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A PROOF OF A CONJECTURE OF MARINO-VAFA
ON HODGE INTEGRALS

CHIU-CHU MELISSA LIU, KEFENG LIU & JIAN ZHOU

Abstract

We prove a remarkable formula for Hodge integrals conjectured by Marino
and Vafa, 2002, based on large N duality, using functorial virtual localiza-
tion on certain moduli spaces of relative stable morphisms.

1. Introduction

Let Mg,n denote the Deligne-Mumford moduli stack of stable curves
of genus g with n marked points. Let m : m97n+1 — Mgm be the
universal curve, and let w; be the relative dualizing sheaf. The Hodge
bundle

E = mow,

is a rank g vector bundle over M ,, whose fiber over [(C,z1,...,x,)] €
My is H°(C,we). Let s; : Mgy n — Mgy ni1 denote the section of 7
which corresponds to the ¢-th marked point, and let

*
L; =s;wy

be the line bundle over M, , whose fiber over [(C,x1,...,2,)] € Mgy,
is the cotangent line T; C' at the i-th marked point x;. A Hodge integral
is an integral of the form

, ok i
[ @Z){l...w%)\ll...)\gg
Mg,n

where 1); = c1(L;) is the first Chern class of L;, and A\; = ¢;(E) is the
j-th Chern class of the Hodge bundle.
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290 C.-C.M. LIU, K. LIU & J. ZHOU

Hodge integrals arise in the calculations of Gromov-Witten invari-
ants by localization techniques [14, 8]. The explicit evaluation of Hodge
integrals is a difficult problem. The Hodge integrals involving only
classes can be computed recursively by Witten’s conjecture [26] proved
by Kontsevich [13]. Algorithms of computing Hodge integrals are de-
scribed in [3].

In [23], M. Marinio and C. Vafa obtained a closed formula for a
generating function of certain open Gromov-Witten invariants, some of
which has been reduced to Hodge integrals by localization techniques
which are not fully clarified mathematically. This leads to a conjectural
formula of Hodge integrals by comparing with the calculations in [12].
To state this formula, we introduce some notation. Let

AJ(u) = uf — Mud 4 (1)9),

be the Chern polynomial of EY, the dual of the Hodge bundle. For a
partition p given by

NlZ,U/Qz"'ZNl(,u)>O7

let |u| = Zi(:”l) i, and define

o \/—71“”“(“) 1 ),1l(u) Hgi:_ll(,u«ﬁ-l-a)
Canl™) = =gy DT LT

' / AY()AY (=7 — 1)AY(7)
My TIH A — i)
Cu(X;) = A22Hey (1)

920
Note that
/ Ag(l)A(\)/(_T - 1)A(\]/(7—) _ / 1 _ |M|l(,u)—3
Mowy T (1 — pann) Moo TIA (1 — prings)

for I(u) > 3, and we use this expression to extend the definition to the
case [(p) < 3.
Introduce formal variables p = (p1,p2,...,Pn,...), and define

Pu = DPur """ Puyy
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for a partition u. Define generating functions

C\iT;p) = ZC (A TPy,
=1

CAsip)” = LT,
As pointed out in [23], by comparing computations in [23] with com-

putations in [12], one obtains a conjectural formula for C,(7). This
formula is explicitly written down in [28]:

_1\n—1 n . i
W =TT ( 5 I E

n1 N I

VIR () )p’“

@ compr=3 | 3 2CW e ey ] g,

where
sin [(vg — vp + b —a))\/2]
(3) V,(\) = :
1<al_[b<l(u) sin[(b — a)A/2]

1
T [T, 2sin [(0 — i + 1(1)A/2]

The right-hand side of (1) is actually some truncated version of the more
general formula [23, (5.6)] given by Marino and Vafa.

We now explain the notation on the right-hand sides of (1) and (2).
For a partition u, x, denotes the character of the irreducible represen-

tation of Sy indexed by p, where d = |u| = EZ( f,ul The number £, is

defined by
Ky = ’,LL’ + Z - 27//%

For each positive integer ¢,

mi(p) = [{J : pj =i}
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292 C.-C.M. LIU, K. LIU & J. ZHOU

Denote by C(v) the conjugacy class of Sy corresponding to the partition
v, and by x,(C(v)) the value of the character x, on the conjugacy class

C(v). Finally,
ZM — H m mJ (lu‘

In this paper, we will call ( ) the Marino-Vafa formula. The third
author proved in [27] some special cases of the Marifio-Vafa formula and
found some applications [29, 30].

We now describe our approach to the Marino-Vafa formula (1). De-
note the right-hand sides of (1) and (2) by R(A;7;p) and R(\; 7;p)® re-
spectively. In [28], the third author proved the following two equivalent
cut-and-join equations similar to the one satisfied by Hurwitz numbers
(see [7], [15], [11, Section 15.2]):

Theorem 1.

(4)

OR _ VNS~ (PR OROR L O

or 2

ij>1 Pitj

(85])%’ VAP < 0’R* GR‘)
V= Z .

o~ 9 ijiﬂ'm (i +J)pnga

ij>1 Piti

Here is a crucial observation: One can rewrite (5) as a sequence
systems of ordinary equations, one for each positive integer d, hence
if C(\;7;p)® satisfies (5), then it is determined by the initial value
C(X\;0;p)®. To prove (1) or (2), it suffices to prove the following two
statements:

(a) Equation (4) is satisfied by C(\; 7;p).
(b) C(A;0;p) = R(A; 0; p).
Or equivalently,
(a") Equation (5) is satisfied by C(X;7;p)°.
(b) C(X;05p)* = R(X; 0;p)°.

The generating function C(A;0;p) of Hodge integrals has a closed
formula [4, Theorem 2]. This closed formula is shown to be equal to
R(\;0;p) in [28]. Therefore, the Marino-Vafa formula (1) follows from
the following theorem.
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Theorem 2.

aC  v/—IA oC
_ VI Z(

6) == LJPitj A
or 2 e Op;Op;

+ 19D, .70676’_}_(@’_}_ ) . aic

Our earlier paper [21] contains an essentially complete proof of the
Marino-Vafa formula based on the approach described above. The pur-
pose of this paper is to supply various computational details, and to
present some related results. See [25] for another approach to the
Marino-Vafa formula.

The rest of this paper is organized as follows. In Section 2, we give
a proof of the initial condition (b). In Section 3, we give a proof of
Theorem 1. The materials in these two sections are already contained
in [28] and some in [21], and included here for the convenience of the
readers. In Section 4, we recall the moduli spaces of relative stable
morphisms and obstruction bundles which will be used in the proof of
Theorem 2. In Section 5, we use the graph notation to describe the torus
fixed points in the moduli spaces introduced in Section 4. In Section 6,
we prove Theorem 2 by functorial virtual localization. Details of virtual
localization are given in Appendix A. In Section 7, we reproduce the cut-
and-join equation of Hurwitz numbers (proved in [7], [15], [11, Section
15.2]) by virtual localization.

2. Initial condition

We recall some notations for partitions. For a partition v, let v/
denote its transpose. Define

™ ) = -1 = (%).

7 7

The hook length of v at the square = located at the i-th row and j-th
column is defined to be:

h(z)=vi+v;—i—j+1
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Then one has the following two identities [22, pp. 10 -11]:

i Hl(u H H—l (1 . tj)
(8) gj(l - th( )) Hz<](1 — iV — i—‘rj) )
(9) > hlz) =n() + (/) +|vl.

We first obtain a simple expression for V().
Proposition 2.1.

1
2l H:):EV sm[h(x)/\/2] .

Proof. We rewrite the right-hand side of (8) as follows.

Vo(A) =

H ) H H—l(l/)( tj) l(v) vi—i+i(v)
i= ] Y
-y 1L e

=1 j=1—i+l(v)
Lie,0-67) 77

- Hi<](1 t”l_l’J—H—] HH = —i+l(v

i=1j5=1

RHS =

H(Zia G-y iyt A T T, -i4Hw)) /2
HK](t—(j—i)/? — ti=0)/2)
. H1<J(t (vi—vj—i+j)/2 —t(y" V]—l+])/2)
() v

HH —(j—i+l(v))/ t(j—m(u))/z)_

i=1j5=1

Now

v) v
D= =D vt + Y Y (G- i+ lw)
i<J i<j i=1 j=1
(v) v (v) (v)
=—ZVZ+ZVJ+ZZJ—ZZZ+ZZZ
1<j 1<j i=1 j=1 Z—l]l =1 j=1
I(v)

I(v)
D D(URUTES wIITRS WSS WO
=1
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—|v|l(v) + sz

(v I(v) B 1) I(v)

)
—f—Z]—luj%—Z% +|V|—ZiVi+|V|l(V)
j=1 i=1
1(v)

I(v)
:ZJ_IVJ+Z ‘HV’

J=1 =

— n(v) + <u>+|u|

= Zh(x)

A2

Comparing with the left-hand side, one then gets:

H (t—h(w)/2 _ th(x)/2)

TEV
Hi<j(t_(j_i)/2 _ t(j—z‘)/2)
N Hi<j (= Wimvi=i44)/2 _ ¢(vi—vj=it+j)/2)

Z(V) v

H H —(F—i+l(v))/2 _ t(j—i+l(u))/2)_

i=1j5=1

The proof is completed by taking ¢t = e~ V—IX,

We next compute the initial values C(A; 0;p).

Proposition 2.2.

Z \/7d+1pd

C(\;
0:p) 2dsin(d)/2)"

Proof. When [(p) > 1, we clearly have

Cu(X;0)=0

q.e.d.
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When p = (d) we have

d—1
. “ld-0+
Cayni0) = — 3 a2ty Lamil d

= (d—1)!
/ AJ(D)AF(0)A; (—1)
Mg,l 1_dw1
_1d+1 B - B
:_7Vd (@)D (dN)* 1/ Agtp29 2
g>1 Mg
VAT a2
2\ sin(d)/2)
\/jldJrl
T 2d sin(d\/2)

In the second equality we have used the Mumford’s relations [24, 5.4]:
v v _
Ay (DA, (=1) = (=1).

In the third equality we have used [4, Theorem 2]. This completes the
proof. q.e.d.

Proposition 2.3. We have the following identity:

VT ) ) s VT
og| > > > Lo, 2sin(h(e)A/2) ’;n Pn —‘Zm'

n>0|p|=n |n|=|p| * P d>1

To prove Proposition 2.3, we need the following two lemmata.

Lemma 2.4. Introducing formal variables x1,...,Tn,... such that
D1, gy ) =Tl

Then we have

" " xp(n) 1
W00 212 2 [ ) = ML ma

nz0  |p|=n|n|=|p|




A PROOF OF A CONJECTURE OF MARINO-VAFA 297

Proof. Recall the following facts about Schur polynomials:

(1) OEDY Xf;impn(x),
Inl=lpl
_ g
(12) Sp(]_’q’ q27,.-) = Heep(l_qh(e))’
" S)\T)S — ;
(13) Zot Z: A = =)

Combining the last two identities, one gets:

g 1

r sol(@) = .
T;) plZ:n [Tee, (1 — q")"" [ ;(1—tzig?"1)
The proof is completed by (11). qed.

Lemma 2.5. For any partition p we have

(14) 5 2 h(e) —n(p) = 1y + 1ol
ecp

Proof.

5 S hie) —n(p)

ecp

! (Z <g) =Y G- Vet |p|>

7 7

1 .
=4<§ pilpi—1) =2 Zﬂi+4\P\>
A A
1 +1||
= =K — .
4" T lP
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Proof of Proposition 2.3. Let g = e‘ﬁ)‘, and ¢t = v/—1¢'/2. Then

n(p)
ey T Hee,fl Xp(1) -

_ qh(e)
=0 |pl=n [n|=lol ")z
1
7Zeeph(e)
_ n n/2 Xp(n)
ZV g Z Z H —h(e)/2 _ gh(©2) 2 P
n>0 lol=n [n|=1pl ecpld "

VPR Y Y e e )

HeEp(q h(e)/2 —q (e)/2) Zn Pn

n=0 \p\=n\n|=\p\
_Z Z Z FoV=IA xp(n)p
-
120 pl=n [n|=]l H8€P2sm( (€)A/2) 2z
Hence by (10),
etV =IA Xp(n)

(S Y Y g

n=0|p|=n [n|=|p| *¢<P

n(p)
e (Ztn 2 2 He@<q1qh<e>>xp(n)p”)

2sin(h(e)N/2) 2z, Pn

Zn
n20 \pl n |nl=|pl|

:logl_[ (1—t3:q31 ZZ tddyl

7]>1d>1
d
j— pa 1
SRR
_qd
j>1d>1 d d>1 d1-g
d—‘rl
== st
2d sin( d)\/2
>0

q.e.d.
By Proposition 2.1 and Proposition 2.3, we have

R(X;0;p) = log Z Z Z Xpi(n)ei"‘”\/?l’\Vp()\)pn

Zn
n20|p|=n |n|=|p|

0 (XX Y 4

n>0|p|=n|n|=|p| *¢<P

d 1
Z A i Pd
2dsm (d\/2)

eV ~IA Xp(n)p
2sin(h(e)A/2) z,
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By Proposition 2.2, we have

\/_—1d+1
CN0p) ==Y Wcu/pg)'

d>1

So the initial condition (b) holds.

3. Proof of Theorem 1

Let p,n be two partitions, both represented by Young diagrams. We
write n € J; () and p € C; j(n) if n is obtained from o by removing a
row of length ¢ and a row of length j, then adding a row of length i + j.
It is easy to see that

mi(u)m; () ; ]
()| Temere  FT
(15) M \n)
[T 7 (n)! mi(p)(mi(p)=1) .
ol 0 L=
Recall

cH:Zg

gelCly
lies in the center of the group algebra CSy, hence it acts as a scalar

fu(n) on any irreducible representation R,. In other words, let p :
Sq — End R, be the representation indexed by v, then

Z pv(9) = fu(p)id.

9€C (1)

We need the following interpretation of x, in terms of character.

Lemma 3.1. We have

ky = 2£,(C(2)),

where we use C(2) to denote the class of transpositions.

299
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Proof. By [22, p. 118, Example 7],

xv(C(2
fuC@) = 0@ iy )

W) 1(v)
— <2> - (-1

i=1 i=1

1(v)
_1 2 _9i 4 ) — &
=5 i:1(1/i —2iv; + ;) = 5 fv-
In the above we have used (7). q.e.d.

We need the following result:

Lemma 3.2. Suppose h € Sq has cycle type . The product c(z) - h
is a sum of elements of Sq whose type is either a cut or a join of u. More
precisely, there are ijm;(u)m;(u) (when i < j) ori*m;(u)(m;(u) —1)/2
(when i = j) elements obtained from h by joining an i-cycle in h to
a j-cycle in h, and there are (i + j)mitj(p) (when i < j) or imo;(p)
(when i = j) elements obtained from h by cutting an (i + j)-cycle into
an i-cycle and a j-cycle.

Proof. Denote by [s1,...,s| a k-cycle. Then
[s,t] - [s,82,...,8i,t,ta, ..., tj] = [s,82,...,8][t, ta, ..., 5],
i.e., an i 4+ j-cycle is cut into an i-cycle and a j-cycle. Conversely,
[s,t] - [s,82,...,8i][t,ta, ..., t;] = [s,82,..., 8, t,ta,.... 1],

i.e., an i-cycle and a j-cycle is joined to an ¢ 4+ j-cycle. Hence, for a
permutation h of type p, ¢y - h is a sum of all elements obtained from
h by either a cut or a join. Fix a pair of i-cycle and j-cycle of h, there
are i - j different ways to join them to an (i + j)-cycle. Taking into the
account of m;(u) choices of i-cycles, and m;(u) choices of j-cycles, we
get the number of different ways to obtain an element from h by joining
an i-cycle in h to a j-cycle in h is

{z‘jm(u)mj(u), i< j
P?mg(p)(mi(p) —1)/2, i=j.

Similarly, fix an (i + j)-cycle of h, there are i+ j different ways to cut it
into an ¢-cycle and a disjoint j-cycle when ¢ < j. When ¢ = j, there are
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only i different ways to cut it into two i-cycles. And taking into account
the number of (i 4+ j)-cycles in h, we get the number of different ways
to obtain an element from h by cutting an (i + j)-cycle into an i-cycle
and a j-cycle is

(i + 3)mit; (), <7,
ima; (1), i =J.

For any h € Sy of cycle type p we have

S f(2) X
' m;(u)

_Ztrfy )id-py(h)] - Hsz;)iz(u)'

m; (1)
=S| > ol )| T
w

W (p)!
geC(2) i Wmi(p)t

m; (1)

b;
Z%:t”’” > 9h Hz’”(“)mz(u)'

g€C(2)

=> (D0 D dima(wmy(w)x. ()
n

1<j \n€Jij(u)

+ Y G+ )mags()xe(n)
n€C;,; (1)

+ Z Z %Zsz(u)(mi(,U) — Dxw(n)

t \m€Jii(p)
Z H pmi(ﬂ)
+ ima; (1) X (1) e
mi(W)m,: (1))
neCi,i(w) it mi(p)

Z<Z+]pzpj88 +]pz+]8 ap)le/

2Y)
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In the last equality we have used (15). It follows that

or
e g

v—=1X ( 0 0 L. 0 >
=" ijpipj=——=— + (i + j)pipj =——
5 IPitig, o, (i + J)pip; e

> X”Z(n)pneﬁ“*@m/ 2V, (M)
n n

This finishes the proof of Theorem 1.

4. Moduli spaces of relative stable morphisms

In this section, we introduce the geometric objects involved in the
proof of Theorem 2.

4.1 Moduli space of relative morphisms

We first describe the moduli space of relative stable morphisms to P!
used in [19]. The moduli spaces of algebraic relative stable morphisms
are constructed by J. Li [16].

We introduce some notations. For any nonnegative integer m, let

P'[m] = P(o) UB{y U--- UP,,

be a chain of m + 1 copies P!, where IP’%Z) is glued to IP’% at pgl) for

+1
0 <! <m — 1. The irreducible component IP’%O will be ref)’erred to as
the root component, and the other irreducible components will be called
the bubble components. A point pgm) #+ pgm_l) is fixed on IP’%m). Denote
by 7[m] : P![m] — P! the map which is identity on the root component

and contracts all the bubble components to pgo)' For m > 0, let

P'(m) =Py U---UP(,,
denote the union of bubble components of P![m)].

Let u be a partition of d > 0. Let M, o(P!, 1) be the moduli space
of morphisms

[ (C7x1a' . 'axl(p,)) - (Pl[m]vpgm))’
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such that:

L. (C,x1,...,2y)) is a prestable curve of genus g with I(u) marked
points. For convenience, we assume the marked points are un-
ordered.

2. ffl(pgm)) = Zi(zul) wix; as Cartier divisors, and deg(w[m]o f) = d.

3. The preimage of each node in P![m] consists of nodes of C. If

fly) = pgl) and C; and Cy are two irreducible components of C'
which intersect at y, then f|c, and f|c, have the same contact

order to pgl) at y.

4. The automorphism group of f is finite.

Two such morphisms are isomorphic if they differ by an isomorphism of

the domain and an automorphism of the pointed curve (P!(m), pgo),

pgm) ). In particular, this defines the automorphism group in the stability
condition (4) above.

In [16, 17], J. Li showed that M, (P!, 1) is a separated, proper
Deligne-Mumford stack with a perfect obstruction theory of virtual di-
mension

r=29—-2+d+1(p),

so it has a virtual fundamental class of degree r.

4.2 Torus action

Consider the C*-action
t-[20: 2N = [0 : 2

on PL. Tt has two fixed points pg = [0 : 1] and p; = [1 : 0]. This induces
an action on P'[m] by the action on the root component induced by the
isomorphism to P!, and the trivial actions on the bubble components.
This in turn induces an action on M o(P, ).

4.3 The branch morphism

There is a branch morphism

Br: M, o(P', u) — Sym"P! = P,
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Note that P" can be identified with P(H°(P!, O(r)), and the isomor-
phism
P(H(P', O(r)) = Sym"P*

is given by [s] — div(s). The C*-action on P! induces a C*-action on
HO(PY, O(r)) by
£ (20)R ()R = R (O (SLyrk,
So C* acts on P" by
t-lag:ay: - :ay] = [ag:t_lal st Tayl,

where [ag : a1 : -+ :a;] corresponds to > p_, ap(z9)F (21)"F €
HO(P!, O(r)). With this action, the branch morphism is C*-equivariant.
See [6, 9] for more details.

The C*-action on P" has r + 1 fixed points py, ..., p,, where pp € P”
corresponds to the complex line C(2%)* (1) =% c HO(P*, O(r)).

4.4 The obstruction bundle

In [19], J. Li and Y. Song constructed an obstruction bundle over the
stratum where the target is P'[0] = P!, and proposed an extension
over the entire M, (P!, u). Here we use a different extension which is
defined in [1, Section 3].
Let
T Uy — My o(P )

be the universal domain curve, and let
P:Tyu— mg,O(IP)la 1)
be the universal target. There is an evaluation map
F gy — Ty

and a contraction map
~ . 1
T:Ty, — P

Let Dy ,, C Uy, be the divisor corresponding to the I(x) marked points.
Define

VD = Rlﬂ-*(Oug,u(_,Dga/J))
Vp, = R\ F*Op1 (1),
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where FF = 7o F Uy — P!'. The fibers of Vp and Vp, at
[f . (Cvxla s 7$l(u)) - Pl[m] } € ﬂg,O(]P)lnu)

are H'(C,0¢(—D)) and H'(C, F*Op1(—1)), respectively, where D =
x1+ -+ 2y, and f = w[m] o f. Note that

HO(C7 OC(_D)) = HO(C7 f*OPl(_l)) =0,

so Vp and Vp, are vector bundles of ranks I(1) +¢g — 1 and d + g — 1,
respectively. The obstruction bundle

V=Vpa®Vp,

is a vector bundle of rank r =29 — 2 +d + I(p).

We lift the C*-action on ﬂg,g(Pl, p) to Vp and Vp, as follows. The
action on Vp, comes from an action on Opi(—1) — P! with weights
—7 — 1 and —7 at the two fixed points py and p;, respectively, where
7 € Z. The fiber of Vp does not depend on the map f, so the fibers
over two points in the same orbit of the C*-action can be canonically
identified. The action of A € C* on Vp is multiplication by A7.

5. Fixed points of torus action

5.1 Graph notation

Similar to the case of ﬂgyo(IF’l, d), the connected components of the C*
fixed points set M, o(P!, )¢ are parameterized by labeled graphs.
Given a morphism

f : (Caxl, s 7xl(/,t)) - Pl[m]
which represents a fixed point of the C*-action on ngo(IP’l, w), let
f=nlm]of:C—P.

The restriction of fto an irreducible component of C'is either a constant
map to one of the C* fixed points pg,p; or a cover of P! which is fully
ramified over pg and p;. We associate a labeled graph I" to the C* fixed
point

[f Oy, Ty ) — P! [m] ]

as follows:

305
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1. We assign a vertex v to each connected component C, of
f'{po,p1}), a label i(v) = i if f(C,) = p;, where i = 0,1,
and a label g(v) which is the arithmetic genus of C, (We define
g(v) = 0 if C, is a point). Denote by V(I')¥) the set of vertices
with i(v) = ¢, where ¢ = 0,1. Then the set V(I') of vertices of the
graph T is a disjoint union of V(I')(®) and V(I")(1).

2. We assign an edge e to each rational irreducible component C, of
C such that ﬂce is not a constant map. Let d(e) be the degree of
fle.. Then fle, is fully ramified over po and p;. Let E(I') denote
the set of edges of I'.

3. The set of flags of I is given by

F({T)={(v,e):veV(),ec E(I'),C, NC, # 0}.
4. For each v € V(I'), define

)= 3 de).

(v,e)eF(T)

and let v(v) be the partition of d(v) determined by {d(e) : (v,e) €
F(T)}. When the target is P![m], where m > 0, we assign an
additional label for each v € V(I')(M): let u(v) be the partition of

d(v) determined by the ramification of f|c, : C, — P(m) over

™.

Note that for v € V(I')(, v(v) coincides with the partition of d(v)

determined by the ramification of f|¢, : C;y — P(m) over pgo).

5.2 Fixed points
Let Gg0(P, i) be the set of all the graphs associated to the C* fixed

points in ./\/1970(IP)1, (), as described in Section 5.1. In this section, we de-
scribe the set of fixed points associated to a given graph I' € Gg,o(IP)l, 1).

5.2.1 The target is P!

Any C* fixed point in My o(P!, ) which is represented by a morphism
to P! is associated to the graph I'’, where

V(IO = {u}, VIOW ={vr,.upt BT ={er,.. e}
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and
gv) =g, g(v;))=0, dle;)=pi

fori=1,...,l(u). The two end points of the edge e; are vy and v;. Let
Aut(p) denote the automorphism group of the partition p of d. Any
morphism associated to the graph I'’ has automorphism group Aro,

where
()

1— HZM — Aro — Aut(p) — 1.
i=1

Let

Tro = {{point}, (9,1(1)) = (0,1), (0, 2),
Mg (9:1(w)) ), (0,2).

“h
—~
=
[
[\
~

There is a morphism
iro : Mro — Mg o(P', )

whose image is the fixed locus Fro associated to I'y. The morphism ir,
induces an isomorphism

HFO/AFO = FTo.
The dimension of Fro is

%@:{0, (9,1(p)) =
39 =3+ 1), (g,l(n)) # (0,

5.2.2 The target is P![m], m > 0

LetI' € Gy (P!, i) be a graph associated to a C* fixed point represented
by some morphism to P![m], m > 0. Let ﬂg) denote the moduli space
of morphisms

f:C —PYm)
such that:
(a) C is the disjoint union of {C, : v € V(I')(V}.

(0) (Coy @1, Ty g(u(v))s Yo,15 - - - Yo,l(v(v))) 18 @ prestable curve of ge-
nus g(v) with I(u(v)) 4+ l(v(v)) marked points. Here the marked
points are ordered.
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(c) As Cartier divisors,

I(p(v))
f -1 0y N o
(fle) ') = > pu(w)i o,

Fe) o) = Y v(w)iye,.

=1

The morphism (f|c,)"*(B) — B is of degree d(v) for each irre-
ducible component B of P!(m).

(d) The automorphism group of f is finite.

Two such morphisms are isomorphic if they differ by an isomorphism of
the domain and an automorphism of the pointed curve (P*(m), pgoz pgm)),
which is an element of (C*)™. In particular, this defines the automor-
phism group in the stability condition (d) above.

The moduli space ﬂlg) is a variant of J. Li’s moduli spaces of stable
relative morphisms [16, 17]. It is a separated, proper Deligne-Mumford
stack with a perfect obstruction theory.

Given

f : (C,xl, ‘e wfcl(u)) — }P’l[m]

associated to the graph I', let C be the disjoint union of {Cy : v €
V(I)M}. Let f be the restriction of f to C. Then

f . — P! (m)
represents a point in ﬂg).
Define
ro(v) = 2g(v) — 2 + val(v), ve VD)o,

VIO = {v e V(IO : ro(v) = —1},
VIO = {o e V(T) 2 ro(v) = 0},
VIM)© = {v e VD) : ro(v) > 0},
VW ={v e V(D)W :ri(v) = 0},
VMW = {v e VI)D : 1y (v) > 0}
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Note that V(")) # () by the stability condition (d).

Let Aut(I") denote the automorphism of the labeled graph I'. The
automorphism group of any morphism associated to the graph I' is Ar,
where

1— H Zgeey — Ar — Aut(T") — 1.
ecE(T)

Let Mr = ﬂl@) X M(F”, where

M= I Myw)vaiw):

veVS(T)(0)
There is a morphism
ir : Mr — Mgo(P', 1)

whose image is the fixed locus Fr associated to the graph I". The mor-
phism ip induces an isomorphism Mp/Ap 2 Fy.
The dimension of M%O) is given by

d(FO) = Z (3g(v) — 3 4 val(v)),
veVS(IT)©

and the virtual dimension of ﬂlg) is given by

veV (I

So the virtual dimension of FT is given by

dr = d\Y + dt)

= > (3g(v) = 3+val(v) + ri(v) —1
veVS(I)© veV (M@

= ) (3g(v) =3+ val(v) + V(D) O]+ 2v (1))
veV(I)©)

+ ) (29(0) = 2+ U(u(v) + (v(v) — 1

veV ()@
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=3 g(v) = 3V ID) V| + BT+ [VTT) O]+ 27 (1))
veV(I)©)

+2 Y g(v) =2V +1(n) + |ET)| - 1
veV(T)@

=2 > g) = VIO + BT +1] =3+1u)

veV ()
+ Y (9() =)+ VD) 2V ()"
ue\/(r)<0
=29 -3+1wW+ Y (g)=1)+VIID).

veVS (1))

The last equality comes from the following identity:

g= Y g +u@)= > g) - [V(D)|+|ET)+1,

veV () veV(T)

where b1 (T") is the first betti number of the graph T.
6. Proof of Theorem 2

6.1 Functorial localization

Let T'= C*. We have seen in Section 4.3 that the branch morphism
Br: M, o(P',p) — P"

is T-equivariant. We will compute

Brier(V Zal Hl r=L,

by virtual functorial localization [20], where H € H?(P";Z) is the hy-
perplane class, and a;(7) is a polynomial in 7. Recall that 7 € Z
parametrizes torus actions on the obstruction bundle, as described in

Section 4.4.

Let pg, ..., pr € P" be the torus fixed points defined as in Section 4.3,
and let fr : pr — P" be the inclusion. From the torus action on P”
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described in Section 4.3, one gets

fiBreep(V) F(r,k)
er(T,,Pr) — (=1)"kKkl(r — k)

where

F(r,z) =Y _a(r)z"
=0

By functorial localization, we have

f,;‘Br*eT(V) . Z 1 iiieT(V)
Pk er(Ip,Pr) FrcBr—(pg) |Ar| [Mp]vir eT(NFVIr)
fork=0,...,r, where Nl‘lir — M is the pull-back of the virtual normal

bundle of Fyr in My o(P!, u). Note that Br(Fro) = p;, and
Br(Fr) =p,_0_,

for I € Gyo(P, p), T # T Recall that dg) is the virtual dimension of
MY, and 0 <d <7 1. So

B " F(t,k)
Fine) = ,;0 E e
(x—k+1)(xz—k—=1)---(x—7)

_ Irfk(T)x(x_1)...(;1;—k+1)(:17—]€—1)"‘(x_r)7

9,1
k=0
where
1 x 1%
Ig(]]#(T) = ZFOGTE/H)’
’ |AF0| ﬂro eT(NrO)
and
1 iter(V)
¥ (7) = — frertt)
gt Z ’AF| [Mp]vir ST(NIYH)

FEGg,O ([Pl uu') 7F5£F07d1—‘+1:k
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6.2 Contribution from each graph
6.2.1 The target is P!

Consider the graph IV € G, (P!, ). We first consider the stable case,
ie., (g,l(p)) # (0,1),(0,2). Let d = || as before. Using the Feynman
rules derived in Appendix A, we obtain
Arol Jxi, er (V)
_ U(p) -1

(! (1)1 o1 (Wit +a)
— 1))

g O LT,

i=1

IS#(T) =

‘ / AY (WAY (Tu) AY ((—7 — 1)u)u? 003

Mg Hﬁ(ul) (u — pitpi)
_ﬂT > al Mﬂ'—{—a)
= JAueGl T (H

y AY (DAY (DAY (—r — 1)
mg () H (“)(1 - Mz¢z)
= Fd g u)cy u(T)-

In particular,

_1 d—l /1'7,71 2,7_ +CL
I(()],u(T) - ‘(Aut)('u” (r(7 + 1)1~ (21_[1 o= (1 ﬁ 1)! )>
. / 1
Mo,i(w) H M)<1 - Mﬂbz)

_ (=p! (r I(p)—1 o b (Tt + a) 1) —3
= [aut oy T (Hl T

The contribution from I'? for the two unstable cases is also given by
the above formula:

-1 "
I§ gy (T) = (=)™ <Ha(:;(d1;!r )> %,

: G T G+ a)) 1
0.0 () = R, Y (H (1= 1)1 ) Z
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Note that I ,(7) is a degree = 2g — 2 + d + I(u) polynomial in 7
with rational coefficients, and

0 _ d—l 0
I0,(-7 = 1) = (=)W1 (7).

6.2.2 The target is P[m], m > 0

Consider I' € Gy o(P*, u), I' # I'y. Using the Feynman rules derived in
Appendix A, we obtain

1 irer(V) 1 [Loev) Bv

= —
|Ar| [Mp]vir eT(Nler) |Ar| [Mp]vir  —U — Pt

where

B. — A, AY H(v,e)eF(F)(AeAX)7 veV(ID)©,
Y 4,4Y, ve V(IrW.

More explicitly, in the notation of Appendix A,

(vee )

)eF(T

' 1) d(e)7 + o)
((v,e)lgv(r) (d(e) —1)!

AY v) (u)AY )(TU)A;/(U) (—(7 + 1)u)u2val)=-3

g( g(v
Hweerm (u—de)d,e)

=L g()r + a
d(v)(—1)"®1 (Ha=(1d(e()d(_)1)!+ )> d(111)2’ ve V(DO

2 d(e;)—1 Vrta
d(e1)d(e2)(—1)™ L (r(r + 1)) (HH S (d(en)T + )) 1
=1

a=1
(d(ei) — 1!
v e VIO (v,e1), (v,e2) € F(T),

(gl zynt) TT  de), ve V@D,
(v,e)eF(T)

Recall that r1(v) = 2g(v) — 2 4 I(u(v)) + val(v) for v € V(') and
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(1)

is the virtual dimension of My.’.

We have
2
1
IF(T) = W H <‘Aut( v(v ))’ g(v) ,,(U ) ( H d(e )
ev(r)©® o
1)
H (—1)g(v)+val(v)1/ w.
veV ()M [m%l)]m —u—1

Here v(v) is the partition of d(v) determined by {d(e) : (v,e) € F(I')},
as in Section 5.1.
Recall that
Ar| = [Aut(D)| ] T d(e)

eck
SO
ry_ L 0
I (T) - |Aut(F)| H (’Aut(y(v)”‘[g(v),u(v) (T))
veV(I)©)
H ((1)g(v)+val(v)1 H d(e))
veV(rH® (v,e)eF(T)
(7’u)d(rl>‘*‘1
. /[\Mi_‘l)}vir —Uu — ’(/]t
(1) 1
= (—7) Hm H (IAut(V(v))\IS(v),y@)(p))
veV(T) ()
g(v )+val(v d t d;l)
II (- il -
veV (T (v,e)EF (Mr]
_ (1)+1JF( )

Note that J'(7) is a degree r — d(Fl) — 1 polynomial in 7, and
(1)
JF(—T i 1) _ (_l)dfl(,u)erF1 +1JF(T).

6.3 Sum over graphs

We have
k _ _k gk
L u(7) = 77 Jg (),
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0 _ 70
where Jg (1) = I ,(7), and

k
Jou(T) = Z TH(r)
TeGy,0(P!u) T#Tods +1=k
for k =1,...,r. Note that J;M(T) is a degree r — k polynomial in 7
and

JE (=7 = 1) = (=1)TtTk gk (),

For k = 1, we have

d(Fl) = ri(v) =1 =0,
veV ()™

so V(")) consists of one single vertex 7 with () = 1. In particular
g(v) = 0, and we have the following two cases

Case 1: u(0) = (ws), v(v) = (J, k), where j + k = p;. In this case, we say
v € C(p) (cut) and define a,, = jk. Note that

v)+val(v
H (—1)9 H d(e) /M<1) o 1
veV ()M r]

(vie)eF
_ < ” jk‘) i
(1) 11 g
= —au,-

Case 2: u(v) = (i, ptj), v(0) = (s + pj). In this case, we say v € J(p)
(join) and define b, , = p; + p1;. Note that

H (_1) v)+val(v H d 6 /
veV (MM

WD vir
(v,e)eF Mr7]

Wi+ g it
2 ,ul(u) 1

i g o Hi(p)
= bu,




316 C.-C.M. LIU, K. LIU & J. ZHOU

So
1 | Aut(v)| 0 | Aut(v)| 0
= — —2b, 1 ——a, L
Jg M(T) Z ]Aut(F)\ b#, g,u(T) + Z \Aut(l“)| Ay, g 1,1/(7_)
veJ(p) veC(u)
| Aut(v!)|| Aut(v? )|, 0
> At o s ()

g1+92=g, V1U1/2€C( )

:_le ZIQ( )Ig 1V()

ved(p) veC(p)

+ > L' AR AT, ,, (1),
g1+ge=g,vtUr2eC(n)

where Iy, I2, and I3 are defined as in [15].

We have
—1
JS,M(T) _ \/?1‘”‘ (M)Cg,,u(’r)a
—l(p)—1
ved(u) veC(u)

+ > (', v2)Cy, 11 (T)Cy, 12 (7)) .

g1+g2=g,v*U2eC(n)

It follows from the definition that (6) in Theorem 2 is equivalent to

d o 1
dT‘]gu() —Jgu(7)-

6.4 Final Calculations
We have

er Fr)e@—1) - (z—k+ 1)@ —k—1)(z—71)

—ZTT R e = 1) (@ —k+ )@ —k—1) (z—7)

—ZTka x(x—1)---

(x—(r—k=1)xz—(r—k+1)) - (x—r).
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Therefore,
Bri.er(V ZTka —u)---(H—(r—k—1)u)
-(H—(r—k—i—l) ) (H —ru).
Fori=0,...,7—1, we have

HHH—-u)---(H—(r—k—1u)(H—(r—k+1Du)- (H—ru)
=((H—(r—ku)+r—kuw)'HH-u)--(H—(r—k—1)u)
H—-(r—-k+Du)---(H—ru)
=((r—kw)'HH —u)---(H—(r—k—1)u)
(H—-(r—-k+Du)---(H—ru)
HH—-u)---(H—ru)=0.

Therefore,
/ Broep(V)H = u* ) (r — k)iTkJ;y(T)~

r—k
Let J;M( D fﬂ We have

u_i/ Brier(V)H' = Z (r —k)ia;? 7.

=0 \j+k=l

Here is a crucial observation: as a polynomial in 7, u~* Jpr Brier(V)H :
is of degree no more than ¢. Therefore,

Z (T—k)%? =0
k=l
for 0 <i <l <r. Now fix [ such that 1 <[ <r. We have
l .
(16) Y (r—k)Yaj =0, 0<i<l,
k=0

which is a system of [ linear equations of the [ 4+ 1 variables {af_ g k=

LU
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Both
{(r—t)":i=0,...,1—1}
and
{L,t,t(t—=1),...,t(t=1)...(t—1+4+2)}

are bases of the vector space

{£(t) € Qlt] : deg(f) <1 -1},

so there exists an invertible [ x [ matrix (A;j)o<i j<i—1 such that

-1

tt—1)--(t—i+1) = Ay(r—t).

j=0
In particular,

-1

k(k=1)- (k—i+1)=> Ay(r—k).
j=0

for k=0,1,...,1, so (16) is equivalent to

l
Y k(k—1)--(k—i+1af , =0, 0<i<l,

k=0
ie.,
! ol
. k _ .
Zi(k_i)!al_k_o, 0<i<l
k=1
The above equations can be rewritten as
1 e e 1
1 2 . . l
o 2 3-2 ... I(1-1)

0 0 31 o o Al-1)(-2)

1

0

0

0

0 :

0 - .-
0
0

0 (1) I—1) 2
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The kernel is clearly one dimensional. One can check that the kernel is
given by

[!

kK _ k 0
(17) Qi = (_1) k)'(l _ k‘)!al .
Note that (17) for [ =1,...,r is equivalent to

k _(=pFat
(18) Jgu(T) = L drk u(7)
for k =0,...,r. In particular,

d
Tou(7) = _E‘Igu(ﬂ

which is equivalent to the cut-and-join equation (6) in Theorem 2. Equa-
tion (18) and the cut-and-join equation imply that J;“(T) can be ob-
tained from Jg M(T) by repeating the cut-and-join operation k-times.

7. Hurwitz numbers

In this section, inspired by T. Graber and R. Vakil [9], we use virtual
localization on moduli spaces of relative stable morphisms to recover
some results on Hurwitz numbers. We give a unified proof of the ELSV
formula and the cut-and-join equation for Hurwitz numbers.

The Hirwitz numbers can be defined as

(19) H,, = / Br*H".
[Mg,o(PL,p)]vie

We lift H” € H?*"(P";Z) to [y (H —wyu) € H (P";Z), where wy, € Z,

and compute
H,, = / Br* (H(H —~ wku)>

[Myg,o(PL,u)]vir k=1

by virtual localization.
Let pr € P" be the C* fixed point defined as in Section 4.3, and
fx : pr — P7 be the inclusion. Then

(T H = wyw)) = (H(’f - wl)> u" € HE (pg)-

=1 =1

Remark 7.1. In the definition of M, (P!, 1) given in Section 4.1,
if we order the I(u) marked points on the domain as in [16, 17], there
will be an extra factor 1/| Aut(u)| on the right-hand side of (19).
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7.1 Contribution from each graph
7.1.1 The target is P!

Consider the graph I'’ € M, o(P!, 11). We have Br(Fro) = {p,}. We first
consider the stable case. By the Feynman rules derived in Appendix A,
the contribution from I'? is given by

r

H(T - ’UJl)fg,u,

=1
where

ga/J' |AF| / NVII‘

gl(u)
1 U(p) M“l/ Ag(u)uQQHZ(“)*”
- ) — l
|Aut( )‘ =1 MZ! Mg,l(u) Hz(:'ul)(u - /141/}1)

pk Ay (1)
i L o 5

In particular,

- Hi 1
18 - 2/
v H Y Sl S rew—

1 U i
_ H:U’i UM
[Aut(u)] | 15 !

The contribution from T'©) for the two unstable cases is also given
by the above formula:
0.(d) = grg2 — dl -
50 _ 1 P 1

I — .
0,(p1,p2) |[Aut((p1, p2))| palpe! d

7.1.2 The target is P![m], m > 0
Consider I' € G, (P, ), T' # TY. We have Br(fr) = {p, 4o} The
T

contribution from I' is given by

T

H(r — d(Fl) —1- wl)jT,
=1
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where

[ W _ 1 oeva) Be
‘AF| [mr]vir eT(Nf—\/lr) |A1—\| [MF}Vir —Uu — ¢t

B, — w920 A T e (Aeu™@) v e VD)©),

un®A,, vevV(I)W,

)

More explicitly, in the notation of Appendix A,

~ d(e)d(e)
e ()
(v,e)eF(T) (v,e)eF(T)

AV (u)u2g(v)+val(v)—3

) g9(v)

H(v,e)ep(r) (“ - d(e)w(v,e)) ’
)d(e)d(e)—Q

R TOSTRN

dle d(el)d e d(e)2
d(e1)d(e2) ( Zl)(el)!dgezil d(v)’

v e VII(F)(O)7 (vael)v (U762) € F(F)a
u@ T dle), vev(mW.

ve V),

v e VIO (v,e) e F(D),

Fe TT (1) B0

veV(T) ()
2
H d(e) / udr+1
ceB(D) A e~ =

Recall that

Ar| = [Auwt()| [T de)  [[ d),

e€E  pevIIT)(M)
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SO

- (_1)d§1’+1

= A IT (At @)II0w w)

veV (1))

(1)
M 1] o /M(Fl)]mwtwp.

veVS () (ve)eF

7.2 Sum over Graphs
For k=1,...,r define
Tk _ T
T€Gyg,0(P1 ) T#AT0,d) +1=k

Then

Hy, = ZH(’F —k —wl)f;cu

k=01=1

for any wq,...,w, € Z.
Setting (wy,...,w,) = (0,1,...,r—k—1,r—k+1,...,r) yields

Hgp = (=1)"kl(r — k)Y ,.

The k = 0 case implies the following formula due to Ekedahl, Lando,
Shapiro, and Vainshtein [2], also proved by T. Graber and R. Vakil [9]:

/ Ag(1)
ql(u) Hz 1 1_ zd’l)

Hg = —(r—1)! I;w

_ .70
(20) Hyyu=r1) , = | Aut |H

For k =1, we have

which is, by a derivation similar to that in Section 6.3, equivalent to

HIL
(21) ﬁg’l)!: > LI, + Z L(v)g 4,

veJ(p) veC(p

DD fs<v V) g,

91+g92=9 v Uv2eC(u)
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Combining (20) and (21), one obtains
H

Gk Hgy, 9 1v
eoni T 2 Wyt Z S
veJ(w) veC(p
+ 2 Z I(v! w2>

91+92=9 v1uv2eC(pn)
Hglyyl 'H927V2

2o =2+ 1) (292 — 2+ 2+ 1(2))!

which is equivalent to the cut-and-join equation

(22) Hg,,u: Z gu+ Z IZ g 1,v

veJ(p) veC(u)

+ Y Y <ggl_2-c|_u11|+l(v1)>

91+92=9 v1Ur2eC(u

‘Ig(V v )Hg1 V1H2V2.

The above cut-and-join equation was first proved using combina-
torics by Goulden, Jackson and Vainstein in [7] and later proved using
symplectic sum formula by Li-Zhao-Zheng [15] and Ionel-Parker [11,
Section 15.2].
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Appendix A. Localization

In this appendix, we provide details of localization in our particular
case. Related results are discussed in [10]. We first introduce some
notation.

Let (w) be the 1-dimensional representation of C* given by A -z =
Az for A € C*, z € C. We do calculations on Mr which is a finite cover
of Fr C My o(P, 1), so the weight w of C*-action can be fractional.

323
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Given I' € G4 (P, p), let
[f : (C,l’l, s 7$l(p,)) - ]P)l[m] ]

be a fixed point of the C*-action on M o(P*, u) associated to I'. Given
(v,e) € F(T), where v € V()OO U V(D)D) let q(ve) € C denote the
node at which €, and C, intersect. Let t(,.) denote the first Chern
class of the line bundle over M whose fiber at

[f (Chxy, ) — Plm] ]

is T;(v E)Cv. Given v € VH(I‘)(O), let g, denote the node at which C¢,
and C, intersect, where {e1,e2} = {e € E(I') : (v,e) € F(I')}.

A.1 Virtual Normal Bundle
The tangent space T and the obstruction space T? of ﬂg,O(Pl, ) at

[f: (Comr,eymyy) = PHm] | € Mgo(P', )
are given by the following two exact sequences [17, Section 5.1]:
0 — Ext’(Qc(D),0¢) — HY(D®) — T*
— Ext'(Qc(D), (’)C)—>H1(D‘)—>T2—>0
0 — HO(C, *(wpm(logp{"™))¥) — HO(D*) — &} HY(R])
— HY(C, f* (wpi(log p™))") — H'(D*) — @' HL (RF) —
where D = 1 + - -+ + xy(,), Wpi[y) is the dualizing sheaf of Pt [m],
HYRD= P T, () e (E)) = et
aef1 (")
He(RY) = ( pgw]P’(z) ® Tpgwlp’%zﬂ))@("l*l),
and ny; is~ the number of nodes over pgl).
Let f = 7[m]o f:C — PL. Then
F* ey (log p™))” 2 F*Op1 (1),
Let
By = Ext’(Qc(D),0¢), By = H"(C, f*Op (1)),
By =@ ' HY(R}), By = Ext'(Qc (D), Oc),
Bs=H'(C,f*On(1)),  Bs= i Hy(RY).
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We now assume that
f(Crzr, . my ) — P'[m]] € Fr € M, o(P, p),

where I' € G, o(P!, 1), and Fr is the set of fixed points associated to
I' The C*-action on Mg,o(ﬂﬂ,,u) induces C*-actions on Bj,..., Bs.
In particular, the C*-actions on By and By come from the C*-action on
Op1 (1) which acts on Op1(1),,, and Op1(1),, by (1) and (0), respectively.
Let EZ denote the moving part of B; under the C*-action. Then each
éi form a vector bundle over Mp. We will use the same notation El to
denote the vector bundle.

Note that Eg =0, and

5 0, m =0,
6~ Helt(R(.)) = (Tp<10)]P)%O) & Tpg())]p%l))@(no—l)’ m > 0.
We have _ N N N
1 _ep(T?)  ep(By)er(Bs)er(Bg)

er(NF) ~ op(Th) er(Bs)er(Bs)

where fl, T2 are the moving parts of T, T2, respectively.

A.1.1 The target is P!

We have seen that there is only one graph I'’. Recall that

. { {point} (g,1(1)) = (0,1),(0,2),
i Mg (9,1w) #(0,1),(0,2).

We first compute er(Bi)/er(By). When (g,1(n)) # (0,1),(0,2).
The domain is

<|

C=ChpUCy U---C

€i(p)”

We have
Up)

El =0, §4 = EBT%CUO & Tquei,
=1

where ¢; = q(yg,e;)- S0

erB) 1Y (2 - v)’

where wz = 1/)(110761.).
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When (g,1(1)) = (0,1), we have

~ 1 ~
B1:<d)7 B4:03

S0 _
eT(Bl) _ E
€T(B4) d
When (g,1(n)) = (0,2), we have
~ ~ 1 1
B; =0, B4=<—|-).
K1 M2
S0

6T(§1) _ 1
er(B1) s
We next compute er(Bs)/er(Bs). When (g,1(1)) # (0,1),(0,2),
consider the normalization sequence

W)

0 — f*Opi (1) = (fle,,) O (1) @ P (fle., ) Op (1)

=1
Up)
- @OPl(l)po — 0.
1=1

The corresponding long exact sequence reads
0= HY(C, J*Opi (1)
B ) _
= H(Cuy, (flew,) 0p (1) & P H(Ce, (fle, ) Opr (1))

=1
(W) _
— P Op1 (1), = H'(C, [* O (1))
=1

I(w)
— H'(Cyy, (fley,) Op (1)) © @ H' (Ce,, (fle, ) Opi (1)) — 0.

i=1

The representations of C* are

N W) 7 a
0 — H(C, f*Opi(1)) — H°(Cyy, Oc,,) @ (1) @ @ (@ <>>

)
— @P) = HY(C, f*Opi (1)) = H'(Cyy, Oc,,) ® (1) = 0
=1
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So we have

~ Up) i
(23) 2 = g T ().
i=1 v

One can check that (23) is also valid for (g,1(n)) = (0,1),(0,2).

Finally, §6 =0, so eT(EG) = 1. We obtain the following Feynman
rules:

1
— = A, Ae,
eT(Ng(l)r) 0 eeg([l—\o)
where
0 (9,1(w)) = (0,
Ay = { =+ (g, 1(n)) = (0,
AY @) i)
gu Hz:l #_Qplﬁ (gvl(/‘)) 7& (07 1)7(072)
_de™ e
A, = d(e) U

A.1.2 The target is P![m], m > 0

Let I' € Gyo(PLpu), T' # I'’. We first compute er(By)/er(Bs). We
have

veVII(1)(0) e)eF(I)
e D ( D TwoCo®Tu, Ce)
veVS ()0 \(v,e)eF(T)
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B -1
er(Bi) _ U U
€T(§4) - d(v H ) ( Z d(€>>

veVI()©) veVII( (v,e)eF(I)

veVS(I)(©) \(v,e)eF(T) ﬁ ~ Y(w.e)
(ot
vevV (DY \ (v,e)eF(T) T~ Y(we)

We next compute er(Bs)/er(Bs). Consider the normalization se-
quence

0— f*Opi(1) — D (fle) 0n ()@ @ (fle.) Opi (1)

veVS ()@ uy ()™ ecE(D)
— @ O]pl(l)po S @ @ OIP’l(l)po
veVII(T)() veVS(T)(0) \(v,e)eF

o P (@ opl(l)m) — 0.

veV(D)@) \(v,e)eF
The corresponding long exact sequence reads
0 — H(C, [*Opi (1))
— B HACw(Fle) 0n (1)

veVS()Ouv(r)®

& P HC. (flo.) Op (1))

ecE()
— @ Op1 (1), @ @ @ Op1 (1),
veVII(T)(0) veVS(T)0) \(v,e)eF

@ @ (@ O]}ﬂ(l)m)
(

veV (@ v,e)EF
— HY(C, [*Opi (1))
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. D H(Cy, (fle,) Opi(1))

veVS(M)Ouv ()M

& P H(Ce (fle.) Op (1)) — 0.

e€E()
The representations of C* are
0— H(C,[*Om(1))
- @ HC,Oc)el)e @ HC,Oq) (0

veVS(I)(©) veV(D)D
€)
° @ (&)
ecE(T a=1
- D me P (DO D | DO
veVIL(T)(©) veVS()(© \(v,e)eF veV(IHM \(ve)er

— H'(C.J*On (1))
- @D H(C.0c)eWe D H'(C.O)®(0) =0

veVS(I)© veV (M@
So
er(Bs) 11 v 1(v)—1 (d(e)d(e) —d( ))
— = Al (w)u¥™ H (T
g9(v) !
BT(BZ) UEV(F)(O) ( >6€E(F) d(@)
Finally, o
. _ 1 1 -
By = (T,wFly © TPl :
S0

er(Bs) = (—u — ¢")IFOI=1

where 9! is the first Chern class of the line bundle over Mg) whose
fiber at o
[f : C — P!(m)]

is T, P (m). Note that ¢ = d(e)t), ) for v € V(D)D) (v,e) € F.
Py
We have the following Feynman rules:

1
€T(N¥ir) = H H Ae,

vEV (T)  ecE(
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where
_U_wt
Hoaero 25
= [w,e)er@) dle), veV(I)W,
AY (@)
g S T S 0)
A, = 2 Howerm =255 veViO©,
FOL ve VD)),
%, v e VH(F)(O)7
) T dlen)
(7)7 61)7 (/Uv 62) S F(F),
d(e)d(e) 4
A, = (e)
d(e)t "

The degree of ep(Ny¥Y) is

L+ Y (A—g) = VD + Y de)
)

veV'S(I)(0) e€E(T

=1+ > (1-g@)- VD9 +d
veVS(I1)(©)

We have seen that the virtual dimension of Fr is

20 -3+1(w+ > (9v) =1+ VDO
veVs ()
We have

20 -3+1w+ > (9v)— 1)+ V(1)
veVS(1)(0)

+1+ Z (1—g) = VD) 44
veVS(IT)©

=29—2+d+1(p)
as expected.
A.2 The bundle Vp
The short exact sequence

0— Oc(—D) — Oc — Op —0



A PROOF OF A CONJECTURE OF MARINO-VAFA

gives rise to a long exact sequence

()
0 — H’(C,0¢(~D)) — H'(C,0¢) — P Ox,
=1
- Hl(Ca OC(_D)) - Hl(Ca OC) —0

The representations of C* are

Up)

0— (1) = P(r) = H'(C,00(=D)) ® (r) = H'(C,00) @

i=1

So
er(Vp) = er(Vo)(ru)' ™1,

where

Vo = R'mOy, .

Recall that 7 : Uy, — Mg o(P!, 1) is the universal curve.

A.2.1 The target is P!

There is only one graph I'V in this case. When (g,1(u)) # (0, 1), (0,2),

consider the normalization sequence

U(w) L)

0— O¢ — Oc,, ®EP Oc,, — P Oy — 0.
i=1 i=1

The corresponding long exact sequence reads
U(p)
0— H(C,0¢) — H°(Cyy, Oc,,) & P H°(C,, Oc,,) —
i=1
Up)

HY(C,0¢) — H'(Cy, Oc,,) & P H'(Ce,, Oc,,) — 0

i=1

The representations of C* are
() ()
0— 1D — D

(7

i=1
— Hl(C Oc) ®

) (C”an OC@(]) ( ) — 0.

(1) — 0.

331
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So
iver(Vo) = Ay (Tu)
which is clearly also valid for (g,l(u)) = (0,1), (0, 2).
We have
iroer (Vp) = Ay,

0 )
where

AP =AY (ru) - (ru)! W71
Note that the degree of ifger(Vp) is I(p) + g — 1, as expected.

A.2.2 The target is P![m], m > 0

Given a graph I' € Ggyo(IP’l,,u), I' # T, consider the normalization
sequence

o @ oo @ on
veVS()OuV(r® ecE(T)

- @ Oy, & @ @ Ogpey | =0

veVI(T)© veVS(D)OUY (D)D) \ (v,e)eF
The corresponding long exact sequence reads

0— HY(C,0¢0) — P H(C,,0c,)® € H(C.,0¢,)
veVS () @Ouv(r)™ ecE(T)

- D 0@ &) D 9.

veVII(T)0) veVS(M)OuV(D)MD \(v,e)eF

—>H1(C, Oc¢)

= o, HY(C,,00,)® @ H'(Ce,0c,) = 0.
veV s () Ouv(r)M ecE(T)

The representations of C* are

0—(r)— D (ne D o)

veVS(T)Ouv ()M ecE(T)
- D me D D ™
veVII(T)(©0) veVSIT)OuUV (MM \(v.e)eF
—~ HY(C,00)® (1) — @D H'(Cy,0c,) @ (1) = 0.

veVS(I)Ouy(T)M)
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So

iter(Vp) = (ru) POFIVORL T AY (ru)
veV(T)

iter(Vp) = (ru) POI=IVID)H) H A;/(v)<TU)-

veV(I)
We have the following Feynman rules:
irer(Vp) = H A
veV(I)
where

AP —

v

A\g/(v) (tu) - (Tu)"al(”)_l, v E V(F)(O),
A;/(v) (Tu) - (Tu)l(“(”))_l v E V(F)(l),
Note that the degree of if.er(Vp) is

Y. (o) +valle) =)+ Y (g9(v) +Uu(v) —1)

eV (1)) veV (I
= Y g +ED@)| - [V(D)] +1(u(v))
veV(T)

veV(T)
=l(n)+g-1

=1U(pn) + ( Y 9w)+ED)| - V(F)+1> -1

as expected.

A.3 The bundle Vp,
A.3.1 The target is P!

There is only one graph I'V in this case. When (g,1(u)) # (0, 1), (0,2),

consider the normalization sequence

I(w)

0= f*Opi (1) = (fle,,) Op (1) @ P (flc.,) Opi (-1)

=1

L)
— @ Op1(—1)p, — 0
i=1

333
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The corresponding long exact sequence reads

0 — H(C, f*Op1(—1))
U(w)
— H"(Cuy, (floy,)"Op (-1)) @ @D HO(Ce,, (fle.,)* Opr (—1))

=1

— @O (1), — H(C, FOn (-1))

1(w)
H]Jl( 'U07(f‘CuO OIEM @Hl eis f’C )O]Pﬂ(_l))ﬁo

The representations of C* are

Up)
00— H(Cy, 0c,,) ® (-7 — 1) = P (-7 - 1)

— HY(C, f*Opi(-1))

X W) [d(e)—1 .
H (CUO,OCvO)(XJ(Tl)@@( <7d(e)>) -0,

We have the following Feynman rules:

itoer(Vp,) = A4 T AP¢,
ecE(T)

where

AR = A (= = 1)) - (=7 — D)/

(e)—1
Aé)d _ Ha 11( g (( e)T + )( u)d(e)*l_

It is easily checked that the above Feynmann rules are also valid for
(9,1(n)) = (0,1),(0,2).

Note that the degree of ij.er(Vp,) is d + g — 1, as expected.
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A.3.2 The target is P![m], m > 0

Given a graph I' € Gyo(P',u), I' # I'%, consider the normalization
sequence

0— f*Op(-1)
— &b (fle,) On(-1)& P (fle.) Op(-1)

veVS(T)Ouv (T eeE(T)
- B ol B (@ oﬂwm)
veVII(T)(© veVS(T)(©O \(v,e)eF

o P (@ (’)Pl(1)p1> — 0.
(

veV(T)D \(v,e)eF
The corresponding long exact sequence reads

0 — H(C, f*Op1(~1))
LD mCFeron)

veVS(I )(0>UV(F)(1>

& @ HCe(fle,) On(-1)

ecE(T)
— @ OHM( ) @ @ Op1 (_1)p0
veVII(T)() veVS(F)(O) (v,e)eF

©® @ (@ O]Iﬂ(l)m)
(

veV(@)M) \ (v,e)eF
— HY(C, f*Op1 (1))
. D HY(Cy, (flc,)*Opi (1))

veVS(T )(0>UV(F) (&)

® @ Ce, (fle.)* Opi(—1)) — 0.

ecE(T
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The representations of C* are

0— H°(C, f*Opi(-1))

- @B HC,Oc,)®

veVS (1))

(-r-e @ H(C,Oc)®

veV ()™

- P -ve P (@(71))

veVII(T)(0) veVS(T)(0)

- @ (@w)

veV(@) \(v,e)eF
— H'(C, f*Op (1))

- @B HY(C,Oc,)®

veVS (1))

ecE(T a=1

(v,e)eF

(-r-e @ HY(C,Oc)®

veV(I™

(e)-1
° 9 (H (- d@)))%-

We have the following Feynman rules:

ZFGT VDd

d(e)—
s _ I ()T +0

()0~

oo [Nl =)
A;/(U)(—Tu) - (—7u)valv) -t
(

HADd- H ADa

ecE(

( u)d(e)—l.

Note that the degree of ifer(Vp,) is

> (g9(v) +val(v) —

veV(T)

ve

veV(T)

D+ Y (de)-1)

ecE(T)

> gw) +2[ET)| - V(D) +d—|E]
V()

=d+ ( > g(v)+E(F)V(I‘)+1) ~1

=d+g—1

(=7 = Du)el=1 -y e V(I)©,
v E V(F)(l),

(_

(_

7)

7)
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as expected.

A.4 The obstruction bundle

Combining results in Section A.3 and Section A.2, we obtain Feynman
rules for the obstruction bundle

VZVDGBVDd.

A.4.1 The target is P!

We have
iroer(V)) = Ay, [ AY,
e€E(T'0)

where

Vo~ Vo

Ay = AD AD1 = AY (Tu)AY (— (7 + D)) - (Tu(—7 — 1))~
(

AV:ADADd:H &) l(d 6)p+a)

dode T W

A.4.2 The target is P![m], m > 0
For any I' € Gy (P!, p), T' # I'°, we have
H AUV ' H AX,
veV(T) ec E(T)
where
Ay (Tu) A (= (T + 1u)
AY = AP ADa — { - (Tu(—7 — 1)u)val)-1, ve V(I)O),
(—=1)9@)tvalw) =1z yri(®) gy ¢ y(1)d)

d(e)—
AV — AP pDa — Ha(:% l(d(e)T + CL) (_u)d(e)*l
e e e d(e)d(e)—l )

Recall that r1(v) = 2g(v) — 2 4 I(u(v)) + val(v) for v € V(I)V.
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