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JOHN’S DECOMPOSITION IN THE GENERAL CASE
AND APPLICATIONS

Y. Gordon, A.E. Litvak, M. Meyer & A. Pajor

Abstract

We give a description of an affine mapping T involving con-
tact pairs of two general convex bodies K and L, when T (K) is
in a position of maximal volume in L. This extends the classi-
cal John’s theorem of 1948, and is applied to the solution of a
problem of Grünbaum; namely, any two convex bodies K and
L in R

n have non-degenerate affine images K ′ and L′ such that
K ′ ⊂ L′ ⊂ −nK ′. As a corollary, we obtain that if L has a center
of symmetry, then there are non-degenerate affine images K ′′ and
L′′ of K and L such that K ′′ ⊂ L′′ ⊂ nK ′′. Other applications to
volume ratios and distance estimates are given. In particular, the
Banach–Mazur distance between the n-dimensional simplex and
any centrally symmetric convex body is equal to n.

1. Introduction

The ellipsoid of maximal volume inside a convex body was character-
ized in terms of contact points by John in [14], using an optimization
theorem (Theorem 3.3). This ellipsoid is commonly called the John el-
lipsoid whereas the ellipsoid of minimal volume containing a convex
body is called Loewner ellipsoid. These ellipsoids sometimes called
John–Loewner ellipsoids play a central role in the study of distances
between convex bodies, see [23] for many applications. We refer to [12]
for an extensive survey on this subject. When the John ellipsoid is
the unit Euclidean ball, then as shown by John [14], the identity may
be written as a positive combination of rank one projections xi ⊗ xi,
where the xi are some contact points between the two bodies. Such de-
composition led to many important results in the asymptotic theory of
finite-dimensional normed spaces (see e.g. [2], [20], [23]). It was noticed
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by Lewis (Theorem 1.3 in [17]) and Milman (Theorem 14.5 in [23]) that
such a result also holds for arbitrary centrally-symmetric convex bod-
ies. In [6], the authors proved a version of Theorem 3.5, for two smooth
enough convex bodies and of Theorem 3.8, when one body is a poly-
tope and the second has a smooth boundary with positive curvature.
Another version of Theorem 3.5, removing smoothness conditions, but
with assumptions of connectedness was proved in [3], with applications
to quasi-convex bodies.

Let A be a subset of a finite dimensional affine space E and B a subset
of affine forms on E. We study the problem of maximizing the volume
of T (conv(A)), among all affine tranformations such that T (A) ⊂ P (B)
where P (B) = {x ∈ E | f(x) ≤ 0, for all f ∈ B}. We get a description
of an operator T involving contact pairs of two general convex bodies K
and L, when T (K) is in a position of maximal volume in L (Theorems 3.5
and 3.8). Using methods of optimization, which can be applied to other
convexity results, we give a general John’s theorem for arbitrary convex
bodies. One nice and new feature of Theorems 3.1, and 3.8 is that they
are self dual.

We apply these results to show that any two convex bodies K and
L in R

n have positions, i.e., non-degenerate affine images K ′ and L′,
such that K ′ ⊂ L′ ⊂ −nK ′ (Theorem 5.1). This gives a positive answer
to an old problem raised by Grünbaum [13]. As a corollary, we obtain
that the Banach–Mazur distance between an arbitrary convex body and
an arbitrary centrally-symmetric body is bounded by n (Theorem 5.5),
improving the previous result of Lassak to the best possible one. It
also follows that the Banach–Mazur distance between a non-degenerate
simplex in R

n and any centrally-symmetric convex body is exactly n
(Corollary 5.8). More precisely, if K and L are convex bodies in R

n,
and L has a center of symmetry, there exist affine images K ′′ and L′′
and b ∈ R

n, such that K ′′ − b ⊂ L′′ − b ⊂ n(K ′′ − b). Note that
generally and unexpectedly, b is not the center of symmetry of L′′; as
the example of the triangle and the square in the plane shows. This
means that the simplex is, in some sense (see Remark 5.9), the center
of the set of centrally symmetric convex bodies in the space of convex
bodies equipped with the Banach–Mazur distance. Other applications
to volume ratio estimates are given.

2. Definition and notation

We use the following standard notation. The space R
n is equipped

with the canonical Euclidean scalar product 〈·, ·〉. We denote by In

the identity mapping from R
n to R

n. The space of linear mappings
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L(Rn) is equipped with the corresponding scalar product defined by
〈S, T 〉 = trace(S∗T ), for every S, T ∈ L(Rn).

Let K ⊂ R
n be a compact convex body with non-empty interior

(below, we consider only such convex bodies) such that 0 ∈ K. We
denote by |K| the volume of K, and by K◦ the polar of K, i.e.,

K◦ = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

Let x, y ∈ R
n, we denote by y ⊗ x the rank one projection defined by

y ⊗ x (t) = 〈y, t〉 x for all t ∈ R
n.

If A, B ⊂ R
n, let A + B be their Minkowski sum, i.e.,

A + B = {a + b | a ∈ A, b ∈ B} .

The convex hull of a set A ⊂ R
n is denoted by conv(A). If z ∈ R

n,
let

Kz = K − z.

By K◦
z , we denote the polar of Kz, i.e. K◦

z = (Kz)◦. Finally, let intK
denote the interior of K, ∂K its boundary, Ext K the set of its extreme
points and ExtK the closure of Ext K.

We say that a convex body K ′ is a position of K if K ′ = TK + a, for
some non-degenerate linear mapping T ∈ GLn and some a ∈ R

n.
Given two convex bodies K and L in R

n, we denote the volume ratio
of the pair (L,K) to be

vr(L,K) = inf
( |L|
|K ′|

)1/n

,

where the infimum is taken over all positions K ′ of K such that K ′ ⊂ L.
We define the geometric distance between K and L by

d̃(K,L) := inf{α β | α > 0, β > 0, (1/β)L ⊂ K ⊂ αL}.
The Banach–Mazur distance is defined by

d(K,L) = inf
{

d̃(uKz, Lx)
}

= inf {α β | α > 0, β > 0, (1/β)Lx ⊂ uKz ⊂ αLx},
where the infimum is taken over all z, x ∈ R

n and all u ∈ GLn. For a
convex body K in R

n, we define the asymmetry constant δK by

δK := inf {d(K,B) | B = −B is a convex body in R
n}.

This constant is one of the possible ways to measure the asymmetry
of a given body. We refer to [13] for a detailed discussion on various
measures of asymmetry (see also [8], [9] for related results). We shall
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also use the following weaker version of the Banach–Mazur distance
suggested in Grünbaum’s paper [13]

d̄(K,L) = inf{|α β| | α, β ∈ R, (1/β)Lx ⊂ uKz ⊂ αLx},
where the infimum is taken over all z, x ∈ R

n and all u ∈ GLn. In
other words, this definition allows to multiply the body by −1. For
related problems concerning uniqueness of position of maximal volume
for symmetric bodies, see [11].

We say that K is in a position of maximal volume in L if K ⊂ L
and for any position K ′ of K such that K ′ ⊂ L one has |K ′| ≤ |K|.
Moreover, we say that K is in a position of maximal volume in L with
respect to a ∈ R

n if a ∈ K ∩ L and for every T ∈ GLn such that
TKa ⊂ La, one has |detT | ≤ 1 (here, shifts are not allowed).

3. John’s decomposition

Let A be a subset of an n-dimensional affine space E and B a subset
of affine forms on E. We study the problem of maximizing the volume of
T (conv(A)), among all affine tranformations such that T (A) ⊂ P (B),
where P (B) = {x ∈ E | f(x) ≤ 0, for all f ∈ B}. After choosing
an origin and a basis, we may consider the problem in R

n. Also, if
P (B) has a non-empty interior, after a translation, we may assume
that 0 ∈ int P (B). In this position, P (B) is the polar of a body. This
representation of P (B) depends on the underline Euclidean structure.
The problem of maximizing the volume of T (conv(A)), among all affine
tranformations such that T (A) ⊂ P (B), is an affine invariant problem,
but the representation of P (B) as the polar of a body, depends in a
non-linear way on the Euclidean structure, especially after translation.
We choose to state the results in the Euclidean space R

n: Theorems 3.1
and 3.5 have an intrinsic affine version given by Theorem 3.7, whereas
Theorem 3.8 is of Euclidean nature.

Let C1 be a compact subset of vectors in R
n and C2 be a compact

subset of linear forms on the Euclidean space R
n, identified as a subset

of R
n. Assume that C1 ⊂ C◦

2 .
We call (x, y) a contact pair of (C1, C2), if it satisfies
(i) 〈x, y〉 = 1,
(ii) x ∈ C1 ∩ ∂C◦

2 ,
(iii) y ∈ C2 ∩ ∂C◦

1 .
Let C1 and C2 be two compact subsets of R

n such that conv(C1) has a
non-empty interior (or equivalently the linear span of C1 is R

n) and such
that 0 ∈ int conv(C2). It follows that C◦

2 is bounded, and since conv(C1)
has a non-empty interior in R

n, the function det(T) is bounded on the
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set of (T, a) ∈ GLn × R
n, such that T (conv(C1)) + a ⊂ C◦

2 . It follows
that there exists a position of conv(C1) which is of maximal volume
inside C◦

2 . The following result is an extension of the classical John’s
theorem [14] on the maximal volume ellipsoid.

Theorem 3.1. Let C1 and C2 be two compact subsets of R
n such that

conv(C1) has a non-empty interior and 0 ∈ int conv(C2). If conv(C1)
is in a position of maximal volume in C◦

2 , then there exist m ≤ n2 + n
contact pairs (xi, yi)1≤i≤m of (C1, C2), and c1, . . . , cm > 0 such that

(i) In =
∑m

i=1 ci xi ⊗ yi,
(ii)

∑m
i=1 ciyi = 0.

Remark 3.2.
(a) Theorem 3.1 was proved in [3] with the assumption that C1 is

connected.
(b) Note that in this theorem, we have

trace (In) = n =
m∑

i=1

ci

because 〈xi, yi〉 = 1 for 1 ≤ i ≤ m.

We postpone to the next section another proof of Theorem 3.1. The
proof given below uses the original optimization result of John.

Theorem 3.3 ([14]). Let F : R
N �→ R be a C1-function. Let S be a

compact metric space and G : R
N ×S �→ R be continuous. Suppose that

for every s ∈ S, ∇zG(z, s) exists and is continuous on R
N × S.

Let A = {z ∈ R
N | G(z, s) ≥ 0 for all s ∈ S} and z0 ∈ A satisfy

F (z0) = min
z∈A

F (z).

Then, either ∇zF (z0) = 0, or, for some 1 ≤ m ≤ N , there exist
s1, . . . , sm ∈ S and λ1, . . . , λm ∈ R such that G(z0, si) = 0, λi ≥ 0
for 1 ≤ i ≤ m, and

∇zF (z0) =
m∑

i=1

λi∇zG(z0, si).

Proof of Theorem 3.1. Let N = n2 + n, R
N = R

n2 ×R
n, and F : R

N �→
R be defined by

F (T, a) = − det T,

where a ∈ R
n and T ∈ R

n2
is viewed as the linear mapping from R

n to
R

n. Clearly F is C1. We define S = C1 × C2, which is compact. Let
G : R

N × S �→ R be defined by

G((T, a), (x, y)) = 1 − 〈a + Tx, y〉 .
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Define the set A as in Theorem 3.3. Observe that (T, a) ∈ A if and only
if a + TC1 ⊂ C◦

2 or equivalently if and only if a + T (conv(C1)) ⊂ C◦
2 .

Now, if conv(C1) is in a position of maximal volume in C◦
2 , then F

attains its minimum on A at (In, 0).
It is easy to see that for non-degenerate T , one has

∇(T,a)F = (− (det T ) · (T−1)∗, 0),
∇(T,a)G( · , (x, y)) = (−∇T 〈Tx, y〉 ,−∇a 〈a, y〉)

= −(x ⊗ y, y).

Thus, since F attains its minimum on A at z0 = (In, 0), by Theorem 3.3,
we obtain that for some m ≤ N , there exist λi ≥ 0, si ∈ S, si = (xi, yi),
1 ≤ i ≤ m, such that

〈xi, yi〉 = 1 − G((In, 0), (xi, yi)) = 1, 1 ≤ i ≤ m

and

∇(T,a)F (In, 0) = (−In, 0) =
m∑

i=1

λi∇(T,a)G((In, 0), (xi, yi))

= −
m∑

i=1

λi(xi ⊗ yi, yi).

Since 〈xi, yi〉 = 1, xi ∈ C1 ⊂ C◦
2 , yi ∈ C2 ⊂ C◦

1 , we obtain xi ∈ ∂C◦
2

and yi ∈ ∂C◦
1 . Taking trace in the last equality above, we get

n =
m∑

i=1

λi.

Therefore, one has

λi ≥ 0, 1 ≤ i ≤ m,

m∑
i=1

λiyi = 0 and In =
m∑

i=1

λi xi ⊗ yi.

By duality, one has also In =
∑m

i=1 λi yi ⊗ xi. To conclude, we get the
ci by choosing the non-zero λi. q.e.d.

Remark 3.4. In order to state a necessary condition of order 2 for
maximizing the determinant in the proof of Theorem 3.1, let

C := {H ∈ GLn | ∃t > 0, (I + tH)(C1) ⊂ C◦
2}

and
C0 = {H ∈ C | trace H = 0}.
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Then, it is easy to see that under the hypothesis of Theorem 3.1, the
following condition:

∀H ∈ C0, trace(H2) ≥ 0

is necessary for conv(C1) to be in a position of maximal volume in C◦
2 .

Theorem 3.5. Let K and L be two convex bodies (with non-empty
interiors) in R

n, such that K is in a position of maximal volume in L,
and 0 ∈ intL. Then, there exist m ≤ n2 + n contact pairs (xi, yi)1≤i≤m

of (Ext K,Ext L◦), and c1, . . . , cm > 0 such that
(i) In =

∑m
i=1 ci xi ⊗ yi,

(ii)
∑m

i=1 ciyi = 0.

Proof. We apply Theorem 3.1 with C1 = Ext K and C2 = ExtL◦.

Remark 3.6. Theorem 3.5 was proved in [6] with some smoothness
assumption on the boundaries of K and L. In the case of centrally
symmetric bodies, it was proved by Lewis (Theorem 1.3 in [17]) and
Milman (Theorem 14.5 in [23]). If K is in a position of maximal volume
in L with respect to 0 and 0 ∈ int L, then as it can be seen from the
proof of Theorem 3.1, Theorem 3.5 holds with 1 ≤ m ≤ n2, but without
formula (ii). As observed in Remark 5 in [3], the hypothesis of convexity
on L is essential to get a decomposition of the identity.

Theorems 3.1 and 3.5 have an intrinsic geometric formulation.

Theorem 3.7. Let A be a compact subset of a finite dimensional
affine space E and B a compact set of affine forms on E. Assume
that the identity maximizes the volume of T (conv(A)) among all affine
tranformations T such that T (A) ⊂ P (B) where

P (B) = {M ∈ E | f(M) ≤ 0, for all f ∈ B}.
Then, there exist pairs (Mi, fi)1≤i≤m ∈ A×B and positive real numbers
(ci)1≤i≤m satisfying:

(i) fi(Mi) = 0 for all 1 ≤ i ≤ m, i.e., (Mi) are a contact points be-
tween A and P (B),

(ii)
∑

1≤i≤m cifi is constant on E,
(iii) f =

∑m
i=1 ci f(Mi) fi for every affine form f on E.

When the space is equipped with an Euclidean structure, a change
of origin modifies the representation of P (B), as a polar body, in a
non-linear way. The following result takes into account, the new polar
representation of P (B) after a translation. It depends on the underline
Euclidean structure.
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Theorem 3.8. Let K and L be two convex bodies (with non-empty
interiors) in R

n such that K is in a position of maximal volume in L,
and 0 ∈ int L. Then, there exist z ∈ int (K) and m ≤ n2 + n contact
pairs (ui, vi)1≤i≤m of (Ext Kz,ExtL◦

z), and a1, , . . . , am > 0 such that

(i) In =
∑m

i=1 ai ui ⊗ vi,
(ii)

∑m
i=1 aiui =

∑m
i=1 aivi = 0.

Proof. Without lost of generality, we assume that the origin is in
the interior of K. Let (xi, yi)1≤i≤m be m ≤ n2 + n contact pairs of
(Ext K,Ext L◦), and c1, . . . , cm > 0 satisfy (i)–(ii) of Theorem 3.5. Let

z =
1

n + 1

m∑
i=1

cixi.

Since
∑m

i=1 ci = n (see Remark 3.2), one has

z ∈ n

n + 1
K ⊂ n

n + 1
L.

Recalling that 0 ∈ intK, we get that

z ∈ int K and 〈yi, z〉 ≤ n

n + 1
< 1 for 1 ≤ i ≤ m.

Define

ui = xi − z and vi = γiyi, where γi = (1 − 〈yi, z〉)−1.

Clearly, one has ui ∈ ExtKz ∩ ∂Lz.
Since z ∈ int L, we define a mapping Φ : L◦ −→ R

n, by

Φ(y) =
y

1 − 〈y, z〉 ·

It is easy to check that Φ is a one-to-one mapping from L◦ onto L◦
z,

with Φ−1(y′) = y′/(1 + 〈y′, z〉). Moreover, for every u, v ∈ L◦, u �= v,
one can show that

Φ(]u, v[) =]Φ(u),Φ(v)[,

where ]u, v[ denotes the interval {(1−θ)u+θv | θ ∈ (0, 1)}. This implies
that Φ(ExtL◦) = Ext L◦

z. Therefore, vi = Φ(yi) ∈ Ext L◦
z for every

1 ≤ i ≤ m. We have also

〈ui, vi〉 = 〈xi − z, γiyi〉 = γi(〈xi, yi〉 − 〈z, yi〉) = γi(1 − 〈z, yi〉) = 1.

This relation and the fact that ui ∈ Kz and vi ∈ L◦
z ⊂ K◦

z , im-
ply that vi ∈ ∂K◦

z . It follows that (ui, vi)1≤i≤m are contact pairs of
(Ext Kz,ExtL◦

z).
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Let now ai = ci/γi = ci(1 − 〈z, yi〉) > 0, 1 ≤ i ≤ m. It follows from
(i)–(ii) of Theorem 3.5, that for every x ∈ R

n, we have(
m∑

i=1

aiui ⊗ vi

)
x =

m∑
i=1

ai 〈ui, x〉 vi

=
m∑

i=1

aiγi 〈xi − z, x〉 yi

=
m∑

i=1

ci 〈xi, x〉 yi −
m∑

i=1

ciyi 〈z, x〉

= x.

This implies that In =
∑m

i=1 ai ui ⊗ vi, and taking the dual operator
that In =

∑m
i=1 ai vi ⊗ ui.

Finally, one has
m∑

i=1

aivi =
m∑

i=1

ciyi = 0

and since
∑m

i=1 ci = n (see Remark 3.2), one has
m∑

i=1

aiui =
m∑

i=1

ci(1 − 〈z, yi〉)(xi − z)

=
m∑

i=1

cixi −
(

m∑
i=1

ci

)
z −

m∑
i=1

ci 〈z, yi〉 xi + 〈z,
m∑

i=1

ciyi〉 z

= (n + 1)z − nz − z = 0.

This concludes the proof. q.e.d.

Remark 3.9. Theorem 3.8 was proved in [6] (Theorem 3.1) using
Brouwer fixed point theorem, under the assumption that L is a polytope
and K has a C2 boundary with positive curvature.

Remark 3.10. Our proof gives that z can be chosen in n
n+1K. Note

that if K is in a position of maximal volume in L, then for every w ∈ R
n,

Kw is in a position of maximal volume in Lw. Thus, Theorem 3.5 holds
for every shift of K and L. So, first, we can choose some “good” center
w inside K and then z will be inside n

n+1Kw.

Remark 3.11. Observe that Theorem 3.8 is self dual in the sense
that (ui, vi)1≤i≤m are contact pairs of (Ext Kz,Ext L◦

z). This is because
if 0 ∈ int L and if Kz is in a position of maximal volume in Lz, then L◦

z
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is in a position of maximal volume in K◦
z with respect to z. A similar

remark is valid for Theorem 3.1.
Observe that in Theorems 3.5 and 3.8, when (ui, vi)1≤i≤m are contact

pairs of (ExtKz,Ext L◦
z), the (ui) need not to be distinct, and similarly

the (vi). The case when K is a simplex of maximal volume in a cube
L shows that to get a decomposition of the identity as in Theorem 3.8,
repetitions are needed. But, if for instance, K is strictly convex (∂K
does not contain a segment) and is in a position of maximal volume
in L, then the (ui) may be chosen to be distinct extreme points of K.
Similarly, if L is smooth (every point of ∂L has a unique supporting
hyperplane), and K is in a position of maximal volume in L, then the
(vi) may be chosen to be distinct extreme points of L◦.

Remark 3.12. As it was noticed by many authors, if K is in a posi-
tion of maximal volume in L and both K and L have a center of symme-
try, say Ka = −Ka, Lb = −Lb for some a, b ∈ R

n, then Ka is in a posi-
tion of maximal volume in Lb with respect to the origin. Indeed, one has

Ka ⊂ La = Lb + b − a

and
Ka = −Ka ⊂ −La = −(Lb + b − a) = Lb + a − b,

which implies

Ka = (Ka + Ka) /2 ⊂ (Lb + b − a + Lb + a − b) /2 = Lb.

In particular, if K = −K and L = −L, it is enough to consider the
positions of maximal volume with respect to the origin.

4. John’s decomposition: particular cases

In this section, we first give a general optimization result. This al-
lows to get yet another proof of Theorem 3.1 and characterizations of
maximum volume positions in some particular cases. We will use the
following easy lemma, the proof of which is included for completeness.

Lemma 4.1. Let A be a compact Hausdorff space and f, f0 : A →
R be upper semi-continuous functions. Suppose that f0 ≤ 1 and that
f(x) ≤ 0 for every x ∈ A such that f0(x) = 1. Then, for every ε > 0,
there exists Mε such that f − εf0 ≤ Mε(1 − f0).

Proof. Let ε > 0. By the upper-continuity of f0 and the compactness
of A, there exists 0 < η ≤ 1 such that f(x) ≤ ε whenever x ∈ A satisfies
f0(x) ≥ 1 − η. Let β = supx∈A f(x). Then, for x ∈ A,

– if f0(x) ≥ 1 − η, and M ≥ ε, one has

f(x) + (M − ε)f0(x) ≤ ε + (M − ε) ≤ M.
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– if f0(x) ≤ 1 − η, and M ≥ β
η , one has

f(x)+(M−ε)f0(x) ≤ f(x)+(M−ε)(1−η) ≤ β+M−Mη−ε(1−η) ≤ M.

We obtain the desired result with Mε = max{ε, β/η}. q.e.d.

In this section, we use the following notation: given a normed space
X, its dual X∗, and A ⊂ X, B ⊂ X∗, we denote

A◦ = {y ∈ X∗ | y(x) ≤ 1 for every x ∈ A},
B◦ = {x ∈ X | y(x) ≤ 1 for every y ∈ B}.

Theorem 4.2. Let U be a non-empty open subset of a normed space
X, X∗ be the dual of X, A be a σ(X∗,X)-compact subset of X∗, and
F : X �→ R be a Gateaux-differentiable function. Let A◦ be the polar of
A in X, and for x0 ∈ A◦ ∩ U , let B(x0) = conv {x′ ∈ A | x′(x0) = 1}.
The following assertions hold:

(1) If x0 is a local maximum of F on the set A◦ ∩ U , then either
dF (x0) = 0 or there exists λ > 0 such that dF (x0) ∈ λB(x0).

(2) If conversely either dF (x0) = 0 or there exists λ > 0 such that
dF (x0) ∈ λB(x0), and if moreover U is convex and F is concave
on U , then x0 is a global maximum of F on A◦ ∩ U (which is a
strict maximum if F is strictly concave on U).

Proof. Let

C1 = {x ∈ X | x0 + tx ∈ A◦ ∩ U for some t > 0}.
Then, since U is open and A◦ is convex,

C1 = C := {x ∈ X | x0 + tx ∈ A◦ for some t > 0}.
Let x ∈ C and x′

0 = dF (x0) ∈ X∗. One has

F (x0 + tx) = F (x0) + tx′
0(x) + tεx(t),

where εx(t) → 0 when t → 0.

(1) For the first part, if x0 ∈ X is a local maximum of F on A◦, one
has

x′
0(x) ≤ 0 for every x ∈ C.

Let D = {x ∈ X | x′(x) ≤ 0 for every x′ ∈ A such that x′(x0) = 1}.
We claim that C = D. One can see that C ⊂ D and that D is

σ(X,X∗)-closed in X. To prove the reverse inclusion, apply the previous
lemma with f(x′) = x′(x) and f0(x′) = x′(x0), for every x′ ∈ A. It
follows that for every x ∈ D and ε > 0, x − εx0 ∈ C.

Now, if {x′ ∈ A | x′(x0) = 1} = ∅, then D = X and x′
0 = 0. Other-

wise, B(x0) �= ∅. Let B be the convex cone generated by B(x0) in X∗.
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Observe that B is σ(X∗,X)-closed, because if (y′i) ⊂ B, with y′i = λix
′
i,

(x′
i) ⊂ B(x0) and λi ≥ 0, are such that y′i → y′ ∈ X∗ for σ(X∗,X), then

y′i(x0) = λi → y′(x0) and

– if y′(x0) = 0, then λi → 0 and since B(x0) is bounded, y′i → 0 = y′

– if y′(x0) �= 0, then (x′
i) is σ(X∗,X) convergent in B(x0) and y′ ∈ B.

By definition, we have D = B◦ and since C = D and x′
0(x) ≤ 0 for

every x ∈ C, we end up with

x′
0(x) ≤ 0 for every x ∈ B◦.

By the Hahn–Banach theorem, we have thus

x′
0 ∈ B◦◦ = B = B.

(2) Let x1 ∈ A◦ ∩U . Then, x1 − x0 ∈ C1 = C ⊂ B◦. By the concavity
of F on U , we have

F (x1) = F (x0 + x1 − x0) ≥ F (x0) + dF (x0)(x1 − x0)

= F (x0) + x′
0(x1 − x0) ≥ F (x0)

since x1 − x0 ∈ B◦ and by hypothesis x′
0 ∈ B. The strict concavity of F

implies strict inequality in the first inequality. q.e.d.

Proof of Theorem 3.1. Let X = X∗ = Mn(R) × R
n, with the duality

〈(S, s) , (T, t)〉 = trace (S∗T ) + 〈s, t〉 ,

where Mn(R) is the space of n × n matrices with real entries equipped
with the trace duality and 〈s, t〉 denotes the canonical scalar product on
R

n.
We define the compact set

A = {(y ⊗ x, y) | x ∈ C1, y ∈ C2} ⊂ X∗.

Let F : X �→ R be defined by

F (T, t) = det(T ) for T ∈ Mn(R) and t ∈ R
n.

If we suppose that F reaches its maximum on A◦ at (In, 0), then the
conclusion follows from Theorem 4.2, using Caratheodory’s theorem for
cones in R

n2+n. q.e.d.

The existence of contact pairs together with a decomposition of the
identity as in Theorem 3.5, is not sufficient to ensure that (In, 0) is a
local maximum of the determinant on the set A of (T, a) ∈ GLn × R

n

such that a + TK ⊂ L. This can be seen from the example of the
octahedron inscribed in a cube.
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Moreover, it may happen that a local maximum is not a global one
(see Example 5.7). But if we restrict the optimization problem on a
convex subset of matrices over which the determinant is for instance
strictly log-concave, we get a convex programming for which a local
maximum is a global maximum and is unique.

Theorem 4.3. Let C1 and C2 be two compact subsets of R
n such

that conv(C1) has a non-empty interior and 0 ∈ int conv(C2). Let Y
be a N -dimensional linear subspace of the space of n × n real matrices
and U be a relatively open convex subset of Y such that T �→ det(T ) is
positive and log-concave on U . Then, (In, 0) ∈ U × R

n is a maximum
of the determinant of T , under the constrains,

T ∈ U, a ∈ R
n and a + T (C1) ⊂ C◦

2

if and only if, there exist m ≤ N + n contact pairs (xi, yi)1≤i≤m of
(C1, C2), and c1, . . . , cm > 0 such that

(i) In =
∑m

i=1 ci xi ⊗ yi,
(ii)

∑m
i=1 ciyi = 0.

Proof. We use Theorem 4.2 and Caratheodory’s theorem as in the
preceding proof of Theorem 3.1.

Since the determinant is log-convave on the open subset of positive-
definite matrices, we get as a corollary the following result, which is
essentially Theorem 4 from [3].

Corollary 4.4. Let K and L be two convex bodies (with non-empty
interiors) in R

n, such that 0 ∈ int L. Then, the following assertions are
equivalent:

(a). |K| = max{|a + TK| | T ∈ D,a ∈ R
n} where D is the set of all

symmetric positive-definite matrices such that a + T (K) ⊂ L.
(b). There exist m ≤ n2+3n

2 contact pairs (xi, yi)1≤i≤m of (Ext K,

ExtL◦), and c1, , . . . , cm > 0 such that
(i) In =

∑m
i=1 ci xi ⊗ yi,

(ii)
∑m

i=1 ciyi = 0.

Moreover, if a. holds, then for any (T, a) ∈ D×R
n such that a+T (K) ⊂

L, and (T, a) �= (In, 0), one has det(T ) < 1.

Remark 4.5. For other applications, we may consider for Y the n-
dimensional subspace of diagonal positive n × n real matrices or the
(n(n + 1)/2)-dimensional subspace of upper-triangular n × n matrices
with non-negative diagonal, and maximize det(T ) over the (T, a) ∈ X×
R

n such that det(T ) > 0 and a + T (K) ⊂ L.
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Remark 4.6. We refer to [1] and [2] for detailed discussion on John’s
ellipsoid and its unicity and to [19] for the case when L is a paral-
lelepiped. For a discussion on how to decrease the number of contact
pairs, see [22].

5. Applications

In [13], the following problem had risen: what is the maximal possi-
ble value of d̄(K,L) for two convex bodies K and L in R

n and it was
conjectured that the answer is n. The theorem below gives affirmative
answer to this conjecture. Let us note that the similar problem about
Banach–Mazur distance d seems much more difficult and is still open.
The best known bound for d has been given by Rudelson [21]: for some
absolute positive constant α, one has d(K,L) ≤ n4/3(ln(n + 2))α.

Theorem 5.1. Let K and L be two convex bodies in R
n with non-

empty interiors. Then, d̄(K,L) ≤ n, that is there exists a linear map-
ping T ∈ GLn and x, z ∈ R

n such that

Kz ⊂ T (Lx) ⊂ −nKz.

More precisely, if K is in a position of maximal volume in L, then there
exist z ∈ R

n such that Kz ⊂ Lz ⊂ −nKz.

Proof. After an affine transformation, we may assume that K is in
a position of maximal volume in L and that 0 ∈ int L. Applying The-
orem 3.8, we get that there exist z ∈ int (K) and m ≤ n2 + n contact
pairs (ui, vi)1≤i≤m of (Ext Kz,Ext L◦

z), and a1, , . . . , am > 0 such that

In =
m∑

i=1

aiui ⊗ vi =
m∑

i=1

aivi ⊗ ui

and
m∑

i=1

aiui =
m∑

i=1

aivi = 0;
m∑

i=1

ai = n.

For every x ∈ R
n, denote

c(x) = max
1≤i≤m

〈vi, x〉 .

Since 0 =
∑m

i=1 aiui, one has c(x) ≥ 0 for every x ∈ R
n. Then, for

x ∈ R
n,

−x =
m∑

i=1

ai 〈vi,−x〉ui
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and using the fact that
∑m

i=1 aiui = 0, we get

−x = c(x)
m∑

i=1

aiui −
m∑

i=1

ai 〈vi, x〉 ui =
m∑

i=1

ai (c(x) − 〈vi, x〉) ui.

Since c(x) − 〈vi, x〉 ≥ 0 and ui ∈ Kz, 1 ≤ i ≤ m, the last equality
together with the convexity of Kz, gives that

−x ∈
(

m∑
i=1

ai (c(x) − 〈vi, x〉)
)

Kz.

Using the fact that
∑m

i=1 ai = n and
∑m

i=1 aivi = 0, we arrive at

−x ∈
(

c(x)
m∑

i=1

ai −
〈

m∑
i=1

aivi, x

〉)
Kz = nc(x)Kz .

To conclude, recall that c ≥ 0, Lz ⊂ {x ∈ R
n | c(x) ≤ 1} and 0 ∈ Kz.

It follows that −Lz ⊂ nKz, which is equivalent to Lz ⊂ −nKz. q.e.d.

Remark 5.2. If K = −K, and L = −L, and K is in a position of
maximal volume in L with respect to the origin, then our proof gives
K ⊂ L ⊂ nK (see also [6] and [16]).

Corollary 5.3. Let K and L be two convex bodies in R
n. Then

vr(K,L) vr(L,K) ≤ n.

This corollary follows immediately from the previous theorem. Note
that recently Giannopoulos and Hartzoulaki [5] proved that for any two
convex bodies K and L in R

n, one has

vr(K,L) ≤ c
√

n ln(n + 1)

for some absolute constant c > 0.

Remark 5.4. It follows immediately from a result of Gluskin [7],
that there exists a constant c > 0, such that for every dimension n,
there exist centrally symmetric convex bodies K and L (the so-called
Gluskin bodies) such that vr(K,L) vr(L,K) ≥ cn. The paramater
vr(K,L) vr(L,K) is investigated by Khrabrov in [15] and called modi-
fied Banach–Mazur distance. Corollary 5.3 gives the precise upper esti-
mate attained for the simplex and the Euclidean ball.

Theorem 5.5. Let K and L be two convex bodies in R
n, and suppose

that L has a center of symmetry. Then d(K,L) ≤ n. More precisely,
if we assume that K and L are in a position given by Theorem 3.8 and
that L is centrally symmetric with respect to some a ∈ L, then there
exists b ∈ R

n such that K − b ⊂ L − b ⊂ n(K − b).
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Proof. We assume that K is in a position of maximum volume in L.
By Theorem 5.1, there exists z ∈ R

n such that we have Kz ⊂ Lz ⊂
−nKz. After a translation of K and L, we suppose that z = 0. By the
condition of the theorem, there exists a ∈ R

n, such that L−a = −(L−a),
i.e., L = −L + 2a. Take b = −2a/(n − 1). Then

K − b ⊂ L − b = −L + 2a + 2a/(n − 1) ⊂ nK + 2
n

n − 1
a = n(K − b),

which proves that d(K,L) ≤ n. q.e.d.

Remark 5.6. Theorem 5.5 is sharp, as the example of a regular
simplex and the circumscribed Euclidean ball shows. It improves a
result of Lassak [16] who proved that there are positions K ′ and L′ of
K and L = −L such that K ′ ⊂ L′ ⊂ (2n − 1)K ′.

It may happen that (In, 0) is a local maximum of det(T ) on the set
{(T, a)| a + T (K) ⊂ L} without being a global one. In this situation,
it is impossible to deduce any good distance estimates from the contact
pairs. We denoted here by | · | the Euclidean norm and by ‖T − I‖ the
operator norm.

Example 5.7. Let K be a regular simplex in R
n, with vertices

u1, . . . , un+1 on the Euclidean sphere. For 0 < ε < 1 , we define a
body L(ε) by

L(ε) = conv(K,−(1 − ε)nK).
It is easy to prove that there exists η > 0 such that if z ∈ L(ε) satisfies
0 < |z − ui| < η for some 1 ≤ i ≤ n + 1, then |z| < 1. We shall
see that (In, 0) is a strict local maximum of the determinant function
f(T, a) = det(T ) on

{(T, a) | a + T (K) ⊂ Lε} .

For this, setting zi = a + Tui, it suffices clearly to check that if z1, . . . ,
zn+1 ∈ L(ε) satisfy |zi − ui| ≤ η, 1 ≤ i ≤ n + 1, then

| conv(z1, . . . , zn+1)| ≤ | conv(u1, . . . , un+1)| = |K|
with equality if and only if zi = ui for 1 ≤ i ≤ n + 1. But as we
mentioned above, for zi ∈ L(ε), 0 ≤ |zi − ui| ≤ η implies |zi| ≤ 1
with equality if and only if zi = ui. The result follows now from the
well known fact that the regular simplex with vertices on the Euclidean
sphere is, up to isometries of R

n, the unique simplex of maximal volume
inscribed in the Euclidean ball.

Now, it is clear that the simplex of maximal volume inside Lε is
−(1−ε)nK. Thus, (In, 0) is not the global maximum of f . Moreover, it
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is impossible to deduce any good distance estimate from contact pairs,
because we have here:

inf{t > 0| K ⊂ L(ε) ⊂ tK} =
n2

1 − ε
→ n,2 when ε → 0,

although
−(1 − ε)nK ⊂ Lε ⊂ −nK,

which indicates that d(Lε,K) = 1
1−ε → 1 when ε → 0.

Similarly, it is impossible to deduce any good estimate for vr(Lε,K)
since (|Lε|/|K|)1/n ≥ n/(1 − ε), but vr(Lε,K) ≤ 1/(1 − ε).

Corollary 5.8. If S is a non-degenerate simplex and K is a centrally
symmetric convex body in R

n, then d(S,L) = n.

Proof. The estimate d(S,L) ≤ n follows from the previous theorem.
Now, suppose that S ⊂ L ⊂ tS. Let b be the center of symmetry of L,
i.e., L = −L + 2b. Then, −L + 2b ⊂ tS and therefore, L ⊂ −tS + 2b.
Thus, we obtain S ⊂ −tS + 2b, i.e., Sa ⊂ −tSa, where a = 2b/(t + 1).
It implies that t ≥ n. q.e.d.

Remark 5.9. From a result of Palmon [18], the only convex body
with extremal distance from the Euclidean ball is the simplex. Com-
bining this result with Corollary 5.8, we conclude that if the set of
equivalence classes of convex bodies (up to affine transformation) is
equipped with the Banach–Mazur distance, then the class correspond-
ing to the simplex is the unique center of the set of equivalence classes
of symmetric convex bodies.

By the triangle inequality, we immediately obtain the following Corol-
lary.

Corollary 5.10. Let K and L be two convex bodies in R
n. Then

d(K,L) ≤ n · min {δK , δL}.
We conclude this section with two other consequences of Theorem 3.5.

Theorem 5.11. Let K and L be centrally symmetric convex bodies
in R

n, n ≥ 2, such that K is in a position of maximal volume in L
with respect to the origin. Then, there exists a parallelepiped P and a
cross-polytope C such that

C ⊂ K ⊂ L ⊂ P and
( |P |
|C|
)1/n

≤ 1
n

((
n2

n

)
n!
)1/n

< n.

Remark 5.12. For a similar result when K is the Euclidean ball,
see [19], [1], [4], [10].
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Proof. By Theorem 3.5 and Remarks 3.6 and 3.12, there are ci ≥ 0,
and xi, yi ∈ R

n, 1 ≤ i ≤ m, where n ≤ m ≤ n2, such that In =∑m
i=1 cixi ⊗ yi. Let A, B be m × n matrices defined by

A = (cixi)i≤m = (cixij)i≤m,j≤n , B = (yi)i≤m = (yij)i≤m,j≤n ,

where (xij)1≤j≤n, (yij)1≤j≤n are the coordinates of the vectors xi, yi in
the canonical basis of R

n. Then, B∗A = In.
If I ⊂ {1, . . . ,m}, denote by |I| its cardinality. Using the Cauchy–

Binet formula, we obtain

1 = det In =
∑

I⊂{1,...,m},|I|=n

det
i∈I

(cixi) · det
i∈I

(yi)

≤ max
|I|=n

(∣∣∣∣det
i∈I

(xi)
∣∣∣∣ · ∣∣∣∣det

i∈I
(yi)
∣∣∣∣) ·

∑
|I|=n

∏
i∈I

ci

≤ max
|I|=n

(∣∣∣∣det
i∈I

(xi)
∣∣∣∣ · ∣∣∣∣det

i∈I
(yi)
∣∣∣∣) ·

(
m

n

)
·
(

m∑
i=1

ci

m

)n

.

Since n ≤ m ≤ n2, one has(
m

n

)( m∑
i=1

ci

m

)n

=
( n

m

)n
(

m

n

)
≤
(

1
n

)n (n2

n

)
< nn.

Therefore, if the maximum of |deti∈I (xi) | · |deti∈I (yi) | is attained at
I0 ⊂ {1, . . . ,m}, we get

1 ≤
∣∣∣∣det
i∈I0

(xi)
∣∣∣∣ · ∣∣∣∣det

i∈I0
(yi)
∣∣∣∣ ·( 1

n

)n(n2

n

)
.

Let
P = {x ∈ R

n | |〈x, yi〉| ≤ 1 for all i ∈ I0}
and

C = ({x ∈ R
n | |〈x, xi〉| ≤ 1 for all i ∈ I0})◦ .

Since yi ∈ ∂L◦, one has P ⊃ L, and since xi ∈ ∂K, we get C◦ ⊃ K◦.
Thus C ⊂ K. One has

|C| =
2n

n!

∣∣∣∣det
i∈I0

(xi)
∣∣∣∣ and |P | = 2n

∣∣∣∣det
i∈I0

(yi)
∣∣∣∣−1

.

The result follows. q.e.d.

Theorem 5.13. Let K and L be convex bodies in R
n, such that

0 ∈ K ∩ int L, and that K is in a position of maximal volume in L
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with respect to 0. Then, there exist two simplices S1 and S2 such that
S1 ⊂ K and S2 ⊂ L◦ and

(|S1| |S2|)1/n ≥ 1
n2

.

Proof. By Theorem 3.5 and Remark 3.6, for some n < m ≤ n2, there
exist ci > 0, xi ∈ ∂K, yi ∈ ∂L◦, 1 ≤ i ≤ m such that In =

∑m
i=1 cixi⊗yi

and
∑m

i=1 ci = n (if m = n in the theorem, we set xn+1 = yn+1 = 0,
cn+1 = 0).

Let A, B be m× (n+1) matrices defined as above with xik = yik = 1
for every 1 ≤ i ≤ m and k = n + 1. Then, since

∑m
i=1 ci = n, B∗A =

(aij)1≤i,j≤n+1, where aij = δij for 1 ≤ i, j ≤ n and akk = n if k = n + 1.
Repeating the proof above, we obtain

n = det(B∗A)

≤ max
|I|=n+1

(∣∣∣∣det
i∈I

(xi)
∣∣∣∣ · ∣∣∣∣det

i∈I
(yi)
∣∣∣∣) ·

∑
|I|=n+1

∏
i∈I

ci

≤ max
|I|=n+1

(∣∣∣∣det
i∈I

(xi)
∣∣∣∣ · ∣∣∣∣det

i∈I
(yi)
∣∣∣∣) ·

(
m

n + 1

)
· (n/m)n+1 .

Assuming that this maximum is attained on I0, let S1 ⊂ K be the
simplex with vertices xi, i ∈ I0, and S2 ⊂ L◦ the simplex with vertices
yi, i ∈ I0. Then

|S1| |S2| = (n!)−2

∣∣∣∣det
i∈I0

(xi)
∣∣∣∣ · ∣∣∣∣det

i∈I0
(yi)
∣∣∣∣

≥ n(n!)−2

(
m

n + 1

)−1

· (m/n)n+1 > n−2n,

which proves the theorem. q.e.d.
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