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FROM ONE BUBBLE TO SEVERAL BUBBLES:
THE LOW-DIMENSIONAL CASE

OLIVIER DRUET

Abstract

We study in this paper sequences of solutions of elliptic PDE’s with critical
Sobolev growth on compact Riemannian manifolds. We prove some com-
pactness results for such sequences which apply in particular to sequences
of solutions of the Yamabe equation. We also underline the effect of the
dimension and the geometry of the manifold on the blow-up behaviour of
such sequences.

Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 3, and H?(M) be the standard Sobolev space consisting of functions
in L?(M) whose gradient is also in L?(M). We let h be a smooth
function on M and consider equations like

(E) Agu+ hu = u* !

where A, = —div,V is the Laplace-Beltrami operator, and 2* = % is
the critical Sobolev exponent for the embedding of HZ(M) into Lebesgue’s
spaces LI(M). Such equations have been the target of investigation for
decades. They arise naturally in conformal geometry when h = C(n)S,,

C(n) = (n —2)/4(n — 1), where Sy is the scalar curvature of g. In this

case, if u is a positive solution of (E), then the conformal metric uﬁg
has constant scalar curvature. Equation (E) when h = C(n)S, is re-
ferred to as the Yamabe equation. Equations like (E) arise also naturally
in the study of sharp Sobolev inequalities. Possible surveys on the Yam-
abe equation, including the final resolution of the Yamabe problem by
Schoen [27], are [21, 28, 29]. Possible monographs on sharp Sobolev
inequalities are [9] and [18].
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We let in this paper (he).., be a sequence of smooth functions on
M verifying that there exists ho € C%(M) such that A, + hy is coercive
and such that

(0.1) lim he = ho in C%(M)

E—
and we consider (u.):>0 a sequence of smooth positive solutions of
(Ee) Ague + heue = ug*_l .

We assume that (u.) is of bounded energy in the sense that there exists
A > 0 such that

(0.2) limsup ||luc|3 < A
e—0

where, as in the sequel, ||. ||, denotes the LP-norm. Then, after passing
to a subsequence,

(0.3) lim ue = up weakly in HE(M)
£—

for some smooth nonnegative function ug, solution of the limit equation

2*—1
Aguo + houo = U .

We assume in what follows that (0.2) and (0.3) hold. Since u, is positive,
the maximum principle gives that either ug = 0 or ug > 0. If (u.) is
bounded in L*° (M), then, thanks to standard elliptic theory,

(0.4) lim vz = g in C%(M) .
E—
Throughout this paper, we assume that (0.4) is false so that
(0.5) lim ||ue||oo = +00.
e—0

Then the u.’s develop a concentration phenomenon. This concentration
phenomenon is well understood in HZ(M), thanks for instance to Struwe
[35]. Following Struwe [35], we get that, up to a subsequence,

N
(0.6) ue =ug+ » Bl+Re

i=1
where N > 1 is an integer, the B’ are bubbles obtained by rescaling
fundamental positive solutions of the critical Euclidean equation Au =
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u? !, and the R.’s are lower order terms in HZ(M), so that R. — 0 in

H?(M) as e — 0. A more precise definition of the bubbles is that

n—2

2
; Hie
BZ x) = )
(@) (N?,s + andg(z; e, x)Q)

where (z;.) is a converging sequence of points in M, and (p;.) is a
sequence of positive real numbers converging to 0 as € — 0. Here and
in all the sequel,

o
nin—2)
Moreover, the bubbles do not interact at the H?-level so that

Ay —

Jue||3e = [luol|3 + NAmin +o0(1)

where the minimum energy A, is given by Apmin = Kpn n/ 2, where

K, is the sharp constant for the Euclidean Sobolev inequality ||u|3. <
K||Vu||3. We refer to the above description as the H2-theory for blow-
up. The C%-theory, that we will use in this paper, was recently devel-
oped by Druet-Hebey-Robert [12, 13]. A special situation is when the
ue’s are of minimal energy, that is when A = Ay, in (0.2). In such a
case, thanks to the splitting of the energy in the above Struwe decom-
position, we easily get that either ug = 0 or u. — wug in C?(M). In
other words, either uy = 0 or blow-up does not occur. A first and naive
question we address in this paper is whether or not such an alternative
holds also when the bound on the energy in (0.2) is arbitrary, and, more
generally, whether or not the dimension of the manifold has something
to do with the vanishing or nonvanishing of ug. An independent natural
question when blow-up occurs is to determine the location of geometric
concentration points. When the energy of the u.’s is minimal and n > 4,
see for instance Druet-Hebey [9] and Druet-Robert [14], we can prove
that ho (T) = C(n)S, (T) where T is the geometric concentration point
of the u.’s. Another question we ask in this paper is whether or not this
continues to hold when the bound on the energy in (0.2) is arbitrary. A
positive answer to this question would provide another example of the
criticality of the Yamabe equation. At last, we address the question of
the compactness of solutions of (E.). This was first handled by Schoen
[28] in the case of the Yamabe equation. We refer also to Schoen [29, 30].

We concentrate in this paper on the low-dimensional case, where
3 < n <5. We say that the u.’s blow-up if (0.5) holds. We let then S
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be the set of the geometric concentration points of the u.’s, defined as
the set consisiting of the limits of the z; .’s as ¢ — 0. Independently, we
say that compactness holds for the u.’s if (0.4) holds. Our main result,
which answers the above questions for low dimensions, is the following:

Theorem. Let (M,g) be a smooth compact Riemannian manifold
without boundary of dimension 3 < n < 5. Let (u:) be a sequence of
positive solutions of (Ez). We assume that (0.1), (0.2), (0.3) hold. If the
ue’s blow-up, then ug = 0, and when n = 4,5, there exists xy € S such
that ho (z0) = C(n)Sy (x0), where S is the set of geometric concentration
points, and C(n) is as above. In particular, compactness holds for the
us’s if n = 4,5 and ho (z) # C(n)Sq (z) for all x in M. Compactness
holds also for the u:’s if n = 3,4,5 and he (x) < C(n)Sy (x) for all
x in M and all e, with the additional condition that (M,g) has to be
conformally distinct to the unit n-sphere if ho(x) = C(n)Sy(z) for all x
mn M.

The compactness result of the theorem in its last part applies to the
Yamabe equation, a situation where we recover the compactness result
of Schoen [28]. In particular, if (M, g) is a compact Riemannian mani-
fold of dimension n = 3, 4, 5, conformally distinct to the unit n-sphere,

. _ 4)(n=2) \ . .
and if (ge = ue g) is a sequence of conformal metrics to g of con-
stant scalar curvature 1 and of bounded volume, then the sequence (u.)
is precompact in C2(M). Our theorem, in its last part, was proved in
dimension n = 3 by Li and Zhu [24]. The proof of our theorem relies on
the C%theory for blow-up developed in Druet-Hebey-Robert [12]. The
paper is organized as follows: in Section 1, we describe the C°-theory
developed in [12]. Section 2 is devoted to the estimate of the distance
between concentration points and Section 3 deals with the special case
of almost isolated concentration points. The analysis of the distance
between concentration points was initiated (in the context of surfaces
of constant mean curvature) by Brezis and Coron (see [4, 5, 6]). At
last, in Section 4, we prove the theorem and give some results concern-
ing higher dimensions. We also provide some instructive examples of
blowing-up sequences of solutions of Equation (E.) in this last section.

1. A C°-theory for blowing-up sequences of
solutions of elliptic PDE’s

In this section, we describe, and give some consequences of, the
pointwise version of Struwe’s result (see (0.6)) obtained in Druet-Hebey-
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Robert [12]. We first recall the result which was proved in [12]. This
result and one of its consequence (Claim 1 below) are the starting point
for the analysis of Section 2.

Theorem ([12]). Let (M,g) be a smooth compact Riemannian
manifold of dimension n > 3, (he) be a sequence of smooth functions on
M satisfying (0.1), and (u:) be a sequence of smooth positive solutions
of Equation (E.) satisfying (0.2) — (0.3). Assume that (0.5) holds, that
is that ||ue|loo — +00 ase — 0. Then there exist N € N*, N converging
sequences (x;c) of points in M and N sequences (u;c) of positive real
numbers converging to 0 such that, after passing to a subsequence,

n—2

(1 —ne) uo ( CZ( Hie 2)

117 . + andg (e, )

n—2

2

< e () < (1+17e) o ( +Cz<u +d<9«“ x)2>

for allx € M and all e where C > 1 is independent of € and x and (n.),
independent of x, is a sequence of positive real numbers converging to 0
as € — 0. In particular, the u:’s are pointwisely controled on both sides
by ug and standard bubbles.

This result has important applications when dealing with sharp
Sobolev inequalities (see the monographs [9] and [18]). Other direc-
tions of research are the study of the energy function (see [19]). The
above theorem is proved in Chapters 4 and 6 of Druet-Hebey-Robert
[12]. Many asymptotic analysis of this kind are available in the minimal
energy case: we cite among others the works of Atkinson-Peletier [2],
Brezis-Peletier [7], Robert [25, 26] in the radially symmetric case on the
Euclidean ball, the work of Han [15] when dealing with solutions u. of
Aue = u2 —1=¢ on arbitrary domains of R", the work of Hebey-Vaugon
[20] on arbitrary Riemannian manifolds with h. — 400 as ¢ — 0. In
the case of the standard sphere, we refer also to Chang-Gursky-Yang
[8], to Druet-Robert [14], to Li [22, 23] and to Schoen-Zhang [34]. One
difficulty to get pointwise estimates when there are several bubbles is
that bubbles do interact at a C%-level except in dimension n = 3 where
one can prove a priori that the concentration points are isolated.

Let us come back to the above result. We let (z;.) and (u;¢) be the
points in M and the positive real numbers given by the theorem. We
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refer to Chapters 4 and 6 of [12] for all the following assertions: first,
we have that

(Tie, 33136)2

d
(1.1) for any i,5 € {1,...,N}, i # j, -2 — 400 as e — 0.
Hielje

Then we have that for any i € {1,..., N},

n

. 5—1
i% Mz?g u&‘ (expxi’e (ll'LZ,E‘/'U)) =u (x)

in C2. (R™\S;) where
u(@) = (1+ anlz2)' "2

is a solution of Agu = u?"~1 in R™, ¢ the Euclidean metric, and

eXpl‘rL}e (xj,t?) 9 J # 1 S.t. wj,E - Bﬁiﬁ <9(2)> } .

S; = {lim
e—0 Lje

In this definition, i,(M) is the injectivity radius of M and we assume
that the limits exist, which is always the case after passing to a new
subsequence.

Note that, as a direct consequence of the above theorem associated
to standard elliptic theory, one gets that
liH(l) u. = ug in C2_ (M\S)
E—
where

(1.2) S={z;,ie{l,...,N}} withz; = lim ;..
e—0

As proved in Section 6.3 of [12], the estimate of the theorem may be
precised: let us define Sy € C° (M x M) by

1 ife=y
SO (xvy) = 9
(n —2)wp1dy (z,y)" " Go (x,y) fz#y

where Gy is the Green function of Ay + hg, ho as in (0.1). The fact that
Sy € C° (M x M) comes from standard property of the Green function.
We refer the reader to the appendix of [12] for estimates on Green’s
functions of linear elliptic operators on compact manifolds. We let (x.)
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be a sequence of points in M such that z. — g as € — 0. Then we
have the following asymptotic estimate on u. (z.) as € — 0:

N

(1.3)  ue(x:) = ug (x¢) (1 +o0 (1)) + Z(So (Ti,x0) + 0 (1))<p¢,E (z2)
i=1

where for i =1,..., N, ¢; . is the standard bubble

n—2

2
Mie
(1.4) i (z) = : .
v 12, + andg (7, 7)°

Thanks to (1.1) and (1.3), we also have that Struwe’s H?-description
holds with the bubbles of the theorem (see section 6.3 of [12]). Namely,
we have that

N

(15) U = uO"‘ZSOi,E + R,
i=1

with || Re || g2(ary — 0 as e — 0. In the following, we shall always consider
that the concentration points are ordered such that

(1.6) fie < pioe <o < e

As alast remark, note that standard elliptic theory leads thanks to (1.3)
to the following if ug = O:

N n—2
e T o Mie )2 —
(1.7) ;1_1)% pylte=an > (n—2)wp ; (il_r)r(l) HN,5> Go (75, .)
in C2_(M\S), S and 7; as in (1.2).

We derive now from (1.3) an asymptotic estimate (Claim 1 below)
we will often use in the sequel. We first set up some notations. We let
j€A{l,...,N} and we let (6.) be a sequence of positive real numbers
converging to 0 as ¢ — 0. We set

(1.8) A0 ={ie{l,...,N} st. dg(zic,2j) = O ()}

Note that j € A(7,d:). Fori € A(j,d:), we let

1
(1.9) z; = lim — exp;jls (xie)
E :

e—0
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where the limits are assumed to exist (this is always true after passing
to a subsequence). We set

(1.10) £(.6) = {201 € AG,5)).
We let also
-3
(1'11) Ae (j756)_< sup Ni,e) 5?72
1€A(4,0¢)
and
(112)  cGa) = D0 (lim A (. 00) pe (@50) ) So (@, 7))

ke A(j,0:)
+ ;ii%()\g (4, 8¢ ) uo (%))

and for k € A(j,9:),
_n=2 9y -1
(1.13) A (J,6e) = an * lim ()‘E (J, 0e) 56_12”13,5 ) :

e—0

In (1.12), we assume that the limits do exist but they may be equal to
+o00. By convention, we say that lim._ g ()\6 (7, 0¢) ug (@)) =0ifug = 0.
We prove the following:

Claim 1. Let j € {1,...,N} and let (§.) be a sequence of positive

real numbers converging to 0 as € — 0. We assume that the following
holds:

(H1) A (j,6.) 02 2 — +00 ase — 0.
(H2) C(j7 55) < +00.

Then, after passing to a subsequence, we have that
21_1)1[1) e (7, 0c) ue (eXij,e (5gz)> = H (2)

2
in C} .

(R™\X (5,0:)) where

Ak (7,0, .
HE= Y UG,
keA(j,6¢)

All the notations of this claim were introduced in (1.8)-(1.13).
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Proof. Let j € {1,...,N} and let (d:).( be a sequence of positive
real numbers converging to 0 as € — 0. Assume that assumptions
ig(M)

(H1) and (H2) of Claim 1 hold. We let 0 < 0 < -5~ and we set for

z € By (60:'), the Euclidean ball of center 0 and radius d6; ',

(1.14) we (2) = (5§_1u5 (exp%E ((55,2)) and
9= (2) = expy, g (0:2).

Since 0. — 0 as € — 0, we have that

(1.15) lim g. = ¢ in C2 . (R™).

E—
Note also that g. is controled on both sides by £ in the sense of bilinear
forms. Since u. verifies Equation (E.), we have that w. verifies

(1.16) Ay w + 62he (expxjys (6573)) we = w? 1

in By (55;1). We claim that for any R > 0, there exists C'r > 0 inde-
pendent of € such that

RN
(1.17) Ae (4,02) 0e 2 [l < Cr

Lee (Bo(R)\UkeAu,as)sz (%))

for all € > 0 where A (j,0.) is as defined in (1.8), z; is as in (1.9) and
A (J,0¢) is as in (1.11). In order to prove (1.17), we let R > 0 and
we let (z¢) be a sequence of points in By (R) \ Ugc a(j,s.) Bz, (). After
passing to a subsequence, we may assume that lim._g 2. = z5. We let
Te = €xpy,, (0:zc) and we write thanks to (1.3) and (1.14) that

(1.18)
Ae (7, 0e) 651_57115 (2e) = Ae (J, 0) uo () (1 +o0 (1))
N
+ A (7.02) Y (S0 @, ) + 0(1)) e (ze) -
=1

Thanks to (1.12) and to assumption (H2), we have that, up to a subse-
quence,

(1.19) ;1_{% Ae (7, 0¢) uo (z) = ii_r)%()‘s (J; 0c ) uo (fj))

407
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where this limit is finite and is by convention equal to 0 if ug = 0. Let
ke A(j,0:). By (1.11), we have that

n_y
2 n_
<M§’E) < 0¢ 1>‘5 (J, 5&)71
13
which leads thanks to (H1) to p; . = 0(d:). For € > 0 small enough, we
1

o(
have thanks to (1.15) that dg (2c, zr,c) > 550 so that

dg(z:tk,s) — 400
as € — 0. This leads with (1.4) to
. —n;2 , 2-1 “n
APl = |on™ +o()] A Go ks dy (e

= M (4,02) |20 — 26> " + 0 (1)

where A (j,0¢) is defined by (1.13) and is finite thanks to (1.11). Since
ke A(j,6:) and 6. — 0 as € — 0, we clearly have that T, = T; so that
So (Tk, ;) = 1. Thus we have obtained that

(1.20)
for any k € A(j,0¢) ,

gli% )\5 (.]7 55) (SO (Ekajj) +o (1))9016,6 (xa) = )‘k (]a 56) |Z0 - Zk|2_n .

Let now k & A (j,d:). Since dg (zj¢,x:) = O (0.) and dg(xﬂ'(»sii’x’m) 4o
as ¢ — 0, we have that

so that
lim Pk,e (ma)
e=0 Ppe (Tje)
Thus we obtain that for any k & A (3, d),

=1.

gli% Ae (]) 5&) Pk.e (xa) = ;1{)% Ae (]a 65) Pk.e (xj,a)

which does exist, after passing to a subsequence, and is finite thanks
o (H2). Combining (1.18) with (1.19), (1.20) and this last relation, we
get that

13

lim A, (j,6:) 82w (2) = H (20)

where H is as in Claim 1. In particular (1.17) is proved. Standard
elliptic theory permits then to conclude thanks to (1.14) — (1.17) that
Claim 1 holds. q.e.d.
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2. Estimating the distance between bubbles

For any j € {1,..., N}, we set

(2.1) Aj={i#j st pje=0 (1)}
and
(2.2)
s /vLj,E 2 3 =
73eq . . . . f =
Tje =

min {.min (Mj’E dg (Tie,2je)” + Mi,suj,s> ;Mj,s} if up # 0.
i€A; \ Mie

If A; =0 (which is possible only for j = N) and ug = 0, we let ;. =1

for all € > 0. Note that, thanks to (1.1),

(2.3) lim —2£ = 4o forall j €{1,...,N}.
e=0 e

The aim of this section is to get an estimate of r;. in terms of p;.. If
7je does not converge to 0 as € — 0, we say that (., 1) is an almost
isolated concentration point. We deal with almost isolated concentra-
tion points in Section 3. We treat in the following claim the case when
rje —0ase— 0

Claim 2. Ifn = 3, there ewists 69 > 0 such that liminf, g7, >
oo for all j € {1,...,N}. In other words, the concentration points
are isolated in dimension n = 3. Assume now that n > 4. Let j €
{1,...,N} be such thatrj. — 0 ase — 0. Then the following assertions

hold:

(i) After passing to a subsequence, we have that

n

. _9 1- —n=2 1
by %) (e, (729) =007 (i )

in C2 _(R™\X;) where

loc
Ej = {Zj,k‘7 ke BJ} U {0} ?
B = {k+#j, dg(zjec,xre) = O(rjc)} and
1
Zjk = lim— exp;js (xks) , k€ B;

e=07j
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and where A\
, _ Nk .
hi(2) = Z |z — zj k|72 T
keA;NB; I
with n_q
. Mke\?
Ajk = | lim
’ e—=0 ;e
and
_”T—Q - 7. 7)1 n—2 1_%
an Tep = ), So@ed) lim (1t ke (@)
keA;j\B;

: n—2 1*% =.
+lim (17205 o (7))

(ii) We have that

(10 @3) = C@)8, @)+ 0 (D) tn (- ) =24, 0

when n = 4 and that

(ho (T;) — C(n)Sy (T;) + 0 (1)) s "

2
rn 3 (=22 (0 — 1)
an, 8 (n _ 1) Wn—11; (0)
when n > 5. Here, C(n) = 4(7;;21) and a,, = m Moreover,
hj (O) >0

(iii) If ho (T;) > C(n)Sy (T;), we have that Vh; (0) = 0.
Proof. Let j € {1,...,N} be such that
(2.4) lim - = 0.

We want to apply Claim 1 to (j,7j.). We let B; be as in Claim 2 so
that B; U {j} = A(j,7je), A(4,7je) as in (1.8). We verify that the
assumptions of Claim 1 are satisfied by (j,7;.). First, by (2.4), rj. — 0
ase — 0. Let k € A;NB;. Then we have that dg (zj., zc) = O (1<) s0
that, using (1.1), (2.1) and (2.2), we obtain that pug. = O (pj). Thus

(2.5) for any k € A; N By, pie = O (1) -
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If £ ¢ Aj, by the definition (2.1) of A;, we have that pu. = o (pje).
Thus for any k € Bj, pre = O (pj,). This gives that there exists C > 0
such that

, nq g
(2.6) C <X (fyrje)p2e 12" <1
for all e > 0 where . (j,7;,) is defined by (1.11). By (2.3), we thus get
that

n

1
3 - 2 __
lim A (5, 7je) 15 * = +00

so that assumption (H1) of Claim 1 is satisfied. Let k & B;, k # j, that
is k € {1,..., N} such that

dg (The, Tje)

Tje

— 400 as e — 0.

We write thanks to (1.4) and (2.6) that

2
‘ o= " Mk e
(e () e (7)) 72 < 22 , |
] B Hie Mz,a + andg (Tje, xk,e)Z

If £ € Aj, we get then by (2.2) that A (j,7)c) @re (ze) = O(1). If
k & Aj, then py . = o(pj.) and we write that

(e (Gy756) re ( ))425 < L e e
JrTie) Phe (L)) 772 < -
e\ Tje e\T)E an Hje dg (xkﬁ’ xj’E)Q

=o0(1)

since k & Bj, k # j. If up # 0, then rjzﬁ < pje by (2.2) so that (2.6)
gives that A; (j,7j¢) < 1. We have thus proved thanks to (1.12) that
assumption (H2) of Claim 1 holds. Applying Claim 1 to (j,7;c), we get
that assertion (i) of Claim 2 holds for j thanks to (2.5) and (2.6). In
order to compute c;, note that, as just proved, if k € A;, k & Bj, k # j,

then r}fjujlgagokﬁ (je) — 0 as e — 0. We claim now that
(2.7) hj (0) > 0.

Let us prove this claim. If A; = 0, then r;. = 1 if ug = 0, a situation
which is excluded by (2.4). If ug #Z 0 and 7“]2-75 = U, we have that

n—2

¢j > an® ug () >0
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so that h; (0) > 0. Assume now that A; # () and that there exists

k € A; such that

r2_ = Hie
HEk.e

J,€
If k£ € Bj, then hj (0) > 0 since, by (2.1), >‘j7i > 0 for all 1 € .Aj N Bj. If
k & Bj, we write thanks to (1.4) that

dg (I'j,s, xk,a)Q + Wjelbke-

2 2 2
o 1-n =) Mo + dg (T, Thye)
(7“1-1 2#' *Pke (xj,E)) = : > 1
he e M%,a + andg (e, xk,E)Q

so that h; (0) > 0 in this last case. Relation (2.7) is proved. Note that
(2.7) is the second part of assertion ii) for i = j.

Let us set
(2.8) Cj = {k‘ S Bj s.t. Zjk = 0}

where z;, is as in Claim 2. Let k € C;. If k & A;, then pp. = o (1)
and if k € Aj;, it follows from (1.1), (2.2) and (2.8) that pr. = o (1;c)
also. Thus

(2.9) pie =0 (pje) forall k € C;.
We let
HE,
(2.10) 57 ke = ,ngg (Ther i) + Bictiie
7,€

for k € C;. Note that, by (2.3), (2.8) and (2.9), we have that
(2.11) Sjke =o0(rje) forall k eC;j.

We let now D; be a subset of C; and (Ry,) keD; be a sequence of positive
real numbers such that

dg (xk,z-:y $k’,e)

(2.12)  for any k,k' € D;, k # K/, .
1K€

— 400 ase — 0

and such that

(2.13)  for any k£’ € C;, 3 a unique k € D; such that

. dg (Tke, Trr R . Sj k! R
hmsupM < =k and lim sup =25 < Tk
e—0 S5k, 1 e—0  Sjke 10
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We claim that there exists C' > 0 independent of € such that for any
k€ Dj,

Ry
(2.14) for any x € By, . (RkSjke) \Ba,. (4Sj,k,s> )
L
[Vuelg(z) < Cuks 3]1];; ue () < C,u,f’e Sikz :

The proof of this claim is based on Claim 1. We check that we can
apply Claim 1 to (k,s;jrc) for k € D;. First, by (2.4) and (2.11), it
is clear that sj,. — 0 as e — 0. Let i € A(k,sj.), that is i €
{1,...,N} such that dy (e, Te) = O (sjke). Since dg (Tie, xje) <
dg (Tic,xpe) +dg (The,je), we get thanks to (2.8) and (2 11) that i €
C;. By (2.13), we then have that s;;. = O(sjre). By (1.1), (2.9)
and (2.10), dg (zic,2ke) = O (sjhe) = 0( (azjg,a:ka)). This leads
thanks to the definition (2.10) of s;; . and s 1 to pjc = O (pg,e). Thus
pie = O (pg,e) for all i € A(k,s; ). This gives the existence of some
C > 0 such that

21 9_
(2.15) C <A (k, Sj,k,s) :ukz,g Si,kz <1

where A (k,sj ) is defined by (1.11). This implies in particular that

1-2 Qk nT_Q d ($ Tk )2 nT_Q
Ae (K, 8jke) 8542 ZC< - E) 20<W>

Nk; £ Mk elhje

so that Ac (K, sjk¢) slzg — +00 as € — 0 thanks to (1.1). This proves
that assumption (H1) of Claim 1 holds for (k, sj ). Leti & A (k,sj k),
that is ¢ € {1,..., N} such that

dg (Tie, Te)
Sjk.e

— 400 as e — 0.

In order to estimate (A: (k, Sjkc) @iz (Te)), we write thanks to (1.4)
and (2.15) that

2
2 Sjke i e
(216) (e (b sype) e () 72 < 20 7 |
( ) e " ) ) Mk e /%2,5 +andg (l‘i7€’xk7€)2

We distinguish several cases. First, assume that ¢ € C;. Then, by (2.12),
(2.13) and thanks to the fact that M — 400 as € — 0, we get
j, yE
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that
dg (Tge, x;
(2.17) A (T i) — 400 as e — 0.
Sj7i75
This gives that
2 2 2
dg (xi,é‘u xk,s) _ dg (xk,sv xi,e) dg (551',57 xj,s) i Hije
/'ng,s 5?,1'75 Hielj.e e

— +oo0 ase — 0

thanks to (1.1). Thus (2.16) becomes in this case

Pk dg (xi,sy xk,s)

2 i 52.
(>‘€ (ka Sj,k:,a) Pie ("L‘kﬁ)) n—2 — () (” € J.k,e 2) .

We write now thanks to (2.10) that
HE.e

J?E

e £ 2555 (dy (i) + dy (@0, 03,)°) + st

so that we get that

2

()\5 (k, Sj7k75) ()072’5 (l‘k,e)) n—2
=0 (’U’Z’E> +0 (Mz,s dg (l'i,sal‘j,s)Q 4 Mie g e )

Hj.e Hj.e dg (-Ti,zsa xk,5>2 dg («Tz',ea xk,s)Q

| o2,
:o(’“) +o—2E )=o)
Hje dg (wi,saxk,s)

since i € C; and thanks to (2.9) and (2.17). Second, assume that i = j.
In this case, (2.16) becomes

) 2
e W+ dg (e, T e)
()‘z-: (K, Sjke) Pie (wk@)) S 2%6 E 2
Wi+ andg (Tjes Thye)

<n(n-—2).

Third, assume that ¢ ¢ C; and that ¢ € A;. Then we write with (2.16)
that

2

(Ae (k, Sjke) ie (The)) "2

d (ZE'E,l'kg)Q e
< | 293708 TRET 4 J
= , X d 2"
Hj.e Mi,& + an g9 (:L"L:E’ 'rk‘,E)
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Since i ¢ C;j and i # j, we have by (2.8) that
dg (wic,2re) = (1+0(1))dg (zie, Tje) -

Since k € Cj, we also have that dy (xj.,xrc) = 0(rjc). Since i € Aj,
this leads with (2.1) and (2.2) to

2
/%2,5 +dg (Tje, Tie)

2
2 dg(2i,e,25,e)
Hie + n(n—2)

(A (K, 8jkc) i (Tre)) "2 = O =0(1).

At last, assume that i € C;, i € A; and ¢ # j. Since i € C; and @ # j,
we have as above that

dg (Tie, Tpe) = (1 +o (1))dg (Tie, Tje) -
Since ¢ € A;j, i # j, we know that p;. = o(uj.) so that, by (1.1),

dg(Ti,e,Tje)

=% — +00 as € — 0. Thus (2.16) becomes in this case

2

(Aa (k:, Sj,k,e) Pie (xk,e)) n=2
1, d j,€9 € 2 1,eMg,e
_0 Lg(w;,s:vk,)Q Lo Mietie
Hj.e dg (-%’,57 xj,z—:) dg (J;i,sa xj,e)
=o0(1)

since p1ie = o(pje) and ¢ € Cj, i # j, and thanks to (1.1). Thus we
have proved that

for any i € A(k,Sjke) s Ae (ky8jke) Pie (Tre) = O (1).

Assume that ug Z 0. Then we can write thanks to (2.10) and (2.15)
that

2 2
M (bosip)is < Sike o o (@othe)”
E ? ]7 75 —_ _— j7€
/’Lk,&‘ ,ulj,g

ri
= 0(/@‘,5) +o(l)=0(1)

using (2.2) and (2.8). Thus assumption (H2) of Claim 1 is verified by
(k,sjke). We can apply Claim 1. This proves (2.14) thanks to the
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choice of Ry, we made. Indeed, by (2.11), any i € A (k, sj ) belongs to
C; and by (2.13), we get then that

X (k‘,sj',k,g) C By <R5k> .

This clearly ends the proof of (2.14) thanks to (2.15).

We let now n : [0,+00[ — R be a smooth function verifying that
0<n<1l,n=1on [O,ﬂ and n =0 on [%,—Foo[. We set

(2.18) Oje = H <1 —n (dg(xke’)>> and vj. = 0jU..

keD; Riesjke
We claim that there exists C' > 0 independent of ¢ such that
(2.19) ’Uj@ S C(pj’g in ij’g ((5]'7’]'78)

where §; € R is fixed such that

(2.20) 5j < min{]zj,k], ke Bj\Cj, k # j}

N

It is possible to find such a d; thanks to (2.8). The proof of (2.19) is
based on (1.3) which gives that there exists C' > 0 independent of &
such that

[[uol] oo + Pk (T)
Pje ()

L(:E)<C 1+

je () Pje ()

oy

for all x € By, (§;7j). As well as ;. and J; have been chosen so that

ool , - 9 ) _
Pj.e (m) keC; Pi.e (JJ)

for all # € By, (0;7,) for some C' > 0 independent of € (see the proof
that the assumptions of Claim 1 hold for (j,7;.)), it is easily checked
that s . has been defined so that

Pke (z)

<C
Pj,e () —

for all x € M\ By, . (%sﬁk@). These two assertions, whose proofs are
left to the reader, imply (2.19).
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We set

(2.21) Aje :{(y, v,0) e M xR} xR s.t.

1 v 1 1
d 1,€9 S 'Euig §27_7§9§7
g (Zjey) < py, 2= e B 2}
and we let (yjc,vje,0j:) € Aj. be such that
2.22 J: ; o0 0) = i J: 0
( ) e (Yjes Vi, biie) (y,yf?f&j,s e (Y, v,0)
where
dy (y, . 2
B0 = [ 19 (0(B22) @ @400, av,
M T j,e g
with
n—2
(223 by (1) v 2
. L (z) = .
v V2 + andy (, y)2
We claim first that
(2.24) Jje Wje,Vje,0j) =0 ase — 0.

In order to prove (2.24), we first note that (z;., ft;¢,0) € Aj. so that

Jj,E (yj»s’l/j»s’gj’E) S Jj’E (xjv‘?’/'Lj:E’O) °

‘We write now that

(e, -
Jje (Tjes pje,0) = /‘ ( ( 25, Z,E ))("Uj,e_@j,e))
7,

2
(Vje — @je)” dug

2
dvg
g

2 5
T I Ba; . (0m5,\Bu; (i)

+C/ |V (v — @j,g)‘i dvg

rj e)
where C' > 0 is some constant independent of €. Thanks to (2.3) and
(2.19), it is easily checked that

lim —— (Vje — ‘Pj,s)2 dvg =0

1
e—0 1"2 9j
jie / Bej (075,e)\Ba, (77“3',5)
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so that we obtain that

(2:25)  Jje (Yje Vie, Oic) = O (/B IV (vje = pse) d”g) :

;e (8575.e)
We write with (1.5) that
(2.26)

/ IV (vje — ‘Pjye)‘z dvg
(6575,¢)

<C V(056 = 1) i) |2 dog
Ba;. - (0575.¢)

+ CZ/ UMSOZ',E)’; dvg

i£] 1]5(6 T3, s)

+C IV (0cu0)| dvg +C IV (0 Re)2 dv.
BI]',E(&]'T]',E) sz75 (lsz]"E)

with [|Re||g2(as) — 0 as € — 0. We write that

/ 1V (0o Re) 2 doy
(0 Tj s)

-0 < / Vol R dvg>
;e (0575.e)
10 (/ VR0 ]Edvg>
2 (057j,e)
=0 (/ |Vaj,g|§ R? dvg> +o0(1)
Ba; (857j,¢)

since R, — 0 in HZ(M) as ¢ — 0. Thanks to (2.12) and (2.18), we have
that

/ IVoje \3]{2 dvg
Bo, (5

e (03T5.e)
2
/ RE dvg
kGD ke Backg RkS]ké‘

2
1 1 n
=0 X 2 Vol (Bfﬂk,s <QRij,k,s>> |1 [3-
-]’ ’6

kE'D]‘
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with Hoélder’s inequalities. By Sobolev’s inequalities, since R, — 0 in
H?(M) as e — 0, we finally obtain that

(2.27) / . )|V(aj,€R€)y§ dvg = o(1).
T Tj,e

In the same way, it is easily checked thanks to (2.12), (2.18) and to the
fact that we assumed (2.4) that

(2.28) / 1V (a5u0)|2 duy = o(1).
Bay (Gr1)

'j.e

Let now i € {1,...,N}, i # j. We write thanks to (2.12) and (2.18)
that

/ 1V (ajei0) ) du,
z;

2
(pz,e dUg
kGD ]kt’:‘ szg Rksjks \szs( Rksj,k,s)

+0 / r
zj,e 0375.¢)\Ukep; Bxk,s(%Rij,k,s)
2
¢ 1 (‘0175 dvg
sz’s wjrjﬁ)\uke’DJ' sz,a (ZRij,k,a)

2%
2
o] ey,
Ba; (8;7j,e)\UkeD; By, . (5 Risjk,e)

If i € C;, (1.1) and (2.10) give that SMJZ—’; — 400 as € — 0 so that, by
(2.12) and (2.13), we have that

1
3316 R/’sz U Bmks <4Rk8j7k75>

keD;

S —

for all R > 0 as soon as ¢ is small enough. Direct computations give
then that

/ (Il doy = o).
@) e (5jTj,E)\UkeDj By, o (ZRksj,k,s)
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If ¢ ¢ Cj, direct computations, distinguishing whether ¢ € A; or not,
give the same result thanks to (1.1), (2.1), (2.2) and (2.20). Thus we
have that for any i € {1,..., N}, i # j,
(2.29) / IV (05002 dvy = 0 (1).

Ba; (857j,¢)

At last, we write thanks to (2.12) and (2.18) that

/B o) V(05 = 1) je) |, v,
z; \0jTj,e

1
=0 w5 dv
kgj Sg’k’e szs(%‘g? kE) e !
10 / Vs 2 dv
kgj sze(RQ SJ’V5> e !

By (1.1), (2.9) and (2.10), we have that

dg (The, Tje) 4o ase —0

Sjk.e
so that
2 2 dg (Tje, T 6)2 o
Pie =0 pi" |1+ ———5—— and
Hje
—n
_ndg (Tje, xp, )2 dg (Tje, Tk, )2
|V<,0j75320 Mjﬁn g J€2 e 14 % 362 e
Hje Hje

in By, . (%sjykﬁ) for all k € D;. Thus we have that

/B o) V(05 = 1) 05) | vy
z; e \05T5,e

Sjk,e 2 dg(xjaaxks)2 o
o3 ()7 (ot

kGDJ IUI']’F; j,E

n 2 2\ N
+0 Z <SJ}(€75> dg (xj,saxk,s) <1+ dg (xj,z-:Q»xk,a) )

2
rep,; \ Hie Hje Hje
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By (2.9) and (2.10), we have that for any k € D;,

Sike _, <dg (@i, W) +o(1).
Hje Hje

This easily leads to
2
/ IV((0je —1) pje) ’g dvg =o0(1).
Ba; (857j,¢)

Coming back to (2.26) with (2.27) — (2.29) and this last relation, we
obtain that

(2.30) lim IV (vj.e = 9j.2)|2 dvg = 0.

0B, (55m50)

Thanks to (2.25), this proves (2.24). Let us prove now that

. do (2 s
(2.31) lim@;. =0, lim Hie _ 1 and lim 292 Yie) (5.1 Yje)
e—0 e=0 Ve e—0 Wje

=0.

Note that, by the definition (2.21) of A;., all these limits exist after
passing to a subsequence. We write that

2
Tie (Yje: Ve bje) = / ‘V(Uj,s (v = (1 +052) %}e))‘ dug
M g

where

dg (Yje, -
77j75 = <g(],£)> and Q’Z)jvg = ¢yj157l’j15'

253‘7“]"5
Then we write that

(2.32)
Jj,s (yj,z-:a Vje, Hj,z-:) = ”V (nj,svj,a) ||% + (1 + ej,s)Z HV (nj,swj,s) H%

—2(1+46;c) /M(V (Mievie) » V (mese)) , dvg.
This leads in particular to

2
Jje (%,87 Vijes 93‘,5) > (HV (773}6“]',8) ||2 - (1 + 9]',5) ||V (ﬂj,a%'ﬁ) ||2) .

Thanks to (2.3), (2.19) and (2.30), it is easily checked by direct com-

putations that lim. o ||V (njcvjc)]l2 = Kn *. Independently, direct
computations give thanks to (2.3) and to the definition (2.21) of A;.
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that ||V (njcje) 2 — Kn_% as ¢ — 0. By (2.24), the above relation
then gives that 6;. — 0 as ¢ — 0. Coming back to (2.32), we then get
that

im [ (V(njevje) .V (0jeje)), dvg = Ky ?
e—0 M g

which leads in turn thanks to (2.19) and (2.30) to

lim y (V (Mjepie),V (Uj,e%‘,e))g dvg = Ky,

e—0

n
2

But this last relation is easily seen to be possible if and only if % —1
and % — 0 as € — 0. This ends the proof of (2.31).
7,€
Let 0 <0 < w We set for x € By ((57“]-_’51), the Euclidean ball of

center 0 and radius (51“]-_61,

(2.33) gje (@) =expy  g(rjez),

By (2.4), we know that
(2.34) lim g;. = ¢ in . (R).
E—
Note also that g; . is controled on both sides by the Euclidean metric in

the sense of bilinear forms. Since u. verifies Equation (E.), u;. verifies

) A e |
(2.35) Agj,s Uje + rj,shy,aum =Uje

in By (57?751) Independently, using (2.3), (2.31) and (2.33), one gets

since assertion (i) of Claim 2 holds for ¢ = j, as proved above, that

li Tje %_1 7%72 1
(2.36) im | == Uje = n 22 + h; (2)

e=0 \Vje
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in CZ.(R™\X;) where ¥; and h; are as in Claim 2. By (2.20), we have
that

;N By (5]) = {0} .
At last, (2.19) together with (2.31) gives the existence of some C' > 0
such that for any € > 0,

(2.37) Bje (z) < Cibje in By (65)
where
n—2
2
~ VjeTje
w ‘7 T Js b
je (2) T anr T [P

We write
(2.38) T = (14 05¢) e + wje

where w;. € C°(By (6;)) and

w=n(x).
! 20;
We express (2.22). Differentiating .J; . with respect to 6, we obtain that
(2.39) / (V (0¥ ) - Vwse)  dv,,. =0,
Bo(85) i

Differentiating J;. with respect to y, we get thanks to (2.36) and (2.38)
that

(2.40) / \Y n-a%’s Vw; dv,. . = O (”“)H
' Bo(8;) T ow )T e Tje

9j,e

for all ¢ = 1,...,n. At last, differentiating J;. with respect to v, we
obtain thanks to (2.39) that
(2.41)

S ey

/ Vo njlel” | 1+ an—5 s VWi e dvg; . = 0.
Bo(d5) Vj,e
9j,e

The aim is now to estimate fBO(5j) |ij75]3j _dvg, .. We write first thanks
to (2.38) and (2.39) that

/;0(6J) ‘Vw]75|g],5 dvg‘]@ - /;O(éj) (vw],E; v (UJUJ’E))g],E dvg],s

= / wjvaAgj,e (77]7[}/‘7,8) dvgj,s'
Bo(5;)

423
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Writing thanks to (2.33), (2.35), (2.36) and (2.38) that

*

wjAg; - (Mj05e) = (j056)"

+0 (w995, [Vuiel,, )

. n—2
+ 0 (”LU]',€| |Agj7€5j75| Ujﬁ) + 0 ((W,e) )

Tje

2 ~
Wje — 15 hje (MjV)e) wie

~ ~ox_1| ox—1
JFO(‘UJ}E*%’,& ‘uj,a \wj,5|)

in By (d;), we get that

(2.42)

2
/ |ij7€|gj75 dvgj,s
Bo(85)

_ TV e d 2 hs . . d
= (n;).e) Wje QUg; . — T e de (MjVj.e) Wie Vgj,e
Bo(55) By (55)

J

+0 (/BO((Sj) |1Uj7€| |VO'j,g e ]Vujﬁ Gie dvgj,s>
. n—2
T 0 / |wj7‘5| ‘Agj,aajyg Uj e dvgj e + 0] <V]’8)
Bo(®5) ’ Tje

For any k € D;, we set

1 _ Ry, Ry
Bj,k‘,E - 7,7 eXpy]:}g <sz,5 (zsj’k’€> \sz,é‘ (48j7k7€>) :
J,€

Using (2.12), (2.14), (2.18), (2.33), Holder’s and Sobolev’s inequalities,
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we get that

/BO( ) |wj75‘ |vo-j75’gj7€ |vuj7€|gj75 dvgj,e

d;

7
= O Z ]76/ |wj75‘ ’vuj@’gj’s dvgj,s

S5 .
keD; “IkE I Bjne

z 1

5 Ni_
j : Tje k,e
= O n 1 / ‘wj75| dvgj,s
kep; Ike Sjke I Bike

S35
Tie Mie 251
=0 (> 444;5;4447HUU£H2*‘QHQL5(lgﬁkﬁ) 2
kEDj JR,E
pre \ 2
o[ (&) ) ivus,
keD; NT)E

In the same way, one also gets that

/ |w]75| }Agj,s&jﬁ‘ uj,E dvg],s
Bo ()

d;
pre \ 2!
—o( [ X ()" ) 1wl
keD; \Ike
and that
~ 2* 1|, 251
0-'7 ‘ u] € |w]75| dvgg €
BO@

||
/_\
7;
w
(‘)
\:
<
&£
o
o

since pige = 0(Sjke) by (2.9) and (2.10). At last, we write thanks to
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(0.1), (2.33), (2.37), Holder’s and Sobolev’s inequalities that

2 ~
Tj,e/ hje (NjVje) wie dug, .
Bo(45)

2% 1
o~ 2* 2*
Vw, |l P2 dv,,
Jell2 7,€ 9j,e
Bo(5;)

which leads with direct computations to

2 ~
Tie / hje (MjVje) W dvg, .
Bo(45)

d;

) n—2
:o(|ij75||§)+o<(:J’g> ) +0(V]37€).

J,€

_ 2
=0 Tie

Plugging these estimates into (2.42), we obtain that

(2.43) (14 o(1)) / Vw2, _du,,.
Bo(d5) ”

~ \2r-1
= /B (6 (V)" T wjedug, . + o0 (V3,)
0

)
» n—2 m 51
€ ,€
co((Z2) ol (X ()" ) imu.

Relations (2.24) and (2.38) give that

Jj7€ (ijs’ Vj,E’ Gj,E) = / |ij7€|3j,5 dvgjva - 0
Bo(85)
as € — 0 so that Holder’s and Sobolev’s inequalities permit us to write
with (2.38) that

(2.44) / (njaj,a)y_l Wye dvgj e
Bo(d;) ’

. 2*—1
=1+ 9]'75)2 ! / (Uﬂ/’j,s) Wy,e dvgj,s
Bo(d5)
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Direct computations give now thanks to (2.36) and to the Cartan ex-
pansion of the metric g;. around 0 that

Vw; .,V (0

/Bo(éj) ( 7, (%dﬁ,e))gj’
~ 2*—1

= / (ﬁﬂba‘,a) Wje dvg; .

Bo(35)
+0 |7, / |x|212]2;*1 |wj | dvg, .
Bo(85)
U n—2
Vg dvgj,e> ‘o ((j) )

vo(i. [ |vi
Bo(65)

so that, using (2.39), Holder’s and Sobolev’s inequalities, we get that

~ 2*—1
/ (nj%‘,s) Wj,e AVg; o
Bo ()

2* 2%
2 7ox 1) -1
2 / <|$| e ) dvg, .
Bo(45)
2
alvgj’E
9j,e

dfugj7E
€

=0 7“32-75 ||ij,&‘

N |=

+0 (2wl ([l
Bo(35)
n—2
+0 <V“> .
Tje
After simple computations, we finally obtain that

~ 2*—1
(2.45) / (77j1/1j,6> Wi dvg; .
Bo(45)

—0 (('/]E)nQ) +0 (V) + o[ Vwiel3)-

,,’..776

Coming back to (2.43) with (2.44) and (2.45), we arrive thanks to (2.31)
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to

(2.46) (1+o(1))/ yvu;j,gg,sdvgjg
Bo(5)) " ’

-~ 2% _9 U n—2
= 2*—1/ 1 w?, dvg, .+ O <“)
( : Bo(5;) Gb%e) e Tje

21
2
+0 Z (“’“) IVwjcll2 | +o(3,)-

s
keD; \“Ike

Let us now consider the following eigenvalue problem:

259
Ay, Cie = Tie (77j'(/}j,5> Gie in By (05)

(2.47) Gie =0 on 9By (9)

~ 2*x -2 _n
/ (njwj,s) Ci,s(k,s dvgj,s = Ky 20
Bo(65)

with 7 <.-- < 7. <.... By the result of Appendix 1, we know that

(2.48) liH(l) Tie = 7; for all i € N*
e—
and that
(2.49) lim ‘V (C — ¢ ) ’ dvg. . =0 for all 1 € N*
e—0 Bo(55) ’ ’ 9j,e 9re

where

_ NE-l o
(2.50) G = (”5) G (”5 x)
Vj7£ V]78

with (¢;, 7;) the solutions of the following eigenvalue problem:

AgCi = Tiu2*—2€~i in R"”

/ u? 726, dvg = K;%&‘k-
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Thanks to the work of Bianchi-Egnell [3], we know that

(2.51) G=u, =1,

9
G=h— =2 1 fori=2,....n+1,
01

2 _n_
Goa2 = Anga | u— ————claPun=? | e = 2" — 1,
n(n — 2)
where Ao, ..., A\y12 are some positive real numbers and that
(2.52) Tnag > 25 — 1.

Let us now write that

n+2

Wje = Z QieGie + Rje
i=1
with
(2.53) o Imoey (Vs VGie)y, @V
. i, —
f30(5].) |VQ’,€’§J-,E dvgj,s
so that

/B (TR VG, dvy, =0

fori =1,...,n+ 2. In particular, we obtain thanks to (2.48) that

2.54 / VR; % dv,,.
(2:54) Bo(5j)’ ieclos M,
~ \2-2
> (Tnts +o(1)) / (Wj,e) Rj dvg,, -
Bo(4;)
We also have that
2.55) / Vw; |2 dv,, .
( BO(6j) ‘ J‘E’gg,s 93,

n+2
n

=K,? Y el + /

i=1 Bo(9;

s€

2
| VR;[2  du,
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thanks to (2.47). At last, we can write that

(2.56) /B y

We now estimate the a; .’s. We write thanks to (2.47), (2.49) and (2.53)
that

_n
Ky’ eQie = /
Bo(s

9j,e

It is then easily checked that

/BO(5j) (ij,e,v <Zi’6>>gj,s Aoy, = O ((2;)712)

for i = 1,...,n 4 2 thanks to (2.39), (2.40), (2.41), (2.50) and (2.51).
Thus we obtain that

n—2
y
o2, = of [y [3) + o (() ) -
€

Then (2.55) becomes

n—2
N
Vel + o (1) = o0 (() ) VR

Tje

and (2.56) becomes

~ 2*—2 9 ~ 2*—2 9
/ (njl/}jﬁ) Wi e dvgj,s = / (nﬂ/}j,&) Rj € dvg; e
Bo(d;) Bo(d5)

n—2
5
o[ Vuyellf) + o (() ) .
Tje
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Using (2.46), (2.52) and (2.54), we thus obtain that

(2.57)
Vi n—2 m n—2
2 _ J5€ 3 €
2_0((%) )+o<uj,s>+o > (L)
b ke’D] vy

We claim now that

n—2 n—2
V‘? Mk"7
(2.58) 83 =0 ((é:) > +olvie) +0 Z (Sj ki)
’ keD; 7

In order to prove this claim, we first note that

V5, v, = [ (Vunlduy,
/Bo(5j) T gge Bosy) e

J

||ij,€

2

+ (1 + 9j,5)2 /Bo(éj) ‘V (nj{[}/j7g> .

thanks to (2.38) and (2.39). Direct computations lead then with the
Cartan expansion of the metric g;. around 0 to

v (n;;,
L ¥ (5)
-~ 2 ) oo~
_ / V| dz+o 2. / 22 |V
Bo(d;) Bo(5)
Vs n—2
+O<<J’6) )
Tje
_n Vs n—2
= K’Vl 2 +O (‘7’8> +O(Vj,€)'
Tje

We thus get thanks to (2.31) and (2.57) that

, dvg, .
J2,€

2
dvg; .
9j,e

2
dm)

(2.59)
n—2
~ -z Vie
[ Vol o, K a0 0 (42)
BO((;J‘) ’ r.]7€

+0 Z(“’“’6>n2 +o(vje).

o
keD; N IkE
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Independently, using (2.33), (2.35) and (2.36), we have that
/ o IV,

~ 2% ~ 2
= / (n0je)” dug, . — 13, / hje (njUje)” dog,.
Bo(8;) Bo(8;)

i
n—2
, 5 , Vje
+0 </Bo(5j) Ve i |v0-]75’gj76 Uje dvgj,a> +0 ((Tj,s) )

+0 / ‘Agj,aajvf‘ uis dvg, .
Bo(d5)
1o / 52 2|2, )
< 30(5]) J,€ 7€ J,€ g],

Following what we did to estimate the different terms of (2.42), we
deduce from this equation the following:

IV (0T, . dvg,..
Bo(4;) Bo(d;)
U n—2 m n—2
wo(22) ol T ()
Tj7€ kIEDj Sj,k:,e’;‘
Writing thanks to (2.38), Holder’s and Sobolev’s inequalities that

/ (njaj,E)Q* dvgj,e
Bo(85)
* ~ 2%
=(1+ ej,s)z / (Uj¢j,€) dvgj,e
Bo(6;)

* 2% -1 AN
+ 2 (1 + 9]',5) (m%;) Wy.e dvgj’s
Bo(45)

J

12
He </Bo(6j) Vel dvgj,s)

and thanks to the Cartan expansion of the metric g; . around 0 that

~ 2% _n Vs n—2
/ (T]j?[)j’g) d’l)gj’E =K,2+0 ( J.75> +o (Vj,g) ,
Bo(85) Tje
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we get thanks to (2.31), (2.45) and (2.57) that

n ) n—2
[ e = (40,07 KaF 40 () o)
Bo(d5) ’ Tje

+o| Y (‘fk’5>n_2

S
kep; ' hke

Using (2.37), it is easily checked that
e / hie (0j0e)° dvg,,, = o(ve).
Bo(6;)

Thus we arrive to

~ 2
/ VO,

J

n ) n—2
—(1+40,.) K,240 (<V”) > +o(vje)

Tj,s
n—2
o(z ()

kep; \Sike
Combining (2.59) with this last relation, we get (2.58).

We now apply the Pohozaev identity with test function f = %|x!2,
to uje in Q. (see Appendix 2) where

]€_BO \ U Qk,ja
keD;

R
-1 -1 k
Qj,k’,& = rjzs eXpyJ’E <Bwk,€ <2$j7k78 )

We thus have that

with

25 1
(2.60) /Q | (r e+ 3 (Vhje. V1), +Z(Ag]€)2 f s dog,
7,€

1
:/Q (Agﬁf—i—n)u dvg,;

n .
J»€

* / (V2f = 95¢) (Vtje, V) dug, . + A
Q

J,€
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where A, is the boundary term

1
],

n—2
— Uie(VUje, v doy,
9 /69ij ]75( 7, )gj,e 9j,e
2
1 o« 75
2 € 1. 2
_/ (vf, V)gj,E §Uj7€— 2 h]ﬁujﬁ dO‘gj’E
Q.

1
t5 [ (Bgf+n)ue(Vue,v), dog,.
2 Jog,. Ii.e

1
- /aQ]-,E (V(Ag,.f) ,V)gjﬁu?’6 dog, .

where v denotes the unit outer normal of 9;.. Note that, by (2.11)
and (2.12),

0Qj e = Ugep, 08 ke U IBy (65)

and the union is a disjoint one. We denote by Aj. the part of A,
corresponding to d€); ;. .. Noting that, on 0%, .,

Ry,
1|V < dg (Yjer The) + 5 Sike

we can estimate Ay . thanks to (0.1), (2.4), (2.10), (2.11), (2.14) and
(2.34). This leads to

—2
Ak’g -0 (( Hk.e )n <1 n dg (yj7a, l‘k,s)))
Sj7k7s Sj7k7€

for all k € D;j. In order to estimate the part of A. corresponding to
0By (0;), we use (0.1), (2.3), (2.4), (2.31), (2.34), (2.36) and the explicit
form of h; given in Claim 2, point (i). We finally obtain that

(261) A== ZI (0) (Vj’5>n_2 + <Vj’5)n_2
. e = 70,” wni . 0 -
2 v Tje Tje

n—2 .
oy (uk,a) (Hdg(yafk))

kGD]' Sj7k75 Sj7k75
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Since (nj{/;j,a) is radially symmetrical, noting that o;. = 1 in Q;., we
get with (2.31), (2.34), (2.36), (2.38) and (2.57) that

(2.62) /Q (V2f = gjc) (Vuje, Vuje) dog, .

7€
" n—2 m n—2
€ ,€
=0 (j > +O(V]375)+0 Z( ‘ )
ija kGD]' Sj7k75

The Cartan expansion of the metric g;. around 0 gives that

1.
Agjyef +n= gRngj’E (0)5 xFat

1 m
50 (10l ) ol 4 0 (1 fol)

in By (6;) where Ricy, . denotes the Ricci curvature of g;. and where
|gj.c| is the determinant of the matrix ((gj.c),;). Since ¢, =1 in Q;,
we can write thanks to (2.3), (2.31), (2.36), (2.38) and to the fact that

(Jj,g) is radially symmetrical that

/ (Agj,s f+ n) u?tr dvg; .

J,e

1 9 2* ~ox 3 n—2
_ U+0e)" Ricy, . (O)kl/ aFal 2 dr + o (Vj’a>
3 ’ Bo(5;) ’ Tje
+0 <7‘12-7€/ \g;|2{/;j2.;—1‘wj75| dx) +0 <r;{€/ \a;|4{/;j2*8 dm)
Bo(d;) Bo(d5)

J J

2*
2x .

2 2 72+ 2
+ O | rje Z / 2| dvg,. | +O (Tj,anwjﬁ
keD;  Lik.e

Using (2.57) and (2.58), this leads thanks to Hoélder’s and Sobolev’s
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inequalities and to some explicit computations to the following:

(2.63)

/ (Agjgf —|—n)u dvg, .

Jr€

n__n Vi n—2 m n—2
= - Kn 28 (yj)vie+o| [ +o0 E e
3 Tje Sjk.e
keDJ vy

+ O T]EZ/ ]ac| szdvgjs +0(V;’75).

keD;

Let k € Dj. We write that

e [ lal03du,.
ke

n
Vig
= dQ (yj@? x)2 = dvg.
/sz’e (%SM'S) V]%E + andg (Yj e, z)”

Let us assume first that dg (y;e, k) = O (Sjke). Then we write that
for some R > 0 large and for € small,

e [ lal03du,.

J,k,e

n
Vi
< / dg (%@7@2 o 2 dvg .
Byj,e (st»k,f‘?) V]%a + a”dg (yjﬁ’ x)

Independently, by (1.1), (2.9) and (2.10), we have that s; ;. = o(dg(z;,
@p,e)). Thanks to (2.31), we then obtain that sjx. = o (vjc). Thus we
get that

8n+2
2 2,72* _ Jik.e
Tj,E/ ‘x’ wj,ﬁ dvgjvf - O ’I'L
Qjk,e
2n
. ( Hk.e > Sik,e
Sjke j,euk,a

Since we assumed that dg (y;, E,xk )
(2.9), (2.10) and (2.31) that s2, =

O (sj k), we also get thanks to

e O (Vjepike). Thus, since pp. — 0
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as € — 0, we have obtained in this case that

fire \" 2

2 2 7o _ £

Tj,e/ || Yiedvg, . =0 ( > .
Qj ke Sj.k.e

g(yj,avwk,s)

d .
Let us assume now that ™~ — 400 as € — 0. In this case, we
J,R,€

can write that

2 2 T2
rj,a/ || %‘,a dug; .
Qj,k,s

Sjk " d (y Tk )2 —-n
o (st () (1) )
Ve Vie

We write then thanks to (1.1), (2.10) and (2.31) that

Sjke ) e \" 77 1k dy Wie wre)\"
< s 75) — O < 75) € 1+an g j7€27 €
I/j7€ sj,k’,&‘ Vj,E Vj,&‘

so that we get that

2 2 72%
rj,s/ ’x| wj,e dvgj,s

L

—92 2
. H.e " dg (yj,€7 xk,a)
- O Mk751/j7£ 2 2 :
Sjk.e V5 e + andg (yj,a?, xk,a)

This gives that the estimate of the first case also holds in this second
case. We have thus obtained that

n—2
~o% M,
(2.64) rf,s/ |2 *43 dvg, . = o <<8> >
Qj,k,s S]7k76

for all k € D;. Let us estimate the left-hand side term of (2.60). Using
(0.1) and the Cartan expansion of the metric g;. around 0, one gets
that

2 1
oyt (VR VE), (2,0 f

1
= r?,s (hE (Yje) — 659 (Zh‘,s))

3 1
+ (QT?,Eakhj,a(O) + 30k (Agm f) (0)) 40 (1 [zf?)

437
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in By (6;) so that we obtain with (2.4), (2.31), (2.36), (2.38) and the
fact that (@Zjﬁ) is radially symmetrical that

TQ'E 1 2
[, (e e 90, 4 (00,02 i,
J,€

1 -
=T (hs (ve) — 55 <yj,€>) (1+0;.)2 / 2. du
Bo(d5)
n—2
+o (Vﬁ)
Tje

2 ) 4
+ 0 Tie Z / Vie dvg, . | +0O rj75/
kED; Qj ke Bo(5;

3 dx)
J

+0 TJZ,E/ Jj@‘“’jﬂdi) +0 (TJQ-,E/ \wj75|2dx> :
Bo(45) Bo(55)

J

This leads thanks to (2.4), (2.57) and (2.58) and after computations
similar to those developed above to prove (2.63) and (2.64) to

TQ'E 1 2
/Q <r§7€hj,g+;’(th,a,vbf)gj’ﬁ 7 (B )" f w3 dvg, .
J,€

64ws?. In CJE) ifn=4
J,€

= (e )~ 50 030)) %

4dn—1) -—=» )
(n_4)Kn 2’/]2,5 ifn>5
Vs n—2 m n—2
co(22) ) et vo X (22)
j7€ keDj ]7k7€

Coming back to (2.60) with (2.61) — (2.64) and this last estimate, we
finally arrive to

(2.65)
3

Vje Vje HE,e dg (yj@ $k,a)
ZWQhJ (0) Tie o < ‘ > +0 E < ) ( +

Sj,k,e
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when n = 3, to

(2.66)

(he (3) — C(0)S, (y3))r2. In (1>

Vje

sze Mk e 2 dg (yj ey Lk s)
o 0wt (T 30 (225 1+ el

j,E keD] Sj7k75 Sj7k7€
when n = 4, to

(2.67) (he (yj.c) = C(5)Sy (ys.2))r5evie
= 9VI521; (0) + 0 (1)
Ws

+0 T;),s Z <,Uk,5 )3 <1 + dg (yj,€>$k,5)>
3

Vj,& kEDJ Sj7k75 Sj,k,&

when n = 5 and to
(2.68)
(hs (yje) — C(n)S, (yj,e))r;ts_2y;‘l,;n

_ n—-4 (n-2)7°
4(n—-1) 2

rie\" pee \" dg (Yjer The)
co(() 7 5 () (1 ol
Vj’g kGDj Sj,k‘,E Sj:k:E

when n > 6. In these relations, C(n) = 48;_21).

ai_"Kn%wn,lhj (0)+o(1)+o <T"72V57")

j7a j7£

We prove now point (ii) of Claim 2 by induction on j. Let us start
by j = 1. Assume that r1. — 0 as ¢ — 0. Note that, by (1.6),
A1 ={2,...,N}. We write with (2.2) that

H1e

2
e |27
£

dg (5731,57 xk,s)Q + p1ellk e

for all k € {2,..., N} which gives thanks to (1.1) and (1.6) that dg (1,
Tpe) > 7"1,6(1 + 0(1)) for all k € {2, .. ,N}. Then C; = () where C; is
as in (2.8) and thus D; = (). Then (2.65) leads to a contradiction when
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n = 3 since hy1(0) > 0 by (2.7) and :i: — 0 as ¢ — 0 thanks to (2.3)
and (2.31). Thus, in dimension n = 3, ‘we have that lim inf. o7 > 0.
This proves that the assertion of Claim 2 in the case n = 3 holds for
j = 1. For n > 4, since D; = 0, (2.66) — (2.68) clearly lead thanks to
(0.1) and (2.31) to the assertion (ii) of Claim 2 for j = 1.

Let now 5 € {2, ..., N } and assume that the assertion of Claim 2 for
n =3 holds for i = 1,...,7 — 1 and that point (ii) of Claim 2 holds for
t=1,...,7 — 1. Assume moreover that ;. — 0 as ¢ — 0. Let k € Dj.
Thanks to (1.6), (2.1) and (2.9), we have that k < j and that j € Aj.
Then, thanks to (2.2) and (2.10), we obtain that s; ;. > r,.. By (2.11),
since we assumed that r;. — 0 as ¢ — 0, we get that r, . — 0ase — 0.
If n = 3, since k < j, the induction hypothesis gives a contradiction so
that we get that D; = (). As above, we deduce then from (2.65) that
the assertion of Claim 2 in the case n = 3 holds for j. Assume now that
n > 4. Let k € D;. We write with (2.10) and (2.31) that

dg (Yjer The) _ dg (Tje, Tre) 1o < Hie > -0 ( /Njﬁ) _
Sjke Sj,k,e Sjk.e HEk.e

Thus, since sj . > 71 and thanks to (2.9),

HE.e n2 dg (yj ey Lk a) Hie [ Hke n2
() (i) o () )
Sj ke Sj ke HEke \Tke
Since k < j and 7. — 0 as € — 0, we can apply point (ii) of Claim 2
to k to obtain that

-2
(£82)" (1 sl
Sj,k,€ Sj7k7€

Thanks to (2.9), this leads to

O( Lii,uz,sln (ﬁ)) ifn=4

o (/1) it n > 5.

1
2 .
— * In [ — fn=4
< e )n 2 (1 dg (yj,z-:4’ :ng)) - ’ (MJ’E ! (Wf)) o
Sj.k.e Sj.k.e

0 (,u?,e) ifn>5

for all k € D;j. Then (2.66) — (2.68) together with (0.1), (2.31) and this
last estimate clearly lead to point (ii) of Claim 2 for j. This proves that
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the assertion of Claim 2 for n = 3 holds for all j € {1, e N} and that
point (ii) of Claim 2 holds for all j € {1, e ,N} when n > 4.

It remains to prove point (iii) of Claim 2. We assume throughout
the end of this section that n > 4. Let j € {1, ... ,N} and assume that
ho (Z;) > C(n)Sy (7). Then, thanks to point (ii) of Claim 2, we have
that

1
1\ 2
(2.69) rje =0 [In < > if n =4,
Hj.e

_n—4
rie=0 (;@7 "2> if n > 5.
We let 0 < d < J; and we set

Qe (6) = Bo (6)\ UkeD; Qj ke
By integration by parts, we have that

(2.70) /Q

j,s( an,E(é)

2O
_ / 0.y ZOME o
29.. () ||

forall v =1,...,n. By (2.11) and (2.12), we have that
an,e (5) = UkeDj(?Qj,k,a U 9By (5) ,

the union being disjoint. Using (2.36) and the explicit form of h;, we
get that

(2.71)

li (’”ﬁe)n_z/ (1 A% ‘2 Loy B “"iai“jf) d
1m - S| VUjele 77 — OyUje—— | AO,
0\ \ ;.0 o8ty \2 | TEE [z T T g ¢

= a2 (n — 2) wp—10,h; (0).

Let k& € D;. Thanks to (1.6), (2.1), (2.2), (2.9) and (2.10), we get
successively that k& < j, that j € Ay, that r, . < s, and that rp . — 0

as € — 0. Applying point (ii) of Claim 2 to k, we thus obtain that

1 \z2
Ol|ln ( ) ifn=4
1 Kk e

(2.72) =

Sj,k,e

_n—d
o(iF) e

441
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for all k € D;. Thanks to (2.14), we get that

. n—2 7,,7}71 IurkaQ
<Vﬂ) /a V=0 25t ),
J7€

G Sk
for all k € D; which gives thanks to (2.9), (2.31), (2.69) and (2.72) that

) n—2
<TJ6> / |Vuj75]§ doe¢ =o0(1).
Vje o0

J,k,e

gk,

Coming back to (2.70) with (2.71) and this last estimate, we arrive to

n—2
r
lim ]’€> / Oy e Actii o dx
(2.73) e=0 ((Vj,e Q.0 & )
=a; " (n—2)wp—10,h; (0).

We write now that

(2.74)

/ Oy ujeAguje dr = / Bvuj,eAgj,sujﬁ dx
Q;.(8) Q;,¢(8)

—1—/ Oy Uj e (Agum — Agj’suj@) dz.
Qj (6

By Equation (2.35) and some integration by parts, we obtain that

1“2. Vs n—2
/ 8'Yuj75A9j,suj75 dz = ]778 / a’yhj’gu-?ve dr +o <]7€>
Q,(8) ,(5) Tje

using (0.1), (2.3), (2.4), (2.9), (2.14), (2.31), (2.36), (2.69) and (2.72) to
estimate the different boundary terms. Noting that ;. = 1 in ;. (6),
we get with (0.1), (2.33) and (2.37) that

2 n—2
rj,s/ P 2 3 / o) (Vj,s)
== hicus_dr=0|r; Yvi_ dr ) =o —=

2 25,¢(5) e - Bo(4) - Tje

thanks to (2.31) and (2.69) so that we arrive to

) n—2
(2.75) / Oy e Ay, Ujedr =0 <VJ’E) .
2.2 (5) ’ Tje
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We write that

(2.76) / Oy j e (Aguj,g — Agj’sujyg) dx
Qj,s(é)
— / 8,7'&]‘75 (g]Ojf — 6aﬁ> aaﬁuj@ dl'
Qj,e(é)

. / 9o (V1931957
Qj,s(‘S) V ’gjﬁ‘

By integration by parts, we get that

/ Oy Uj e (g]af — 5‘“5) Onplje dx
Qj,:—:(‘s)

1 o
= 2/ 87 (gj,aﬁ) 8auj758ﬁuj,5 dx
Q; 5(5)
Yie

n—2
— Oa of O 0 e dr + 0 ( >
/Qj,sm (53) s ( Tje

using (0.1), (2.3), (2.4), (2.9), (2.14), (2.31), (2.36), (2.69) and (2.72) to
estimate the boundary terms. Thus we arrive with (2.76) to

Buj7ga—yuj’g d.’L‘.

/ Oy uje (Agujﬁ — Agj,suj,tf) dr
Q;,e(6)

1 Vs n—2
= 2/ 0y <g;fsﬁ) Oattj eOpuje dx + 0 <<375> >
€,(9) Tie

op0a (VIgicl) 5 o
" 95— 7 9BUieOyUje dx.
2. (6) V0gjel

With an expansion of the different terms involving the metric g; . around

/ %P xVdog =0
8B0(1")

for all «, 8, v and all » > 0 and writing thanks to (2.38) that u;. =
(1+6;)v¢je +wje in Q. (0) for 6 > 0 small enough since 7. =1 in

0, noting that
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Q- (8), we obtain that

/ 87’[1,3"5 (Aéuj’g — Ag]-,suj’g) dz
Qj,s(‘s)
U n—2 "
() o Ll
Tje " JBo(5)
+0 732-75/ || ‘V{Ej@
Bo(9)

) r]%EZ/ |x|‘wj,5
Qj,k,s

kEDj

2
dx)

‘ij,€| dx) +0 (T?,EHij,eH%)

2
dx

Using (2.14), (2.57) and (2.69), one easily checks that this leads to

n—2
»
/ Oyuje (Aguje — Ag, uje) dz =0 ((96) ) .
Q;,c(5) T

Coming back to (2.73) with (2.74), (2.75) and this last relation, we get
that 0yh;(0) = 0 for all £ = 1,...,n. Thus point (iii) of Claim 2 is
proved. q.e.d.

3. Almost isolated concentration points

We consider in this section the case of an almost isolated concentra-
tion point. We just sketch the arguments since they mainly follow the
lines of those developed in Section 2. We thus refer the reader to the
corresponding parts of the previous section for details on some of the
assertions below. We let j € {1,..., N} and we assume that

gi_r}% rje =19 > 0.
Thanks to the definition (2.2) of 7, this implies that
(3.1) ug =0,
that

(3.2) pie = O () forallie{l,...,N}
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and that

(3.3) forany i € {1,..., N}, i # j, pje =0 (pie) = T; # T;.
It comes then from (1.7) that

1-z n=2 771
(3.4) ;iirtl)uj762ugzan 2 (n—2)wy_ 12(?2(1)#]6) Go (T4, .)

in CZ . (M\S), S as in (1.2), where Gy is the Green function of Ay + hy.
Let us set

(3.5) Ci={ke{l,...,N}, k#j st. T =7}

Thanks to (3.2) and (3.3), we have that

(3.6) for any k € Cj, pre = 0 (pje) -
We let now
HE,
(3.7) Sike = o (The Tje)" + Wjeine
-]78

for k € C;. Note that, thanks to (3.6),
(3.8) Sjke =o0(1) forall k € C;j.

We let now D; be a subset of C; and (Ry,) rep,; be a sequence of positive
real numbers such that

dg (xk,ea xk’,e)
Sj ke

— 400 ase — 0

(3.9) forany k. k' € D;, k # K/,

and such that

for any k' € C;, 3 a unique k € D; such that

3.10 d S T
( ) lim sup I\TEE TR E) (wk’e Tk ’a) < & and limsup ———= Sik'e < Rk
e—0 Sjk.e 1 e—0  Sjke 10

We claim that there exists C' > 0 independent of € such that for any
ke Dj,

Ry,
for any x € By, . (RiSjke) \Ba,. 4 Sike |

21 9_
Vuelg(z) < Cpfl'shm ua(e) < Oufl ' s50.

(3.11)
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The proof of such a claim is based on Claim 1 and follows exactly the
proof of (2.14) in Section 2. We let n : [0,400[ — R be a smooth

function verifying that n = 1 on [0, i] and n =0 on [%, +o00 [ We set

d .
(3.12) Oje= | | <1 - (ngZSk:E))> and vj. = 0jUe.
j:k,

kJEDj

It is easily checked thanks to (1.3) that there exists C' > 0 independent
of € such that

(313) Vj.e < C@j,a in Bl’j,s (5])

where d; € R% is fixed such that

8 < g min{dy (75,7), k€ {1, NY\G, b # 5} and 65 < (M),

N |

We set

(3.14) Aj.= { (y,v,0) € M x R} xR s.t.

1 v 1 1
dg (.Tj,‘s,y) S Hije s 5 < [je S 2, _5 S 0 S 2}
and we let (yj.,Vje,0jc) € Aj be such that
(3-15) Jj,s (yj,sa Vjes 9]’,5) = (y,u{g)iélAj’g Jj,s (ya v, ‘9)
where
dg (v, -) ?
Jje(y,v,0) = / ‘V (77 (géé> (vje = (1+6) ww) dug
M j g

with ¢, , as in (2.23). Let us prove that
(3.16) Jie (WjerVje 0je) — 0 ase — 0.
Note that (2, ftje,0) € Ajc so that

Jj75 (ijs’ Vj757 ajvs) S ijs (:Ej757 lLLj757 0) °
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We write then that

dy(Tic,.
Jjﬁ (xj,ﬁnuj,ﬁv 0) = / 'V <77 (g(2g,)> (Uj,e - @j,s))
M J
C

2
(Vje — ®je)” dug

2
dvg
g

- Ba; . (6;)\Ba; . (57])

+C |V (vje = i) ‘3 dvg

sz,s (6J)

where C' > 0 is some constant independent of . Thanks to (3.13), it is
easily checked that

lim (Vje — @je)* dvg =0
— [ J,€ 2,€ g
0B, (5,\Ba; . (%)

so that we obtain that

B17)  Jie Wie Vie,0e) = O </ IV (vje — 95e) | dvg) -

J,€ (§j

We write with (1.5) and (3.1) that
[, 19 i) ey

<C V(05 = 1) @je) I3 dvg
ij’g((sj)

oy / 1V (0 00ic) 2 dvg

+C |V (0;-Re) \g dvy.

BIj,E (6])

with [|Re[|g2(a) — 0 as € — 0. Following the proofs of (2.27) — (2.29)
and of the relation preceding (2.30), we then estimate all the terms of
the right-hand side of this relation. This leads to

(3.18) lim IV (vje = je) |2 dvg = 0.
e—0 ij,5(6j) g

Thanks to (3.17), this proves (3.16). As in Section 2, we deduce from
(3.16) that
(3.19) lim 0;. =0, lim “2€ =1 and lim o (s Yje) _ g

e—0 e—0 Vje e—0 e

447
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Let 0 < 30; <6 < ( ). We set for z € By (0), the Euclidean ball of
center 0 and radius (5

(3.20) gje (x) = expy, g (2),
e (@) = ue (exp,, (@) .
Bje (@) = he (exp,, . (@)
5 () = 0y (exp,,, (2)) and
B (2) = G (@) s () = v (exp,, . (@)

Note that g;. is controled on both sides by the Euclidean metric in the
sense of bilinear forms. Since u. verifies Equation (E.), u;. verifies

(321) Agj,euj7a + hj75uj,£ ?5_1
in By (). Note also that (3.13) just becomes
(3.22) Uje (¥) < Cje in By (6)

where
n—2

2
7 Vje
()= —E—— )
Vje (7) <V]275+an|x|2>

(3.23) NV = (14 05.2) njije + wje

We write

where wj. € C2°(By (9;)) and

e}

We express (3.15). Differentiating J; . with respect to 6, we obtain that

(3.24) /Bo(é.) (V <77j1Zj,s> ,ij,g)gjs dvg, . = 0.
J ,

Differentiating J; . with respect to y, we get that

o, -
(3.25) /15’0(6-) (V (ﬁj 8;;) ,ij,g> dvg, . =0 (ij€ 2)
Jj g

jre
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for all ¢ = 1,...,n. At last, differentiating J;. with respect to v, we
obtain thanks to (3.24) that

2 -3
(3.26) / V| il [ 1+ an@ , V. dvg, . = 0.
Bo(4;) Vie
9j.e
The aim is to estimate fB0(5‘) \ijﬁlgj dvg, .. We write first thanks to
j € 5
(3.23) and (3.24) that

/ |Vw;
Bo(d;)

2 ~
dv,, . = / Vwj., V (n;Uie)) dog, .
9je Y5, BO(&)( J:€ J71E )gj,s 93,

= / wj,sAgj,e (Wjij,s) dvgj,s'
Bo(d;)

Writing thanks to (3.4), (3.19), (3.20), (3.21) and (3.23) that

~ ~ 2*—1 ~
wieAg, . (NjUje) = (V)" wje — hje (NjU)e) wie
+0 (|l (9554l Vel )

~ —2
4O (w2l [y, 55 uy2) +0 (122

~ o 1| 21
+0 (‘Uj,s —0je ‘uj,e |U)j75|>

in By (0;), we get following the proof of (2.43) and using (0.1), (3.6),
(3.7), (3.9), (3.11), (3.12) and (3.22) that

(3.27) (1+0(1)) / yvu;j,a@j,s dvg, .

Bo(6;)
o ~ \2*—1 3 F-1
- / (njVj¢) wjedvg, . + 0 (ija) + O <ij€ vaj75H2)

Bo(45)
n_q
- Bke \?
+0 (y;fj) +o (> (S) | Vaw; c|l2
keD; \IkE

Relations (3.16) and (3.23) give that fBo((S]-) [Vwjels, dvg,. — 0 as
€ — 0 so that Holder’s and Sobolev’s inequalities permit to write with

449
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(3.23) that

(3.28) / (0j0j.)% " w;e duy,
Bo(d;) ’

+o / Vw; |2 dv,. | .
<B0(5j)‘ el gj,)

Direct computations give then thanks to (3.4) and to the Cartan ex-
pansion of the metric g;. around 0 that

Vw;e,V (1) dvy. .
/Bo(6j)< . (WJ@DJ,E))%E 95,
~ \2"-1 2521
- (nis)” wjedvg,, +0 227 Jwje| oy,
Bo(d;) Bo(8;) '
+0 / 2l | Ve dvy,.. | +0 (V2
Bo(85) 7 ’

so that, using (3.24), Holder’s and Sobolev’s inequalities, we get after
simple computations that

~ \2-1
/ (17]-1/@-,5) wje dvg, . = O (V;?Q) +o (1/5’»’6) + O(HijﬁH%)
Bo(85)

n_q
+0 (v I Vuwsellz)

|Vw; e

Coming back to (3.27) with (3.28) and this last estimate, we arrive
thanks to (3.19) to

(140(1)) /B mywj,e\gm du,, .
0\9j5

=(2*-1) /Bo(é‘) (779‘%8)2*_2 wje dvg,. + O <V£€_2>
;

n_g

ke \° 21

o ([ 32 (2) ) 1) 0 02050 (v 19usl).
keD, Sjk.e
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Considering an eigenvalue problem like in (2.47), we then follow the
lines of Section 2 and use the lemma of Appendix 1 to obtain that

3=0 () +o () +0 Z(”.’“’a)nz

S
kep; ' hke

(3.29) Hij,g

We also get, following the proof of (2.58), that

(3.30) ej,gzo( Vi )+o(ujg)+0 3 <%€>nz

S
keD; N hkE

We now apply the Pohozaev identity with test function f = %|x!2,
to uj. (see Appendix 2) in

Qe (0) = Bo (6) \ U Qje

kEDj

for some ¢ > 0 small enough with

. Ry
Qe = exPy, (Bﬂ”’“’f (285”’“’5» '

We thus have that

1
(3.31) / “ <h]€+ (Vhie, V1), + 7 (8. f> u? dvg, .

Q
:)"_‘m

/Q Agjﬂgf + n)u?s clvgj’E

jE

+

/ ((S) VQf - gj>5) (vuj»s’ Vu.jvs) dvgjvs + AE
] €

where A; is the boundary term

1 2
A= 2 [V,
© /8Slj,e(6) (2 ‘vuj’g‘gj,s (Vf’ V)gj,s

_(Vuj,E,Vf) (Vujs, )g >ngJE

n—2

— Ui (VUig, v do,.
376( 3,6 ) , 95,
2 /aszj,a(a) Gie P07
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1 o 1
- AV o — Zh 2 do...
/‘99]',5(5) ( f’ V)gj’E (2* uLE 2 J,Euj’5> O'g]‘S

1
T3 /‘99j,5(6) (Ag, . f +n)uje(Vuje, V)gj,s dog, .

1
4 /89]-,5(5) (V (Agj,sf) 77/)9” uis dog,.

where v denotes the unit outer normal of 9€2;.(6). Note that, by (3.8)
and (3.9),

8Qj75(5) = UkE'Dj 8Qj7k75 U dBy (5)
and the union is a disjoint one. We denote by Aj. the part of A,
corresponding to 9€2; ;. .. Noting that, on 0, .,

Ry,
IV < dg (Yje, The) + 751'71%87

we get thanks to (0.1), (3.6), (3.7), (3.8) and (3.11) that

n—2
=0 (( e > (1 Ly <yj,s,xk,5>>>
S5k Sjk,e

for all k € D;. In order to estimate the part of A. corresponding to
0By (6), we use (3.4). We finally obtain that

(3.32)
A — n—2 Mk e n2 dg (xk,e,yj,a)

5—(14]'(6)—1—0(1))1/]»6 +0 Z —= I

' keD; Sjk.e Sj ke
where
(3.33)
1
a0 = [ (GIVHE (L), - (VLY (V0 ) doy
zj

n—2
— 5 / Hj (VHj,l/)g dO'g

1
+ = / (Vfj,v), hoH; doyg
2 JoBs, (5) I

1
+ 3 / (Agfj +n)H; (VHj,v), dog
2 JoBs, (5)

1
- / (V (Agfy) ,v)  H do
954, (9
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with f; = 3dg (z;, .)* and
e N i 21
(334) Hj(x)=an > (n—2wn 1y (hm ) Go (Ti, .).

Since (1;]-,5) is radially summetrical, we have that

(V2f = gjc) <V (T,Zj,s) ,V <st>> =0
so that, noting that ;. = 1 and n; = 1 in Q;.(6) for 6 small enough,

we can write with (3.4), (3.19), (3.23) and the Cartan expansion of the
metric g;. around 0 that

/ (V2f = gj.c) (Vtjie, V) dvg, .
Qj,s(é)

~0 (/ 2 [V
Q;.(9)

J,€

o |ij7€’gj’g dvgj,5> + O (52”ij,£”%)
J€

where O (X) means |O (X)| < CX with C independent of ¢ and §. This
leads by direct computations thanks to (3.29) to

(3.35) / (V2 f = gje) (Vuje, V) dvg, .
Qj,a((;)
n—2
=0 (5%1/;;2) +o(l)+o (o2 Y <S”’”>
keD; gk

The Cartan expansion of the metric g;. around 0 gives that

1
Ay, . f+n= gRicgjyg (0),, 2"z
1
+ 50un (10 /lasel) ©)a¥a'a™ 4.0 (ol

in By (9) where Ric,, . denotes the Ricci curvature of g; . and where |g; |
is the determinant of the matrix ((gj.);,). Thus we can write thanks to

(3.4), (3.19), (3.23) and to the fact that <1Zj75) is radially symmetrical

453
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that

g
+O(Z/ 2202 do | +0 (Jwel3) + 0 ()
keD

yx\ ¢2 ;| da +o/ 2" dx |
By (0)

Using (3.29) and (3.30), this leads thanks to Holder’s and Sobolev’s
inequalities and to some explicit computations to the following:

(3.36) / (Ag] f+ n)u dvg, . = %KJESQ (yj@) .to ( n- 2)
J,€

n—2
+o0 (1/]375) + 0 Z ('uke )

S
keD; \TIkE

Let us estimate the last term of (3.31). Using (0.1) and the Cartan
expansion of the metric g;. around 0, one gets that

—_

hie+5(Vhie, Vf), (8g,.)" f

L1
= (et - 55 (yj,s>)4

+ (gakhj,a(o) + iak (Aﬁm f) (0)> "+ 0 (|2

[\

in By (d) so that we obtain with (3.4), (3.19), (3.23) and the fact that
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(Jj,e) is radially symmetrical that

e
Qj,e(‘;)

= <ha (Yje) —

1

(Vhje, vf)gj,e T (Agj,s)z f> U e dug, .

| —

DI o

Sg (yj,€)> (1 + Hj,a)Q ) 1;?75 dx

Bo(

+0 Z /Qk Jigd:z +O</BO(5) ]:c|21;j2~’€dx>
7:K,€

kJEDj

+ 0 {/;j’g\wj@]dx +0 / ]wjva\Qd:c .
Boy(9) Bo(9)

This leads thanks to (3.29) and (3.30) and after direct computations to

1 1
/Q @ <hj,5 + 92 (th,s, Vf)gj + 1 (AngE)Q f> Uis dvgjﬁ
J,€

yE

6dws?. In (Z”) itn =4
]78

1
= (el - 550 03))

4(’/1 — 1) - 2 .
ﬁKn 2 Vie ifn>5

N ) m n—2

+0 (551/’?—2) fo(B)+0 |6t <>
»e ( j78) kz Sjk,e
E'Dj

Coming back to (3.31) with (3.32), (3.35), (3.36) and this last estimate,
we finally arrive to
(3.37)

1 1
/B @ <h0 + 5 (Vho, ij)g + Z (AQ)Q f]> I{]2 d’l)g = Aj (5) + 0(1)
zj
with 0 (1) — 0 as § — 0 when n = 3. Remember here that, when n = 3,
D; = () thanks to Claim 2. When n = 4, we get that
(3.38)

(he (yje) — ésg () In <1>

V]7€

. n—2 )
_40) +0 (\/5) +0 | v;? (“’“’8 ) (1 + 9o Tk Yje) (m’“’e’yj’s))
kEDj

64ws U Sj ke Sjk,e

455
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and when n > 5, we arrive to

(339) (B (yje) — C(n)Sy (yj.))

_ <MK2A (5) + o(ﬁ)) yiot

-2
10 y2 < Hk.e >n (1 4 dg (»Tk,a»yj,s))
e kEDJ Sj7k7‘€ Sj7k7€

We assume for the end of this section that n > 4. Let k € D;. We write
with (3.7) and (3.19) that

dg Yie:The) _ do (Tjer The) ( Hje > _0 < /Ms) _
Sjk.e Sjk.e Sjk.e Hie

Thanks to (3.6), j € Ay so that, by (2.2), we get that ;5. > 4. In

particular, by (3.8), rp. — 0 as ¢ — 0 and we can apply Claim 2, point
(ii), to get that

< ke )n_2 <1 4 dg (yjﬁvwk,E))
Sjk.e Sj ke

)
< <//Lk’6)n <1 + dg (yj757$ka5)>
T\ Tke Sj ke

(")

o ( Hie ui,5> itn > 5.
ke
Thanks to (3.6)and (3.19), this leads to
(3.40)
1
2 .
- olvi,In| — iftn=4
<uk,s )” ? <1+ dg (Z/j,aﬂfk,s)) _ < e (Vj,fs))
8j7k7€ 8j7k78
0 1/]2-78) ifn>5

for all k € D;.
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4. Proof of the results and examples of blow-up

4.1 Proof of the theorem

Let us prove our theorem as stated in the introduction. We assume
that 3 < n < 5. If uyp Z 0, we know by (2.2) that rig < pie. In
particular, r1 . — 0 as € — 0 and claim 2 holds. Plugging the estimate
7‘%5 < p1, into the estimate of Claim 2, point (ii), we get a contradiction
for n = 4, 5. For n = 3, since Claim 2 says that r1 . does not go to 0
as € — 0, we also get a contradiction. This proves that for 3 < n < 5,
ug = 0. We assume now that n =4, 5. We claim that

(4.1) ho (Tn) = C(n)Sy (Tn),

an assertion which clearly implies the second part of the theorem. Let
us prove (4.1). We distinguish two cases. The easiest one is when
(*Ne, UN,e) is an almost isolated concentration point, that is when
liminf, o7y, > 0. In this case, we can apply the results of Sec-
tion 3: relations (3.38) and (3.39) together with (3.40) clearly give,
since vy — 0 as € — 0, that h. (yne) — C(n)Sy (yne) — 0 as e — 0.
By (0.1) and (3.19), this proves (4.1) in this case. Let us now consider
the case when 7y — 0 as ¢ — 0. Applying point (ii) of Claim 2, we
first get that ho (Tn) > C(n)Sy (Tn). Assume by contradiction that

(4.2) ho (Zx) > C(n)S, ().

Since rye — 0 as € — 0 and up = 0, (2.2) gives the existence of some
1 € Ay such that

HN,e
i e

dg (xi,a;xN,g)Q — 0 ase — 0.

By (1.6), une > pie so that T; = Zn. This proves that
C={icAyst. T, =2y} U{N}

possesses at least two elements. We let k € C be such that, after passing
to a subsequence,
Tke = Minr; .
k) ZEC b

and we let

D = (AkﬂBk) U {k‘}
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with By as in Claim 2. It is easily checked with the above choice of
k that for any i € D, D = (Ai N Bi) U {z} and that D possesses at
least two elements. Moreover, it is clear that A\;; > 0 for all 7,5 € D,
i # j, Aij as in Claim 2. We let now R. — 0 as ¢ — 0 be such that
{%ie, i € D} C By, (Re) and such that there exists j € D such that
Tje € OBy, . (Re). It is then easily checked that all the z;;’s of Claim 2,
t € D, lie in an Euclidean ball whose boundary contains 0. This implies
that Vh;(0) # 0 since Aj N B; # 0 and A\j; > 0 for all i € A; N B;.
Assuming that (4.2) holds, point (iii) of Claim 2 gives that Vh;(0) = 0.
This is a contradiction. Thus (4.2) is false. This proves (4.1) so that, if
n =4, b, there exists at least one geometric concentration point xg € S
such that hg (z9) = C(n)S, (x0). As a consequence, compactness holds,
that is (0.4) holds, if hg # C'(n)S, everywhere in M.

Let us prove the last part of the theorem. We assume that h. (z) <
C(n)Sy () for all x € M and all € > 0. In this situation, we clearly get
from (2.66) and (2.67) that liminf. .or;. > 0 if n = 4, 5. Remember
here that hy (0) > 0 by (2.7) and that D; = (). Note that, by Claim 2,
we also have that liminf. g7, > 0 if n = 3 without any assumption,
except (0.1), on h.. Thus, in this situation, for n =3, 4, 5, (z1¢, ft1,¢) is
an isolated concentration point in the sense that C; = (), C; as in (3.5).
Applying the results of Section 3 and in particular (3.37) — (3.39), we
get that

J

1 1
. (h() + 5 (Vho, Vfl)g + Z (Ag)2 f1> H12 d’Ug = A (5) + 0(1)
7, (8

when n = 3 and that A; (6) < O(d) if n = 4,5 for all § > 0. Here,
Ay (0) is as in (3.33). Moreover, when n =4, 5, since ;. — 0 as e — 0
thanks to (3.19), we also get that hg (1) = C(n)S, (Z1). Let us now
write that

Go (fl, ) :éo (51, .)+ao(.)

where Gy and éo are the Green functions of Ay + hy and Ay + C(n)S,
respectively. We have that

Agao + hoag = (C(n)Sg — ho) éo (fl, ) .
By standard properties of the Green function, we know that

Go (T1,x) < Cdy (T1,x)* "
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for some C > 0. If n = 4,5, since hy < C(n)S, and ho (1) =
C(n)Sy (Z1), we also have that

[ho(z) — C(n)Sy(x)| < Cdy (71, )

for some C' > 0. This permits to prove that Ajag+hoag € LP(M) for all
p < n. By Sobolev’s embedding theorem, we then get that ag € CO(M).
Thanks to the maximum principle, we get that ag > 0 in M except if
ho = C(n)Sy in which case ag = 0. Up to change from the beginning g

4 1

into ¢»-2g, u. into u.p~ " and h. into

4
he :==C(n)S s+ (he =C(n)Sy) ¢ "2,
pn=2g
we may assume without loss of generality that for all the geometric
concentration points Z; € S (which are the same for u. and u.p~!), the
Green function of Ay, 4 C(n)S, writes as

! + M (%) +0(1)

éo ZTi, L) =

() (n — 2)wn_1dg (T;, )"
for x close to T;. For the existence of a conformal change of metric having
this property in dimensions n = 3, 4, 5, we refer to Lee-Parker [21].
Moreover, thanks to the positive mass theorem of Schoen-Yau [31, 32]

(see also Schoen [28], Schoen-Yau [33] and Witten [36]), we know that

M (z;) > 0 except if (M, g) is conformally diffeomorphic to the standard
sphere. Since ap € CO(M) and o > 0 except if hg = C(n)S,, we get
that

1

Go (T1,2) = o Dod, G + M (z1) 4+ 0(1)

for x close to Z1 with M (Z1) > 0 except if (M, g) is conformally diffeo-
morphic to the standard sphere and hg = C(n)S,;. Coming back to the
definition (3.34) of Hy, we also have that

Hi(z)=ap 2 (Cl(l)n_Q +M1> +o(1)
g

1,2

for = close to Z1 with M; > 0 except if (M, g) is conformally diffeomor-
phic to the standard sphere, hyg = C(n)S, and there is only one concen-
tration point. Some computations, which can be carried in conformal
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normal coordinates (see Lee-Parker [21]) up to the above conformal
change of metric, lead then to

lim A; (8) = (n—27° 5., M
61_{% 1 = 9 ap  Wn—14M1
for n =3, 4, 5 and to
: 1 1 2 2
lim ho-i-*(VhO,Vfl)g-l-*(Ag) fi | Hi dvg =0
0—0 Bz, (6) 2 4

if n = 3. Thus we get a contradiction whenn = 3, 4, 5 and hg < C(n)S,
except if (M, g) is conformally diffeomorphic to the standard sphere and
ho = C(n)S,. This ends the proof of the theorem. q.e.d.

Let us now state some results in higher dimensions. We claim that
if n > 7, then for any = € S, ho(x) = C(n)S,y (). Of course, this
implies again that compactness holds, that is that (0.4) holds, if hy #
C(n)S, everywhere in M and n > 7. As shown by the examples below
(see Section 4.2), the situation in dimension n = 6 is more intricate.
However, the above statement continues to hold for n = 6 if ug = 0. Let
us prove this statement. We assume that n = 6 and ug = 0 or that n >
7. Welet i € {1,...,N}. We need to prove that hg (Z;) = C(n)Sy (T;).
Up to change i, we may assume that p; . > p;. for all j € {1,..., N}
such that 7; = T;. If (2;¢, pi ) is an almost isolated concentration point,
then it is a direct consequence of (3.38)-(3.40) together with (0.1) and
(3.19) that ho (z;) = C(n)Sy (%;). We assume now that r;c — 0 as
¢ — 0. Then point (ii) of Claim 2 implies that hg (Z;) > C(n)S, (T;).
Assume by contradiction that

(4.3) ho (fl) > C(?’L)Sg (Tl) .
We get then by point (ii) of Claim 2 that
(4.4) =0 ().

In particular, we obtain for n > 7 that ;. = o (1 /um). Thus, by (2.2),
there exists | € A; such that

2 _ Mige

n—2
r; dg (xl,sa $i,a) + Wi el e
Hie

i,€
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If Z; # T;, we then get that r% . =>C # for some C' > 0, a contradiction
with (4.4) for n > 6 since p; — 0 and p; . — 0 as € — 0. Thus r;. is
achieved for some [ € A; with Z; = T;. This proves that

C = {k cA; s.t. T; ka} U {Z}

possesses at least two elements. We let k € C be such that, after passing
to a subsequence,
The =MIiNT; o
’ ieC

and we let
D=A,UB,U {k‘}

with By as in Claim 2. Arguing as above in the low-dimensional case,
one can conclude that (4.3) is false and thus end the proof of the above
statement. Namely: if n = 6 and ug = 0 or if n > 7, then hg (z) =
C(n)Sy (z) for all z € S.

As a remark, the compactness result we obtain in the theorem and in
dimensions n > 7 answers a question asked in Hebey [19] (question Q10).
In this paper, the author is mainly interested by the energy function,
defined as the minimal energy a solution of Aju + au = w1 a eR,
can have. It follows also from the above results that this energy function
is lower semi-continuous with respect to o for a > C(n)maxs Sy in
dimensions n > 4 (see question Q6 of [19]).

4.2 Examples of blowing-up sequences

We provide in this section some blowing up sequences (u.) of solutions of
(E¢). We follow Druet-Hebey [11]. We consider (S™, h) the unit sphere
of R"*! equipped with its round metric. Its scalar curvature is n(n — 1)

so that C'(n)Sy, = w. It is well-known that all the solutions of

Apu + C’(n)Shu =¥ !

are given by

n—2

u= ("2 ) T cos i Gan))'

where 5 > 1 and zg € S™. Fori =1, 2, we let (x;)->0 be two sequences
of points in S™ and (f3; ) be two sequences of positive real numbers such
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that ;. > 1. We let in the following

n—2
nn—2 4 1_n
B;. = <( 1 ) ( 25 — 1)> (ﬂz}e — cos dy, (xm,x)) 2
fori=1,2 and
Ue = )\Bl,s + B2,s

where A € RT. Clearly, u. € C*(S™) and u. > 0 for all ¢ > 0. It is
easily checked that wu. verifies

Apue + heue = ug*fl
in S™ where the linear term h. is given by

he = C(n)Sh + &,

with

~ (ABie+ By o) ' —ABI T - B!
: /\Bl,s + B2,s ‘
We assume in the sequel that n > 6.

First, we fix z1. = z¢ and we let 3. = B2 = [ verifying that
B — 1 as e — 0. We choose 2o, € S™ such that dj (z2.,z0) >
(B — 1)% and such that dp, (xo,21.) — 0 as ¢ — 0. One can check by
direct computations that h. converges to C(n)S;, in C°(M), with the
additional property that the convergence of h, is C' for n = 6. This
provides examples of blowing-up sequences of solutions u. of Equation
(E;) for which there is one geometric concentration point carrying two
minimal energies. Namely, the concentration points are not isolated.

Second, we choose =1, = w2, = xo in S", B1. = (1 and we let
Bae — 1l ase — 0. We let also A = 1. One checks then by direct
computations that the sequence (hc) is bounded in L (S™) and that
he — C(n)Sy in LP(M) for all p > 1. Moreover, we clearly have that
lim. o ue = ug weakly in HZ (S,,) where ug # 0. This provides examples
of blowing-up sequences of solutions u. of Equation (E.) which does not
converge weakly to 0 in dimensions n > 6.

At last, we choose 21, = w2, = x¢ in 5", B1. = B1 and we let
Bae — 1l ase — 0. We let also A > 1. One checks then by direct
computations that the sequence (h¢) is bounded in L® (S™) and that
he — ho in LP(M) for all p > 1 for some hg € C%(M). Moreover,
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when n > 7, infgn |he — C(n)Sy| — 0 as € — 0 but when n = 6,
infgn |he — C(n)Sy| / 0 as e — 0. Independently, we clearly have that
lime g us = ug weakly in H 12 (Sn) where ug # 0. This provides examples
of blowing-up sequences of solutions u. of Equation (E.) which does
not converge weakly to 0 and for which there exists g > 0 such that
he > C(n)Sp + € for all € > 0 in dimension n = 6.

We refer to [12] for other examples of blowing-up sequences of solu-
tions of equations like (E).

Appendix 1: An eigenvalue problem

We study in this appendix an eigenvalue problem we used in a crucial
way in Sections 2 and 3. The limiting eigenvalue problem, that is the
Euclidean one, was studied by Bianchi-Egnell [3] and was used first by
Adimurthi-Pacella-Yadava [1] in the study of blow-up problems in the
Euclidean space. The lemma below, or more precisely a variant of it,
was used in blow-up problems in Riemannian geometry by Druet-Hebey
[10] (see also [17]).

Lemma. We let (g:).-( be a sequence of Riemannian metrics in
By (30) C R™, § > 0, verifying that there exists X > 1 such that

(A1) A< g <X

in the sense of bilinear forms with & the Euclidean metric, that
(A2) 9¢ (0);; = 0ij

foralli,j5 € {1,...,n} and that

(A3) (g) is bounded in C*(By (26)) .

We let also (p1c).~ be a sequence of positive real numbers converging to
0 ase — 0 and (p:).-( be a sequence of smooth functions with compact
support in By (0) verifying that

(A4) ,uggilapg (pex) = u ase — 0

strongly in DY? (R™) where

= (1 )

463
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We consider (Ti¢, Gi.e) the solutions of the following eigenvalue problem:
( Ag.Gie = Ti,e@g*_zQ‘,e in By (9)

Ci,z—: =0 on 0By (5)

(A5)
25 =2 d :K7%(5
Pe Cz,s(y,e Vg, n ~ 0ij
\ JBo(9)
with T < --- < 7. < ... Then, after passing to a subsequence, we
have that
lim7;, =7 ase — 0
e—0
and that

lir% ug_lgg (pex) — ¢ ase — 0
e—
strongly in DY (R™) for all i > 1 where (¢, 7;) satisfy

AgCZ = Tiu2*_2Q~ m Rn
(A6) "
/ u® (i dvg = K 2 6y

and  <--- <1< ...

Proof. We prove the result by induction on i. We mainly follow [10]
(see also [17]) where a similar result was used. When ¢ = 1,

2
. fBO(5) ‘VSO‘gE dvg,
Tle = inf 55 5 .
peCee(Bo(9)), p#0 fBO(5) Pe @ d'Ugg

Taking ¢ = ¢., we get by (Al)—(A4) that

W |Vl de
limsup . < 7fR | 2*’5 =
e—0 fRn U d$

Thus, up to a subsequence, we have that lim. o7 = 71 < 1. Thanks
to (A1) and (A5), we then get that ¢; . = ug_lgs (e) is bounded in
DL2 (R™). Thus, up to a subsequence, we know that 61,5 —~(lase—0
weakly in D12 (R™). Thanks to (A2)—(A5), it is easily checked that

Achy = #u” 20
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in R™ and that

N3

(A7) / w23 de = K,

It comes from the Euclidean Sobolev inequality and the equation verified
by (71 that

2
*

(L) < n
n Rn

A *— I
= Knﬁ/ u? 2C12 dx
n

~ |2
VQL da

*

.\ e\
Kn7i ( / u? dm) ( / & dx)

= K,7 < / & da;>

Since 71 < 1 and 61 # 0 thanks to (A7), we thus get that 74 = 1 and
that all the above inequalities are equalities: this implies that CAl = u.
Since, by Bianchi-Egnell [3], (1 = v and 71 = 1, the lemma is proved for
i=1.

Let p > 2 and assume that the lemma holds for all 1 < i < p— 1.
We write that

IN

2
o inf fBo(é) |V80’gg dvg,
e pEHp,e fBo(d) 90?*_2(,02 d’UgE

where
Hpe = {80 € CX(By(9)) s.t.
/ @g*_QQi,ssodvga =0 for allizl,...,p—l}_
Bo(9)

We claim first that

(A8) limsup 7, < 7.

e—0

Let us prove this claim. First, note that we have

2
7, = iInf —fRn \Vgolg d
P pen, Jgn w202 dx
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where

Hy, = {p € CX(R") s.t. / u? 2Gpdr=0foralli=1,...,p—1}.

R"

Let f € H,. We set

-5
=ty ()
and
As = s_Kni 2_225 sd 1,6
fela) =1 i21</30<5> G vgs><,

By (A5), it is clear that, for £ > 0 small enough, f- € Hpe. It is easily
checked thanks to (A5) that

|,
Bo(9)

n p—l 2
= / 02 22 dvg, — K2 > < / 02 72 f- dv%)
BO((;) . Bo(é)

=1

and that

~ 12
| |vi.
Bo(é) 9e

2
:/ |vfs dvgg K Zﬁs </ g*_2Cz’,€fsdvge> .
Bo(9)

Thanks to (A2), (A3) and to the fact that the lemma holds for i =
1,...,p— 1, we easily get that

duy,

/ 902*72@,5]62 dvgS —0
Bo(9)

ase — 0 foralli=1,...,p—1 and then thanks to (A4) that

/ v, — [ wF e
Bo(9) R

~ 12
| |vi.
Bo(5) g

as € — 0 and

dvg, —>/ |Vf]§ dx.
R’ﬂ
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Since it holds for all f € H, this clearly proves (A8). In particular, (7,c)
is bounded and, up to a subsequence, we have that lim. g7, = 7, <
7,. Thanks to (A1) and (A5), we then get that (,. = uggfl(p,g (pe)
is bounded in D2 (R"). Thus, up to a subsequence, we know that
(pe — (p as € — 0 weakly in D2 (R™). Thanks to (A2)-(A5), it is
easily checked that

Aégp = 7A';DUT_%AP
in R™ and that
|k do = K P,

for all i = 1,...,p. Since 7, > Tp—1., we also know that 7, > 7,_1.
This clearly implies that 7, = 7, and that ¢, = (. This ends the proof
of the lemma. q.e.d.

Appendix 2: A Pohozaev identity

We prove in this appendix the Pohozaev identity we repeatedly used
in this paper. We let (M, g) be a complete Riemannian manifold and
) be a compact subset of M with smooth boundary. We let zog € M
and R > 0 be such that Q C By, (R) and we assume that v is a smooth
positive function verifying that

Agu+ hu = w2t

in By, (R) for some h € C°°(By, (R)). At last, welet f € C*°(By, (R)).
Integrating by parts, we have that

/Q(Vu,Vf)gAgudvg = /Q<V ((Vu,Vf)g),Vu)g dvg

_/{m (Vu,Vf), (Vu,v), dog

where v denotes the unit outer normal of 92 and dogy is the induced
Riemannian measure on 0f). Noting that

= V2 (Vu, Vu) + %(Vf, vV (IVulg)),:

(v ((vu, v f)g) ,vu)

g



468 O. DRUET

we obtain by integration by parts that
1
/Q(Vu,Vf)gAgudvg: 2/QAgf|w|§dug+/Qv2f(vu,vu) dvg
1/ 9
+ = Vf,v) |Vul|;do
5 |, (V1.0 |Vl dog
- /8 (Va9 (Vu.v), do,

so that

n—2
/Q(Vu,Vf)g Agudvg+2/Q\Vu]3dvg

1
= 5 /dQ (Vf7 V)g ‘VUE do-g - /dQ (VU,Vf)g (V’u’y)g dO'g
1
+ 9 /Q (Agf +n) |Vu’§ dvg + /Q (V2f —9) (Vu, Vu) dvg.

Now we use the equation satisfied by u to get that

/]Vu@dvg—/ u(Vu,l/)gdag—i-/uZ* dvg—/huzdvg
Q o Q Q

and that
/(Vu,Vf)gAgudvg
Q
RSN 1 )
=/ of gl —§hu dvg+§ Q(Vf,Vh)gu dvg

1 o« 1
+/ Vi <u2 — hu2> do
89( Jg 2~ 2 I

which gives that
/Q(Vu,Vf)g Agudvg + ”TJ /Q V|2 dvg
= /m (Vf.v), (21*%2* - ;hu2> dog + & ; 2 /69 (Vu,v),udoyg
+ /Q(Agf+n) <21*u2 - ;huQ) dv,

1
+/Q <h+ Q(Vh,Vf)g) u? dv,.
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Thus we have obtained that

1
/B<h+2(Vh,Vf)g> u? dv,
:/(A f+mn) 1|Vu]2+1hu2—iu2* dv
Q7 2092 2% I
1 o 1
+/ (V2f = g) (Vu, Vu) dvg—/ (Vfv), <u2 _hu2> dog
Q o9 2% 2

1
+5 /{m (Vf,v), |Vull dog — /m (Vu, V), (Vu,v), dog

n—2

doy.
5 /(mu(Vu,V)g og

Integrating by parts and using the equation satisfied by u, we have that

/ (Agf +n) |Vu|§ dvg
Q
= / (V((Agf +n) u),Vu) dvg — 1/ (V(Agf),Vu?) dug
Q 9 2 Ja 9
= / (Agf +n) (Vu,v), udoy — 1/ (V(Ayf),v) u?doy
o0 g 2 Joq g
+ / (Agf + n) (uQ* — huQ) dvg — 1/ (Azf) u? dvg.
Q 2 Jo
Thus we get that
1 1 1 o
/Q(Agf +n) (2]Vu\3 + §hu2 - §u2 > dv
1 x 1
= n/Q(Agf—l—n)u2 dvg — 4/Q(A3f) u2dvg
+ 1/ (Agf +n) (Vu,v), udog — 1/ (V(Ayf),v) u?doy.
2 Jaa 7 4 Jaq g
This finally leads to the following:

1 1
/Q (h +5 (Vf,Vh), + 1 (A2) f> u? dv,

:1/(Agf+n)u2*dvg+/ (V2f —g) (Vu, Vu) doy + A
Q Q

n
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where A is the boundary term

_ 2 _
A= 2/89(Vf,y)g|Vu]gdag AQ(Vu,Vf)g(Vu,V)g dog

n—2

1, 1,
- /aQ(Vu’V)QUdUg_/ag<Vf7y)g<2*u —2hu>d0g

L 1
+2/89(Agf+n) (Vu,v),udog — 4/ (v (Agf),u)gu2do—g,

o0

This is the relation we referred to as the Pohozaev identity, with test
function f, applied in €2 to a function u which verifies the above equa-
tion.
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