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SCALAR CURVATURE
AND STABILITY OF TORIC VARIETIES

S.K. DONALDSON

Abstract
We define a stability condition for a polarised algebraic variety and state a
conjecture relating this to the existence of a Kahler metric of constant scalar
curvature. The main result of the paper goes some way towards verifying
this conjecture in the case of toric surfaces. We prove that, under the
stability hypothesis, the Mabuchi functional is bounded below on invariant
metrics, and that minimising sequences have a certain convergence property.
In the reverse direction, we give new examples of polarised surfaces which
do not admit metrics of constant scalar curvature. The proofs use a general
framework, developed by Guillemin and Abreu, in which invariant Kahler
metrics correspond to convex functions on the moment polytope of a toric
variety.

1. Introduction

This paper is a step towards the solution of the general problem
of finding conditions under which a complex projective variety admits
a Kahler metric of constant scalar curvature. The pattern of the an-
swer one expects is that this differential geometric condition should be
equivalent to some notion of “stability” in the sense of Geometric In-
variant Theory. This expectation is probably now an item of folklore:
going back to suggestions put forward by Yau in the case of Kahler-
Einstein metrics, and the many results of Tian and others in this case;
reinforced by a detailed formal picture which makes clear the analogy
with the well-established relation between the stability of vector bun-
dles and Yang-Mills connections [5]. Here, we begin the investigation of
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the problem in the special case of toric varieties, working within a gen-
eral differential-geometric framework developed by Guillemin [11], [12]
and Abreu [1]. While we are not able to achieve a decisive result, the
geometry in this comparatively simple situation is surprisingly rich and
displays very clearly the interplay between the analysis and the stability
condition.

While the general idea that constant scalar curvature should be re-
lated to stability has been mentioned by a number of authors a precise
formulation of a conjecture, with the appropriate stability condition,
has not yet appeared in the literature. Thus we begin by addressing
this question, in Section 2 below, and define a condition on a polarised
variety (V,L) which, following Tian, we call “K-stability”. (Tian gives
a very similar definition in the particular case of Fano varieties.) Thus,
we believe, the general expectation alluded to above can be given precise
form in the following conjecture.

Conjecture. A smooth polarised projective variety (V,L) admits
a Kahler metric of constant scalar curvature in the class c1(L) if and
only if it is K-stable.

Turning to our main topic, toric varieties: our principle result bears
on the two-dimensional case. To state our result we should recall that
for any compact Kahler manifold (V, ω0) the Mabuchi functional is a
functional M, defined on the metrics in the class [ω0], whose critical
points are precisely the metrics of constant scalar curvature [14]. Ex-
pressing a metric via a Kahler potential, i.e., as ω0 + 2i∂∂ψ, we can
regard M as a functional on the set H of potentials. Now suppose that
(V,L) is a polarised toric surface, with an effective action of the torus
T c = (C∗)2 on L, covering an action on V . Working in the Kahler class
c1(L), we may regard the potentials, more invariantly as Hermitian met-
rics on the line bundle L. Thus T c acts naturally on H. Let HT be the
set of potentials which are fixed by the action of the compact subgroup
T = (S1)2 of T c. A critical point of M on HT is a metric of constant
scalar curvature, by the principle of symmetric criticality. There is a
natural action of the quotient T c/T on HT . To state our main result
we introduce a piece of special terminology: we say that a sequence of
potentials ψα is K-convergent if there is a sequence of scalars cα and
elements gα of T c/T such that the potentials ψ′

α = gα(ψα) + cα satisfy:

(1) The ψ′
α converge pointwise on V \V T , where V T is the finite subset

of fixed points of the T -action;
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(2) On a Zariski-open neighbourhood of any fixed point we can intro-
duce local co-ordinates (w1, w2) in which the action is linear and
diagonal and for any η1, η2 > 0 there is a constant cη such that

ψ′
α(w1, w2) ≥ η1 log |w1| + η2 log |w2| + cη,

for all α.

(We do not envisage that this notion of convergence has any very
general significance: it merely summarises what we are conveniently
able to prove.)

Our main result is:

Theorem 1.1. If a polarised toric surface is K-stable then the
Mabuchi functional M is bounded below on HT and any minimising
sequence has a K-convergent subsequence.

(We will also obtain partial converses to this Theorem (Propositions
7.1.2, 7.1.3), which give, by the way, new examples of complex surfaces
which do not admit metrics of constant scalar curvature.)

Of course one would like to go beyond this result to prove that
the limit of the minimising sequence is a smooth potential, minimising
the Mabuchi functional and hence defining a metric of constant scalar
curvature. A slightly different, but related, issue is to show uniqueness:
that one gets the same limit for any minimising sequence. We leave
these questions, which clearly involve substantial further analytical and
PDE problems, for now. We should point out that the arguments in
the present paper are all of a fairly elementary nature and we hope they
can be seen as preparing the way for an attack on these PDE questions.

We give a brief outline of the proof of Theorem 1.1 and the organi-
sation of this paper. In Section 3 we review the differential geometry of
toric varieties, following Guillemin and Abreu. This involves the well-
known correspondence between an n-dimensional toric variety and a
polytope P in Rn. A T -invariant Kahler metric corresponds to a con-
vex “symplectic potential” function u on P . The scalar curvature is
given by a beautiful formula of Abreu

S(u) = −
∑
ij

∂2u,ij

∂xi∂xj
,

where
(
u,ij

)
is the inverse of the Hessian matrix u,ij = ∂2u

∂xi∂xj
. Thus the

constant scalar curvature equation which motivates our study, S(u) =
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constant, is a fully nonlinear, fourth order, PDE which stands in a
similar relation to the elliptic Monge-Ampere equation, det(uij) = 1 as,
in linear PDE, the biharmonic equation stands to the Laplace equation.
Our main concern in this paper is not directly with this equation but
with the corresponding functional. For any function A on the polytope
P we define

FA(u) = −
∫

P
log det(u,ij) dµ+ LA(u),

where LA is the linear functional

LA(u) =
∫

∂P
u dσ −

∫
P
Au dµ.

Here dµ is standard Lebesgue measure on Rn and dσ is a certain mea-
sure on the boundary ∂P . The Euler-Lagrange equation δFA = 0 is the
PDE S(u) = A. We are primarily interested in the case when A is a
constant, and then the functional FA corresponds to the Mabuchi func-
tional (restricted to T -invariant metrics), as considered in Theorem 1.1.

In Section 4 we take up the algebro-geometric point of view and we
show that any rational, piecewise-linear convex function on P defines
a “test configuration” in the sense of our definition of K-stability in
Section 2. We show that, if the toric variety is K-stable, then for any
nontrivial function u of this kind LA(u) ≥ 0 (here A is a constant): in
fact LA(u) is essentially the “Futaki invariant” which enters into the
definition of K-stability.

Section 5 is the heart of the paper. Here we relate the nonlinear
functional FA to its linear component LA. We show that if LA is positive
on a suitable class of convex functions then FA is bounded below. All
of the discussion up to this point applies equally well in any dimension
n. The restriction to the case n = 2 in our main Theorem enters here
in the analysis of the semi-positive case, where we are able to show
that the extremal function is piecewise-linear. We expect that a similar
result will be true in higher dimensions, but the arguments become
substantially harder. Finally, in Section 6, we show that the extremal
function is actually a rational piecewise linear function: again we expect
this to be true in higher dimensions, but an extension of the direct attack
on the algebra that we use in the two dimensional case seems to become
very complicated. In Section 7 we put together the various components
to complete the proof of Theorem 1.1, and conclude with a discussion
of a number of ideas related to the work in the paper.
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There is a substantial existing literature, going back to [15], on the
existence of Kahler-Einstein metrics on toric Fano varieties. Of course in
the Fano case—with the anticanonical polarisation—the constant scalar
curvature and Kahler-Einstein conditions are equivalent. It will be in-
teresting to relate the techniques we develop here to the results already
known in the Fano case.

2. K-stability of polarised varieties

2.1 The definition

In this section we define a notion of stability for a pair (V,L) where L
is an ample line bundle over a compact complex manifold V . The main
point of the definition is that it involves another space V0. In simple
cases this will given by another complex structure on the differentiable
manifold underlying V , but we also need to admit singularities, so we
allow V0 to be a general scheme. Suppose Λ is an ample line bundle
over a projective scheme W , and suppose we have a fixed C∗-action on
the pair (W,Λ). For each positive integer k we have a vector space

Hk = H0(W ; Λk)

with a C∗-action. From this we obtain integers dk = dim Hk and wk,
the weight of the induced action on the highest exterior power ofHk. By
general theory the integers dk, wk are, for large k, given by polynomial
functions of k, with rational co-efficients: dk = Q(k), wk = P (k) say.
We write F (k) = wk/kdk. The ring

⊕
Hk is finitely generated, and it

follows easily that wk/kdk is bounded: hence the degree of P is at most
the degree of Q plus 1. So for large enough k we have an expansion

F (k) = F0 + F1k
−1 + F2k

−2 + · · · ,

with rational co-efficients Fi. We define the Futaki invariant of the
C∗-action on (W,Λ) to be the co-efficient F1.

Definition 2.1.1. A test configuration for (V,L), of exponent r
consists of:

(1) a scheme V with a C∗-action;

(2) a C∗-equivariant line bundle L → V;
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(3) a flat C∗-equivariant map π : V → C, where C∗ acts on C by
multiplication in the standard way;

such that any fibre Vt = π−1(t) for t �= 0 is isomorphic to V and the
pair (V,Lr) is isomorphic to (Vt,L|Vt).

There are a few obvious points to note about this definition. First, all
the fibres Vt for nonzero t are necessarily isomorphic, due to the action.
Second, the C∗-action on V induces an action on the central fibre: the
scheme V0 = π−1(0). Third, a special class of test configurations arises
when (V,L) has a C∗-action and we take the product configuration V =
V × C.

Definition 2.1.2. The pair (V,L) is K-stable if for each test config-
uration for (V,L) the Futaki invariant of the induced action on (V0,L|V0)
is less than or equal to zero, with equality if and only if the configuration
is a product configuration.

This definition is close to that given by Tian in [16], but there are
a number of differences. Tian considers Fano manifolds and works with
vector fields rather than group actions. More importantly, Tian restricts
attention to configurations with smooth, or at least normal, central
fibres. Despite these differences of detail we use the same terminology
“K-stable” introduced by Tian, since it does not seem worth introducing
new terminology into the literature. A semantic point is that what we
have called K-stable would be called “properly K-semistable” by Tian.

2.2 Differential-geometric formula

Here we explain the relation between the “Futaki invariant” of the pre-
vious section and the usual differential geometric formulation, in the
case when the central fibre V0 is smooth. Thus we suppose that (V0, L)
is a smooth polarised variety with a fixed C∗-action. Let ω0 be any
Kahler metric on V0 in the class 2πc1(L), induced by a choice of Her-
mitian metric on L. Let v̂ be the vector field on the total space of L
which generates the C∗ action, covering a vector field v on V0. We can
write

v̂ = v + ift,

where v is the horizontal lift of v, t is the canonical vector field on the
total space of L, defined by the action of scalar multiplication, and f is
a smooth function on V0. The condition that v̂ is holomorphic gives

∂f = − (iv(ω0))
0,1 .
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(See [7], p. 490). Let S be the scalar curvature of ω0 and a be the
average value of S over V0. Set

ν =
∫

V
(S − a)f

ωn
0

n!
.

Proposition 2.2.1. The number ν is independent of the choice of
metric ω0, and hence is an invariant of the C∗-action on (V0, L).

This is essentially the original result of Futaki [8]: see also the ex-
position of Calabi [3]. In fact if we let g = G(S − a), where G is the
Green’s operator, we can rewrite the integral as∫

V
(∂g, v)ωn

0

which is the form given in [3]. This formulation also has the advantage
that it uses only the holomorphic vector field v, and in fact the condition
that the action lifts to L is not needed.

Proposition 2.2.2. The invariant F1 is given by

F1 = − 1
4Vol(V0)

ν.

To prove this we use Riemann-Roch formulae to compute the di-
mensions dk and weights wk of the action on H0(V0, L

k); this is very
similar to the discussion in Chapter 5 of [9]. We can suppose that k
is large enough for all the higher cohomology groups to vanish so dk is
given by the Riemann-Roch formula

dk =
∫

V0

ch(Lk)Td(V0) =
∫

V0

ekω0Td(V0).

The Todd class is represented by the differential form Td(V0) = 1 +
1
2ρ+ . . . where ρ is the Ricci form, so we have

dk = Ckn +Dkn−1 +O(kn−2),

where C =
∫
V0

ωn
0

n! is the volume of V0 and

D =
1

2(n− 1)!

∫
V0

ρωn−1
0 =

∫
V0

S

4
ωn

0

n!
.

To compute the weights we use the equivariant Riemann-Roch formula.
Here we suppose that ω0 is preserved by the circle subgroup of C∗
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and let v be the vector field generating this action. Recall that the
equivariant cohomology H∗

S1(V0) is the cohomology of the homotopy
quotient V0 ×S1 ES1 and there is an integration-over-the-fibre map∫

V0

: H∗
S1(V0) → H∗(BS1) = Q[t],

where t is a generator in H2. The equivariant Riemann-Roch formula
asserts that wk is given by the co-efficient of t in∫

V0

ch(Lk)Td(V0),

where now the Chern and Todd classes are regarded as equivariant co-
homology classes. To make the calculation we use the de Rham model
of equivariant cohomology, with the complex

(
Ω∗

V0

)S1

[t] and differential
d+tiv, see [2]. The equivariant Chern class of L is represented by ω0+tf
in this model. Let ρ+ tR be the representative for c1(V0), where R is a
function on V0. Then we obtain

wk = Akn+1 +Bkn +O(kn−1),

where

A =
∫

V0

f
ωn

n!
, B =

∫
V0

(
fS

4
+R

)
ωn

n!
.

Lemma 2.2.3. The function R is the divergence of the vector field
Iv on V .

To prove this we use the characterisation

Lv(θ) = ∇v(θ) + iRθ,

for any local section θ of the canonical bundle KV0 . In particular we
may consider a local holomorphic section θ, in which case we obtain

LIv(θ) = ∇Iv(θ) −Rθ.(2.2.4)

Write θ ∧ θ = σ ωn

n! , then

LIv(θ ∧ θ) = (∇Ivσ + σdiv(Iv))
ωn

n!
= ∇Iv(θ ∧ θ) + σdiv(Iv)
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On the other hand (2.2.4) gives

LIv(θ ∧ θ) = (∇Ivθ ∧ θ) + θ ∧∇Ivθ) − 2Rθ ∧ θ,
= ∇Iv(θ ∧ θ) − 2Rθ ∧ θ,

and the result follows from these.
It follows from Lemma (2.2.3) that the integral of R over V0 vanishes

so
B =

∫
V0

fS

4
ωn

n!
.

Then

wk

kdk
=
A+Bk−1 +O(k−2)
C +Dk−1 +O(k−2)

=
A

C
+
AD −BC

C2
k−1 +O(k−2),

and AD −BC = −C
4 ν as required.

2.3 Relation with Hilbert-Mumford stability

We will discuss briefly the relation between the notion of K-stability de-
fined above and “Hilbert-Mumford” stability, as studied in the algebraic
geometry literature. This discussion is very similar to the correspond-
ing one in [16]. Suppose (V,L) is a polarised variety as usual and that
the linear system |Lr| gives a projective embedding of V as a projective
variety with Hilbert polynomial P (n) = χ(Lrn). The Hilbert scheme
HP parametrising projective schemes in CPN with the given Hilbert
polynomial P is constructed as a subscheme of a Grassmannian of m-
planes in the symmetric power sn(CN+1) by assigning to a scheme X
the subspace of polynomials of degree n which vanish on X. In turn
this Grassmannian is embedded in a projective space by the Plucker
embedding, so we have a point in

P
(
Λm(sn(CN+1))

)
where m is dim sn(CN+1) − P (n). The group SL(N + 1,C) acts on
ΛmsnCN+1 and the construction naturally assigns to (V,Lr) an orbit
under the induced action on the Hilbert scheme in the projective space.
The pair (V,L) is said to be Hilbert-Mumford stable, with the given
values of r and n, if this is a stable orbit in the sense of Geometric
Invariant theory i.e if the corresponding orbit O in the vector space is
closed. The Hilbert criterion asserts that this is true if and only if for any
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1-parameter subgroup C∗ ⊂ SL(N+1,C) and any z ∈ O the C∗-orbit of
z is closed. This readily translates into the following numerical criterion.
For any 1-parameter subgroup ρ : C∗ → SL(N+1,C) the points [ρ(t)(z)]
in the projective space converge to some limit [z0] as t → 0, where [z0]
is fixed by ρ(C∗). Thus there is an integer weight W (ρ) ∈ Z with
ρ(t)(z0) = tW z0. The stability condition is that W (ρ) ≤ 0 for all 1-
parameter subgroups ρ, with equality if and only ρ fixes z.

The connection with our previous discussion arises from the fact that
there is essentially a one-to-one correspondence between test configura-
tions in the sense of 2, with exponent r, and 1-parameter subgroups in
SL(H0(Lr)). Starting with a test configuration we take a point [z0] in
the Hilbert scheme representing the central fibre V0. The C∗-action on
V0 induces an action on CN+1 = H0(V0,L). Making a base change if
necessary we can suppose that this is the product of a scalar action and
a 1-parameter subgroup in SL(N +1,C) and we are in just the position
considered above. In the other direction, starting with a 1-parameter
subgroup, the limit point [z0] lies in the Hilbert scheme so the orbit
extends to a map from C to the Hilbert scheme and we get a test con-
figuration by pulling back the universal family. The essential task then
is to see what the numerical criterion boils down to in this case, in terms
of the C∗-action on (V0,L). The line spanned by z0 is, by definition,
the highest exterior power of the kernel of the surjection

sn(H0(V0,L)) → H0(V0,Ln).

Thus it can be identified with

Λmaxsn(H0(V0,L)) ⊗ ΛmaxH0(V0,Ln)−1.

For any vector space E there is a canonical isomorphism

Λmaxsn(E) ∼= (ΛmaxE)n dim sn(E)/ dim E ,

so the line in question can be identified (writing sn for sn(H0(L))) with

ΛmaxH0(V0,L)n dim sn/ dim H0(L) ⊗ ΛmaxH0(Ln)−1.

However, we must take care of the fact that the 1-parameter subgroup
we need is obtained by writing the natural action as a product of a
scalar part and a part in SL(N +1). The scalar part is given by the the
weight of the natural action on ΛmaxH0(L) to the power 1/dimH0(L).
Thus the action of this scalar part on the line spanned by z0 has weight
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equal to umn/ dim H0(L) where u is the weight of the natural C∗-action
on ΛmaxH0(L). (This is, in general, rational rather than integral, cor-
responding to the fact that we may need to lift to a covering of the
C∗-action. However we can ignore this covering if we are only inter-
ested in finding the sign of W .) Putting this together, the weight W we
need is the weight of the natural action on the line

(ΛmaxH0(L)(n dim sn−mn)/ dim H0(L) ⊗ ΛmaxH0(Ln)−1.

Since dim sn −m = P (n) = dn we can write this weight as

W =
ndnw1

d1
− wn = ndn(F (1) − F (n)).

So we conclude that, with the given values of r, n, the pair (V,L) is
Hilbert-Mumford stable if and only if for each test configuration with
exponent r the central fibre satisfies the numerical condition F (n) −
F (1) ≥ 0, with equality if and only if the configuration is a product.
To relate this to the K-stability condition, note that any configuration
of exponent r0 defines configurations of exponent pr0 for all positive
integers p— replacing L by Lp. Suppose we know that, for some r0
and all large p, all configurations of exponent r = pr0 arise in this way.
Then the condition becomes that

F (pn) − F (n) ≥ 0

where F is the function defined by a configuration of exponent r0.
Clearly, if the variety is K-stable this condition will hold, for each such
configuration, once n and p are large enough. Thus the essential differ-
ence between the notions of Hilbert-Mumford stability, and K-stability
is that the first depends on the values of the function F at specific val-
ues of the parameter, while the second involves the asymptotics as the
parameter becomes large. This difference is analogous to the difference
between the notions of “Gieseker stability” and “Mumford stability” in
the theory of vector bundles.

3. Toric geometry

3.1 The symplectic potential

In this subsection we review standard material on toric differential ge-
ometry, following Guillemin [11], [12] and Abreu [1]. Another paper
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which adopts a similar point of view is [10]. The main theme is the
interplay between symplectic and complex structures. We begin on the
symplectic side, so we consider a compact symplectic manifold V, ω of
real dimension 2n and a line bundle L → V with a connection whose
curvature is −2πiω. We suppose that the torus Tn = (S1)n acts effec-
tively on this data with a moment map m : V → Rn. The image of the
moment map is an integral polytope P in Rn i.e., it is the convex hull
of a finite set of points in the lattice Zn. The polytope is defined by a
finite number of linear inequalities

hk(x) ≥ ck,(3.1.1)

where hk are linear maps from Rn to R which induce primitive maps
from the integer lattice Zn to Z. We denote the interior of the polytope
by P . The fibres of the moment map m are orbits under the Tn-action.
The action is free on the dense open subset V0 = m−1(P ) and the
universal cover of V0 can be identified with P × Rn. We introduce
standard coordinates (xi, ηi), i = 1, . . . n on this universal cover (which,
in the familiar way we also think of as coordinates on V0) in which the
symplectic form is given by ω =

∑
dxidηi; the moment map is given by

projection to the x-coordinates and the group acts by translation in the
η-coordinates.

We now turn to the complex side, so we suppose instead that V
is a compact complex n-manifold with an action of the complex torus
Tn

C = (C∗)n which has a dense, free, open orbit V0, and the action lifts to
a positive holomorphic line bundle L→ V . Thus we can identify V0 with
(C∗)n and we have standard complex co-ordinates w1, . . . , wn ∈ C\{0}.
Again, we work in the covering space where we can take co-ordinates
zi = logwi = ξi+

√−1ηi in C, so the action is represented by translation
in the zi variables. We consider Kahler metrics on V which are invariant
under the action of Tn ⊂ Tn

C . Such a metric can be represented by a
Kahler potential over V0; ω = 2i∂∂φ so φ can be viewed as a function
of the complex variables z1, . . . zn. The T -invariance means that we
may restrict attention to functions which only depend on the real parts
ξ1, . . . , ξn. In sum, our Kahler metric is given by

ω =
√−1

2

∑
ij

φ,ijdzidzj ,(3.1.2)

where

φ,ij =
∂2φ

∂ξi∂ξj
,
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and φ = φ(ξ1, . . . , ξn) is a strictly convex function on Rn.
To match up these points of view one observes that the moment map

for the Tn action on the Kahler metric (3.1.2) is given by

m(z1, . . . zn) =
(
∂φ

∂ξi

)
.

We define the symplectic potential u to be the Legendre dual of φ. Recall
that this is defined in the following way. For each point x in the image,
P , of the moment map there is a unique point ξ = ξ(x) in Rn where
∂φ
∂ξi

= xi. We let

u(x) =
∑

xiξi − φ(ξ).(3.1.3)

Then u is a convex function on P and φ can be recovered from u by
the symmetrical relation between Legendre dual functions. Thus the
passage between the complex and symplectic viewpoints amounts to
the change from the ξi to xi coordinates and the metric data is encoded
in either the Kahler potential φ(ξ) on Rn or the symplectic potential
u(x) on P . In the symplectic coordinates the metric is given by

g =
∑

u,ijdxidxj +
∑

u,ijdξidξj ,

where the matrix
(
u,ij

)
is the inverse of the Hessian matrix u,ij = ∂2u

∂xi∂xj
.

According to Abreu [1], the scalar curvature of this metric is

S(u) = −
∑
ij

∂2u,ij

∂xi∂xj
.(3.1.4)

We digress to explain how this expression for the scalar curvature fits
into the picture developed in [5], considering the action of the symplec-
tomorphism group of a symplectic manifold on the space of compatible
almost-complex structures. In the presence of the T -action on the sym-
plectic manifold V we restrict attention to the space J T of T -invariant
almost-complex structures, with the action of the group GT , the identity
component of the group of symplectomorphisms of V which commute
with T . The Lie algebra of GT can be identified with certain smooth
functions on P modulo constants i.e., the symplectomorphisms are gen-
erated by Hamiltonian functions of the xi variables, Elements of J T are
represented by maps from P to the Siegel generalised upper half-space
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Hn = Sp(2n,R)/U(n) of linear complex structures on R2n, compatible
with the standard symplectic form. The crucial point is that Hn has
an invariant Kahler structure. Explicitly, we can represent any almost-
complex structure at a point by a pair of matrices A,B, describing the
action of J on the tangent space to the T -orbits:

J

(
∂

∂ηi

)
=

∑
Aij

∂

∂ηj
+

∑
Bij

∂

∂xj
.

This defines a unique complex structure provided that B is symmetric
and positive definite and B−1A is symmetric. We write

X = U + iV = B−1A+ iB−1.

This gives the standard representation of Hn as the set of complex
symmetric matrices X with positive definite imaginary part, making
evident the complex structure on Hn. The invariant Kahler form Ω is
defined by the formula:

Ω(δ1U + iδ1V, δ2U + iδ2V )(3.1.5)

= Tr (δ1UV −1δ2V V
−1 − δ2UV

−1δ1V V
−1)

= −Tr(δ1Uδ2B − δ2Uδ1B).

We see then that elements of J T can be represented by matrix-valued
functions U, V as above on P . The action of a symplectomorphism
generated by a Hamiltonian function f on P is just

X �→ X + f,ij(3.1.6)

where f,ij = ∂2f
∂xi∂xj

. We define a map µ from J T to functions on P by

µ(U, V ) = −
∑ ∂2V ij

∂xi∂xj
,

where (V ij) = V −1. It follows from (3.1.5) and (3.1.6) that µ is a
moment map for the action of the compactly supported elements of GT

on J T , where the latter space is given the symplectic form induced in
a natural way by Ω, and integration over P . This just amounts to the
integration-by-parts formula∫

P
f

∑ ∂2βij

∂xi∂xj
=

∫
P

∑
fijβ

ij ,
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for compactly supported f and arbitary β.
In [5] we considered a formal complexification of the action of the

symplectomorphisms on the space of almost-complex structures. In the
present situation, this extension can be made in a completely straightfor-
ward way—we just use the same formula (3.1.6) with a complex-valued
function f on P . The integrability condition for an almost-complex
structure represented by a complex matrix-valued function Xij is just

∂Xij

∂xk
=
∂Xik

∂xj
,

and all the structures for which this holds lie in the same orbit of the
complexified action: i.e., we can write Xij = fij for some complex-
valued function f on P . In particular

Vij = uij =
∂2u

∂xi∂xj
,

where u is the imaginary part of f . Taking inverses, we see that the mo-
ment map µ on this complex orbit is given by Abreu’s formula

∑ ∂2uij

∂xi∂xj
.

This ties up Abreu’s calculation with the discussion in [5] where it is
shown, in general, that the scalar curvature furnishes a moment map for
the action of the symplectomorphisms on the space of almost-complex
structures; and concludes our digression.

Throughout this subsection we have focussed attention on the in-
terior of P , corresponding to the free orbits of the T -action. We turn
now, following Guillemin and Abreu, to the question of the boundary
behaviour of the symplectic potential. Recall that the polytope P is
defined by linear inequalities hk(x) > ck. We write δk(x) = hk(x) − ck,
so the δk are positive functions on P . Let

u0(x) =
∑

k

δk(x) log δk(x),

so u0 is continuous function on P , smooth on the interior. This gives the
model for the boundary behaviour required to generate a smooth metric
on the compact manifold V . We define S to be the set of continuous,
convex, functions u on P such that u − u0 is smooth on P . Then the
discussion of this section can be summed up the following Proposition.
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Proposition 3.1.7. Let V be a symplectic toric manifold defined
by a polytope P in Rn. There is a one-to-one correspondence between
the T -invariant Kahler potentials ψ on V ; and the symplectic potentials
u in S. Changing ψ to ψ + c for c ∈ R changes u to u− c. The action
of T c/T on the Kahler potentials coresponds to the action of the linear
functions, by addition, on the symplectic potentials.

Of course the Kahler potentials φ that we are considering here, cor-
responding to symplectic potential u, are not quite the same as those
discussed in Section 1 where we represent the metrics in a cohomology
class as ω0 + 2i∂∂ψ. However it is easy to pass between the two points
of view. The potentials φ, regarded as distributions on the compact
manifold V , satisfy an equation 2i∂∂φ = ω + H, where H is a fixed
current, independent of φ, supported on the divisor at infinity. Thus
if we have a reference metric ω0 we can represent another metric ω as
ω0 + i∂∂ψ where ψ is the smooth function φ− φ0.

One point to notice about this correspondence is that it behaves well
under restriction to the faces of the polytope P . These faces correspond
to toric subvarities of V and the restriction of any function in S to the
interior of a face is smooth and yields a symplectic potential for the
corresponding subvariety.

3.2 The Mabuchi functional

We begin by considering a general compact Kahler manifold (V, ω0)
of complex dimension n. The Mabuchi functional M is a real-valued
function on the set of Kahler metrics in the same Kahler class [ω0],
defined up to the addition of an overall constant [14]. The functional is
defined through the formula for its variation at a metric ω = ω0+2i∂∂ψ
with respect to an infinitesimal change δψ in the Kahler potential:

δM = −
∫

V
(S − a)δψ

ωn

n!
,(3.2.1)

where S is the scalar curvature of ω and a is the average value of the
scalar curvature, a topological invariant of the data. Thus δM is not
changed if one adds a constant to δψ, and so depends only on the
variation of the metric. From a more abstract point of view, the formula
(3.2.1) defines a 1-form on the space of Kahler metrics in the cohomology
class and one checks that this 1-form is closed, hence is the derivative of
a function M. The Mabuchi functional is related to the Futaki invariant
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in the following way. Let v be a holomorphic vector field on V and the
(0, 1) component of iv(ω) be −∂f as in (2.2). Then the infinitesimal
change in the Kahler potential generated by the action of v is just the
imaginary part of f . It follows that the infinitesimal change in the
Mabuchi functional, under the action of v is given by the imaginary
part of the Futaki invariant. That is, if σt : V → V is the 1-parameter
group of holomorphic automorphisms of V generated by v,

d

dt
M(σ∗t (ω)) = Im(ν(v)).(3.2.2)

We also want to recall the definition of another functional IV on the
set of Kahler potentials. This is defined in the same manner as above
by the formula

δIV = 2
∫

V
δψ
ωn

n!
,(3.2.3)

see [6]. In this case the variation does not vanish when δψ is constant,
so I is defined on the potentials rather than the metrics.

Now suppose that D is a positive divisor in V representing c1(V ).
Thus there is a meromorphic n-form χ on V with no zeros and with a
simple pole along D. We assume that D is a sum of smooth subvarieties
Dr, meeting with normal crossings in V . Thus there are functionals IDr

defined on the restriction of potentials to Dr and we set ID =
∑
IDr .

Given a Kahler metric ω we define a function ν on V by ν = |χ|−2 so

Cnω
n = ν χ ∧ χ,

for a universal numerical factor Cn which will not be important.

Proposition 3.2.4. For any metric ω = ω0 + 2i∂∂ψ on V

M(ω) = −ID(ψ) + aIV (ψ) +
∫

V
log ν

ωn

n!
.

Note here that the combination ID(ψ) − aIV (ψ) is unchanged if ψ
is changed by a constant, so it is well-defined on the Kahler metrics,
rather than potentials. In the formula of the Proposition both sides are
well-defined up to overall constants.

To prove the Proposition, we write

S
ωn

n!
=

2
(n− 1)!

ρ ∧ ωn−1,
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where ρ is the Ricci form. We have an equation of currents

ρ = D − i∂∂ log ν,

so

δM = −2
∫

D
δψ

ωn−1

(n− 1)!
+ 2

∫
V
i∂∂ log ν δψ

ωn−1

(n− 1)!
+ 2a

∫
V
δψ

ωn

n!
.

Hence

δM = δ(−ID(ψ) + aIV (ψ)) + 2
∫

V
i∂∂ log ν δψ

ωn−1

(n− 1)!
.

Integrating by parts, this gives

δM = δ(−ID(ψ) + aIV (ψ)) + n

∫
V

log ν(δω)
ωn−1

n!
.

On the other hand, differentiating the equation Cnω
n = νχ∧χ, we have

n(δω)ωn−1 = C−1
n δν χ ∧ χ,

and

δ

(∫
V
ν log νχ ∧ χ

)
=

∫
V

(log ν + 1)δν χ ∧ χ.

The contribution ∫
V
δν χ ∧ χ

is
C−1

n δ

∫
V
ωn,

which vanishes; so we have

δ

∫
V
ν log ν χ ∧ χ = Cn

∫
V

log ν(δω)ωn−1,

and hence

δM = δ

(
−ID(ψ) + aIV (ψ) +

∫
V

log ν
ωn

n!

)
,

which completes the proof.
Proposition (3.2.4) is related to a formula of Chen [4]. Indeed one

gets a similar formula given any current representing c1(V ): in Chen’s
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case this is the Ricci form of some fixed metric while in our case it is
the divisor D.

We now specialise to the case when V is a toric variety, as before.
Up to scale, there is a unique T -invariant meromorphic n-form χ on V
given in our co-ordinates zi by χ = dz1dz2 . . . dzn. This has a simple
pole along the divisor D = m−1(∂P ) and the constant a is

a =
Vol(D)
Vol(V )

.(3.2.5)

We define a measure dσ on ∂P as follows. On the face defined by the
equation hr(x) = cr we let dσ be the constant (n − 1)-form such that
dhr ∧ dσ is, up to sign, the standard Euclidean volume form dµ. For
example, if P is a polyhedron in R2 and an edge of P has slope p/q,
where p, q are coprime integers, then the measure on this edge is given
by

dσ =
|dx2|
p

=
|dx1|
q

.

Now let ω0 be some invariant metric on V and let φ0 be a Kahler
potential defining ω0 in our standard co-ordinates on the open T c-orbit,
as in 3.1. Any other invariant metric ω0 + i∂∂ψ is given by a Kahler po-
tential φ = φ0 +ψ on the open orbit, which corresponds to a symplectic
potential u on P .

Lemma 3.2.6.

IV (ψ) = −(2π)n

∫
P
udµ;(1)

ID(ψ) = −(2π)n

∫
∂P
u dσ.(2)

Notice here that IV and ID are a priori defined only up to an overall
constant, and this is the way in which the formulae should be read.
However the expressions on the right-hand side of the formulae have no
such ambiguity; thus in this toric situation there is a natural way to
normalise the functionals.

To prove the Lemma we recall first that the push forward of the
volume form under the moment map m is (2π)n times the standard
volume form dµ on Rn. Now recall that the symplectic potential u is
defined by

u(x) =
∑

xiξi − φ(ξ),(3.2.7)
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where ξ = ξ(x) is implicity defined by the equation ∂φ
∂ξi

= xi. Consider

an infinitesimal variation φ̃ in the Kahler potential, leading to variations
ξ̃ and ũ in ξ and u. Differentiating (3.2.7), we have

ũ(x) =
∑

xiξ̃i − φ̃(ξi) −
∑ ∂φ

∂ξi
ξ̃k,

and the defining equation for ξ gives simply ũ(x) = −φ̃(ξ). Thus the
variation in the functional IV , which is by definition,

δIV =
∫

V
φ̃
ωn

n!
,

can be written as
δIV = −(2π)n

∫
P
ũdµ,

by the property of the push-forward measure. This is the same as the
variation in

−(2π)n

∫
P
udµ,

thus proving item (1) of the Lemma. Item (2) follows in just the same
way, when one replaces P by its codimension 1-faces.

Proposition 3.2.8. The Mabuchi functional is given by M(ω) =
(2π)nFa(u) where

Fa(u) = −
∫

P
log det(uij) +

∫
∂P
udσ − a

∫
P
udµ.

Given the preceding Lemma, this is just a matter of transforming
the term ∫

V
log ν

ωn

n!

in (3.2.4) into the symplectic setting. Differentiating the equations
defining ξ(x) and u we find that the Hessian uij of u is the inverse

of the Hessian ∂2φ
∂ξi∂ξj

of φ (at the points x and ξ(x) respectively). Thus
the function log ν is log ν = log det(φij) = − log det(uij), and∫

V
log ν

ωn

n!
= −(2π)n

∫
P

log det(uij)dµ

by the property of the push-forward measure.
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Notice that the constant a, given by (3.2.5), can also be written as

a =
Vol(∂P, dσ)
Vol(P, dµ)

.

Thus a is fixed so that Fa(u) is unchanged if one adds a constant to u.
In a similar vein, recall from Section 2 that the Futaki invariant gives,
in our situation, a linear map from the Lie algebra of the holomorphic
automorphism group T c to C. This Lie algebra can be represented by
the R-linear complex valued functions on P ⊂ Rn.

Lemma 3.2.9. The Futaki invariant maps a linear function f to∫
∂P
fdσ − a

∫
P
fdµ.

This follows immediately from (3.2.8) and the relation (3.2.2) be-
tween the Mabuchi functional and the Futaki invariant. Thus the toric
variety has Futaki invariant zero precisely when the centre of mass of
P in Rn, with the measure adµ coincides with that of ∂P , with the
measure dσ, and in this case the functional Fa(u) is unchanged if one
adds any affine-linear function to u.

3.3 General properties of the functional

In this section we will consider a more general functional FA defined on
suitable convex functions u on P , with

FA(u) = −
∫

P
log det(uij) + LA(u),(3.3.1)

where A is a bounded function on P and

LA(u) =
∫

∂P
udσ −

∫
P
Audµ.(3.3.2)

From the point of view of toric varieties it is natural to consider the
functions u in the space S, which correspond to smooth Kahler metrics.
But it also useful and interesting to extend the domain to include more
general convex functions. Let C∞ denote the set of continuous convex
functions on P which are smooth in the interior. Clearly LA is well-
defined on C∞, but the situation for the nonlinear term is not so clear.
For any function u in C∞ let log+ det(uij) be max(0, log det(uij)), so in
particular log+ det(uij) is defined to be zero if det(uij) vanishes.
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Lemma 3.3.3. For any u in C∞, log+ detuij is integrable on P .

Given this, we can define FA(u) for any u ∈ C∞, taking values in
(−∞,∞].

Proposition 3.3.4. Suppose A ∈ L∞(P ) and v ∈ S satisfies the
equation ∑ ∂2vij

∂xi∂xj
= −A

in P . Then v is an absolute minimiser for FA on C∞ i.e., for any
u ∈ C∞, FA(u) ≥ FA(v) .

The proofs of (3.3.3) and (3.3.4) hinge on the following Lemma.
Note first that for any u ∈ S the function (u,ij),ij is bounded on P :
this is clear from its identification with the scalar curvature on the toric
variety, or by direct calculation.

Lemma 3.3.5. Suppose that u ∈ S and f ∈ C∞. Then u,ijf,ij is
integrable on P and∫

P
u,ijf,ijdµ =

∫
P
(u,ij),ijfdµ−

∫
∂P
fdσ.

For δ > 0 let Pδ be the interior polytope with faces parallel to those
of P and separated by a distance δ. The function f is smooth over the
closure of Pδ so we can integrate by parts∫

Pδ

(
u,ijf,ij − (u,ij),ijf

)
dµ =

∫
∂Pδ

u,ij
,i f + u,ijf,i.(3.3.6)

Here the integrand on the right-hand side is written as a vector field,
which defines an (n− 1)-form by contraction with the volume form dµ.
We want to show that ∫

∂Pδ

u,ij
,i f →

∫
∂P
fdσ,(3.3.7)

and ∫
∂Pδ

uijfi → 0,(3.3.8)

as δ → 0. Consider the second term. Let x be a point of ∂Pδ, in
the interior of an (n− 1)-dimensional face, and v = v(x) be the vector
vi = u,ijνj where ν is the unit normal to the face containing x. Thus
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the integrand in (3.3.8) can be written as ∇vf ; the derivative of f at
x in the direction v. We let y = y(x) be the closest point to x on the
intersection of the ray {x+ tv : t > 0} and the boundary ∂P . We claim
that there are constants c1, c2 such that for all small δ and all x,

|v| ≤ c1|y − x| ; |y − x| ≤ c2δ.(3.3.9)

We assume this for the moment. The convexity of f implies that

|∇vf | ≤ c1|f(y) − f(x)|,

using the first inequality of (3.3.9). So∣∣∣∣
∫

∂Pδ

u,ijf,i

∣∣∣∣ ≤ c1

∫
∂Pδ

|f(y(x)) − f(x)|

≤ c1Vol(∂Pδ) maxx∈∂Pδ
|f(y(x)) − f(x)|.

Then the second inequality of (3.3.9), and the fact that f is uniformly
continous in P implies the desired result (3.3.8). To prove (3.3.9)
we consider first the model case when u =

∑
xi log xi on the region

x1, . . . xn > 0 and x is a point (δ, x2, . . . , xn). Then uij is the diagonal
matrix diag(δ, x2, . . . , xn) and the normal is ν = (1, 0, . . . , 0). Thus the
vector v is (δ, 0, . . . , 0) so y = (0, x2, . . . , xn) and

|v| = |y − x| = δ.

The proof in the general case is straightforward, checking that changing
u by adding a smooth function makes a small change to this model case.

We now turn to (3.3.7). Here we want to show that the (n − 1)-
form uij

i converges to the measure dσ (defined in the obvious way) on
∂Pδ. Exact equality holds for the model case and it is straightforward
to deduce the assertion from this.

Corollary 3.3.10. The same assertion as in Lemma (3.3.5) holds
when f is the difference of two functions in C∞.

This is obvious by linearity.
The other ingredient in the proofs of (3.3.3) and (3.3.4) is the convex-

ity of the function − log detJ on the space of positive definite matrices.
Thus if j(t) = − log det((1 − t)J0 + tJ1) we have

j′(0) = −Tr(J−1
0 (J1 − J0)), j′′(0) = Tr(J−1

0 (J1 − J0))2.
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We now give the proof of (3.3.3). First, by considering the function
u+ |x|2 we may reduce to the case where det(uij) ≥ 1 so log+ det(uij) =
log det(uij). We choose any function v ∈ S and write f = u− v. Then
we apply (3.3.10) to f , so that vijfij is integrable on P . However the
convexity of − log det implies that

log det(uij) = log det(vij + fij) ≤ log det(vij) + vijfij .

So log det(uij) is integrable.
To prove (3.3.4), the convexity of − log det immediately implies that

the functional FA is convex on C∞. Let u = v + f as above and let
g(t) = FA(v+ tf). Thus g is a convex function on [0, 1]. We claim that
g is differentiable at t = 0. For

∂

∂t
log det(vij + tfij) = vijfij

which is integrable over P , thus the result follows from the standard
test for differentiation under the integral and

g′(0) = −
∫

P
((vij)ij +A)fdµ,

which vanishes by the hypothesis of (3.3.4). Now the convexity of g
implies that g(1) ≥ g(0), as required.

Proposition 3.3.11. For any A ∈ L∞ the infimum of FA on S is
equal to the infimum of FA on C∞.

Since S ⊂ C∞ we need to show that for any v ∈ C∞ and ε > 0 there
is a u ∈ S with FA(u) ≤ FA(v) + ε. First we define vη, for η < 1,
by vη(x) = v(ηx). Thus vη is smooth on P and it is easy to see that
FA(vη) → FA(v) as η → 1. Thus it suffices to consider the case when
v itself is smooth on P . We can choose a family of smooth functions
lδ on [0,∞), for δ > 0, with lδ(x) = x log x if x ≤ δ, l′′δ ≥ 0 and
0 ≥ |lδ(x)| ≥ 2δ log δ for all x. Then we can define a function Uδ on P
by

Uδ =
r∑

k=1

lδ(hk(x) − ck).

Thus Uδ ∈ S but ‖Uδ‖L∞ ≤ 2rδ log(δ−1). So

FA(v + Uδ) −FA(v) = O(rδ log(δ−1)) → 0

as δ → 0.
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4. K-stability for toric varieties

4.1 Basic theory

In this section we take up the algebro-geometric point of view. Our
goal is to give a criterion for a toric variety to be K-stable. We begin by
recalling the basic facts about the algebraic geometry of toric varieties.

Let P be any integral polytope in Rn. For positive integers k let

Bk,P = kP ∩ Zn

and let Uk,P be a complex vector space with a basis labelled by the
elements of Bk,P . This space carries an obvious representation of the
n-torus T c, since the integer points label the one-dimensional represen-
tations. The basic fact we need is:

Proposition 4.1.1. There is a projective toric variety VP associ-
ated to P with a positive, T c-equivariant line bundle L→ VP such that

H0(VP ;Lk) = Uk,P

as representations of T c.

To define VP one can just take the closure of a generic T c-orbit in
the projectivization of U∗

1,P . Note that VP will only be a smooth variety
if P satisfies the “Delzant” condition, but this will not be important for
us.

By Proposition (4.1.1), the dimension of the space H0(VP , L
k) is

given by counting the number of lattice points, N(kP ) say, in kP . We
need a simple result describing the asymptotics of N(kP ) as k tends to
infinity. The most basic fact is that

N(kP ) = knVol(P ) +O(kn−1),(4.1.2)

the refinement we need is:

Proposition 4.1.3. The number N(kP ) of lattice points in kP
satisfies

N(kP ) = knVol(P ) +
kn−1

2
Vol(∂P ) +O(kn−2)

as k → ∞. Here the volume of ∂P is computed using the measure dσ.

Proposition (4.1.3) is almost a standard fact—compare the much
more general results of [13], for example. We give a proof, for complete-
ness, in the Appendix.



314 s.k. donaldson

4.2 Constructing degenerations

Continuing with notation as above, suppose that f is a convex, rational,
piecewise-linear, function on Rn. That is

f = max(λ1, . . . λp),

where λr are affine-linear functions with rational co-efficients. Fix an
integer R such that f ≤ R on P . Given this data, we define a polytope
Q ⊂ Rn+1 = Rn × R to be

Q = {(x, t) : x ∈ P, 0 < t < R− f(x)}.

The polytope kQ is defined by integral equations provided k is a multiple
of a suitable denominator d. Thus, taking k = d, we get an (n + 1)-
dimensional toric variety W with a line bundle L → W . The face
Q∩ (Rn ×{0}) = P ×{0} is a copy of P so we get a natural embedding
of i : V → W such that the restriction of L to V is isomorphic to Ld.
We write the torus Tn+1 acting on W as Tn ×C∗, where the Tn action
restricts in the obvious way to i(V ). The result we need can be summed
up as follows.

Proposition 4.2.1. There is a C∗-equivariant map p : W → CP1

with p−1(∞) = i(V ) such that the restriction of p to W \ i(V ) is a test
configuration for (V,L) with Futaki invariant

F1 = − 1
2Vol(P )

(∫
∂P
fdσ − a

∫
P
fdµ

)
,

where a = Vol(∂P )
Vol(P ) .

First, there is no loss in supposing that the functions λr defining f
have integral co-efficients, so d = 1. We consider the sections H0(L)
over W . This space has a basis sI,i where I is a lattice point in P ∩Zn

and 0 ≤ i ≤ R − f(i), and the C∗ action acts with weight i on sI,i.
It follows that the ratios sI,i/sI,i+1 give C∗-equivariant maps from the
region where they are defined (outside the common zeros of sI,i, sI,i+1)
to CP1. By rescaling the basis elements we can suppose that these
maps all agree on the intersections of their domains of definition. For
each point in W there is some section sI,i which does not vanish, so we
get a well-defined equivariant map p : W → CP1. Now the set i(V ) is
fixed by the C∗ action, and the action is trivial on the restriction of L
to i(V ). Thus all the sections sI,i for i > 0 must vanish on i(V ) and so
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p maps i(V ) to ∞ ∈ CP1. We claim that there are no other points in
p−1(∞). First, if w is a point with a nontrivial stabiliser then by the
same argument as above there is a section sI,i which does not vanish
at w with (I, i) in the boundary of Q but i �= 0. This implies that
p(w) �= ∞. Second if w is a point in the free Tn+1-orbit in W then the
closure of the C∗-orbit of p(w) must be the whole of the image of p, and
so p(w) cannot be the fixed point ∞. Now C∗ acts with same weight
−1 on the normal bundle to i(V ) and the tangent bundle to CP1 at ∞.
It follows that the derivative of p cannot vanish on i(V ), so the nearby
fibres p−1(t) for large t are diffeomorphic to V . However these fibres
are toric varieties and so by the rigidity of toric varieties we see that
p−1(t) is in fact isomorphic to V for large t, and hence for all nonzero t
because of the group action.

The only remaining task is to compute the Futaki invariant of this
test configuration. The divisors V0 = p−1(0) and i(V ) are each defined
by the vanishing of sections σ0, σ1 of the line bundle p∗(O(1)) over W .
Hence, at least when k is large enough, we have exact sequences:

0 → H0(W,Lk(−1)) → H0(W,Lk) → H0(V0,Lk) → 0

0 → H0(W,Lk(−1)) → H0(W,Lk) → H0(i(V ),Lk) → 0

where the inclusion maps are multiplication by σ0, σ1. From this we
see first that the dimension dk of H0(V0,Lk) is the same as that of
H0(V,Lk). The C∗-action acts with weight 0 on σ0 and weight 1 on σ1

so it follows that the weight wk of the action on ΛdkH0(V0,Lk) is given
by the weight of the action on ΛdkH0(i(V ),Lk) plus the dimension of
H0(W,Lk(−1)). But the action on H0(i(V ),Lk) is trivial, so we have

dk = dim H0(W,Lk(−1)) = dim H0(W,Lk) − dim H0(i(V ),Lk).
(4.2.2)

Thus
dk = N(kP ), wk = N(kQ) −N(kP ).

For the first term we immediately have from (4.1.3):

dk = knVol(P ) +
kn−1

2
Vol(∂P ) +O(kn−2).

For the second term, we divide the boundary of Q into three parts:

(1) points (x, 0) for x ∈ P ;
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(2) points (x,R− f(x)) for x ∈ P ;

(3) points (x, t) with x ∈ ∂P and 0 < t < R− f(x).

Clearly the number of lattice points in each of the first two parts is just
N(kP ). The number νk of lattice points in the third class is estimated,
applying (4.1.2) to each face, by the volume so

νk = kn

∫
∂P
R− fdσ +O(kn−1).

Then, applying (4.1.3) to Q, we have

wk = kn+1

∫
P
(R− f)dµ+

kn

2

∫
∂P

(R− f)dσ.(4.2.3)

The formulae (4.2.2) and (4.2.3) imply that

wk

kdk
=
A

C
+

1
2kC2

(BC −AD) +O(k−2),

where

A =
∫

P
R− fdµ;

B =
∫

∂P
R− fdσ;

C = Vol(P );
D = Vol(∂P ).

By definition, the Futaki invariant is the co-efficient (BC − AD)/2C2

of the k−1 term, which is

− 1
2Vol(P )

(∫
∂P
fdσ − Vol(∂P )

Vol(P )

∫
P
fdµ

)
,

as asserted in the Proposition.
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5. The main argument

5.1 Reduction to the linear functional

We will now relate the nonlinear functional FA to its linear part LA.
Here we can take any bounded function A on P which satisfies the
moment condition, for each affine-linear function f ,∫

P
fAdµ =

∫
∂P
fdσ.(5.1.1)

When this condition holds the functionals LA(u),FA(u) are not changed
if one adds an affine-linear function to u, and it is convenient to work
with functions which are normalised in the following way. We fix a point
p ∈ P and say u is normalised if u ≥ 0 and u(p) = 0. The main result
is:

Proposition 5.1.2. Suppose there is a constant λ > 0 such that
for all normalised functions u ∈ C∞ we have

LA(u) ≥ λ

∫
∂P
u dσ.

Then FA is bounded below on C∞.

The proof of this is surprisingly easy. First, observe the following:

Lemma 5.1.3. There is a constant C such that∫
P
u dµ ≤ C

∫
∂P
u dσ

for all normalised functions u.

This is clear when one works in polar co-ordinates centred at the
point p. Now fix some arbitrary smooth invariant metric on V , thus
some function v in S. We define a function B on P by

B = −
∑ ∂2vij

∂xi∂xj
.

We know that B represents the scalar curvature on V , hence is certainly
bounded (a fact we could readily verify directly). According to Propo-
sition (3.3.4), the function v gives an absolute minimum for FB on C∞,
so for all functions u ∈ C∞

−
∫

P
log det(uij)dµ+ LB(u) ≥ C,
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where C = FB(v). Now replace u in this inequality by ru, for a constant
r > 0. The inequality becomes

−
∫

P
log det(uij)dµ+ rLB(u) ≥ Cr,(5.1.4)

where Cr = C + log rVol(P ). The hypothesis of the Proposition gives

LA(u) ≥ λ

∫
∂P
u dσ,(5.1.5)

for all normalised u, and Lemma (5.1.3) implies that

|LA(u) − LB(u)| ≤ C‖A−B‖L∞

∫
∂P
udσ.(5.1.6)

Combining (5.1.5) and (5.1.6) we have

|LA(u) − LB(u)| ≤ C ′LA(u),(5.1.7)

where C ′ = λ−1C‖A−B‖L∞ . Thus

LB(u) ≤ (C ′ + 1)LA(u)

and (5.1.4) gives

−
∫

P
log det(uij)dµ+ r(C ′ + 1)LA(u) ≥ Cr.

Finally, choose r = r0 = (C ′ + 1)−1, to get FA(u) ≥ Cr0 .

The point here is that C∞ is preserved by multiplication by positive
scalars. The same is not true for S and this is the only reason for
introducing the larger domain for FA in Section (3.3). We use the same
idea to prove

Proposition 5.1.8. Under the same hypothesis as (5.1.2), there is
constant K such that if u(α) is any sequence of normalised functions in
C∞ which is a minimising sequence for FA on C∞ then∫

∂P
u(α) ≤ K,

for large enough α.
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To prove this we consider the scaling of any function v in C∞;

FA(rv) = −
∫

P
log det(vij)dµ− log rVol(P ) + rLA(v).

Fixing v, this is a function of r which is minimised when r = r1 =
LA(u)/Vol(P ), and LA(r1u) = Vol(P ). Given any minimising sequence
of normalised functions u(α) we can write u(α) = rαv

(α) where

LA(v(α)) = Vol(P ).

Then
FA(u(α)) = FA(v(α)) + Vol(P )(rα − log rα − 1).

It follows that rα − log rα − 1 → 0 as α→ ∞, and thence that rα → 1.
This means that LA(u(α)) → Vol(P ) and then our result follows from
(5.1.3).

5.2 Compactness

Here we study the linear functional LA, for an arbitrary bounded func-
tion A on P . Our goal is to obtain a criterion under which the bound
in (5.1.2) of the previous subsection will hold. Let P ∗ be the union of
P and its codimension-one faces.

Definition 5.2.1. The set C1 is the set of positive convex functions
f on P ∗ such that ∫

∂P
f dσ <∞.

Note that the integral of any function in C1 over the boundary makes
sense, even though f is not defined on the whole boundary, because the
measure dσ is supported on the codimension-one faces. The same proof
as for Lemma (5.1.3) shows that any f ∈ C1 is integrable on P , so LA(f)
is defined. Our main result is:

Proposition 5.2.2. Either there is a λ > 0 such that

LA(f) ≥ λ

∫
∂P
fdσ

for all normalised functions f in C∞ or there is a function f in C1 which
is not affine linear and such that LA(f) ≤ 0.
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The general scheme of proof is a compactness argument using gradi-
ent bounds derived from the following Lemma. For any convex function
f on the polytope P and any point x in P we letDx(f) be the supremum
of the slope of supporting hyperplanes to f at x; i.e.,

Dx(f) = sup{|λ| : f(y) ≥ λ(y − x) + f(x) for all y ∈ P}.
Lemma 5.2.3. There is a universal constant κ such that for any

positive convex function f on P with∫
P
fdµ <∞

and for any point x ∈ P we have

Dxf ≤ κd−(n+1)
x

∫
P
fdµ,

where dx is the distance from x to the boundary of P .

To prove this, we may suppose that x is the origin and that f(y) ≥
Dy1 + f(0), where y1 denotes the first component of y ∈ P ⊂ Rn.
Let B+(d0) denote the intersection of the ball of radius d0 with the
half-space {y1 ≥ 0} so B+(d0) ⊂ P and f ≥ Dy1 on B+(d0). Thus∫

P
fdµ ≥ D

∫
B+(d0)

y1dµ = Dκ−1dn+1
0 ,

for a constant κ = (n+ 1)/2Vol(Bn−1).

Lemma 5.2.4. For any convex function f on P and any two points
x, y in P :

|f(x) − f(y)| ≤ max(Dx(f), Dy(f)) |x− y|.
This is clear in the one-dimensional case and the general case reduces

to this by considering restriction to the line segment between x and y.
Now for small d > 0 let Pd denote the set of points in P such that

dx ≥ d. Clearly

min
Pd

f ≤ 1
Vol(Pd)

∫
P
fdµ,

and Lemmas (5.2.3) and (5.2.4) imply that

max
Pd

f ≤ min
Pd

f +Rκd−(n+1)

∫
P
fdµ,
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where R is the diameter of P . Thus a bound on the integral of f over P
gives a Lipschitz bound on f in any interior region, and Ascoli-Arzela
implies:

Corollary 5.2.5. Any sequence of positive convex functions fn on
P with ∫

P
fndµ ≤ C

has a subsequence which converges uniformly over compact subsets of
P .

Proposition 5.2.6. Suppose that fn is a sequence of normalised
functions in C∞ with ∫

∂P
fn ≤ C.

Then there is a subsequence which converges, uniformly over compact
subsets of P , to a convex function which has a continuous extension to
a function f∗ on P ∗, defining an element of C1 with∫

∂P
f∗dσ ≤ lim inf

∫
∂P
fndσ.

In the proof we will assume our base point p ∈ P is the origin.
First, Lemma (5.1.3) yields a bound on the integrals of the fn over P ,

so we are in the situation of Corollary (5.2.5) and we can suppose that
the fn converge uniformly on compact subsets of P to a limit f . Next,
we can apply Corollary (5.2.5), replacing P by one of its codimension
1 faces, so we may suppose that the fn converge pointwise over all of
P ∗. We must beware however because we may not be able to take
f∗ = lim fn. Instead, we proceed as follows. It is a simple fact that any
convex function on an open interval has a well-defined limit, possibly
infinite, at each end point. We apply this to the restriction of f to the
rays through the origin, so for any point z in a codimension-1 face of
the boundary of P we define f∗(z) ∈ [0,∞] to be the limit of f(tz) as
t tends to 1 from below. For each η < 1 consider the set η∂P ⊂ P ,
with the obvious measure induced by dσ. It is clear that the integral
of fn over η∂P is at most C so Lemmas (5.2.3), (5.2.4) give a Lipschitz
bound on the restriction of f to ηK for any compact subset K of a
codimension face of P . It follows then that f∗(z) is the limit of f(xn)
for any sequence xn in P converging to z.

We claim now that, for z in a codimension-one face,

f∗(z) ≤ lim fn(z).(5.2.7)
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(This statement includes the assertion that f∗(z) is finite.) Indeed, since
the fn are convex and normalised,

fn(tz) ≤ tfn(z),

so taking limits as n→ ∞

f(tz) ≤ t lim fn(z),

and now (5.2.7) follows by taking limits as t→ 1. Thus f∗ is a continu-
ous function on P ∗, convex on P , and hence convex on P ∗ by continuity.
We also have ∫

∂P
f∗dσ ≤

∫
∂P

lim fndσ ≤ lim inf
∫

∂P
fndσ,

using (5.2.7) for the first inequality and Fatou’s Lemma for the second.
This completes the proof.

We can now prove our main result (5.2.2). Suppose the first al-
ternative does not hold, so there is a sequence of normalised functions
fn ∈ C∞ with ∫

∂P
fndσ = 1

and LA(fn) → 0 as n→ ∞; that is∫
P
Afndµ→ 1.

We apply Proposition (5.2.6), so we can suppose that there is a function
f∗ in C1 such that fn converges to f∗, uniformly on compact subsets of
P . For η < 1, we consider the “collar” region P \ ηP . It is clear that
there is a constant c such that for any normalised convex function g∫

P\ηP
gdµ ≤ c(1 − η)

∫
∂P
gdσ.

Thus ∫
P\ηP

Afndµ ≤ c‖A‖L∞(1 − η).

It follows from this, and the uniform convergence over compact subsets,
that ∫

P
Af∗dµ = lim

∫
P
Afndµ = 1.
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On the other hand we know that∫
∂P
fdσ ≤ lim

∫
∂P
fndσ = 1,

so we have LA(f∗) ≤ 0, as desired.
Recall that a piecewise linear convex function on Rn is a function

of the form
max (g1, . . . , gN )

where the gj are affine-linear functions.

Proposition 5.2.8. For any f ∈ C1 there is a sequence of piecewise
linear convex functions fn such that∫

∂P
|fn − f |dσ → 0;

∫
P
|fn − f |dµ→ 0,

as n→ ∞.

We will construct fn such that 0 ≤ fn ≤ f everywhere, so the
conditions we need are∫

∂P
f − fn → 0,

∫
P
f − fn → 0.

First note that it suffices to satisfy these conditions separately, since if
the sequence f∂P

n satisfies the first condition, with f∂P
n ≤ f , and the

sequence fP
n satisfies the second condition, with fP

n ≤ f ; the sequence of
functions fn = max(fP

n , f
∂P
n ), are still PL convex functions and satisfies

both conditions. Now consider a decomposition
P = ∪iΣi where the Σi are the intersections of P with a standard

mesh of closed cubes in Rn with side length δ. Let σi ∈ Σi be a point
where f is minimal. Let f

δ
be the function on P with f

δ
(x) = f(σi) for

x in the interior Σi, defined arbitrarily on the boundaries. The integral
of this function corresponds to the usual “lower sum” in the theory of
the Riemann integral, and it is clear using (5.2.3) and the continuity of
f in P that ∫

P
f − f

δ
dµ→ 0

as δ → 0.
The convex sets in Rn+1 = Rn × R

Σi × (−∞, f(σ)), {(x, t) ∈ P × R : t ≥ f(x)},
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have disjoint interiors. It follows from a standard separation theorem
that there is a hyperplane in Rn+1 such that the two sets lie in different
closed half-spaces. In other words, this means that there is an affine-
linear function gi such that

f(x) ≥ gi(x)

for all x ∈ P , and
gi(x) ≥ f(σi)

for all x ∈ Σi. Thus if we define g to be max gi we have f ≥ g ≥ f
δ

and
so ∫

f − g ≤
∫
f − f

δ

and
∫
f − g → 0 with δ.

To handle the boundary integral we first consider the restriction of
f to η∂P for η < 1. We may consider this as a function fη on ∂P in
an obvious way and the dominated convergence theorem implies that
fη tends to f |∂P in L1(∂P ) as η → 1. Let g be any PL function with
0 ≤ g ≤ f on P . The fact that f(0) = 0 implies that g(x) ≥ g(ηx) for
all x ∈ ∂P . Thus∫

∂P
f − gdσ ≤

∫
∂P
f − fηdσ +

∫
η∂P

f − gdσ.

Since the first term can be made arbitrarily small by taking η close to
1, it suffices to show that we can find a PL function g of this kind with∫

η∂P
f − g dσ

as small as we please. To see this we follow the same argument as before.
We subdivide η∂P into small convex pieces and use the separation the-
orem to find a PL function g ≤ f everywhere on P but with g bounded
below by the Riemann lower sum function on η∂P . Note there is no
loss in supposing g ≥ 0, as above, because we can always replace g by
max(g, 0).

5.3 Extremal functions

In this subsection we analyse the extremals of the linear functional in
the semi-positive case. We suppose the dimension n is 2 throughout
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the subsection (although some of the arguments go over to higher di-
mensions). We define a simple piecewise linear function on R2 to be a
function of the form

f(x) = max(λ(x) + c, 0),

where λ : R2 → R is a linear function with |λ| = 1. We call the
line λ(x) = −c on which f is not smooth the crease of f . Let A be a
continuous, strictly positive function on P ⊂ R2 satisfying the moment
conditions (5.1.1). The goal of this subsection is to prove:

Proposition 5.3.1. Suppose LA(u) ≥ 0 for all u ∈ C1 but there is
a function u ∈ C1, which is not affine linear, with LA(u) = 0. Then
there is a simple piecewise linear function f whose crease meets P and
with LA(f) = 0.

The proof will require a number of elementary lemmas. First note
that, while u is only defined a priori on P ∗—the complement of the
vertices in P—it is easy to see that it extends to a continous map from
P to (−∞,∞], i.e., u(x) has a well-defined limit, finite or infinite, as
x approaches a vertex. Now suppose that u ≥ 0 on P and that u = 0
somewhere in P . Let K = u−1(0) ⊂ P . The convexity of u implies that
K is a closed convex set.

Lemma 5.3.2. K is the convex hull of K ∩ ∂P .

To prove the Lemma we need to show that any point x0 of K lies
inside the convex hull of K ∩ ∂P . Suppose not, then there is a line
separating x0 from K ∩ ∂P . It follows that there is an affine-linear
function g with g(x0) > 0 and g(y) ≤ −c < 0 for all y ∈ K ∩ ∂P . For
small ε > 0 consider the convex function

uε(x) = max(u(x), εg(x)).

A straightforward compactness argument shows that when ε is suffi-
ciently small, u(y) ≥ εg(y) for all y ∈ ∂P . Thus uε = u on ∂P while
uε(x) > u(x). It follows that LA(uε) < LA(u) (because the bound-
ary contributions is not changed but the interior contribution is strictly
smaller, since A > 0). This gives a contradiction.

Of course, adding an affine-linear function to u, we deduce an ana-
logue of (5.3.2) for any supporting hyperplane of u. One approach to
proving (5.3.1) would be to show that this implies that u can be written
as an integral

u =
∫

T
ftdτ,
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where T is some parameter space, dτ is a positive measure on T , and
for each t the function ft is a simple PL function. The hypothesis
of (5.3.1) would then imply that LA(ft) = 0 for each t which would
imply the desired result. However this line of argument seems to involve
some relatively sophisticated analysis, so instead we will follow a more
elementary line in the proof below.

Lemma 5.3.3. Let f be a continous function on an interval [a, b]
in R and suppose a ≤ c ≤ c′ ≤ b.

(1) Suppose that f ≥ 0 on [a, b], that f is convex on the sub-intervals
[a, c] and [c′, b] and that f = 0 on the interval [c, c′]. Then f is
convex on [a, b].

(2) Suppose that f = µ1 on the segment [a, c] and f = µ2 on the
segment [c′, b], where µ1, µ2 are affine-linear functions. Suppose
that f is convex on [c, c′] and that f ≥ µ1, µ2 throughout [a, b].
Then f is convex on [a, b].

The proof is left to the reader.

Lemma 5.3.4. Either the conclusion of Proposition (5.3.1) is true
or for each point x0 in P the supporting hyperplane to u at x0 is unique;
that is, there is exactly one affine-linear function g with g(x0) = u(x0)
and g ≤ u on P .

Suppose that there are two distinct supporting hyperplanes at x0.
By adding an affine-linear function to u, we may suppose that one of
them is the zero hyperplane, i.e., that u(x0) = 0 and u ≥ 0 on P . Thus
there is a simple piecewise linear convex function f with crease a line
L through x0 such that u ≥ εf for some fixed ε > 0. The crease L
meets ∂P in two points p, q say. The set K = u−1(0) is contained in the
half-space where f ≥ 0 bounded by L, and so Lemma (5.3.2) implies
that p and q are both in K (because x0 is in K). Hence K contains the
line segment L ∩ P . Define a function v on P by v = u− εf . We claim
that v is convex. For v is certainly convex on the intersection of P with
each of the two half-spaces defined by the crease (since it differs from u
by an affine linear function on each piece); v ≥ 0 and v vanishes on the
intersection L ∩ P of the two pieces. Then the convexity of v follows
from (1) of Lemma (5.3.3) (with c = c′), applied to any segment in P .

Now we write u = εf + v. The hypothesis of Proposition (5.3.1)
implies that LA(v),LA(f) ≥ 0 so we must have LA(v) = LA(f) = 0 and
the Lemma is proved.
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Let us now suppose–arguing for a contradiction–that the conclusion
of Proposition (5.3.1) does not hold. The conclusion of Lemmas (5.3.2)
and (5.3.3) can be expressed as follows. We define an equivalence re-
lation on points of P by saying x is related to x′ if u has the same
supporting hyperplane at x and x′. Then each equivalence class is of
the form K ∩ P where K ⊂ P is the convex hull of K ∩ ∂P . It follows
then that each equivalence class in P is either a line segment or inter-
section of a closed polygon with P . Let K1 ∩ P,K2 ∩ P be two distinct
equivalence classes. Thus there are distinct affine-linear functions g1, g2
such that u = gi on Ki. There are open half-spaces H1, H2 in R2 with
the following properties:

(1) H1 ∩ P ,H2 ∩ P are disjoint convex subsets of P .

(2) Ki is contained in the closure of Hi.

(3) The topological boundary of Hi ∩ P in P is contained in Ki.

We define a function u on P by

u(x) = g1(x) if x ∈ H1 ∩ P ;

= g2(x) if x ∈ H2 ∩ P ;
= u(x) otherwise.

The conditions on the half-planes, stated above, show that u is con-
tinuous on P . We let v = u− u.

Lemma 5.3.5. The functions u and v are convex.

As for Lemma (5.3.4), this follows from Lemma (5.3.3), by restricting
to segments in P . (Item (1) of (5.3.3) applies to v and item (2) to u.)
Clearly the functions u and v both lie in C1 so, as before, the extremal
condition implies:

Corollary 5.3.6. LA(u) = LA(v) = 0.

Return now to to consider the decomposition of P into closed, convex
equivalence classes defined by the extremal function u. Choose any
equivalence class K ∩ P and a point p in K ∩ P which does not lie in
the interior of K. Thus p lies in a line segment in K with end points
a, b in ∂P . We consider a point q in P , close to p but not in K. Let Kq

be the equivalence class containing q. Clearly, if q is close enough to p
it must lie on a line segment in Kq with end points a′, b′ where a′ and a
lie on some common edge E of ∂P and b′ and b lie on another common
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edge F of ∂P . It may happen that a′ is equal to a or b′ is equal to b
(both cannot occur since p and q are in different equivalence classes).
Let I be the line segment in P with end points p, q.

Lemma 5.3.7. If the conclusion of Proposition (5.3.1) does not
hold, there is a constant c1 > 0 such that LA(f) ≥ c1 for all simple
convex piecewise linear functions whose crease meets I.

The proof is easy: LA is a continuous function on the compact set
of simple piecewise-linear functions whose crease meets I.

Suppose that K1,K2 are distinct equivalence classes as above, and
each meets the line segmentI. Let d be the minimal distance between
points of the setsK1∩I,K2∩I. Continuing with the notation as above, if
we define h = max(g1, g2) then u ≥ h and we can write h = g1+εf where
ε > 0 and f is a simple piecewise-linear function. Thus LA(h) = εLA(f),
since LA vanishes on the affine-linear functions, and

LA(h) ≥ c1ε(5.3.8)

by Lemma (5.3.7).

Lemma 5.3.9. There is a constant c2 > 0 such that for any K1,K2

as above, (u− h)(x) ≤ c2εd.

Assuming this Lemma we can complete the proof of (5.3.1). The
Lemma implies that, for any K1,K2

|LA(u− h)| ≤ c3εd,

where

c3 = c2

(∫
P
|A|dµ+ Vol(∂P, dσ)

)
.

Thus, assuming the conclusion of Proposition (5.3.1) is false,

LA(u) ≥ c1ε− c3dε

by (5.3.8). On the other hand, by (5.3.6), LA(u) = 0, so we must have
d ≥ dI = c1/c3. Now to finish the proof: we subdivide the segment
I into N equal pieces by a chain of points p0 = p, p1, . . . pN = q and
choose N so large that the distance between consecutive points pi, pi+1

is less than dI . It follows then that consecutive points must lie in the
same equivalence class, hence the supporting hyperplanes at p and q are
in fact equal, a contradiction.
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It only remains to give the proof of Lemma (5.3.9). We suppose that
neither K1 nor K2 is equal to K or Kq—the argument works equally
well in the case of equality, except for a change of notation. Likewise
we asssume that a, a′, b, b′ are all distinct—again the argument works
just as well if a = a′ with a change of notation. The complement
P \ (K ∪Kq) has a connected component which is a quadrilateral with
two opposite edges given by segments aa′ and bb′ in the edges E,F of
P , but otherwise disjoint from the the boundary of P . It follows easily
that K1 ∩ ∂P has exactly two connected components—one contained
in E and the other in F—and likewise for K2. The function u − h is
supported in Q = P \ (H1 ∪H2) and it follows in turn that Q is another
quadrilateral with two opposite edges given by segments αα′ ⊂ aa′,
ββ′ ⊂ bb′ say, and that (after possibly interchanging K1,K2) the other
edges αβ and α′β′ lie in K1,K2 respectively. This means that any point
of Q lies on a line segment J in Q with one endpoint in K1 and one
endpoint in K2 and with the length of J at most equal to D, where

D = max(d(α, α′), d(β, β′).

Elementary geometry shows that there is a constant C, depending only
on the line segments I, E, F such that

D ≤ Cd.

To finish the proof we again use a simple lemma about convex functions
of one real variable.

Lemma 5.3.10. Let f be a positive convex function on an interval
[0, L] with f(0) = 0. Let

h̃(x) = max(0, λ(x− L) + f(a)),

where λ > 0 is such that f(x) ≥ h̃(x) for all x ∈ [0, L]. Then for all x
in [0, L] we have

f(x) − h̃(x) ≤ λL

4
.

We leave the proof of this to the reader. Lemma (5.3.9), with c2 =
C/4, follows from (5.3.10) and the preceding discussion, by considering
restriction to the line segment J .

6. Rationality of extremal functions

In this section we consider an integer polytope P ⊂ R2 with the
canonical boundary measure, which satisfies the moment conditions
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(5.1.1). We say a simple PL function f is rational if it has the form

f(x) = ρmax(0, λ(x) + c)

where ρ is real, c is rational and λ is a linear function on R2 with
rational co-efficients. This is the same as saying that the crease of f is
a rational line. Here we prove:

Proposition 6.1. If there is a simple PL function g0, whose crease
meets P , such that La(g0) ≤ 0 then there is a rational simple PL func-
tion f , whose crease meets P , with La(f) ≤ 0.

To prove this we consider three cases—clearly the crease of g0 meets
∂P in precisely two points p, q and the cases are:

(1) one or both of p, q is a vertex of P ;

(2) neither p nor q is a vertex of P and the faces of P containing p
and q are parallel;

(3) neither p nor q is a vertex of P and the faces of P containing p, q
are not parallel.

We begin with the third case. We consider the function La on the
manifold of simple PL functions. Under the hypothesis (3) this is a
smooth function in a neighbourhood of g0. The rational simple PL
functions form a dense subset, so the desired result will obviously hold
if either La(g0) < 0 or La(g0) = 0 but the derivative of La does not
vanish at g0. So we need to show that if La and its derivative both
vanish at g0 then g0 is rational. Let P+ be the support of g0 in P and
P− be the complement in P : likewise let (∂P )+ be the support of g0 in
∂P and (∂P )− be its complement in ∂P .

Lemma 6.2. The function La and its derivative both vanish at g0
if and only if P+ and (∂P )+ have the same mass and centre of mass:
that is ∫

(∂P )+
αdσ = a

∫
P+

αdµ

for all affine-linear functions α on R2.

We leave the proof to the reader. Notice that the hypothesis (5.1.1)
implies that we get the same condition if we replace P+, (∂P )+ by
P−, (∂P )−.
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We will now write down this condition more explicitly. By making a
rational affine transformation of R2 we may suppose that the faces of P
containing p and q are segments of the co-ordinate axes in R2 and that
P lies in the positive quadrant {(x1, x2) : x1, x2 > 0}. Let p = (t1, 0)
and the face containing p be

I1 = {(τ1, 0) : a1 < τ1 < b1},
and let q = (0, t2) and the face containing q be

I2 = {(0, τ2) : a2 < τ2 < b2}.
The crease of g0 is the line with equation x1

t1
+ x2

t2
= 1. Let ∆ be the

triangular region defined by the inequalities

x1 > 0, x2 > 0,
x1

t1
+
x2

t2
< 1.

We may suppose, interchanging P+ and P− if necessary, that P+ is
contained in ∆. Thus P+ = Q ∪ R say, where R is the region defined
by the inequalities

x1 > 0, x2 > 0,
x1

t1
+
x2

t2
< 1,

x1

a1
+
x2

a2
> 1,

and Q = P+ \ R. The set Q is a union of rational triangles: likewise
∆ = S ∪ R where S = ∆ \ R is a rational triangle. The mass M(∆) of
∆, with the measure adµ, is 1

2at1t2. The moments

Mi(∆) =
∫

∆
xiadµ

are
Mi(∆) =

1
6
at1t2ti.

The mass M(P+) differs from M(∆) by M(Q) − M(S) and each of
M(Q),M(S) is rational, since a is rational and Q and S are made up
of rational triangles. Thus

M(P+) ∼= M(∆), Mi(P+) ∼= Mi(∆) mod Q.

We can argue in the same way for the boundary. Let the measure dσ
be λidτi on the face Ii, where λ1, λ2 are positive rational numbers. Let
J1, J2 be the segments

J1 = {(τ1, 0) : 0 < τ1 < t1}, J2 = {(0, τ2) : 0 < τ2 < t2}.
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The mass of J1 ∪ J2, with the measure λidτi on Ji, is

M(J1 ∪ J2) = λ1t1 + λ2t2

and the moments are

Mi(J1 ∪ J2) =
1
2
λit

2
i .

The same argument as before shows that the mass and moments of
(∂P )+ differ from those of J1 ∪ J2 by rational numbers. Thus the con-
dition that P+ and (∂P )+ have the same mass and moments gives

1
2
at1t2 − (λ1t1 + λ2t2) = r0(6.3)

1
6
at21t2 −

1
2
λ1t

2
1 = r1

1
6
at1t

2
2 −

1
2
λ2t

2
2 = r2,

where r0, r1, r2 are rational.

Lemma 6.4. Let a, λ1, λ2, r0, r1, r2 be rational numbers with a, λ1,
λ2 �= 0. If (t1, t2) is a solution of the equations (6.3) then either t1, t2
are both rational or λ1r1 = λ2r2 but λ1t1 �= λ2t2.

To prove the Lemma, we may first suppose that a = 2 (multiplying
the equations by an overall factor). Now put si = λiti and L = λ1λ2.
The equations become:

s1s2 = Ls1 + Ls2 + r′0(6.5)
1
3
s21s2 =

1
2
Ls21 + r′1

1
3
s22s1 =

1
2
Ls22 + r′2

for rational r′i. Now multiply the first equation by s1/3 and use the
second equation to get:

1
6
Ls21 =

1
3
Ls1s2 +

r′0
3
s1 − r′1.

Substitute for s1s2 using the first equation and divide by L/3 to obtain

1
2
s21 =

(
L+

r′0
L

)
s1 + Ls2 + k1,
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where k1 = r′0 − 3r′1
L is rational. Symmetrically

1
2
s22 = Ls1 +

(
L+

r′0
L

)
s2 + k2,

where k2 = r′0 − 3r′1
L . Thus if we let α = L+ r′0/L we have

1
2
s21 = αs1 + Ls2 + k1

1
2
s22 = Ls1 + αs2 + k2

s1s2 = Ls1 + Ls2 + r′0.

Now put u = s1 + s2 and v = s1 − s2. The equations above become

1
2
u2 = (2L+ α)u+ (K + L(α− L))

1
2
v2 = αu+ (K − L(α− L))

1
2
uv = (α− L)v + J

where K = k1 + k2, J = k1 − k2. The first equation is quadratic in u
and we have

u = (2L+ α) ±
√
D,

where
D = (2L+ α)2 + 2(K + L(α− L)).

We want to prove that
√
D is rational. Suppose the contrary; the second

and third equations above yield:

v2 = 2αu+ (D − 8αL− α2)(6.6)
uv = 2(α− L)v + 2J.

So

(6.7) v =
2J

u− 2(α− L)
.

Note that the denominator here cannot vanish, since u is not rational,
by hypothesis. Now

u− 2(α− L) = (4L− α) +
√
D
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so
(u− 2(α− L))−1 = µ

(
(4L− α) −

√
D

)
,

where µ = (4L− a)2 −D is rational. Thus (6.7) implies

v = ν
(
(4L− α) −

√
D

)
,

where ν = 2Jµ ∈ Q. This gives

v2 = ν2
(
(4L− α)2 +D − 2(4L− α)

√
D

)
,

whereas (6.6) gives

v2 = 2α
(
(2L+ α) +

√
D

)
+ (D − 8αL− α2).

If
√
D is irrational we may equate the co-efficients of

√
D in these two

expressions for v2 so we get two equations:

α = −ν2(4L− α)

2α(2L+ α) +D − 8αL− α2 = ν2
(
(4L− α)2 +D

)
.

The second of these simplifies to

α2 − 4αL+D = ν2((4L− α)2 +D).

Thus if we put β = α− 4L our equations become

α = ν2β

αβ +D = ν2(β2 +D)

from which we deduce D = ν2D. Thus ν2 = 1 and α = β, which
implies L = 0, a contradiction to our hypothesis (since L was defined
to be λ1λ2).

We have now shown that
√
D and hence u is rational. Equation (6.7)

shows that v is rational so long as u �= 2(α − L). If u and v are both
rational then so are t1, t2. On the other hand if u = 2(α − L) and v is
irrational then J = 0—which gives k1 = k2 and so λ1r1 = λ2r2—while
λ1t1 �= λ2t2. This completes the proof of the Lemma.

To dispose of the second alternative allowed by Lemma (6.4), we
consider the second derivatives of the function La at a critical point.
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Lemma 6.8. Suppose, in the notation above, that La and its first
derivative both vanish at g0, that λ1r1 = λ2r2 but λ1t1 �= λ2t2. Then g0
is not a local minimum of La.

To see this, we introduce local co-ordinates u1, u2 on a neighbour-
hood of g0 in the space of simple PL functions. For u1, u2 > 0 we have
a simple PL function

Gu1,u2(x1, x2) = ρmax (0, 1 − λ1u1x1 − λ2u2x2) ,

where ρ = 1/
√
λ2

1u
2
1 + λ2

2u
2
2. Thus g0 is the function G(λ1t1)−1,(λ2t2)−1 .

Straightforward calculations show that

(6.9) Fa(Gu1,u2) = ρ

(
1
2
F (u1, u2) − λ1r1u1 − λ2r2u2 − r0

)

where
F (u1, u2) =

1
u1

+
1
u2

− C

u1u2

with C = a/3λ1λ2. Notice that the factor ρ in (6.9) is not relevant
to the analysis of the critical point and that the terms involving ri
are linear, so their second derivatives vanish. The hypotheses of the
Lemma imply that the partial derivatives ∂F

∂u1
, ∂F

∂u2
, evaluated at the

point u1 = (λ1t1)−1, u2 = (λ2t2)−1, are equal but that u1 �= u2. Now

∂F

∂u1
= − 1

u2
1

(
1 − C

u2

)
,

∂F

∂u2
= − 1

u2
2

(
1 − C

u1

)
,

so we have
u2

1 − Cu1 = u2
2 − Cu2.

Since the ui are positive it is clear from the graph of the function u2−Cu
that we must have u1, u2 < C. Now consider the second derivative

∂2F

∂u2
1

=
2
u3

1

(
1 − C

u2

)
.

If u2 < C then ∂2F
∂u2

1
is negative so F does not have a local minimum at

(u1, u2) and this implies that La does not have a local minimum at g0.
Lemmas (6.4) and (6.8) together complete the proof of Proposition

(6.1) in case (3). We next move on to case (1). If both p and q are
vertices there is nothing to prove, since g0 is then itself rational. Suppose
q is a vertex and p is not. We restrict La to the set of simple PL functions
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whose crease passes through the fixed point q. We may suppose that we
are in the same situation as that considered for case (3) above, except
that now t1 is a boundary point of the face J1; so t1 is rational. The
conditions that Fa and its derivative with respect to u2 vanish tell us
that

1
u2

− C

u1u2

is rational. Thus u2 is rational unless u1 = C. In this latter case
the derivative ∂Fa

∂u2
vanishes identically for all u2. Thus any simple PL

function with a crease through q and any point of the face J2 is also an
extremal, and in particular we can find a rational extremal.

Finally we consider case (2) when the crease of g0 passes through
two parallel faces of P . Making a rational affine transformation, we
may suppose that these are segments in the lines x2 = 1, x2 = −1, each
lying in the half-plane x1 > 0. The meaure dσ is given by λdx1 on
these segments for some λ > 0. Let the crease of g0 be defined by the
equation

x1 − s = θx2.

Let S be the quadrilateral defined by the inequalities

x1 > 0, −1 < x2 < 1, x1 − s < θx2.

We consider the measure dσ on the boundary of S, given by λdx1 on
the “horizontal” faces and zero elsewhere. The same argument as before
shows that the mass and moments of P+, (∂P )+ are equal to those of
S, ∂S modulo rationals. Let r0 be the difference between the mass of
S and the mass of ∂S and let r1, r2 be the differences between the
moments. A short calculation shows that the centre of mass of S is the
point (

1
6s

(3s2 + θ2),
θ

3s

)
.

From this one readily shows that

r0 = 2(λ− a)s, r2 = 2
(
λ− a

3

)
θ, r1 = 2(λ− a)s2 + 2

(
λ− a

3

)
θ2.

As before, we know that r0, r1, r2 are rational. If λ is not equal to a
or a/3 the first two of these immediately give that s, θ are rational and
we are done. The two degenerate possibilities are similar to the final
possibility considered above in case (1). If λ = a then θ is rational but
we get no constraint on s. However in this case the ri do not depend
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on s and this means that the functional Fa(g) does not change as we
vary g through simple PL functions with crease parallel to that of g0,
provided we do not cross any vertices of P . Thus while the original
g0 may not be rational we can find a rational zero of Fa. Similarly if
λ = a/3 the functional does not change as we vary g through simple PL
functions with crease through the fixed point (s, 0) and we can find a
rational zero.

7.

7.1 Conclusion of proof

We will now put together the various components in the proof of Theo-
rem 1.1. As a preliminary, we examine the notion of “K-convergence” of
Kahler potentials over a toric surface, which enters into the statement
of the Theorem. Thus we suppose we have a sequence uα of symplectic
potentials which correspond to Kahler potentials ψα via the Legendre
transform.

Lemma 7.1.1. The sequence ψα has a K-convergent subsequence
if and only if there is a subsequence α′ and affine-linear functions λα′

on Rn such that the symplectic potentials ũα′ = uα′ + λα′ satisfy the
following two conditions.

(1) There is a constant C such that when Q is either P or a face of
P ,

C ≥ min
Q

ũα′ ≥ −C,

for all α′.

(2) For each x ∈ P there is a Cx such that

ũα′(x) ≤ Cx.

To prove this Lemma, first recall that the actions of addition of
constants and of the complex torus T c considered in the definition of K-
convergence go over to the action of addition of affine-linear functions
on the symplectic potentials. Thus there is no loss in ignoring these
actions on either side. Now consider the Kahler potentials φα on the
open orbit in V . The derivatives of these take values in the bounded set
P , so are bounded. Thus a necessary and sufficient condition for there
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to be a subsequence converging pointwise on the open orbit is that there
is a subsequence with φα′(0) bounded. But, by definition,

φα(0) = min
P
uα,

so this is equivalent to minP uα′ bounded. Likewise, a necessary and
sufficient condition that there be a subsequence of the φα converging
pointwise on the codimension-1 orbit corresponding to a face Q of P
is that there be a subsequence α′ with minQ uα′ bounded. Thus the
pointwise convergence criterion in the definition of K-convergence cor-
responds exactly to the condition in item (1) of the Lemma. To complete
the proof we need to see that the second condition in the defintion of
K-convergence corresponds to the second item in the statement of the
Lemma. Thus consider a fixed point of the action on V , corresponding
to a vertex of P . By applying an integral, affine-linear, transformation,
there is no loss in generality in supposing that this vertex is the origin
in R2, and that, near to the origin, P is the positive quadrant. This
means that the local co-ordinates (w1, w2) around the fixed point are
the same as our standard co-ordinates on the orbit and

ξi = log |wi|.

Now consider a point (η1, η2) near to the origin in P . By definition

uα(x) = max
ξ

(∑
xiξi − φ(ξ)

)
.

Thus uα(x) ≤ C if and only if

φ(ξ) ≥
∑

xiξi − C,

which is in turn equivalent to

φ(w1, w2) ≥ x1 log |w1| + x2 log |w2| − C.

This effectively finishes the proof: we leave for the reader the task of
working out how the calculation above transforms for the other fixed
points.

We are ready for the proof of Theorem 1.1. Given the toric variety
(V,L) we consider the linear functional La on the normalised functions
in C∞ and two cases:
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(1) La(f) > 0 for all nonzero f . Then according to (5.2.2) there is an
ε > 0 such that

Laf ≥ ε

∫
∂P
fdσ,

and by (5.1.2) the functional Fa is bounded below, i.e the Mabuchi
functional is bounded below on the space of T -invariant potentials
HT . Let φ(α) be a minimising sequence, as considered in Theo-
rem 1.1. Modulo the actions of T c and of addition of constants,
we can suppose that the φ(α) are the Legendre duals of normalised
symplectic potential functions u(α). These form a minimising se-
quence for Fa on S and hence also a minimising sequence for Fa

on C∞ by (3.3.11). Thus they satisfy a bound∫
∂P
u(α)dσ ≤ K

by (5.1.8). By Corollary (5.2.5) we can suppose, taking a subse-
quence, that the uα converge uniformly on compact subsets of P
and on the interior of each face of ∂P . This means that the two
criteria of Lemma (7.1.1) are satisfied so, by that Lemma, the φα

have a K-convergent subsequence.

(2) Laf ≤ 0 for some nonzero f . If strict equality holds then, by the
density result (5.2.8), we can suppose that f is a PL function and
then, clearly, that it is also a rational PL function. If there is no f
for which strict inequality holds, i.e., if Lag ≥ 0 for all g but Laf =
0, then by (5.3.1) and (6.1) we can suppose that f is a rational
simple PL function. In either case there is a nontrivial rational
PL function f with La(f) ≤ 0. This function defines a toric test
configuration by with positive Futaki invariant by (4.2.1), and
hence (V,L) is not K-stable. This completes the proof of our
main result (1.1).

Although we are not yet able to prove a full converse to Theorem 1.1,
there is a simple partial converse. First we have:

Proposition 7.1.2. Suppose there is a function f ∈ C1 with La(f)
< 0. Then the Mabuchi functional is not bounded below on the invari-
ant metrics and the manifold V does not admit any Kahler metric of
constant scalar curvature in the given cohomology class.

To see this, we can suppose (by an approximation argument) that
f lies in C∞. If u is some fixed element of S we consider the sequence
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uk = u+ kf . Then

Fa(uk) ≤ Fa(u) + kLa(f) → −∞

hence Fa is not bounded below on C∞. By (3.3.11) the functional is
not bounded below on S either, hence the Mabuchi functional is not
bounded below on the invariant metrics. The last assertion follows from
(3.3.4) together with Lichnerowicz’s Theorem (which implies that any
constant scalar curvature metric must be T -invariant).

To formulate a sharper result, we say that a polarised toric variety
is K-stable with respect to toric degenerations if there is no destabilising
configuration of the kind constructed in Section 4. Then we have:

Proposition 7.1.3. Suppose (V,L) is a toric variety such that the
Mabuchi functional is bounded below on the invariant metrics HT and
any minimising sequence has a K-convergent subsequence. Then (V,L)
is K-stable with respect to toric degenerations.

Thus the gap which needs to be filled to give a complete analytic
criterion for K-stability is to show that this condition (K-stability) is
equivalent to “K-stability with respect to toric degenerations”.

To prove (7.1.3), suppose the variety is not K-stable with respect
to toric degenerations. This means that there is a non-affine rational,
piecewise linear function with La(f) ≤ 0. Strict inequality cannot hold,
since then the Mabuchi functional would not be bounded below by the
Proposition above. Thus La(f) = 0 and we can suppose f is a simple
PL function by (5.3.1). We approximate f by a sequence of convex
functions fα which are smooth up to the boundary, such that

‖fα − f‖L∞(P ) ≤ 1/α2.

Let uα be functions in S forming a minimising sequence for Fa and
define

ũα = uα + αfα.

Then
Fa(ũα) ≤ Fa(uα) + C/α,

for some C, so ũα is another minimising sequence. By the hypothesis,
and Lemma (7.1.1), we can without loss of generality suppose that the
minP uα are bounded and for each x ∈ P the uα(x) are bounded above.
This implies that, for each x, the uα(x) are bounded above and below.
Likewise, we can find affine-linear functions λα such that the ũα + λα
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are bounded above and below for each x ∈ P . Thus, for each x ∈ P ,
(λα + αfα)(x) is a bounded sequence. It follows that the λα(x) are
bounded, for each x in the set where f = 0. Since this set has nonempty
interior, we deduce that the λα are bounded on P , since they are affine-
linear. But this contradicts the fact that αfα tends to infinity at some
points of P .

Note that our notion of “K-convergence” does not capture the full
strength of the convergence we have proved for the symplectic potentials,
but in this respect our main Theorem is anyway of a provisional nature,
since we expect that much stronger results are true.

7.2 Discussion

(1) Our main result deals with the two dimensional case but the
general scheme of the argument works in all dimensions. To have a
Theorem like (1.1) in higher dimensions one needs to extend the results
of Sections (5.3) and 6. These are in principle elementary questions
about convex functions, which one can address without knowing any-
thing about toric and Kahler geometry.

(2) We give an explicit example to illustrate the theory we have
developed. We start with the complex projective plane, represented as
a toric variety by the triangle

P0 = {(x1, x2) : x1, x2 > 0, x1 + x2 < 1}.
We obtain new toric varieties by repeatedly blowing up the points cor-
responding to the vertices of P0. We recall that, in general, if P is a
polygon corresponding to a toric surface, and v is a vertex of P , there
are vectors e1, e2 forming a Z-basis for Z2 such that the two edges of
P meeting at v lie in the rays {v + tei : t ≥ 0}. Blowing up the sur-
face at the point corresponding to v gives a new toric variety with an
associated polygon P̃ obtained by removing the triangle with vertices
v, v+εe1, v+εe2 from P . Here ε is any sufficiently small rational number
(so that some multiple of P̃ is an integral polygon). For all this, see [12].
If we apply this procedure n times to the origin, and to the vertices that
are generated from it, we get a polygon with vertices (1, 0), (0, 1) and a
chain of 2n vertices

((α1, 0), (α2, β2), . . . , (0, β2n),

say, where the rational numbers αi are decreasing and the βi are in-
creasing. The values of the αi and βi depend on the blow-up parameters
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chosen at each stage but the sequence of slopes

τ(i) =
βi − βi−1

αi−1 − αi
,

does not depend on these choices. Conversely, if we have a polygon with
a sequence of vertices of this kind, and with this sequence of slopes, the
polygon arises from a blow-up, for suitable choices of the parameters. It
is easy to check that there is always an index in such that τ(in) = n−2

2n−3 ,
and then τ(2n + 2 − in) = 2n−3

n−2 .
We define a 9-sided polygon Qn as follows. We replace the vertex

(0, 0) of the original triangle P0 by three vertices,

(1/4, 0), (rn, rn), (0, 1/4)

where

rn =
n− 2

4(3n− 5)
.

This value of rn is chosen so that the two new edges have slopes n −
2/2n − 3 and 2n − 3/n − 2. There is obviously a cyclic symmetry of
the original triangle P0, permuting the vertices—this just corresponds
to the symmetry between the three homogeneous co-ordinates on the
projective plane. We replace each of the other vertices of P0 by a triple
of new vertices as above, maintaining this symmetry. Now Qn has a
canonical measure dσ on its boundary, and we define an to be the ratio
of the mass of the boundary and the area of the interior, as usual. The
moment conditions are satisfied because of the symmetry condition.
Thus we have a functional L = Lan , which vanishes on affine-linear
functions.

Lemma 7.2.1. For sufficiently large n the linear functional L is
nonpositive. In fact if f is a simple convex function with crease along
the line through (1/4, 0), (0, 1/4) then L(f) < 0 for large n.

To see this we choose f to be zero on the region {x1 + x2 ≥ 1/4}.
Thus L(f) has two contributions:

(1) the integral of f over the edges of slope (n−2/2n−3), (2n−3/n−2)
with respect to the measure dσ;

(2) minus an times the integral of f over the triangle T with two edges
as above and the third edge the line through (1/4, 0) and (0, 1/4).
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Now, for the first contribution, the integers n− 2, 2n− 3 are coprime so
the measure dσ on these edges is O(n−1) times the Euclidean measure,
thus the first contribution is O(n−1). For the second contribution, first
note that the an are bounded away from zero, since the total mass of
the boundary of Qn is at least 6 times that of the segment (1/4, 1/2)
along the x1-axis, which is independent of n, and the area of Qn is less
than the area of P0. The triangle T contains the triangle with vertices
(1/4, 0), (1/12, 1/12), (0, 1/4) so the integral of f over T is also bounded
away from zero. So when n is large enough the magnitude of the second
contribution must exceed that of the first and the Lemma is proved.

(In fact a little calculation shows that the conclusion of Lemma
(7.2.1) holds for n ≥ 5.)

Now fix n large enough for the conclusion of Lemma (7.2.1) to hold.
The polygon Qn does not itself arise from a blow-up of the plane but
since the slopes of the new sides were chosen to arise in the sequence
(τ(i)) we can approximate Qn arbitrarily closely by such a polygon, in
an obvious way. That is, we succesively blow up the three fixed points of
the projective plane and choose the blow-up parameters defining all the
other sides to be very small. We make the whole construction symmetri-
cal under the cyclic symmetry of P0 to ensure that the moment condition
is satisfied. By continuity, the linear functional defined by this polygon
must be negative on f , if the approximation to Qn is close enough. This
means, by (7.1.2), that the corresponding toric variety cannot have a
T -invariant metric of constant scalar curvature, even though its Futaki
invariant vanishes (or, in other words, it has no extremal Kahler metric).

(3) Most of the ideas in the body of this paper apply in a more
general setting. We consider a bounded open convex set Ω ⊂ Rn with
Lipschitz boundary, a positive measure dσ on ∂Ω in the measure-class
of (n−1)-dimensional Lebesgure measure and a bounded function A on
Ω. Then we can define a space C∞ and functionals LA and FA in the
obvious way. We expect that the following is true:

Conjecture 7.2.2. If LA(f) > 0 for all non-affine functions in
C∞ then FA is bounded below and the minimum is attained in C∞ by a
function which satisfies the equation S(u) = A.

(4) A generalisation which is pertinent to Kahler geometry arises in
the study of extremal metrics. Here the function A is an affine-linear
function on Rn. That is, given a toric variety V corresponding to a
polytope P ⊂ Rn with measure dσ on ∂P , there is obviously a unique
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affine-linear function A = AP satisfying the moment conditions (5.1.1).
The existence of an extremal Kahler metric on V is equivalent to the
existence of a function in S minimising FA. Most of the discussion of
the paper goes over to this case, with an appropriate modification of the
definition of K-stability. However there is one point of difficulty: the
results of (5.3) apply to positive functions A, but for some polytopes
AP is not positive throughout P . Thus we leave the extension of our
results to extremal Kahler metrics for the future.

Suppose now that Q is a polyhedron in R2 and dσ is a measure
supported on some of the faces of ∂Q, equal to the canonical measure
considered before on the faces on which it does not vanish. Let VQ be
the toric variety defined by Q. The faces of ∂Q correspond to curves
in VQ: we let D be the divisor defined by the union of the curves for
which dσ vanishes on the corresponding face of the boundary. There is a
unique affine-linear function A = AQ satisfying the moment conditions
(5.1.1). Let L be the linear functional defined by AQ and dσ.

Conjecture 7.2.3. If L is strictly positive on convex, non-affine
functions then F is bounded below and there is a smooth minimiser,
which corresponds to a complete extremal metric on VQ \D.

The general picture one might expect is that if a toric variety is
not K-stable then there should be a canonical decomposition of the as-
sociated polygon into subpolygons. On the boundary of each of these
subpolygons we have a measure—the usual one on the faces which come
from the boundary of P and zero on the faces created by the decom-
position. These subpolygons should be of two kinds; either they satisfy
the hypothesis of the conjecture or, exceptionally, they should be par-
allelograms in which two opposite faces are faces of P . We expect that
the “Calabi flow” (or other minimising procedure) generates a sequence
of metrics with diameter tending to infinity, breaking the manifold into
pieces. On the pieces corresponding to subpolygons of the first kind the
metrics should converge to the complete extremal metrics of Conjecture
(7.2.3). On the pieces corresponding to the parallelograms the metrics
should collapse, with behaviour modelled on a product S1 × B, where
the length of the circle tends to zero.

(4a) There is an alternative variational formulation of the PDE
S(u) = A, which is related to almost-complex structures. Suppose we
are in the setting of (2) above, with a function A on a convex set Ω and
measure dσ on ∂Ω. Suppose we can find a symmetric tensor field V ij

on Ω, with V ij > 0 everywhere, which represents the linear functional
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LA in the sense that

LA(u) =
∫

Ω
V ijf,ijdµ,

for all f ∈ C∞. (Here we use the summation convention over repeated
indices, and u,ij denotes the second partial derivative.) Essentially this
means that V ij satisfies the distributional equation

(V ij),ij = A− [dσ]

where [dσ] is regarded as a distribution supported on ∂Ω. Clearly this
implies that LA > 0 on C∞. It is reasonable to expect that a converse is
true, so that if LA is positive on C1 we can find such a tensor V ij . This
is clearly a weaker conjecture than (7.2.2), which requires a solution of
the special form Vij = u,ij . In any case, let us suppose that we do have
a solution V ij , and let V be the space of all such solutions: a convex
subset in an affine space. We consider the functional

N (V ) =
∫

Ω
log detV ij dµ

on V. This is a convex function and so has at most one critical point, a
global minimum, on V. To find the appropriate Euler-Lagrange equa-
tions we use:

Lemma 7.2.4. The general solution of the equation V ij
,ij = 0, for

symmetric tensor fields V ij, on Ω has the form

V ij = T ijk
,k + T jik

,k

for an arbitrary tensor field T ijk which is skew in the indices j, k.

This is a simple exercise, using two applications of the Poincaré
Lemma.

Now the derivative of the functional N at a point V ij in the direction
εij is given by ∫

Ω
Vijεij dµ.

Thus if V ij is a critical point for N on V we must have∫
Ω
Vij(T

ijk
,k + T jik

,k ) dµ = 0,
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for all compactly supported tensors T ijk, skew in j, k. Integrating by
parts, this tells us that Vij,k is symmetric in j, k. Using the Poincaré
Lemma again, we can find a tensor field θi such that Vij = θi,j . Now
the condition that V is symmetric means, by the Poincaré Lemma, that
θi = u,i for some function u on Ω. In sum, solving the equation of
Conjecture (7.2.2) is equivalent to finding a minimiser of the functional
N on V.

In the case when the domain is a polytope corresponding to a toric
variety V , the discussion above corresponds to considering T -invariant
almost-complex structures on V , as explained in (3.1). We call the func-
tion V ij

,ij the Hermitian scalar curvature of the almost-complex structure
defined by Vij . Thus finding a Kahler metric of constant scalar curvature
is equivalent to minimising the function N on the set of almost-complex
structures of constant Hermitian scalar curvature. Notice also that, in
the converse direction, our examples of manifolds which are not K-stable
give examples where there is not even an almost-complex structure of
constant Hermitian scalar curvature.

(5) Our main result, Theorem (1.1), yields a new real-valued invari-
ant of K-stable toric surfaces: the infimum of the functional La. This
seems to be special to the toric case, since in general the Mabuchi func-
tional is only defined up to an overall constant, so even if it is bounded
below, its infimum is not well-defined as a real number.

Appendix: Proof of Proposition (4.1.3)

If X ⊂ Rn is a finite union of compact polytopes we define ν(X)
to be the number of lattice points in the interior of X plus one half
the number of lattice points in the boundary. By applying the basic
result (4.1.2) to a polytope P and to its boundary faces one sees that
Proposition (4.1.3) is equivalent to:

Proposition A1. For an integer polytope P ⊂ Rn,

ν(kP ) = knVol(P ) +O(kn−2).

This is the statement that we prove here. If X1 and X2 have disjoint
interiors then one easily sees that

ν(k(X1 ∪X2)) = ν(kX1) + ν(kX2) +O(kn−2),
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since the points that are counted differently in the sums lie in the (n−2)
skeleton of k(X1 ∪X2). Since any integer polytope can be decomposed
into a union of integer simplices it suffices to prove (A1) in the case
when P is a simplex. We now use induction on the dimension n. The
statement is readily verified for n = 1 so we suppose n ≥ 2 and that the
result has been proved for lower-dimensional simplices.

Lemma A2. Suppose a function f on the positive integres satisfies

f(k + 1) − f(k − 1) = Wkn−1 +O(kn−3).

Then f(k) = W
2nk

n +O(kn−2).

We leave the proof of this to the reader. Using this Lemma, and
(4.1.2), it suffices to show that

ν((k + 1)P ) − ν((k − 1)P ) = Wkn−1 +O(kn−3),

for some constant W . We can suppose that one vertex of our n-simplex
P is the origin in Rn and that the other vertices lie on the hyperplane
{xn = h}, where (x1, . . . xn) are standard co-ordinates on Rn and h is a
positive integer. Thus P is a cone on a copy of an integer (n−1)-simplex
Q ⊂ Rn−1. Comparing the counts involved in the definition of the two
terms we have

ν((k + 1)P )) − ν((k − 1)P )

= ν(kQ) +
1
2

(ν((k + 1)Q) + ν((k − 1)Q))

+
h−1∑
i=1

(ν((k + i/h)Q) + ν(k − i/h)Q))

+
1
4
(N((k + 1)∂Q−N((k − 1)∂Q)),

where N((k+1)∂Q) denotes the number of lattice points on the bound-
ary of (k + 1)Q. The first term ν(kQ) has the desired form, by the
induction hypothesis, and the difference N((k+ 1)∂Q)−N((k− 1)∂Q)
is O(kn−3), so it suffices to prove that for 1 ≤ i ≤ h:

ν((k + i/h)Q) + ν((k − i/h)Q) = Wik
n−1 +O(kn−3).(A3)

We claim that, in fact, for any real number ρ

ν((k + ρ)Q) + ν((k − ρ)Q) = 2ν(kQ) +O(kn−3),(A4)
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this implies (A3), by the induction hypothesis. To see (A4), consider a
face Fα of Q, defined by an equation λα = cα, where λα is a primitive
integral linear function on Rn−1. We can find an integer vector eα such
that λα(eα) = 1. This choice defines a reflection map Rk,α on Rn−1,
preserving the integer lattice, with fixed set the hyperplane containing
the corresponding face of kQ. For simplicity of exposition, we suppose
that the origin in Rn−1 lies in the interior of Q—the reader may check
that the argument works without this assumption. Write Ak for the
complement of the interior of (k−1)Q in (k+1)Q. For δ > 0 let Aδ

k be the
complement of the δ-neighbourhood of the (n− 3)-skeleton of (k+ 1)Q
in Ak. We can fix a δ, independent of k, such that Aδ

k decomposes into
a disjoint union of connected components Aδ

k(α) associated to the faces
Fα; thus Aδ

k(α) is contained in a region {kcα −ρα ≤ λα(x) ≤ kcα +ρα}.
Finally, let

Bδ
k(α) = Aδ

k(α) ∩Rα(Aδ
k(α)),

and let Bk =
⋃

αB
δ
k(α). Define an involution R on Bk to be given by Rα

on Bδ
k(α). The complement Ak \Bk is contained in an ε-neighbourhood

of the (n − 3)-skeleton of kQ, for some fixed ε independent of k. Thus
ν((k + ρ)Q− ν(kQ) and ν(kQ) − ν((k − ρ)Q) can be computed, up to
O(kn−3), by counting only those points in Bk. The map R matches up
the points in Bk counted in computing ν((k+ ρ)Q)− ν(kQ) with those
counted in computing ν(kQ) − ν((k − ρ)Q), so the two terms agree up
to O(kn−3), as asserted in (A4).
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