by

(5.88) δη(p, φ) = 2

(
d

P

) ∑

β>0

(〈β, φ〉
2πp

)2

.

To simplify the sum over roots on the right side of (5.88), we note
that this sum defines an invariant quadratic polynomial of φ and hence
must be proportional to Tr (φ2). When g is simply-laced, we have the
following identity, as shown for instance in [62, VI],

(5.89)
∑

β>0

〈β, φ〉2 = −čg Tr (φ2).

Together, (5.88) and (5.89) imply the main result in (5.74).
Thus the full determinant e(p, φ) is now given by

e(p, φ) = exp

(
− iπ

2
η0(0)

)
· (2π)∆G

(p
√

P )∆T

exp

[
i čg

4πp2

(
d

P

)
Tr (φ2)

]
×

(5.90)

×
∏

β>0

〈β, φ〉−2

[
2 sin

(〈β, φ〉
2p

)]2−N N∏

j=1

[
2 sin

(〈β, φ〉
2αjp

)]
.
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As we will see directly, the exponential term involving Tr (φ2) in e(p, φ)
describes the quantum shift in the Chern-Simons level k.

Evaluating the Integral over h0

We are finally left to consider the integral over h0 in (5.44). We first
observe that the norm (ψ, ψ) appearing in the exponent of the integrand
there is given explicity by

(ψ, ψ) = −
∫

M
κ∧dκ Tr (φ2) − 2pa,(5.91)

= −
(

d

P

)
Tr (φ2) − 2pa.

In passing to the second line of (5.91), we use the fact that φ is constant
so that the integral over M simply evaluates to c1(L) = d/P . Second,
we recall from Section 3 that the moment map at the trivial connection
satisfies

(5.92) 〈µ, ψ〉 = (γ0, ψ) = a.

Hence the integral over h0 takes the explicit form

(5.93) Z(ǫ)
∣∣∣
{0}

=
(2πǫ)

Vol(G)

∫

h0

[
dp

2π

] [
da

2π

] [
dφ

2π

]
e(p, φ)×

× exp

[
−ia + iǫpa +

iǫ

2

(
d

P

)
Tr (φ2)

]
.

We now evaluate the integral over a, which is easy since a only appears
in the exponent of the integrand in (5.93). From a previous identity
(4.33), this integral produces the delta function 2π δ(1 − ǫp).

In turn, we use the delta function to perform the integral over p,
setting p = 1/ǫ. In the process, we cancel the explicit factor of 2πǫ
which appears in the normalization of (5.93), and the integral over h0

simplifies to an integral over g,

(5.94) Z(ǫ)
∣∣∣
{0}

=
1

Vol(G)

∫

g

[
dφ

2π

]
e(ǫ−1, φ) exp

[
iǫ

2

(
d

P

)
Tr (φ2)

]
.

Because the integrand of (5.94) is invariant under the adjoint action
on g, we can apply the classical Weyl integral formula to reduce the
integral over g to an integral over the Cartan subalgebra t, in which
form we make contact with the results in [22, 24]. In its infinitesimal
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version, the Weyl integral formula states that, if f is a function on g

invariant under the adjoint action, then

(5.95)

∫

g

[dφ] f(φ) =
1

|W |
Vol(G)

Vol(T )

∫

t

[dφ]
∏

β>0

〈β, φ〉2 f(φ).

Here |W | is the order of the Weyl group of G, and the product over
the positive roots β of G appearing on the right of (5.95) is a Jacobian
factor.

Applying (5.95) and recalling the form of E in (5.90), we rewrite
(5.94) explicitly as

Z(ǫ)
∣∣∣
{0}

= e(− iπ
2

η0(0)) 1

|W |
1

Vol(T )

(
ǫ√
P

)∆T

×

(5.96)

×
∫

t

[dφ] exp

[
iǫ

2

(
d

P

) (
1 +

ǫ čg

2π

)
Tr (φ2)

]
×

×
∏

β>0

[
2 sin

(
ǫ 〈β, φ〉

2

)]2−N N∏

j=1

[
2 sin

(
ǫ 〈β, φ〉

2αj

)]
.

We finally make the change of variables φ → ǫφ to remove some of the
extraneous factors of ǫ in front of (5.96), so that

Z(ǫ)
∣∣∣
{0}

= exp

(
− iπ

2
η0(0)

)
1

|W |
1

Vol(T )

(
1√
P

)∆T

×(5.97)

×
∫

t

[dφ] exp

[
i

2ǫr

(
d

P

)
Tr (φ2)

]
×

×
∏

β>0

[
2 sin

(〈β, φ〉
2

)]2−N N∏

j=1

[
2 sin

(〈β, φ〉
2αj

)]
.

Here we introduce the usual renormalized coupling ǫr,

(5.98) ǫr =
2π

k + čg

,

to absorb the explicit shift in the coefficient of Tr (φ2) that arises from
the phase δη and that appears in (5.96).

As it stands, the integral over t in (5.97) has oscillatory, as opposed
to exponentially damped, behavior at infinity due to purely imaginary
Gaussian factor involving Tr (φ2). Such oscillatory Gaussian integrals
typically arise in quantum field theory. For instance, we saw an earlier
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example in our path integral manipulations at the end of Section 3.1,
when we integrated out the auxiliary scalar field Φ that appeared there.

Exactly as in Section 3.1, the standard analytic prescription to define
such an oscillatory integral is to shift the integration contour slightly
off the real axis. That is, in the context of (5.97) we consider the
complexification t ⊗ C of the real Lie algebra t, and we define (5.97)
by integrating over t × (1 − iε) for a small real parameter ε. This iε
prescription has the added virtue that the new contour avoids any poles
of the integrand on the real axis that generally occur for N > 2.

Once we define (5.97) with the iε prescription, we are free to analyt-

ically continue the contour to lie along the diagonal t × e−iπ/4, so that
the Gaussian factor in (5.97) becomes purely real and negative-definite.9

To make contact with the result of Lawrence and Rozansky in (5.38),
we finally make another change of variables φ → iφ, so that

Z(ǫ)
∣∣∣
{0}

= exp

(
− iπ

2
η0(0)

)
1

|W |
(−1)(∆G−∆T )/2

Vol(T )

(
1

i
√

P

)∆T

×

(5.99)

×
∫

C×t

[dφ] exp

[
− i

2ǫr

(
d

P

)
Tr (φ2)

]
×

×
∏

β>0

[
2 sinh

(〈β, φ〉
2

)]2−N N∏

j=1

[
2 sinh

(〈β, φ〉
2αj

)]
,

where C is the diagonal contour R × e
iπ
4 , as in (5.39).

We immediately see that (5.99) has the same form as our earlier
expression in (5.40) for the contribution from the trivial connection in
the case G = SU(2), and with a suitable choice of generator for t one
can see that (5.99) agrees, up to the overall phase, with the result of
Lawrence and Rozansky. For general G, our expression takes the same
form as that found by Mariño in [24].

The Phase of Z(ǫ)

We now discuss the phase of our result (5.99) for the contribution
of the trivial connection to the Chern-Simons path integral. In the
simplest case that M is described by a smooth line-bundle of degree
d = n over CP

1, we have computed this phase explicitly, as determined

9We recall that Tr is a negative-definite form.
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by the constant

(5.100) η0(0) = −d∆G

6
.

Since we have not performed a careful analysis of the path integral
phases that arise from the η invariant when M is an orbifold, we restrict
attention to the smooth case in the following.

If we compare our result to the result (5.40) of Lawrence and Rozan-
sky for gauge group SU(2), we see that the overall phase of Z(ǫ) which
arises naturally from localization does not agree with the canonical
phase. To be more precise, the result of Mariño [24] in the case of
a general gauge group G shows that the ratio exp (i δΨ) between the
canonical phase of Z(ǫ) and the phase we determine via (5.100) is given
by

exp (i δΨ) = exp

(
iπ∆G

4
− iπ∆Gčg

12(k + čg)
θ0 +

iπ

2
η0(0)

)
,(5.101)

= exp

(
iπ∆G

12
(3 − d) − iπ∆Gčg

12(k + čg)
θ0

)
.

Here k is the Chern-Simons level. The quantity θ0 is defined in general
in (5.35), and in the smooth case we see that θ0 is given by

(5.102) θ0 = 3 − d.

Hence the expression in (5.101) simplifies greatly to

(5.103) exp (i δΨ) = exp

(
iπk∆G

12(k + čg)
(3 − d)

)
.

As we now explain, the phase discrepancy in (5.103) is not really a
discrepancy at all, and it merely reflects the fact that our path integral
computation is effectively performed in a framing of M which differs
from the canonical two-framing of Atiyah [60], which has been used
by Lawrence and Rozansky. We first recall from [1] that the partition
function of Chern-Simons theory generally transforms under a change
in the framing of M by

(5.104) Z −→ exp

(
iπc

12
s

)
Z, c =

k∆G

k + čg

, s ∈ Z.

Here c arises as the central charge of the two-dimensional WZW model
associated to the group G, and s is an integer that labels the shift in
the frame. As a result, we see immediately from (5.104) that the phase
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discrepancy (5.103) can be eliminated by a shift in s = (3 − d) units
from the canonical framing of M .

Of course, in evaluating the Chern-Simons path integral by localiza-
tion, we did not explicitly specify any framing of M . Given the framing
ambiguity (5.104) in Z, one might naturally wonder how we managed
to obtain a definite answer for the phase of Z in the first place.

To answer this question, we observe generally that if M is an in-
tegral homology sphere, then the choice of a locally-free U(1) action
on M implies a canonical choice, up to homotopy, of a framing of M .
Concretely, a framing of M amounts to the choice of three linearly in-
dependent, non-vanishing vector fields on M , and the U(1) action on
M immediately supplies us with one such vector field, the generating
vector field R of U(1). We decompose the tangent bundle to M as
TM = L ⊕ W , where L is a one-dimensional bundle generated by R
and W is the complement. We are left to make a choice for the other
two vector fields, which must span the rank two sub-bundle W of TM
which lies in the kernel of the contact form κ. The choice of these two
vector fields amounts to a trivialization of W , so if the Euler class of W
is non-zero, W is non-trivial and our construction fails. However, since
the Euler class of W lies in the cohomology group H2(M, Z), which van-
ishes for an integral homology sphere, W is automatically trivial in this
case. Finally, because W has rank two, possible changes of trivialization
of W are classified by homotopy classes of maps of M to SO(2). But for
a homology sphere M (or even a rational homology sphere), the space
of maps to SO(2) is connected.10 So, given the choice of the original
U(1) action, we produce a unique framing of M up to homotopy.

More generally, if M is not assumed to be a homology sphere, then W
might be nontrivial. To define the Chern-Simons invariant of a three-
manifold M , however, it is not quite necessary to have a framing of TM .
It is enough to have a “two-framing,” a trivialization of TM ⊕TM . We
claim that every Seifert fibration π : M → Σ determines a natural two-
framing on M (which might depend on the choice of π, as a given M may
admit more than one Seifert fibration). As TM⊕TM = L⊕L⊕W ⊕W ,
it suffices to trivialize W ⊕ W . First of all, W ⊕ W has a natural spin

10Let w = du be an angular form on SO(2) ∼= S1 and let v : M → SO(2) be any
map. As M is a rational homology sphere, v∗(w) vanishes in de Rham cohomology, so
v∗(w) = df where f : M → R is some real-valued function. Because R is contractible,
we can define a homotopy from f to a constant map from M to R by simply setting
ft = tf , 0 ≤ t ≤ 1. Now let π : R → S1 ∼= R/2π be the projection. Then setting
vt = π ◦ ft, we get the desired homotopy from v to a constant map from M to S1.
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structure, the spin bundle being the sum of exterior powers of W . A
trivial bundle, which is a product M × V for some fixed vector space
V , also has a natural spin bundle, namely M × C(V ), where C(V )
is a Clifford module for V , which is unique up to isomorphism. Any
trivialization of W determines a spin structure, since a trivialization
of W identifies it with a trivial bundle, which as we just noted has a
natural spin structure. One condition we want to put on a trivialization
of W ⊕W is that the spin structure of W ⊕W that it determines should
coincide with the natural one. The second condition we want is that
the trivialization of W ⊕ W should be invariant under the U(1) action
on the Seifert manifold. W is a pullback from some SO(2) bundle W0

over Σ, so W ⊕ W is the pullback of U = W0 ⊕ W0. The rank four
real bundle U has vanishing w1 and w2 (they are killed by taking two
copies of W0), so it is trivial. Compatibility with a given spin structure
of a rank k real bundle U – in our application k = 4 – means that
changes of trivialization really come from maps to Spin(k) rather than
SO(k). As πi(Spin(k)) = 0 for i ≤ 2, k ≥ 3, a trivial SO(k) bundle
U over Σ of rank k ≥ 3 has up to homotopy only one trivialization
compatible with a given spin structure. So finally the Seifert fibration
π : M → Σ endows M with a natural two-framing (which may differ
from its canonical two-framing [60], which is determined by a different
construction).

In sum, then, a Seifert fibration of a homology sphere M determines
a natural trivialization of the tangent bundle TM , which we will call the
Seifert framing, and any Seifert fibration π : M → Σ (even if M is not
a homology sphere) determines a natural trivialization of TM ⊕ TM ,
which we will call the Seifert two-framing. If M is a Seifert homol-
ogy sphere, the Seifert two-framing just arises by applying the Seifert
framing to each copy of TM .

Now we consider in detail the illustrative example M = S3. S3

has no one natural framing. However, if we identify it with the Lie
group SU(2), then it has two equally natural framings, one which is
left-invariant and one which is right-invariant. They are exchanged by
an orientation-reversing reflection of S3, so neither one is preferred. In
regarding S3 as a Seifert fibration over CP

1, we write CP
1 = S3/U(1),

where U(1) is either part of the left action of SU(2) on itself or part of
the right action. For either choice of U(1), our construction produces a
framing that is canonically determined by the choice of U(1) generator
and so is invariant under any symmetry that commutes with U(1). If
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the U(1) is part of the left SU(2), then it commutes with the right
SU(2) and so we get the right-invariant framing; and likewise if the
U(1) is part of the right SU(2), we get the left-invariant framing.

We naturally expect that the phase of Z in our computation of the
Chern-Simons path integral is based on the Seifert framing. In view of
our direct computation of the phase of Z, the Seifert two-framing of M
must differ from the canonical two-framing of [60] by s = (3− d) units.
We now give a simple proof of this fact in the case M = S3 and d = 1
(though we will not be careful about the sign of the shift).

When M = S3, the canonical two-framing of [60] can be described as
follows. It is the trivialization of TM ⊕ TM that comes from the left-
invariant framing on, say, the first copy of TM and the right-invariant
framing on the second. (This is the unique reflection-invariant two-
framing of S3, so it must be the canonical two-framing.) On the other
hand, the Seifert framing of M is (for a suitable choice of fibration
π : S3 → CP

1) the left-invariant framing of TM , so the Seifert two-
framing comes by applying the left-invariant framing to each of the two
copies of TM . Hence the comparison between the Seifert two-framing
and the canonical one is the same as the comparison between the left-
invariant two-framing and the right-invariant two-framing for a single
copy of TM .

The right-invariant framing of S3 is determined by the basis of right-
invariant one-forms θ = dg g−1, while the left-invariant framing is deter-

mined by the basis of left-invariant one-forms θ̂ = g−1dg. We are sup-

posed to compare them by writing θ = T θ̂T−1, where T is a map from
M to SO(3). Such a map has a “degree,” an integer which measures by
how many units the two framings differ. Clearly, in this case, T = g, so
T is the “identity” map from S3 ∼= SU(2) to itself. This map is of degree
1 as a map to SU(2), but as a map from S3 to SO(3) = SU(2)/Z2, it
is of degree 2. This shows, as expected, that the Seifert two-framing of
S3 differs from the canonical two-framing by 3 − d = 2 units.

The degrees are appropriately counted for maps to SO(3), rather than
SU(2), because this is the structure group of the tangent bundle of M .
To illustrate the role of SO(3), let us consider one more simple example,
which is M = SO(3) = S3/Z2. This is the case d = 2 of the lens space
considered above, so we expect the Seifert two-framing and the canonical
two-framing to differ by 3 − d = 1 unit. The comparison again reduces
to comparing the right-invariant framing of TM with the left-invariant

one. So again we have to compare θ = dg g−1 with θ̂ = g−1dg. We have
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again θ = gθ̂g−1, where now g is the identity map from SO(3) to itself,
which is of degree 1, showing that the two two-framings differ by one
unit.

For any d, the general analysis of framings by Freed and Gompf in
[25] can be used to check that the canonical two-framing and the Seifert
two-framing on M differ by s = (3 − d) units.

5.3. Localization on a Smooth Component of the Moduli Space

of Irreducible Flat Connections. We now extend our work in the
previous section to describe the local contribution to the Chern-Simons
path integral from a smooth component M of the moduli space of irre-
ducible flat connections on a Seifert manifold M . We assume here for
simplicity that M is described by a line bundle L of degree n over a
smooth Riemann surface Σ of genus g ≥ 1. The orbifold case is also
discussed by Rozansky in [23] but is somewhat more involved.

As we recall from Section 5.1, M is literally the moduli space of flat
connections on the trivial G-bundle over M such that the holonomy
ρ(h) around the S1 fiber of M is a fixed element of the center Γ of
G. This moduli space is not smooth for arbitrary ρ(h) in Γ, but it is
smooth in certain cases. The main such case, and the case we consider
here, arises when the gauge group G is SU(r +1), ρ(h) is a generator of
Γ = Zr+1, and n and r+1 are relatively prime. Under these conditions,
ρ(h)n also generates Γ, and M is smooth and can be identified with an
unramified (r+1)2g-fold cover of the moduli space M0 of flat Yang-Mills
connections on an associated principal bundle P over Σ with structure
group G = G/Γ. (G enters because when we project to G, ρ(h) projects
to 1 and the representation ρ becomes a pullback from Σ. But as the
three-dimensional gauge group is really G, the holonomies of ρ around
one-cycles in Σ are defined as elements of G, not G; this leads to the
unramified cover.)

Our general discussion of non-abelian localization in Section 4 implies
that the path integral contribution from M can be expressed entirely
in terms of the cohomology ring of M, or equivalently M0. One of the
reasons that localization on M is interesting is that we find in Chern-
Simons theory a natural generalization of the cohomological formula
(4.18) for the path integral contribution from M0 in two-dimensional
Yang-Mills theory.

We recall from our discussion in Section 5.1 that a local symplectic
neighborhood N near M in A is described by an equivariant bundle

(5.105) F −→ N
pr−→ M,
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where the normal fiber F takes the (by now familiar) form

(5.106) F = H×H0 (h ⊖ h0 ⊖ E0 ⊕ E1).

By assumption, the only gauge transformations which fix the irre-
ducible flat connections associated to points in M are constant gauge
transformations by elements in the center Γ of G, since the center of
G always acts trivially in the adjoint representation. So the stabilizer
subgroup H0 in H is now given by

(5.107) H0 = U(1)2 × Γ,

where we recall that the torus U(1)2 arises from the two extra generators
in H relative to G.

Also, we recall that the vector spaces E0 and E1 are now given over a
point of M by

E0 =
⊕

t6=0

H0
∂
(Σ, ad(P ) ⊗ Lt) =

⊕

t≥1

H0
∂
(Σ, ad(P ) ⊗ (Lt ⊕ L−t)),

(5.108)

E1 =
⊕

t6=0

H1
∂
(Σ, ad(P ) ⊗ Lt) =

⊕

t≥1

H1
∂
(Σ, ad(P ) ⊗ (Lt ⊕ L−t)).

The Canonical Symplectic Integral Over N

Having described the local geometry near M in A, we next consider
the canonical symplectic integral over N . This integral takes the form

(5.109) Z(ǫ)
∣∣∣
M

=
2πǫ · Vol(U(1)2)

Vol(H)
×

×
∫

h×N

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − iǫ

2
(φ, φ) + tDλ

]
,

where we include in the normalization of (5.109) the prefactor from
(5.10). To define the integral over the non-compact directions in N , we
also include in (5.109) the localization form tDλ.

Our goal now is to reduce the integral over h × N in (5.109) to an
integral over the moduli space M itself. We have already discussed a
problem of this sort in Section 4.2, when we considered the path integral
contribution from irreducible flat connections in two-dimensional Yang-
Mills theory. As we briefly recall, in the case of Yang-Mills theory
the fiber F in (5.105) is modelled on the cotangent bundle T ∗H (with
H being the group of gauge transformations in that case), so that N
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retracts equivariantly onto a principal H-bundle PH over the the moduli
space M0. Because H acts freely on PH , the H-equivariant cohomology
of the total space PH can be identified with the ordinary cohomology
of the quotient PH/H = M0, so H∗

H(PH) ∼= H∗(M0). In particular,

the H-equivariant cohomology classes of [Ω − i 〈µ, φ〉] and [−1
2(φ, φ)]

on PH pull back from ordinary cohomology classes Ω and Θ of degrees
two and four on M0, and we apply this fundamental fact to reduce the
symplectic integral in Yang-Mills theory to an integral over M0.

In the case of Chern-Simons theory, the group H ≡ H no longer
acts freely on N , but we can still apply much the same logic as for
the case of Yang-Mills theory. Here a subgroup H0 of H acts with
fixed points on N , so N equivariantly retracts onto a bundle with fiber
H/H0 over M. We denote the total space of this bundle by N0, so that
H/H0 −→ N0 −→ M.

Because N0 is an equivariant retraction from N , the H-equivariant
cohomology ring of N is the same as that of N0. As we explain in
Appendix C, the formal properties of equivariant cohomology further
imply that the H-equivariant cohomology ring of N0 is identified under
pullback with the H0-equivariant cohomology ring of M itself. So in
total, we have the relation H∗

H(N) ∼= H∗
H0

(M).

As a result, in precise analogy to the case of two-dimensional Yang-
Mills theory, the H-equivariant cohomology classes of [Ω− i 〈µ, φ〉] and
[−1

2(φ, φ)] which appear in the symplectic integral over N can be iden-
tified as the pullbacks from M of elements in the ring H∗

H0
(M).

To identify the elements of H∗
H0

(M) which pull back to these classes
appearing in the symplectic integral over N , we note that H∗

H0
(M) has

a very simple structure. As we also explain in Appendix C, because
H0 acts trivially on M, H∗

H0
(M) is given by the tensor product of the

ordinary cohomology ring H∗(M) of M with the H0-equivariant coho-
mology ring H∗

H0
(pt) of a point. Thus, H∗

H0
(M) = H∗(M) ⊗ H∗

H0
(pt).

Finally, our previous discussion of the Cartan model of equivariant
cohomology explicitly identifies the H0-equivariant cohomology ring of
a point with the ring of invariant functions on the Lie algebra h0. Thus,
all elements of H∗

H0
(M) can be written as sums of terms having the

form x · f(ψ), where x is an ordinary cohomology class on M and f(ψ)
is an invariant function of ψ in h0.

With our concrete description of H∗
H0

(M), we can immediately iden-
tify the elements of this ring which pull back to the H-equivariant classes
[Ω − i 〈µ, φ〉] and [−1

2(φ, φ)] on N . Let us decompose the Lie algebra h



284 C. BEASLEY & E. WITTEN

of H as a sum h = (h ⊖ h0) ⊕ h0. As a result, we write φ = ϕ + p + a,
where ϕ is an element of h ⊖ h0, which can be identified as the Lie
algebra of G, and, in the same notation from Section 3.4, p and a are
elements of the Lie algebra h0 of H0.

We then identify the H-equivariant classes on N appearing in (5.109)
with corresponding H0-equivariant classes on M via

Ω − i 〈µ, φ〉 ←→ Ω − i a,(5.110)

−1

2
(φ, φ) ←→ n Θ + pa.

We abuse notation slightly in the first line of (5.110). On the left, Ω
is the symplectic form on A restricted to N , and on the right Ω is
the induced symplectic form on M (or equivalently M0), exactly as
in our discussion of two-dimensional Yang-Mills theory. In identifying
the dependence of this degree two class in H∗

H0
(M) on p and a, we use

the fact, evident from the formula for µ in (3.50), that the value of the
moment map 〈µ, φ〉 evaluated at a flat connection which pulls back from
Σ is just the constant a appearing on the right of the first line in (5.110).

Similarly, in the second line of (5.110), the degree four class Θ on M
is the same degree four class that appeared in our discussion of Yang-
Mills theory. The identification in (5.110) arises by writing the degree
four invariant −1

2(φ, φ) in terms of ϕ, p, and a as

(5.111) −1

2
(φ, φ) =

1

2

∫

M
κ∧dκ Tr (ϕ2) + pa =

n

2

∫

Σ
ω Tr (ϕ2) + pa,

where we recall that n is the degree of the line-bundle L over Σ which
defines M and ω is a unit-volume symplectic form on Σ. As in the
case of two-dimensional Yang-Mills theory, the term quadratic in the
generators ϕ of the gauge symmetry is associated by the Chern-Weil
homomorphism to the degree four class Θ.

With the identifications in (5.110), we can rewrite the symplectic
integral over N as

(5.112) Z(ǫ)
∣∣∣
M

=
2πǫ · Vol(U(1)2)

Vol(H)
×

×
∫

h×N

[
dφ

2π

]
exp [(pr∗Ω) − ia (1 − ǫp) + iǫn (pr∗Θ) + tDλ].

As in the case of localization at the trivial connection, the generator a
acts trivially on all of N and so does not appear in the localization form
tDλ. So we can perform the integrals over a and p exactly as before,
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and the integral over a produces a delta-function that sets p = 1/ǫ. As
a result, the symplectic integral reduces to the form

(5.113) Z(ǫ)
∣∣∣
M

=
Vol(U(1)2)

Vol(H)
×

×
∫

(h⊖h0)×N

[
dφ

2π

]
exp

[
(pr∗Ω) + iǫn (pr∗Θ) + tDλ

∣∣∣
p=1/ǫ

]
.

The only term in (5.113) which does not pull back from M is the
localization term tDλ, so we are left to integrate tDλ over the fiber F
of N . In the case of two-dimensional Yang-Mills theory, with F = T ∗H,
this integral gave a trivial factor of unity. In Chern-Simons theory, the
result is much more interesting.

An Equivariant Euler Class From F

To evaluate (5.113), we consider the following integral,
(5.114)

I(ψ) =
1

Vol(H)

∫

eF

[
dφ

2π

]
exp [tDλ], F̃ = (h ⊖ h0) × F , ψ ∈ h0.

Here we let ψ = p + a be an arbitrary element of h0, though in general
the generator a will not appear in (5.114) since a acts trivally on N ,
and we set p = 1/ǫ at the end of the discussion, as in (5.113).

Of course, in Section 4.3 we computed this integral over the abstract
model for F . There we assumed M to be a point, and we found the
result

(5.115) I(ψ) =
1

Vol(H0)
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

, ψ ∈ h0.

Unfortunately, we cannot apply this result directly to the case at hand.
When F is fibered over a non-trivial moduli space M, then I(ψ) will
generally involve cohomology classes on M which are associated to the
twisting of the bundle and which our previous computation did not
detect.

To compute I(ψ) in (5.114), one approach is simply to generalize
the abstract localization computation in Section 4.3 to allow for a non-
trivial moduli space M. We perform this computation in Appendix D.
However, we can also make an immediate guess, on the basis of math-
ematical naturality, for what the generalization of the formula (5.115)
must be when M is non-trivial. This guess relies on a more intrinsic
topological interpretation of the result (5.115) even in the case that M
is a point. For this reason, it turns out to be much more illuminating
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to “guess” the generalization of (5.115) rather than simply to compute,
so we pursue this approach now.

Let us think about what our result for I(ψ) really means in the case
that M = pt. Abstractly, the data which enter the formula (5.115)
are the group H0, which acts trivially on M, and the finite-dimensional
unitary representations E0 and E1 of H0. In general, to say that E is
a representation of H0 is the same thing as to say that E is an H0-
equivariant bundle over a point, so if we like, we can consider E0 and
E1 as H0-equivariant bundles over M = pt.

This language is useful, since whenever we have a vector bundle (even
a vector bundle over a point!) an extremely natural set of topologi-
cal invariants to consider are the characteristic classes of the bundle.
In our context, we naturally consider the H0-equivariant characteristic
classes11 of E0 and E1 as H0-equivariant bundles over M = pt. These
characteristic classes are valued in the H0-equivariant cohomology ring
of M — since M is a point, this ring is the ring of invariant functions
on the Lie algebra h0 of H0.

If E is a unitary representation of H0 and we consider E as an H0-
equivariant bundle over a point, then the H0-equivariant characteristic
classes of E have a simple description. We let U(E) be the unitary
group acting on E. Since H0 acts in a unitary fashion on E, the relevant
characteristic classes of E to consider are the equivariant Chern classes.
As is well known, the ordinary Chern classes of a vector bundle are
associated via the Chern-Weil homomorphism to the generators ci of the
ring of invariant polynomials on the Lie algebra of the unitary group.
To describe the corresponding H0-equivariant Chern classes of E, we
observe that, since E is a unitary representation of H0, we have an
induced map H0 −→ U(E). Consequently, any invariant polynomial on
the Lie algebra of U(E) pulls back to an invariant polynomial on the
Lie algebra h0 of H0. The pullbacks of the generators ci to invariant
polynomials on h0 are then the H0-equivariant Chern classes of E. In
particular, if the action of H0 on E is non-trivial, then the equivariant
Chern classes of E can also be non-trivial, despite the fact that E is a
bundle over only a point.

The invariant polynomials appearing in I(ψ), namely

(5.116) eH0(pt, E0) ≡ det

(
ψ

2π

∣∣∣
E0

)
, eH0(pt, E1) ≡ det

(
ψ

2π

∣∣∣
E1

)
,

11Although we will not require the generalization here, we refer the reader to
Chapter 8.5 of [56] for a general discussion of equivariant characteristic classes.
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arise from determinants. The Chern-Weil homomorphism associates
the determinant to the top Chern class, so by our discussion above the
invariant polynomials in (5.116) can be characterized intrinsically as the
H0-equivariant top Chern classes, or equivalently Euler classes, of E0

and E1 as equivariant bundles over a point. Thus, when M is a point,
we write I(ψ) in (5.115) intrinsically as

(5.117) I(ψ) =
1

Vol(H0)

eH0(pt, E0)

eH0(pt, E1)
.

More generally, if E is an H0-equivariant vector bundle over a complex
manifold M, then we can still consider the H0-equivariant Euler class
eH0(M, E) of E, which takes values in the H0-equivariant cohomology
ring of M. If H0 acts trivially on M (but not necessarily trivially
on E), we have already identified this cohomology ring as a product
H∗

H0
(M) ∼= H∗(M) ⊗ H∗

H0
(pt). We describe eH0(M, E) in this case

explicitly below.

In our application to Chern-Simons theory, the infinite-dimensional
vector spaces E0 and E1 in (5.108) determine associated H0-equivariant
bundles over the moduli space M, on which H0 in (5.107) acts trivially.
Given our intrinsic interpretation of I(ψ) when M is a point, we cer-
tainly expect that the integral over F in (5.114) produces the natural
generalization of (5.117), involving the H0-equivariant Euler classes of
the bundles associated to E0 and E1 over M. That is,

(5.118) I(ψ) =
1

Vol(H0)

eH0(M, E0)

eH0(M, E1)
.

As our direct computation in Appendix D shows, this formula is correct.

We remark that the appearance of the equivariant Euler class of the
bundle E1 in the denominator of (5.118) is quite standard. This class
appears in precisely the same way in the classic Duistermaat-Heckman
formula [37] for abelian localization, as was explained in [36]. The
essentially new feature of the formula (5.118) is the appearance of a
corresponding Euler class from E0 in the numerator.

We set

(5.119) e(ψ) =
eH0(M, E0)

eH0(M, E1)
.
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Then from (5.113), (5.114), and (5.118), the local contribution from M
in Chern-Simons theory is given abstractly by

(5.120) Z(ǫ)
∣∣∣
M

=
1

|Γ|

∫

M
e(p)

∣∣∣
p=1/ǫ

exp (Ω + iǫnΘ).

In arriving at (5.120), we note that the prefactor Vol(U(1)2) in (5.113)
cancels against a corresponding factor in Vol(H0) from I(ψ). This can-
cellation leaves the factor 1/|Γ| in (5.114), where |Γ| is the order of the
center Γ of G.

As we recall in writing (5.120), since the generator a in h0 acts triv-
ially on N , e(ψ) ≡ e(p) depends only on p in h0. Once we set p = 1/ǫ in
(5.120), e(ǫ−1) will become an ordinary cohomology class on M. As in
the case of localization at the trivial connection, our computation now
reduces to determining explicitly this class.

More About the Equivariant Euler Class

Before we evaluate the equivariant Euler classes of the infinite-dimen-
sional bundles corresponding to E0 and E1, we first give a more explicit
description of the equivariant Euler class in a simpler, finite-dimensional
situation. To make contact with Chern-Simons theory, we assume ab-
stractly that H0 is a torus which acts trivially on a complex manifold
M, and we assume that E is a complex representation of H0 which is
fibered over M to determine an associated H0-equivariant bundle. Our
goal is now to give a concrete topological formula for eH0(M, E), which
we will then apply to evaluate e(ψ) in (5.119) for Chern-Simons theory.

In general, eH0(M, E) incorporates both the algebraic data associated
to the action of H0 on E as well as the topological data that describes
the twisting of E over M. To encode the data related to the action
of H0 on E, we decompose E under the action of H0 into a sum of
one-dimensional complex eigenspaces

(5.121) E =

dim E⊕

j=1

Eβj
,

where each βj is a weight in h∗0 which describes the action of H0 on the
eigenspace Eβj

.
To encode the topological data associated to the vector bundle de-

termined by E over M, we apply the splitting principle in topology, as
explained for instance in Chapter 21 of [39]. By this principle, we can
assume that the vector bundle determined by E over M splits equiv-
ariantly into a sum of line-bundles associated to each of the eigenspaces
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Eβj
for the action of H0. Under this assumption, we let xj = c1(Eβj

)
be the first Chern class of the corresponding line-bundle. These virtual
Chern roots xj determine the total Chern class of E as

(5.122) c(E) =
dim E∏

j=1

(1 + xj).

In particular, the ordinary Euler class of E over M is then given by

(5.123) e(M, E) =

dim E∏

j=1

xj .

The equivariant Euler class eH0(M, E) is now determined in terms
of the weights βj and the Chern roots xj . We recall that eH0(M, E)
is defined as an element of H∗

H0
(M, E) = H∗(M) ⊗ H∗

H0
(pt) since H0

acts trivially on M. Thus, eH0(M, E) will be a function of ψ ∈ h0 with
values in the cohomology of M. Explicitly, the H0-equivariant Euler
class of E over M is given by

(5.124) eH0(M, E) =
dim E∏

j=1

(
i 〈βj , ψ〉

2π
+ xj

)
.

We see that this expression is a natural generalization of the ordinary
Euler class (5.123) of E. Also, when M is only a point, the Chern roots
xj do not appear in (5.124) for dimensional reasons, and the product
over the weights βj in (5.124) reproduces the determinant of ψ acting
on E as in (5.116).

Evaluating e(p)

We now evaluate e(p) for Chern-Simons theory12 . First we recall
that the complex vector spaces E0 and E1 appearing in (5.119) arise
from the Dolbeault cohomology groups of the bundles ad(P ) ⊗ Lt over
Σ, with

E0 =
⊕

t6=0

H0
∂
(Σ, ad(P ) ⊗ Lt) =

⊕

t≥1

H0
∂
(Σ, ad(P ) ⊗ (Lt ⊕ L−t)),

(5.125)

E1 =
⊕

t6=0

H1
∂
(Σ, ad(P ) ⊗ Lt) =

⊕

t≥1

H1
∂
(Σ, ad(P ) ⊗ (Lt ⊕ L−t)).

12We set p = 1/ǫ only at the very end of the computation.
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We also recall that the action of H0 on E0 and E1 is determined by the
operator p£R, whose action in turn only depends on the grading t in
(5.125). We naturally decompose E0 and E1 under the action of H0, and
we consider the finite-dimensional eigenspaces

(5.126) E(t)
0 = H0

∂
(Σ, ad(P ) ⊗ Lt), E(t)

1 = H1
∂
(Σ, ad(P ) ⊗ Lt).

The abelian group H0 acts canonically on both E(t)
0 and E(t)

1 with eigen-
value −2πit.

In terms of this decomposition, the quantity e(p) is given by the
following infinite product,
(5.127)

e(p) =
∏

t6=0

[
eH0

(
M, E(t)

0

)

eH0

(
M, E(t)

1

)
]

=
∏

t≥1

[
eH0

(
M, E(t)

0

)
· eH0

(
M, E(−t)

0

)

eH0

(
M, E(t)

1

)
· eH0

(
M, E(−t)

1

)
]

.

Here eH0

(
M, E(t)

0

)
and eH0

(
M, E(t)

1

)
denote the H0-equivariant Euler

classes of the finite-dimensional bundles determined by E(t)
0 and E(t)

1
over M.

Our basic strategy to evaluate the product in (5.127) is to deduce a

recursive relation between the equivariant Euler classes of E(t)
0 , E(t−1)

0 ,

E(t)
1 , and E(t−1)

1 . So far, we have only specified the line-bundle L topo-
logically, by specifying its degree n. The holomorphic structure of L
really was not important. Now we want to pick a convenient holomor-
phic structure on L to simplify our computation. We pick n arbitrary
points σ1, . . . , σn on Σ and we take L to be O(σ1 + · · · + σn).

With this choice of L, we have the following short exact sequence of
coherent sheaves on Σ,
(5.128)

0 −→ adC(P ) ⊗ Lt−1 −→ adC(P ) ⊗ Lt −→
n⊕

i=1

adC(P )
∣∣
σi

−→ 0.

Here t is any integer, and adC(P )
∣∣
σi

denotes the skyscraper sheaf asso-

ciated to the fiber of adC(P ) over the point σi. The appearance of this
skyscraper sheaf explains our need to work a bit more generally with
coherent sheaves, as opposed to more innocuous bundles.
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Associated to this short exact sequence we have the usual long exact
sequence in sheaf cohomology,

0 −→ H0
(
Σ, adC(P ) ⊗ Lt−1

)
−→ H0

(
Σ, adC(P ) ⊗ Lt

)
−→(5.129)

−→
n⊕

i=1

H0
(
Σ, adC(P )

∣∣
σi

)
−→

−→ H1
(
Σ, adC(P ) ⊗ Lt−1

)
−→ H1

(
Σ, adC(P ) ⊗ Lt

)
−→ 0.

Since a skyscraper sheaf has no higher cohomology, we observe that
H1

(
Σ, adC(P )

∣∣
σi

)
= 0 for the last term of (5.129).

Each cohomology group appearing in (5.129) can be considered as
the fiber of an associated holomorphic bundle over the moduli space
M, and the exactness of the sequence (5.129) implies the exactness of
the corresponding sequence of bundles on M. Except for the single term
involving the skyscraper sheaf, we see that the bundles which appear in

(5.129) are those associated to E(t−1)
0 , E(t)

0 , E(t−1)
1 , and E(t)

1 . In analogy
to (5.126), we set

(5.130) V(i) = H0
(
Σ, adC(P )

∣∣
σi

)
.

Over M, V(i) also fibers as a holomorphic bundle. Although the holo-
morphic structure of V(i) depends on σi, its topology, which is all we
will care about, does not (as is clear from the fact that the points σi can
be moved continuously), so we just write V for any of the V(i). Thus,
the exact sequence in (5.129) implies the following exact sequence of
associated bundles on M,

(5.131) 0 −→ E(t−1)
0 −→ E(t)

0 −→ V⊕n −→ E(t−1)
1 −→ E(t)

1 −→ 0.

This sequence is an exact sequence of bundles on M, but we need
an exact sequence of H0-equivariant bundles on M, such that the maps
in the sequence are compatible with the action of H0. Because H0 acts

with different eigenvalues on the equivariant bundles E(t−1)
0 and E(t)

0 , and

similarly on E(t−1)
1 and E(t)

1 , the canonical action of H0 is not compatible
with the maps in (5.131).

To fix this problem, we note that we are free to consider actions

of H0 on E(t)
0 and E(t)

1 other than the canonical action. That is, we
consider H0-equivariant bundles over M whose fibers are still given by
the cohomology groups H0

∂
(Σ, ad(P ) ⊗ Lt) and H1

∂
(Σ, ad(P ) ⊗ Lt) but

where the action of H0 is not the canonical action fixed by t. In fact,
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so long as H0 acts uniformly on the fiber, we can take H0 to act with
any eigenvalue.

Thus we let E(t)
0,m and E(t)

1,m denote the H0-equivariant bundles over
M whose fibers are determined by t as before but where H0 acts with

eigenvalue −2πim for some integer m. In this notation, the bundles E(t)
0

and E(t)
1 with the canonical action of H0 are E(t)

0,t and E(t)
1,t . We similarly

denote by Vm the H0-equivariant bundle associated to V for which H0

acts uniformly on the fiber with eigenvalue −2πim.
The exact sequence in (5.131) on M now determines a corresponding

exact sequence of H0-equivariant bundles,

(5.132) 0 −→ E(t−1)
0,m −→ E(t)

0,m −→ (Vm)⊕n −→ E(t−1)
1,m −→ E(t)

1,m −→ 0.

Since the action of H0 is the same on every term in this sequence, the
maps are trivially compatible with the group action.

We now recall that a fundamental property of the equivariant Euler
class is that it behaves multiplicatively with respect to an exact sequence
of equivariant bundles, just like the ordinary Euler class. Thus, if E1,
E2, and E3 are H0-equivariant bundles on M which fit into an exact
sequence whose maps respect the action of H0,

(5.133) 0 −→ E1 −→ E2 −→ E3 −→ 0,

then the H0-equivariant Euler classes of these bundles satisfy the rela-
tion

(5.134) eH0(M, E2) = eH0(M, E1) · eH0(M, E3).

More generally, given an exact sequence of arbitrary length,

(5.135) 0 −→ E1 −→ E2 −→ · · · −→ E2N −→ E2N+1 −→ 0,

the relation (5.134) generalizes in the natural way, with
(5.136)

eH0(M, E2) · · · eH0(M, E2N ) = eH0(M, E1) · · · eH0(M, E2N+1).

We apply this multiplicative property of the equivariant Euler class
to the exact sequence in (5.132). For the following, it is very natural to
introduce the ratio of equivariant Euler classes,

(5.137) Q(t)
m ≡

[
eH0

(
M, E(t)

0,m

)

eH0

(
M, E(t)

1,m

)
]

,
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so that e(p) is given by

(5.138) e(p) =
∏

t6=0

Q(t)
t .

In terms of Q(t)
m , the multiplicative relation (5.134) applied to (5.132)

implies that

(5.139) Q(t)
m = Q(t−1)

m ·
[
eH0

(
M,Vm

)]n
.

Expanding the recursive relation (5.139), we find

(5.140) Q(t)
m = Q(0)

m ·
[
eH0

(
M,Vm

)]nt
.

What has this work gained us? As we now explain, we can give a
very concrete expression for the quantity on the right of (5.140). By

definition, the bundles over M which determine the ratios Q(0)
±t have

fibers

(5.141) E(0)
0 = H0

∂
(Σ, adC(P )), E(0)

1 = H1
∂
(Σ, adC(P )).

By our assumption that all points in the moduli space M correspond to

irreducible connections, E(0)
0 = 0. Further, as we mentioned in Section

4.3, E(0)
1 is naturally identified with the holomorphic tangent bundle

TM of the moduli space itself, so E(0)
1 = TM. We introduce the con-

venient notation E(0)
1,t ≡ TMt to indicate the H0-equivariant version of

TM. Because of this observation, we can apply the relations (5.138)
and (5.140) to rewrite e(p) entirely in terms of the equivariant bundles
TMt and Vt,

(5.142) e(p) =
∏

t6=0

1

eH0

(
M, TMt

) ·
[
eH0

(
M,Vt

)]nt
.

Let us make the factors appearing on the right in (5.142) more ex-
plicit. To this end, we introduce the Chern roots ̟j of TM, where
j = 1 , . . . ,dimM, and the Chern roots νl of V, where l = 1 , . . . , rkV.
Since V arises from the fiber of the adjoint bundle adC(P ), the rank
of V is simply rkV = dimG ≡ ∆G. As in our general discussion of the
equivariant Euler class, the Chern roots ̟j and νl are “virtual” degree
two classes in H∗(M) which are defined in terms of the total Chern
classes of TM and V as

(5.143) c(TM) =
dimM∏

j=1

(1 + ̟j), c(V) =

∆G∏

l=1

(1 + νl).
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In terms our these Chern roots, our general description of the equi-
variant Euler class in (5.124) implies that
(5.144)

eH0

(
M, TMt

)
=

dimM∏

j=1

(−itp + ̟j) , eH0

(
M,Vt

)
=

∆G∏

l=1

(−itp + νl) .

The terms in (5.144) which involve p arise via the infinitesimal action of
H0 on the fibers of TMt and Vt. We recall that H0 acts infinitesimally
as p£R = −2πitp.

Together, (5.142) and (5.144) imply the following formal expression
for e(p),

(5.145) e(p) =
∏

t6=0

[
dimM∏

j=1

1

(−itp + ̟j)

] [
∆G∏

l=1

(−itp + νl)
nt

]
.

This infinite product represents the determinant of a first-order operator
D acting on E0 ⊖ E1, where

(5.146) D =
1

2π
(p£R + iR) .

Here R is the curvature operator acting on E0 and E1 as bundles over
M, as appears in the computation in Appendix D, and “⊖” indicates
that we actually take the inverse of the determinant of D acting on E1.

The determinant in (5.145) is only a formal expression, and to define
it we must choose some regularization procedure. For instance, we con-
sidered the determinant of a similar operator D0 in our computation at
the trivial connection in Section 5.2,

(5.147) D0 =
1

2π
(p£R − [φ, · ]) .

In that case, we defined the determinant of D0 analytically, using the
zeta-function to define its absolute value and the eta-function to define
its phase.

We follow a similar strategy to define the determinant of D, or more
explicitly the infinite product in (5.145). To start, we find it useful to
rewrite the product in (5.145) by pulling out an overall factor of p,
(5.148)

e(p) = pdimM
∏

t6=0

[
dimM∏

j=1

(
−it +

(
̟j

p

))−1
][

∆G∏

l=1

(
−it +

(
νl

p

))nt
]
.
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In passing from (5.145) to (5.148), we use as in Section 5.2 the classical
Riemann zeta-function to define the trivial, but infinite, product over p
which arises from (5.145),

(5.149)
∏

t≥1

p−2 dimM = exp (−2 dimM · ln p · ζ (0)) = pdimM.

(There is no contribution from the factors in (5.145) which are associated
to V due to a cancellation between the terms for ±t.) Thus, we are left
to consider the determinant of the rescaled operator D′,

(5.150) D′ =
1

2π

(
£R + i

R
p

)
,

which represents the infinite product appearing in (5.148) and which
depends on p and the Chern roots only in the combinations ̟j/p and
νl/p.

One interesting distinction between the operator D, or equivalently
D′, and the operator D0 which appeared previously is that whereas D0

is an anti-hermitian operator, with a purely imaginary spectrum, the
operator D has no particular hermiticity properties and its spectrum
has no particular phase. This is manifest in the product (5.148), since
−it is imaginary but both the Chern roots and p are real. In terms of
(5.150), both £R and R are anti-hermitian operators, but we have an
explicit factor of ‘i’ in front of R. Because D′ is neither hermitian nor
anti-hermitian, we will have to generalize the zeta/eta-function regular-
ization technique which we applied to define the determinant of D0 in
Section 5.2.

Before we supply a definition for the determinant of D′, or equiva-
lently for the products in (5.148), let us consider what general proper-
ties our definition should possess. To start, we factorize the product in
(5.148) into the two infinite products below,

fM(z) =
∏

t6=0

dimM∏

j=1

(−it + z̟j)
−1 ,(5.151)

fV(z) =
∏

t6=0

∆G∏

l=1

(−it + zνl)
nt ,

where z = 1/p is now a formal parameter.
The expressions in (5.151) are ill-defined as they stand. However,

if we formally differentiate log fM(z) and log fV(z) with respect to z a
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sufficient number of times, we eventually obtain well-defined, absolutely
convergent sums. For instance, in the case of fM(z), we see that

d2

dz2
log fM(z) =

dimM∑

j=1

∑

t6=0

̟2
j

(−it + z̟j)
2(5.152)

=
dimM∑

j=1

d2

dz2
log

[
(πz̟j)

sinh (πz̟j)

]
.

The second equality in (5.152) follows from the same product identity
(5.64) for sin(x)/x as we applied in Section 5.2.

So any reasonable definition for fM(z) in (5.151) must be compatible
with the relation (5.152). In particular, upon integrating (5.152), we
see that log fM(z) is determined up to a linear function of z, and hence
fM(z) is determined up to two arbitrary real constants a0 and a1,

(5.153) fM(z) = exp [a0 + a1z c1(TM)]

dimM∏

j=1

(πz̟j)

sinh (πz̟j)
.

Here c1(TM) =
∑

j ̟j is the first Chern class of M. In deducing

the form (5.153), we have applied the fact, manifest from (5.151), that
fM(z) can only depend on z and the Chern roots ̟j in the combinations
z̟j , and we have also used the fact that only symmetric combinations
of the Chern roots have any real meaning — hence each Chern root ̟j

must appear with the same coefficient a1 in the exponential factor of
(5.153). Comparing to the product (5.151), we also note that fM(z) is
formally real (for real z), so a0 and a1 must be real.

We can also apply this general analysis to fV(z) in (5.151). Here we
observe that log fV(z) should satisfy

d3

dz3
log fV(z) =

∑

t6=0

∆G∑

l=1

2ntν3
l

(−it + zνl)
3 ,(5.154)

=
∑

t≥1

∆G∑

l=1

[
2ntν3

l

(−it + zνl)
3 +

2ntν3
l

(−it − zνl)
3

]
,

= 0.

In contrast to the case of fM(z), we must take three derivatives of
log fV(z) to get a convergent sum, due to the exponent nt appearing in
(5.151). In passing to the second equality of (5.154), we have simply
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paired terms for ±t. However, to deduce the cancellation in the third
line of (5.154), we must use some topological facts about the bundle V.

We recall that V is the bundle over M whose fibers are given by
H0

(
Σ, adC(P )

∣∣
σ

)
for some point σ on Σ. This bundle is naturally the

complexification of a real bundle over M, namely the bundle whose
fibers are H0

(
Σ, ad(P )

∣∣
σ

)
. Consequently, the non-zero Chern roots of

V are paired such that for each root ν there is a corresponding root ν ′

with ν ′ = −ν. This fact implies that any odd, symmetric function of the
Chern roots vanishes. In particular, all odd Chern classes of V vanish.

We now consider a series expansion of the denominators in the second
line of (5.154) in terms of the nilpotent quantities zνl. Because of the
relative signs in these denominators, and because of the explicit cubic
factor ν3

l in the numerators, all terms of even degree in the Chern roots
νl automatically cancel. However, by our observation about V above,
the remaining terms of odd degree in the νl cancel when we sum over
roots.

From (5.154), we see that log fV(z) is determined up to a quadratic
function of z. Hence fV(z) is determined up to two real constants b0

and b2,

(5.155) fV(z) = exp
[
ib0 + ib2z

2 Θ
]
.

A term linear in z would necessarily appear with the first Chern class
c1(V), which vanishes by our observation above. Since c1(V) = 0, the
only degree two class that can appear in (5.155) is the characteristic
class Θ. We also observe from the product (5.151) that fV(z) must be
simply a phase (for real z), since under complex conjugation fV(z) goes
to f−1

V (z). This observation fixes the factors of ‘i’ in (5.155).
Having fixed the general forms (5.153) and (5.155) of fM and fV ,

we now compute the undetermined constants. To do this, we must still
decide how to define the determinant of the operator

(5.156) D′ = (1/2π) [£R + i(R/p)].

Motivated by our work in Section 5.2, we proceed as follows. First,
although p is a positive, real variable in our problem, we will define the
determinant of D′ more generally for complex p. Second, once we allow
p to be complex, we impose the requirement that the determinant of D′

depend analytically on p. In particular, if we evaluate the determinant
for purely imaginary p, of the form p = i/y for real y > 0 (the fact that
we use 1/y is just for notational convenience later), then the determinant
is defined for real p > 0 by analytic continuation. Finally, when p = i/y,
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we see that D′ = (1/2π) [£R + yR] is an anti-hermitian operator exactly
like D0, and we can use zeta/eta-function regularization to define the
determinant of D′ for these values of p as we did in Section 5.2.

In terms of fM and fV in (5.151), this definition of the determinant of
D′ amounts to the prescription to use zeta/eta-function regularization
to define the products

fM(z = −iy) =
∏

t6=0

dimM∏

j=1

i

(t + y̟j)
,(5.157)

fV(z = −iy) =
∏

t6=0

∆G∏

l=1

(−i)nt (t + yνl)
nt .

We first ignore the factors of ‘i’ in (5.157) and we compute the absolute
values of fM and fV .

For instance,

|fM(−iy)| =
∏

t≥1

dimM∏

j=1

[
t2 − (y̟j)

2
]−1

(5.158)

=

(
1

2π

)dimM

·
dimM∏

j=1

(πy̟j)

sin(πy̟j)
.

Since the Chern roots ̟j are nilpotent, the terms in the first product
in (5.158) are manifestly positive. In passing to the second equality, we
apply the same identities (5.64) and (5.65) from Section 5.2. This form
of |fM(−iy)| is clearly compatible with our general expression (5.153).

On the other hand, one can easily check that zeta-function regu-
larization defines the absolute value of fV to be trivial, for the same
topological reason that we explained following (5.154), so

(5.159) |fV(−iy)| =
∏

t≥1

∆G∏

l=1

[
t + yνl

t − yνl

]nt

= 1.

We are left to compute the phases of fM(−iy) and fV(−iy). We
define these using the eta-function, as in Section 5.2. More precisely,
we write
(5.160)

fM(−iy) = exp

(
− iπ

2
ηM

)
· |fM|, fV(−iy) = exp

(
− iπ

2
ηV

)
.
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Here ηM and ηV denote the eta-invariants which arise as the values at
s = 0 of the eta-functions ηM(s) and ηV(s) abstractly associated to the
hermitian operator iD′ as it acts on E0 ⊖ E1,

(5.161) iD′ =
i

2π
(£R + yR) .

This operator should be compared to the corresponding operator which
we considered when computing the phase of e(p, φ) at the trivial con-
nection,

(5.162)
i

2π

(
£R −

[
φ

p
, ·

])
.

We recall from Section 5.2 that the eta-invariant associated to the op-
erator in (5.162) acquires an anomalous dependence on (φ/p) which
produces the finite shift in the Chern-Simons level. In the case at hand,
a similar anomalous dependence of ηM and ηV on yR gives rise to the
same shift in the level.

Concretely, the eta-functions ηM(s) and ηV(s) are given by the fol-
lowing regularized sums over the factors which appear in fM(−iy) and
fV(−iy) in (5.157) and which represent the eigenvalues λ of iD′,

ηM(s) =
∑

t6=0

dimM∑

j=1

− sign
(
λ(t, ̟j)

)
· |λ(t, ̟j)|−s , λ(t, ̟j) = t + y̟j ,

(5.163)

ηV(s) =
∑

t6=0

∆G∑

l=1

nt · sign
(
λ(t, νl)

)
· |λ(t, νl)|−s , λ(t, νl) = t + yνl.

The various constants appearing in (5.163) are perhaps most clear if we
compare to the formal expressions for fM(−iy) and fV(−iy) in (5.157).
Thus, the overall minus sign in ηM(s) arises because i as opposed to
−i appears in fM(−iy), which is in turn associated to the fact that we
consider E0 ⊖E1 as opposed to E0 ⊕E1. Similarly, the multiplicity factor
nt appears in ηV(s) because of the factor (−i)nt in fV(−iy).

Because the Chern roots are nilpotent, we note that sign(λ(t, x)) =
sign(t), where x = ̟j or x = νl as the case may be. Thus, we write the
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regularized sums in (5.163) explicitly as

ηM(s) =
∑

t≥1

dimM∑

j=1

−1

(t + y̟j)
s +

∑

t≥1

dimM∑

j=1

1

(t − y̟j)
s ,(5.164)

ηV(s) =
∑

t≥1

∆G∑

l=1

nt

(t + yνl)
s +

∑

t≥1

∆G∑

l=1

nt

(t − yνl)
s .

As in Section 5.2, we are left to evaluate these sums at s = 0.
In fact, we have already done all of the required computation. The

sum which defines ηM(s) is the same as the sum (5.76) which we eval-
uated in the warmup computation on S1 in Section 5.2. Thus we find

(5.165) ηM(0) = 2y
dimM∑

j=1

̟j = 2y c1(TM).

In deducing the second equality, we note that the trace over all Chern
roots of TM is the first Chern class of TM.

To evaluate ηV(0), we perform a computation precisely isomorphic to
our computation of e(p, φ) in Section 5.2. Applying our earlier results,
we find

(5.166) ηV(0) = η0 + ny2
∆G∑

l=1

ν2
l , η0 = −n∆G

6
.

Here η0 is the same constant that appeared in our localization compu-
tation at the trivial connection. As for the term quadratic in νl, this
term arises in the same way as the term quadratic in φ in (5.88).

We now recall from Section 5.2 that we applied a Lie algebra iden-
tity (5.89) involving čg to rewrite the term quadratic in φ in (5.88) in
terms of the natural quadratic invariant 1

2Tr (φ2). Under the Chern-
Weil homomorphism, by which we identify the Chern roots νl with the
eigenvalues of the curvature operator iR/2π, we can apply the same Lie
algebra identity to rewrite the degree four class

∑
l ν

2
l in terms of the

class Θ that already appears in the integral over M. We find from the
identity (5.89) that

(5.167)

∆G∑

l=1

ν2
l =

čgΘ

π2
,
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and ηV(0) becomes

(5.168) ηV(0) = η0 +
nčg

π2
y2Θ.

With these results (5.165) and (5.168), we evaluate fM(−iy) and
fV(−iy) to be

fM(−iy) = exp (−iπy c1(TM)) ·
(

1

2π

)dimM

·
dimM∏

j=1

(πy̟j)

sin(πy̟j)
,

(5.169)

fV(−iy) = exp

(
− iπ

2
η0 −

inčg

2π
y2Θ

)
.

Upon setting z = −iy, these expressions assume the same form as the
general expressions in (5.153) and (5.155).

We recall that p is related to y via p = i/y. So e(p), as determined
by the analytic continuation of (5.169), is finally given by

e(p) = pdimM · fM(p) · fV(p),(5.170)

= exp

(
− iπ

2
η0 +

π

p
c1(TM) +

inčg

2πp2
Θ

)
×

×
( p

2π

)dimM
dimM∏

j=1

(π̟j/p)

sinh(π̟j/p)
.

As we will see, this formula incorporates the famous shift in the Chern-
Simons level k, and leads to agreement with the results of Rozansky.

Some Further Remarks

Our use of zeta/eta-function regularization to define e(p), and espe-
cially the analytic continuation we performed in p, is somewhat ad hoc.
The need for analytic continuation would have been avoided if at the
very beginning of this paper, we had introduced the Cartan model of
equivariant cohomology with the differential D = d + ιV rather than
the choice we actually made, D = d + iιV . This would have resulted in
the basic symplectic volume integral on a symplectic manifold M being∫
M exp(iΩ) rather than the more standard

∫
M exp(Ω); it also would

clash with some conventions of physicists about reality conditions for
fermions. However, it would clarify our discussion of the determinants,
since if all factors of i are omitted from the localization form λ, then
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the operator iD′ would come out to be hermitian. Hence, the zeta/eta-
function definition of determinants could be implemented with no need
for artificial analytic continuation.

That definition is really most natural for oscillatory bosonic integrals
such as appear in Chern-Simons theory. If a bosonic integral

(5.171) Z =

∫
DΦexp(i(Φ, MΦ)),

for some indefinite real symmetric operator M , is regularized by M →
M + i ε, for small positive ε, then the phase of Z is naturally
exp(iπη(M)/2). This is really why, in Chern-Simons theory, eta-invar-
iants appear in the one-loop corrections. If we take D = d + ιV , and
take the localization form λ to be purely imaginary rather than purely
real, then all integrals in Appendix D are oscillatory Gaussian inte-
grals rather than real Gaussians. This gives a natural framework for
zeta/eta-function regularization of the determinants in our localization
computation.

Our general analysis of d2 log fM(z)/dz2 and d3 log fV(z)/dz3 showed
that any reasonable definition of these determinants would differ from
the zeta/eta-function approach by adding a constant to η0 and changing
the coefficients of c1(TM) and Θ in (5.170). We will see shortly that the
coefficients as written in (5.170) do agree with Chern-Simons theory;
in fact, they show up in Chern-Simons theory at the one-loop level.
Ultimately, to justify the coefficients in (5.170) on an a priori basis
requires a more rigorous comparison between the localization procedure
and Chern-Simons theory.

The Contribution From M in Chern-Simons Theory

Having evaluated e(p), we now set p = 1/ǫ and substitute (5.170) into
our expression (5.120) for the contribution from M to the Chern-Simons
path integral. Thus,

Z(ǫ)
∣∣∣
M

=
1

|Γ| exp

(
− iπ

2
η0

) (
1

2πǫ

)dimM

×

(5.172)

×
∫

M
exp

[
Ω + πǫ c1(TM) + iǫn

(
1 +

ǫčg

2π

)
Θ

]
×

×
dimM∏

j=1

[
πǫ̟j

sinh (πǫ̟j)

]
.
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Since we are dealing with an integral, by making changes of variables
we can rewrite the integrand of (5.172) in different ways which illumi-
nate different features of this result. In the form at hand, we note that
one can define a non-trivial scaling limit of (5.172) such that the Chern-
Simons coupling ǫ goes to zero (so that the level k goes to ∞) and the
degree n of L goes to ∞ with ǫn held fixed. In this limit, which phys-
ically decouples all the higher Kaluza-Klein modes of the gauge field,
we see directly that the contribution from M in Chern-Simons theory
has the same form as the simple expression (4.18) for the corresponding
contribution from M0 in two-dimensional Yang-Mills theory.

To express (5.172) more compactly, we now rescale all elements of

the cohomology ring of M by a factor (2πǫ)q/2, where q is the degree
of the given class. So for instance, the degree two Chern roots ̟j

scale as ̟j → 2πǫ ̟j . This trivial change of variables cancels the
prefactor involving ǫ in (5.172) and reduces the product over Chern

roots in (5.172) to a well-known characteristic class, the Â-genus of M.

We recall that the Â-genus of M is given in terms of the Chern roots
of TM as

(5.173) Â(M) =

dimM∏

j=1

̟j/2

sinh(̟j/2)
.

In a sense, the appearance of the Â-genus in our problem is not so
surprising, since it appears in roughly the same way as in the standard
path integral derivations of the index theorem. See [63] for a derivation
of the index theorem that applies abelian localization to a sigma model
path integral; at least formally, that computation shares many features
of our computation here.

In terms of the Â-genus, our expression in (5.172) simplifies to

(5.174) Z(ǫ)
∣∣∣
M

=
1

|Γ| exp

(
− iπ

2
η0

)
×

×
∫

M
Â(M) exp

[
1

2πǫ
Ω +

1

2
c1(TM) +

in

4π2ǫr
Θ

]
.

Here we have absorbed the contribution from ηV(0) into a renormaliza-
tion of the coupling ǫr = 2π/(k + čg) that appears in front of Θ.

Of course, we would like to write (5.172) entirely in terms of the
renormalized coupling ǫr. To do so, we apply a theorem of [64] which
relates the first Chern class c1(TM) to the symplectic form Ω in the
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case of gauge group G = SU(r + 1). In this case,

(5.175) c1(TM) = 2(r + 1)Ω′,

where Ω′ = Ω/(2π)2 is the standard, integral symplectic form on M.
Happily, the dual Coxeter number čg of G = SU(r + 1) is also given by
čg = r + 1, so we see that (5.174) can be expressed very simply using
ǫr,
(5.176)

Z(ǫ)
∣∣∣
M

=
1

|Γ| exp

(
− iπ

2
η0

) ∫

M
Â(M) exp

[
1

2πǫr

(
Ω +

in

2π
Θ

)]
.

This expression is of the same form as the corresponding result of Rozan-
sky in [23].

We close with the following amusing observation. On general grounds,

the Â-genus of M is related to the Todd class Td(M) of M by

(5.177) Td(M) = exp

(
1

2
c1(TM)

)
Â(M).

So from (5.174), we see that an alternative expression for the path
integral contribution from M is
(5.178)

Z(ǫ)
∣∣∣
M

=
1

|Γ| exp

(
− iπ

2
η0

) ∫

M
Td(M) exp

[
k Ω′ +

in

4π2ǫr
Θ

]
.

Although our derivation of (5.178) is not valid for the trivial case
M = S1 × Σ, we see that, upon setting n = 0, our result (5.178) takes
the same form as the index formula (1.1) for Z(ǫ) in the trivial case.
It is satisfying to see that both the index formula (1.1) and the two-
dimensional Yang-Mills formula (4.18) are reproduced as special limits
of our general result.
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Appendix A. Brief Analysis to Justify the Localization

Computation in Section 4

In this appendix, we show that the quantity Q · Z ′(ǫ) computed us-
ing λ′ in (4.92) of Section 4.3 agrees with the same quantity defined
using λ, so that Z ′(ǫ) as defined by integrating (4.92) agrees with Z(ǫ).
Thus we consider the following one-parameter family of invariant forms,
interpolating from λ to λ′ on F ,

(A.1) Λ(s) = s λ + (1 − s)λ′, s ∈ [0, 1],

and to start we consider the corresponding family Z(ǫ, s) of integrals
over F ,
(A.2)

Z(ǫ, s) =
1

Vol(H)

∫

h×F

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ) + t DΛ(s)

]
.

If this integral is convergent for all s and also continuous as a function
of s, then Z(ǫ, s) is independent of s, so that Z(ǫ) = Z(ǫ, 1) = Z(ǫ, 0) =
Z ′(ǫ). This fact follows by differentiating the integrand of (A.2) with
respect to s, which produces a total derivative on F .

We thus need to consider the basic convergence and continuity of
Z(ǫ, s). Very broadly, divergences in the integral over F in (A.2) can
only arise from integration over the non-compact fibers h⊥ and E1 which
sit over the compact orbit H/H0. However, the first, degree one term of
λ′ in (4.78) is precisely of the canonical form to define localization on the
fiber h⊥, exactly as in our computation on T ∗H. Thus, no divergence
arises from the integral over h⊥, and we need only analyze the integral
over the complex vector space E1. As we have already seen, precisely
this integral over E1 leads to the dangerous, possibly singular factor in
I(ψ) in (4.85). Furthermore, in our application to Yang-Mills theory,
the corresponding vector space E1 describes the set of gauge-equivalence
classes of unstable modes of the Yang-Mills action, and we expect the
integral over these modes to be the most delicate.

We now analyze directly the symplectic integral over E1 that arises
from (A.2). To set up notation, we recall that E1 is a complex vec-
tor space, dimC E1 = d1, with an invariant, hermitian metric (·, ·) and
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an invariant symplectic form Ω̃. In terms of holomorphic and anti-

holomorphic coordinates vn and vn on E1, Ω̃ is given by

(A.3) Ω̃ = − i

2
(dv, dv) = − i

2
dvn∧dvn.

If ψ is an element of h0, then the corresponding vector field V (ψ) on E1

is described by

(A.4) δv = ψ · v,

or in coordinates, δvn = ψn
mvm, and similarly for the conjugate compo-

nents of V (ψ).
From (A.3) and (A.4), we see that the moment map µ̃ for the action

of H0 on E1 is explicitly given by

(A.5) 〈µ̃, ψ〉 =
i

2
(v, ψ · v) .

By our assumption that (·, ·) is invariant under (A.4), ψ is anti-hermitian
and the expression in (A.5) is real.

Of course, the complex structure J acts on E1 as J(dv) = −i dv and
J(dv) = +i dv. Thus, since

(A.6) S =
1

2
(µ̃, µ̃) =

1

8
(v, v)2,

we see that the canonical one-form λ = J dS is given by

(A.7) λ = − i

4
(v, v) ((v, dv) − (dv, v)) .

On the other hand, from (4.78) we see that λ′ on E1 reduces to

(A.8) λ′ = i (ψ · v, dv) .

Thus, if we restrict the integral in (A.2) to E1 and keep only the
terms relevant in the limit of large t (after which we set t = 1), we just
consider the reduced integral

Zred(ǫ, s) =

∫

h0×E1

[
dψ

2π

]
exp

[
−i (γ0, ψ) − ǫ

2
(ψ, ψ)

]
×(A.9)

× exp
[
sDλ + (1 − s) Dλ′

]
.

Of the original integral over the full Lie algebra h of H, only the integral
over the subalgebra h0 is relevant to the integral over E1.
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We first perform integral over ψ in h0. To illustrate the essential
behavior of the integral over E1, we assume as before that h0 = R has
dimension one. Explicitly, Dλ and Dλ′ depend on ψ as

(A.10) Dλ = dλ +
1

2
(v, v) (v, ψ · v) ,

and

(A.11) Dλ′ = i (ψ · dv, dv) − (ψ · v, ψ · v) ,

so the integral over ψ is purely Gaussian. Upon performing this integral
over ψ, we find that Zred is formally given by

(A.12) Zred(ǫ, s) =

∫

E1

(4πA)−
1
2 exp

[
s dλ +

1

4

(
J, A−1 J

)]
,

where A is defined in terms of the normalized generator T0 of h0 by

(A.13) A =
ǫ

2
+ (1 − s) (T0 · v, T0 · v) ,

and J in h0 is defined by

(A.14) J = −i γ0 +
s

2
(v, v) (v, T0 · v) T0 + i (1 − s) (T0 · dv, dv) T0.

We are now interested in the behavior of the integral in (A.12) for
large |v|, where the non-compactness of E1 is essential. So long as s 6= 0,
then the integrand of (A.12) falls off at least as fast as exp [−(v, v)3] for
large v, due to the term quartic in v in (A.14) that arises from λ and
the term quadratic in v in (A.13) that arises from λ′. Thus, the integral
over E1 is strongly convergent for s 6= 0 and depends smoothly on s
away from 0. Of course, this integral is also non-Gaussian and cannot
be simply expressed using elementary functions.

However, when s = 0, the integrand of (A.12) is no longer suppressed
exponentially and decays only as a power law at infinity. This behavior
arises because the bosonic term of Dλ′ is quadratic in ψ, whereas the
bosonic term of Dλ is linear in ψ. Because the integrand of (A.12)
decays only as a power law for s = 0, the integral over E1 does not gen-
erally converge. The prefactor proportional to A−1/2 decays like 1/|v|,
and for s = 0 the measure arising from the quadratic term (J, A−1 J) in
the exponential of (A.12) is of the form 1/|v|d1 d2d1v. Consequently, the

integral over E1 behaves as
∫

d2d1v 1/|v|(d1+1) for large |v| and diverges.
However, we now consider the same analysis as applied to Q ·Z(ǫ, s).

By our analysis above, we are only concerned with the potentially dan-
gerous behavior near s = 0 and for large |v|, for which we must consider
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the following integral over E1,

(A.15)

(
−2

∂

∂ǫ

) 1
2
d1

· Zred(ǫ, s) =

=

∫

E1

(
−2

∂

∂ǫ

) 1
2
d1

(
(4πA)−

1
2 exp

[
s dλ +

1

4

(
J, A−1 J

)])
.

To analyze (A.15), we first note that ǫ only appears in the quantity
A in (A.13), and A satisfies

(A.16)

(
−2

∂

∂ǫ
+

1

(1 − s)

∂2

∂vi ∂vi

)
A = 0.

Thus, we can rewrite (A.15) as

(
−2

∂

∂ǫ

) 1
2
d1

· Zred(ǫ, s) =

∫

E1

(
− 1

(1 − s)

∂2

∂vi ∂vi

) 1
2
d1

×

(A.17)

×
(

(4πA)−
1
2 exp

[
s dλ +

1

4

(
J, A−1 J

)])
.

We now apply simple scaling arguments to (A.17) to show that this
integral is convergent at s = 0 and behaves continuously as s → 0.
First, at s = 0, we immediately see that this integral behaves for large
|v| as

∫
d2d1v 1/|v|(2d1+1) and hence is convergent, though just barely.

To discuss the limit s → 0, we assume s is fixed at a small, non-zero
value. All terms involving s which we previously dropped for s = 0 now
appear in the argument of the exponential in (A.17). For large |v|, this
argument behaves schematically as

(A.18) s |v|2 (dv, dv) +
(γ0, γ0)

|v|2 + s |v|2 (γ0, T0) +

+
(dv, dv)

|v|2 (γ0, T0) + s2 |v|6 +
(dv, dv)2

|v|2 .

Since our argument is only a scaling argument, we ignore all signs and
constants in writing (A.18), though we do recall that the dominant term
s2 |v|6 leads to an exponential decay of the integrand at large v.
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We see three terms in (A.18) which vanish in the limit s → 0. Of
these terms, we can ignore the quadratic term s |v|2(γ0, T0), since it is
subleading compared to s2 |v|6 for fixed s and large |v|.

However, we need to consider the effect of the measure s2|v|4 (dv, dv)2,
which dominates the measure (dv, dv)2/|v|2 at s = 0 by a relative factor
of s2 |v|6. We also need to consider the terms which arise when the
derivative ∂2/∂vi ∂vi in (A.17) acts on exp (−s2 |v|6) to bring down the
term s2 |v|4, which dominates 1/|v|2 by the same relative factor s2|v|6.

These terms lead to contributions depending on s in (A.17) which
behave for large |v| as

(A.19)

∫

E1

d2d1v
1

|v|2d1+1
s2n |v|6n exp (−s2|v|6), n = 1, . . . , d1.

Since these integrals only converge for s 6= 0, when the integrand is
exponentially damped, one might have worried that these terms could
cause the limit s → 0 to be singular. However, we see by scaling that the
expression in (A.19) behaves as s+1/3 for all n and hence the asymptotic
contributions to (A.17) from these terms still go continuously to zero as
s → 0.

Finally, apart from the terms in (A.19) with n ≥ 1, the integrand of
(A.17) is a smooth function F (v, s) of v and s which behaves asymptot-
ically for large |v| as

(A.20) F (v, s) ∼ 1

|v|2d1+1
exp (−s2 |v|6).

Thus, F (v, s) decays exponentially for s 6= 0, is integrable for all s, and
is dominated by F (v, 0), which has a pure power law decay at infinity.
On general grounds, the integral of F (v, s) over E1 then depends conti-
nously on s, and, for the purpose of computing Q ·Z(ǫ), we can validly
interpolate from λ to λ′ on F .

Appendix B. More About Localization at Higher Critical

Points: Higher Casimirs

In this appendix, we continue from Section 4.3 our general discussion
of non-abelian localization at higher critical points. We recall that we
obtained a formal expression for the canonical symplectic integral over
F in terms of an integral over the Lie algebra h0 of the stabilizer group
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H0,

(B.1) Z(ǫ) =
1

Vol(H0)

∫

h0

[
dψ

2π

]
det

(
ψ

2π

∣∣∣
E0

)
det

(
ψ

2π

∣∣∣
E1

)−1

×

× exp
[
−i (γ0, ψ) − ǫ

2
(ψ, ψ)

]
.

As we discussed in Section 4.3, this integral generally fails to converge
when the ratio of determinants in the integrand has singularities in h0.
In the special case H0 = U(1), relevant for higher critical points of
SU(2) Yang-Mills theory, we deal with this problem by computing not
Z(ǫ) itself but a higher derivative Q · Z(ǫ), where Q ≡ Q(∂/∂ǫ) is a
differential operator which we choose so that the action of Q on the
integrand of (B.1) brings down sufficient powers of (ψ, ψ) to cancel any
poles that would otherwise appear.

However, if we consider higher critical points of Yang-Mills theory
with general gauge group G, then the rank of H0 can be arbitrary, and
the determinants in (B.1) cannot generally be expressed as a functions
of only the quadratic invariant (ψ, ψ). Consequently, we cannot simply
differentiate Z(ǫ) with respect to ǫ to cancel the poles in (B.1).

Nevertheless, by applying some simple ideas about the localization
construction, we can generalize our discussion in Section 4.3 to the case
that H0 has higher rank. As in Section 4.1, we recall the form of the
localization integral:

(B.2) Z(ǫ) =
1

Vol(H)

∫

h×X

[
dφ

2π

]
exp

[
Ω − i 〈µ, φ〉 − ǫ

2
(φ, φ)

]
.

In the case of Yang-Mills theory, H = G(P ) and X = A(P ) in the
notation of Section 2.

Let us consider what natural generalizations of (B.2) exist. Of the
terms appearing in (B.2), the quantity Ω − i 〈µ, φ〉 is distinguished as an
element of the equivariant cohomology ring of X, since it represents the
equivariant extension of the symplectic form on X. However, nothing
really distinguishes the quadratic function −1

2(φ, φ) among all invari-
ant polynomials of φ, and we are free to consider a general symplectic
integral over h × X of the form

(B.3) Z[V ] =
1

Vol(H)

∫

h×X

[
dφ

2π

]
exp [Ω − i 〈µ, φ〉 − V (φ)].
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Here V (φ) is any invariant polynomial on h such that the integral over
h remains convergent at large φ. We can take

(B.4) V (φ) =
∑

j

ǫj Cj(φ),

where Cj are the Casimirs of H – the homogeneous generators of the ring
of invariant polynomials on h – and ǫj are parameters. The standard
localization technique can be applied to evaluate this integral. The fact
that V is not quadratic in φ leads to no special complications.

In the case of Yang-Mills theory on a Riemann surface Σ with sym-
plectic form ω, we would write

(B.5) V (φ) =
r∑

j=1

ǫj

∫

Σ
ω · Cj(φ).

We assume that the gauge group G has rank r, and now Cj(φ) are
the Casimirs of G. We associate to each generator a corresponding
coupling ǫj . If we want to compare to standard methods of studying
two-dimensional Yang-Mills theory by cut and paste methods, we should
integrate over φ to express the theory in terms of the gauge field (and
noninteracting fermions) alone. Of course, if V (φ) is not quadratic, we
can no longer perform the integral over φ in (B.3) as a Gaussian integral.
Instead, if we abstractly introduce the Fourier transform

(B.6) exp
[
−V̂ (φ∗)

]
≡

∫

h

[
dφ

2π

]
exp [−i 〈φ∗, φ〉 − V (φ)],

which is an invariant function of φ∗ in the dual algebra h∗, then the
generalized symplectic integral over X takes the form

(B.7) Z[V ] =
1

Vol(H)

∫

X
exp

(
Ω − V̂ (µ)

)
.

In the case of Yang-Mills theory, we recall that µ = FA. So in that
case, (B.7) corresponds to a generalization of Yang-Mills theory in which

the action is not the usual Tr f2 (with f = ⋆F ) but Tr V̂ (f), for some

more general function V̂ . The partition function of this generalized
Yang-Mills theory can be computed by the usual cut and paste methods
[57]. If G is simply-connected and we apply the same normalization
conventions as we used in (4.41) for the case G = SU(2), the generalized
partition function is
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(B.8) Z[V ] = (Vol(G))2g−2
∑

R

1

dim(R)2g−2
exp(−V ′(R)),

where V ′(R) is the energy of the representation R. (We are taking the
area of Σ to be 1; for a general area α, the exponential factor would
be exp(−αV ′(R)).) To compute the energy V ′(R), we start with the

action V̂ (f) and compute the canonical momentum Π = ∂V̂ /∂f . The

Hamiltonian, whose eigenvalue is the energy, is then H = fΠ − V̂ (f),
which must be extremized with respect to f and regarded as a function

of Π. Thus, H(Π) is the Legendre transform of V̂ (f). After computing
H(Π), Π is interpreted as the generator of the group G and taken to act
on the representation R to get the energy V ′(R). Since the Legendre
transform is a semiclassical approximation to the Fourier transform, the
Legendre transform approximately undoes the Fourier transform, and
hence H(Π) = V (Π)+lower order terms. As discussed in [20], if the
representation R has highest weight h, the precise formula needed to
match with the localization computation is V ′(R) = V (h+δ), where the
constant δ is half the sum of positive roots of the Lie algebra of G. This
formula incorporates the difference between the Legendre transform and
the Fourier transform and other possible quantum corrections.

To generalize what we said in Section 4.3, we want to find a polyno-
mial F (Cj) of the Casimirs of H which when restricted to h0 is divisible
by the troublesome factor in the denominator, namely

(B.9) w(ψ) = det
(
ψ/2π

∣∣
E1

)
.

Then Q = F (−∂/∂ǫj) is a differential operator that when acting on
exp(−V ) will produce the factor F and cancel the denominator. Thus,
Q generalizes the operator ∂g−1/∂ǫg−1 that we used in Section 4.3 for
two-dimensional SU(2) gauge theory in genus g.

The troublesome factor w is an invariant polynomial on the Lie al-
gebra of h0 or equivalently, a polynomial on the maximal torus of H0

that is invariant under the Weyl group of H0. This polynomial can be
extended, though not canonically, to a polynomial w′ on the maximal
torus of H. We can pick the extension to be invariant under the Weyl
group of H0 but not necessarily under the Weyl group of H. However,
by multiplying w′ by all its conjugates under the Weyl group of H, we
make a polynomial w̃ on the maximal torus of H that is invariant under
the Weyl group of H, and whose restriction to H0 is divisible by w. The
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Weyl-invariant polynomial w̃ corresponds to the polynomial F (Cj) of
the Casimirs that was used in the last paragraph.

Finally, let us make this more explicit for Yang-Mills theory. The
denominator factor in (B.8) that we need to cancel is dim(R)2g−2, so
it suffices to know that dim(R)2 is a polynomial of the Casimirs. This
can be proved using the Weyl character formula, discussed in [65, §123],
which provides a general formula for dim(R). Parametrizing the repre-
sentation Rh by a highest weight h,

(B.10) dim(Rh) =
∏

β>0

(β, h + δ)

(β, δ)
.

The product in (B.10) runs over the positive roots β, and we recall that
δ is a constant, equal to half the sum of the positive roots. We regard
this as a function of h′ = h + δ.

The formula (B.10) exhibits a polynomial function d on the Cartan
subalgebra of the Lie algebra g of G such that dim(Rh) = d(h′). The
polynomial d is not strictly invariant under the action of the Weyl group
on h′, but is invariant up to sign, so d2 is Weyl invariant. As such, d2

extends to an invariant polynomial on all of g, and thus a polyomial in
the Casimirs. Finally, we observe that the shift h → h′ = h + δ
is the same renormalization that we introduced for the potential
V ′(Rh) = V (h + δ), so that by differentiating with respect to the cou-
plings of each Casimir in V ′ we can cancel the denominator dim(R)2g−2.

Appendix C. A Few Additional Generalities About

Equivariant Cohomology

Following the discussion in Section 5.3, we discuss in this appendix
the identification of the H-equivariant cohomology of N0 with the H0-
equivariant cohomology of M, a fact which fundamentally leads to the
correspondence (5.110).

To start, we find it useful to employ another topological model of
equivariant cohomology, explained for instance in Chapter 1 of [56]. In
this model, if X is any topological space on which a group H acts, the H-
equivariant cohomology ring of X is defined as the ordinary cohomology
ring of the fiber product XH = X ×H EH, where EH is any contractible
space on which H acts freely. Such an EH always exists, and the
choice of EH does not matter, since EH is unique up to H-equivariant
homotopies. Thus, H∗

H(X) = H∗(XH).
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As a simple example, if H acts freely on X, implying that X is a
principal H-bundle over X/H, then XH is equivalent to a product
XH = (X/H) × EH. Since EH is contractible, we see that H∗

H(X) =
H∗(X/H), a fact we applied in our discussion of two-dimensional Yang-
Mills theory.

At the opposite extreme, if H acts trivially on X, then XH is also
a product XH = X × BH, where BH = EH/H is the classifying space
associated to the group H. In this case, H∗

H(X) = H∗(X) ⊗ H∗(BH).
However, by the definition of equivariant cohomology above, the ordi-
nary cohomology of BH is the H-equivariant cohomology of a point, so
that H∗

H(X) = H∗(X) ⊗ H∗
H(pt). For the latter factor, our description

of the Cartan model in Section 4.1 clearly identifies H∗
H(pt) with the

ring of invariant functions on the Lie algebra h of H.

We want the case in which X is a fiber bundle over M with fiber
H/H0 for some H. H acts on the fibers, with fixed subgroup H0. Now
suppose that there exists a principal bundle Y → M, with fibers H,
and the following properties. We suppose that H ×H0 acts on Y , with
H acting on the fibers on the left and H0 on the right. We also suppose
that Y/H0 = X.

In this situation, H and H0 both act freely on Y , the quotient Y/H
being M and the quotient Y/H0 being X. Moreover, H0 acts trivially
on X.

We can now argue as follows. First, H∗
H×H0

(Y ) = H∗
H(X), as H0 acts

freely on Y with quotient X. On the other hand H∗
H×H0

(Y ) = H∗
H0

(M)
because H acts freely on Y with quotient M. Finally, as H0 acts trivially
on M, H∗

H0
(M) = H∗(M)⊗H∗

H0
(pt). Putting these facts together, we

have our desired result that H∗
H(X) = H∗(M) ⊗ H∗

H0
(pt).

In general such a Y only exists rationally (which is good enough for
de Rham cohomology), but for our problem with Chern-Simons theory
on a Seifert manifold, a natural Y can be constructed as follows.

First of all, over any symplectic manifold A, a “prequantum line
bundle” L is a unitary line bundle with connnection whose curvature is
the symplectic form. For Chern-Simons theory, L exists and is unique
up to isomorphism as A is an affine space. We let L0 be the bundle of
unit vectors in L. So L0 is a circle bundle over A.

In general, any connected Lie group of symplectomorphisms of a sym-
plectic manifold that has an invariant moment map lifts to an action
on the prequantum line bundle. For Chern-Simons theory on a Seifert
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manifold, the group G of gauge transformations does not have a moment

map, but its central extension G̃ does. We recall that G̃ is an extension
of G by a subgroup U(1)Z that acts trivially on A but has moment map

1. Having a moment map, G̃ acts on L, and hence on L0. U(1)Z acts
by rotating the fibers of the fibration L0 → A. This action is free.

Finally, the Hamiltonian group H that we really use for our quanti-

zation is a semidirect product of G̃ with a U(1)R that rotates the fibers
of the Seifert fibration. U(1)R acts on L and L0, but not freely. To
get the desired space Y on which U(1)R acts freely, we simply take
Y = U(1)×L0, where U(1)R acts by rotation on U(1) together with its
natural action on L0. So in fact H0 = U(1)R × U(1)Z acts freely on Y .

We now want to restrict this construction from A, the space of all
connections, to N0, the space of flat connections, whose quotient N0/H
is M, the moduli space of gauge-equivalence classes of flat connections.
We let Y0 be the restriction to N0 of the fibration Y → A. So H × H0

acts on Y0; H0 acts freely on Y0 with quotient N0, and H acts freely on
Y0 with quotient M. Finally, H0 acts trivially on M. With these facts
at hand, the general argument presented above shows that H∗

H(N0) =
H∗(M) ⊗ H∗

H0
(pt).

Appendix D. More About Localization at Higher Critical

Points: Localization Over a Nontrivial Moduli

Space

In this appendix, we consider the general case that our abstract model
for F is fibered over a non-trivial moduli space M. Our goal is to
compute the equivariant cohomology class on M which is produced by
the canonical symplectic integral over F ,

(D.1)

I(ψ) =
1

Vol(H)

∫

eF

[
dφ

2π

]
exp [tDλ], F̃ = (h ⊖ h0) × F, ψ ∈ h0.

We begin with some geometric preliminaries. Very briefly, we recall
that we model F as a vector bundle with fiber h⊥ ⊕E1 over a homoge-
neous base H/H0. Here h⊥ = h ⊖ h0 ⊖ E0, and explicitly,

(D.2) F = H ×H0 (h⊥ ⊕ E1).

To describe the total space N of the fiber bundle F −→ N −→ M,
we introduce a principal H-bundle PH over M. Besides the given action
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of H on PH , we assume that PH also admits a free action of H0 which
commutes with the action of H. As a result, we can describe the bundle
N concretely in terms of PH as

(D.3) N = PH ×H0 (h⊥ ⊕ E1).

Upon setting PH = H, where H acts on the right and H0 acts on the
left, this model for N reduces to the model for F itself, with M being
a point.

Of course, the key ingredient in our localization computation is to
choose a good representative of the canonical localization form λ on
N . As in Section 4.3, we introduce another localization form λ′ which
(under the same caveats as in Section 4.3 and Appendix A) is homotopic
to λ on N and takes the form

(D.4) λ′ = λ′
⊥ + λ′

E0
+ λ′

E1
,

with

λ′
⊥ = (γ , θ) ,(D.5)

λ′
E0

= −i
(
θE0 , gφg−1 + iR(θ)

)
, R(θ) = dθ − 1

2
[θ, θ],

λ′
E1

= i
((

gφg−1
)
h0

· v, dv − θh0 · v
)

.

In these expressions, we recall that γ is an element of h⊥, g is an element
of H, φ is an element of h, and v is an element of the vector space
E1. Finally, θ is now a connection on the principal H-bundle PH . In
particular, θ is a globally-defined one-form on PH . As usual, we let R(θ)
denote the curvature of θ.

Our choice for λ′ is precisely analogous to the choice we made in Sec-
tion 4.3 in the case that PH = H, and in (D.4) we have simply grouped
the terms in λ′ in a natural way for the localization computation. The
only term present in (D.5) which was not present in Section 4.3 is the
term involving the curvature R(θ) in λ′

E0
. The curvature of θ is a hori-

zontal form on PH , meaning that it is annihilated by contraction with
the vector fields V (φ) which generate the action of H on PH , so this
curvature term could not appear when M was only a point. Equiva-
lently, if the connection θ takes the global form θ = dg g−1 as in Section
4.3, then R(θ) vanishes identically.

In (D.4) and (D.5) we have written λ′ as an invariant form on the
direct product PH × (h⊥ ⊕ E1), but one can check exactly as in Section
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4.3 that λ′ descends under the quotient by H0 to an invariant form on
N .

Although λ′ is globally defined on N , we have written λ′ in coordi-
nates on PH with respect to a local trivialization of this bundle about
some point m on the base M. The integral we perform will be an
integral over the fiber Fm above this point m, and since m is arbi-
trary, this local computation suffices to determine the cohomology class
on M that arises after we perform the integral over all the fibers of
F −→ N −→ M. In particular, upon pulling θ back to the fiber Fm, θ
takes the canonical form,

(D.6) θ
∣∣
Fm

= dg g−1.

However, since the curvature R(θ) can be non-zero, in general dθ 6=
1
2 [θ, θ] at points in the fiber over m.

At this point, we repeat our earlier computation of Dλ′, allowing for
the presence of the curvature R(θ). We find

Dλ′
⊥ = (dγ, θ) − i (γ, φ + i dθ) ,(D.7)

Dλ′
E0

= −i (dθE0 , φ + iR(θ)) + i (θE0 , [θ, φ + iR(θ)]) −
− (φE0 , φ + iR(θ)) ,

Dλ′
E1

= i (φh0 · dv, dv) −
(
φh0 · v, (φ + iR(θ))h0

· v
)

+ X ,

with

(D.8) X = i
(
[θ, φ]h0

· v, dv
)

+ i

(
φh0 · v,

1

2
[θ, θ]h0

· v
)

mod θh0 .

As before, in writing these expressions we make the change of variable
from φ to gφg−1 at the end of the calculation to simplify the result. Also,
the terms appearing in X are at least of cubic order in the “massive”
variables θ, v, and dv and so are irrelevant in the limit t → ∞. Finally,
we are free to work modulo terms involving θh0 since Dλ′ is a pullback

from the quotient PH ×H0 (h⊥ ⊕ E1).
We now compute directly the integral below in the limit t → ∞,

(D.9) I(φh0) =
1

Vol(H)

∫

eFm

[
dφ

2π

]
exp

[
tDλ′

⊥ + tDλ′
E0

+ tDλ′
E1

]
,

F̃m = (h ⊖ h0) × Fm.

This integral behaves essentially the same as the integral in Section 4.3,
so we will be brief.
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We first consider the integral over E1, which we perform as a Gaussian
integral using the terms from tDλ′

E1
in the large t limit. Explicitly, the

integral over E1 is given by

(D.10)

∫

E1

exp
[
it (φh0 · dv, dv) − t

(
φh0 · v, (φ + iR(θ))h0

· v
)

+ tX
]
.

Since X is of at least cubic order in the massive variables θ, v, and dv,
this term can be dropped from the integrand when t is large. Keeping
the other terms quadratic in v and dv in (D.10), the Gaussian integral
over E1 immediately produces

(D.11) det

(
1

2π
(φh0 + iR(θ)h0)

∣∣∣
E1

)−1

.

We now integrate over both γ and φ in h⊥ = h ⊖ h0 ⊖ E0. We see from
(D.7) that γ still appears only linearly in tDλ′, so the integral over γ
produces a delta-function of φ⊥, where φ⊥ denotes the component of
φ in h⊥. As is evident from the form of tDλ′

⊥, this delta-function sets
φ⊥ = −idθ⊥. (As in Section 4.3, the factors of t cancel between the
integral over γ and the integral over φ⊥.)

We are left to integrate over φE0 and over the base H/H0 of Fm. Of
course, upon Taylor expanding the exponential exp (dγ, θ) from Dλ′

⊥ to
produce the measure for γ, we also produce the canonical measure on
the tangent directions to H/H0 lying in h⊥. So infinitesimally we have
only to integrate over the remaining tangent directions to H/H0 which
lie in E0 in addition to φE0 .

So we are left to integrate over E0 using the terms in tDλ′
E0

. This
integral takes the form

∫

E0

exp [−it (θE0 , [φh0 + iR(θ)h0 , θE0 ]) + t (R(θ)E0 ,R(θ)E0)]×(D.12)

× exp [−2it (R(θ)E0 , φE0) − t (φE0 , φE0)].

In deducing (D.12), we have expanded and simplified various terms in
Dλ′

E0
in (D.7). For instance, the curvature term (R(θ)E0 ,R(θ)E0) arises

from the linear combination of terms (dθE0 ,R(θ)) − (θE0 , [θ,R(θ)]) in
Dλ′

E0
. To see this, we rewrite this expression as (dθE0 − [θ, θE0 ],R(θ)E0)

≡ (R(θ)E0 ,R(θ)E0), where “≡” indicates that the equality holds modulo
θh0 and θ⊥, which is good enough since these forms do not contribute
to the integral over E0.

In writing (D.12), we also note that when we set φ⊥ = −i dθ⊥ in
Dλ′

E0
, we effectively cancel similar terms in Dλ′

E0
which involve the
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components of the curvature R(θ) in h⊥. So R(θ)⊥ does not appear in
(D.12).
We first perform the Gaussian integral over φE0 in (D.12). The result of

this integral produces a term proportional to exp [−t (R(θ)E0 ,R(θ)E0)]
which precisely cancels the term quadratic in the curvature R(θ)E0 in
the first line of (D.12). Consequently, once we collect factors of t and 2π
exactly as in Section 4.3, the term quadratic in θE0 in (D.12) produces
another determinant,

(D.13) det

(
1

2π
(φh0 + iR(θ)h0)

∣∣∣
E0

)
.

Including the factor Vol(H)/ Vol(H0) that arises from the integral
over H/H0 and setting φh0 ≡ ψ for notational simplicity, we find our
final result for the integral in (D.9),

(D.14) I(ψ) =
1

Vol(H0)
det

(
1

2π
(ψ + iR(θ)h0)

∣∣∣
E0

)
×

× det

(
1

2π
(ψ + iR(θ)h0)

∣∣∣
E1

)−1

.

Since both E0 and E1 are representations of H0, the associated bun-
dles PH ×H0 E0 and PH ×H0 E1 determine H0-equivariant bundles over
M once we divide by the action of H on PH . The determinants ap-
pearing in (D.14) are then the Chern-Weil representatives of the H0-
equivariant Euler classes of these bundles.
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Birkhäuser, Boston, 2002.

[49] J. Martinet, Formes de contact sur les varietétés de dimension 3, Springer Lec-
ture Notes in Math 209 (1971) 142–163.

[50] P. Orlik, Seifert Manifolds, Lecture Notes in Mathematics, 291, Ed. by A. Dold
and B. Eckmann, Springer-Verlag, Berlin, 1972.

[51] M. Furuta & B. Steer, Seifert Fibred Homology 3-Spheres and the Yang-Mills
Equations on Riemann Surfaces with Marked Points, Adv. in Math. 96 (1992)
38–102.

[52] I. Satake, On a Generalization of the Notion of Manifold, Proc. Nat. Acad. Sci.
USA 42 (1956) 359–363.

[53] , The Gauss-Bonnet Theorem for V-manifolds, J. Math. Soc. Japan 9

(1957) 464–492.

[54] T. Kawasaki, The Riemann-Roch Theorem for Complex V -manifolds, Osaka J.
Math. 16 (1979) 151–159.

[55] A. Pressley & G. Segal, Loop Groups, Clarendon Press, Oxford, 1986.

[56] V. Guillemin & S. Sternberg, Supersymmetry and Equivariant de Rham Theory,
Springer, Berlin, 1999.

[57] A.A. Migdal, Recursion Equations In Gauge Field Theories, Zh. Eksp. Teor. Fiz.
69 (1975) 810–822 [Sov. Phys. JETP 42 (1975) 413–418].

[58] E. Witten, On Quantum Gauge Theories in Two-Dimensions, Commun. Math.
Phys. 141 (1991) 153–209.

[59] V. Guillemin & S. Sternberg, Symplectic Techniques in Physics, Cambridge Uni-
versity Press, Cambridge, 1984.

[60] M. Atiyah, On Framings of Three-Manifolds, Topology 29 (1990) 1–7.

[61] M.F. Atiyah, V. Patodi, & I. Singer, Spectral Asymmetry and Riemannian Ge-
ometry, I, II, III, Math. Proc. Camb. Phil. Soc. 77 (1975) 43–69; 78 (1975)
405–432; 79 (1976) 71–99.

[62] N. Bourbaki, Lie Groups and Lie Algebras, Vol. 2, Springer-Verlag, Berlin, 1989.

[63] M.F. Atiyah, Circular Symmetry and Stationary-Phase Approximation, in ‘Col-
loquium in Honor of Laurent Schwartz’, Vol. 1, Astérisque 131 (1985) 43–59.
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