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CONVERGENCE OF FORMAL EMBEDDINGS
BETWEEN REAL-ANALYTIC HYPERSURFACES

IN CODIMENSION ONE

NORDINE MIR

Abstract
We show that any formal embedding sending a real-analytic strongly pseu-
doconvex hypersurface M ⊂ CN , N > 1, into another such hypersurface
M ′ ⊂ CN+1 is convergent.

1. Introduction and results

By a classical result of Chern-Moser [4], any formal biholomorphic
transformation in the complex N -dimensional space, N > 1, send-
ing two real-analytic strongly pseudoconvex hypersurfaces into each
other is in fact convergent i.e., given by the power series of a local
holomorphic map. Several generalizations of this result have recently
been established for more general classes of real-analytic hypersurfaces
in the equidimensional case (see e.g., [3, 11, 13] and the references
therein). On the other hand, it is conjectured that Chern-Moser’s result
can be extended to formal embeddings sending a real-analytic strongly
pseudoconvex hypersurface M ⊂ C

N into another such hypersurface
M ′ ⊂ C

N ′
with N ′ > N . Here we recall that by a formal embed-

ding F : (CN , p) → (CN ′
, p′) sending M into M ′, p ∈ M , p′ ∈ M ′,

we mean a formal holomorphic map for which the pullback under F
of any local real-analytic defining function for M ′ near p′ vanishes on
M (as a formal power series), and for which the induced differential
dF (p)|CTpM : CTpM → CTp′M

′ is injective. The main difficulty that
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one has to face in such a setting, and that was pointed out by a number
of authors (see e.g., [6, 8, 13]), lies in the codimension N ′ − N > 0 of
the embedding and indeed, up to now, only partial results on the above
question have been obtained under various additional assumptions on
the mapping or manifolds (see e.g., [9, 10]). For instance, it follows from
the recent results of [10] that the above conjecture holds if the target
hypersurface is moreover assumed to be real-algebraic. In this paper, we
make a step towards the understanding of the above problem by giving
a complete solution in the one-codimensional case. Indeed, we have:

Theorem 1.1. Any formal embedding sending a real-analytic stron-
gly pseudoconvex hypersurface M ⊂ C

N , N > 1, into another such
hypersurface M ′ ⊂ C

N+1 is convergent.

Theorem 1.1 gives also the first positive answer to a long standing
open problem which consists in providing a regularity result for embed-
dings of positive codimension between real-analytic strongly pseudocon-
vex hypersurfaces that holds at all points of the source manifold (see
e.g., [6, 8]). As a byproduct of the proof of Theorem 1.1, we are able to
treat the convergence problem for formal embeddings between merely
Levi-nondegenerate real-analytic hypersurfaces. In what follows, we
consider formal maps F : (CN , p) → (CN ′

, p′) sending M into M ′ that
are CR transversal i.e., for which dF (p)(CTpM) �⊂ T 1,0

p′ M ′ ⊕ T 0,1
p′ M ′

where T 1,0
p′ M ′ ⊂ CTp′M

′ (resp. T 0,1
p′ M ′ ⊂ CTp′M

′) denotes the (1, 0)
(resp. (0, 1)) tangent space of M ′ at p′, and we shall prove the following
result specific to the one-codimensional situation.

Theorem 1.2. Any formal CR transversal map sending a real-
analytic Levi-nondegenerate hypersurface M ⊂ C

N , N > 1, into another
such hypersurface M ′ ⊂ C

N+1 is convergent.

Theorem 1.2 is indeed sharp in the sense that the analogous state-
ment does not hold in codimension higher or equal to two (see e.g.,
[9]). Moreover it turns out that the condition of CR transversality is
automatically satisfied by all formal embeddings between real-analytic
strongly pseudoconvex hypersurfaces (see e.g., [9, 5]) and therefore, The-
orem 1.2 yields Theorem 1.1 as a first (and main) application. It is
also noteworthy to mention that Theorem 1.2 provides a convergence
result for formal embeddings of positive codimension in other new situ-
ations, such as e.g., when the target hypersurface is foliated by complex
curves. On the other hand, when there is no complex curve in the target
manifold and the embedding is not assumed to be CR transversal, our
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arguments also give the following.

Theorem 1.3. Let M ⊂ C
N and M ′ ⊂ C

N+1 be real-analytic Levi-
nondegenerate hypersurfaces through points p and p′ respectively, N > 1.
Assume that M ′ does not contain any (smooth) complex curve through
p′. Then any formal embedding F : (CN , p) → (CN+1, p′) sending M
into M ′ is convergent.

Our approach for the proof of Theorems 1.2 and 1.3, that will be
given in §3, goes back to the work of Webster [14] and uses the invariant
family of Segre varieties attached to any real-analytic hypersurface in
complex space. We also make use of the CR vector field techniques
later developed in the works of Huang [7] and Baouendi, Ebenfelt and
Rothschild [2]. As a preliminary step for the proof, we need to establish
in §2 a useful criterion for the convergence of a formal power series that
satisfies a certain type of identity (see Proposition 2.2). The proof of
such a statement requires the use of some arguments from our previous
works [11, 12].

2. A criterion for the convergence of a formal power series

Throughout the paper, we denote by C[[x]] (resp. C{x}), x = (x1,
. . . , xk), the ring of formal (resp. convergent) power series in k indeter-
minates with complex coefficients. If x0 ∈ C

k, C[[x−x0]] and C{x−x0}
will denote the corresponding ring of series centered at x0. Given a for-
mal power series g(x) ∈ C[[x]], we also denote by g(x) the formal power
series obtained from g(x) by taking complex conjugates of its coeffi-
cients. Given moreover a (germ at the origin of a) complex submanifold
S ⊂ C

k, we write g(x) ≡ 0 for x ∈ S to mean that g ◦ ν ≡ 0 for any
parametrization ν of S. We start by stating the following well-known
lemma (see e.g., [11, Propositions 4.2 and 6.2]).

Lemma 2.1. Let R(x, y) ∈ C{x, y}, x = (x1, . . . , xk), y ∈ C,
h(x) ∈ C[[x]] with h(0) = 0 and v ∈ (C{t})k, t = (t1, . . . , tq). Then
the following holds:

(i) If R(x, y) �≡ 0 and R(x, h(x)) ≡ 0 then h(x) is convergent.

(ii) If (h ◦ v)(t) is convergent and v is of generic rank k, then h(x) is
itself convergent.

Let M ⊂ C
N be a (germ of a) real-analytic hypersurface through the

origin, and ρ(Z,Z) be a real-analytic defining function for M defined in
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a connected neighborhood U of 0 in C
N , with non-vanishing gradient on

U . Recall that the complexification M of M is the complex submanifold
of C

2N defined as follows:

M := {(Z, ζ) ∈ U × U∗ : ρ(Z, ζ) = 0},(2.1)

where for any subset V ⊂ C
N , we have denoted V ∗ := {w : w ∈ V }.

Recall also that M is said to be of finite type at the origin if there is no
complex hypersurface of C

N contained in M through 0 (see [2]). (Note
that when N = 1, M cannot have any point of finite type.) We may now
formulate one of the main tools in the proof of Theorems 1.2 and 1.3.

Proposition 2.2. Let M ⊂ C
N be a real-analytic hypersurface of

finite type through the origin, N > 1, and M ⊂ C
N
Z × C

N
ζ its complex-

ification as given by (2.1). Let H(Z) be a formal power series, with
H(0) = 0, satisfying at least one of the following conditions:

(i) There exists G(ζ) := (G1(ζ), . . . , Gm(ζ)) a vector-valued formal
power series and A(Z, ζ, X, T ) ∈ C{Z, ζ, X − G(0), T}, X = (X1,
. . . , Xm), T ∈ C, such that A(Z, ζ, G(ζ), T ) �≡ 0 for (Z, ζ) ∈ M
and such that A(Z, ζ, G(ζ), H(Z)) ≡ 0 for (Z, ζ) ∈ M.

(ii) There exists B(Z, ζ, T̃ , T ) ∈ C{Z, ζ, T̃ , T}, T, T̃ ∈ C, such that
B(Z, ζ, T̃ , T ) �≡ 0 for (Z, ζ) ∈ M and such that B(Z, ζ,H(ζ),
H(Z)) ≡ 0 for (Z, ζ) ∈ M.

Then the formal power series H(Z) is necessarily convergent.

Remark 2.3. In the case where the power series A, B in Proposi-
tion 2.2 are polynomials in T and T̃ , the above conclusion follows from
[12, 10].

Proof. We choose local holomorphic coordinates Z = (z, w) ∈
C

N−1 × C so that M is given near the origin by an equation of the
form

w = Q(z, z, w),(2.2)

for some holomorphic function Q(z, χ, τ) defined in a neighborhood of
0 ∈ C

N−1×C
N−1×C. We may also assume (see e.g., [2]) that Q satisfies

Q(z, χ,Q(χ, z, w)) ≡ w, Q(z, 0, w) = Q(0, z, w) ≡ 0.(2.3)
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Consider the parametrizations v1, v2, v3 of the Segre sets up to order 3
attached to M at the origin (see [2]) given by

v1(t1) := (t1, 0), v2(t1, t2) := (t2, Q(t2, v1(t1))),(2.4)

v3(t1, t2, t3) := (t3, Q(t3, v2(t1, t2))),

where each tj ∈ C
N−1 is sufficiently close to the origin. Recall that

since M is of finite type at 0, the holomorphic map

η : (C3N−3, 0) � (t1, t2, t3) 	→ (v2(t1, t2), v3(t1, t2, t3)) ∈ (M, 0)(2.5)

is of generic maximal rank 2N − 1 (see e.g., [2]).
Let A, G, H be as in (i). Then after composing the given identities

with the map (Z, ζ) = η(t1, t2, t3), we have

A(v2(t1, t2), v3(t1, t2, t3), (G ◦ v3)(t1, t2, t3), (H ◦ v2)(t1, t2)) ≡ 0,(2.6)

and

∆(t1, t2, t3, T ) := A(v2(t1, t2), v3(t1, t2, t3), (G ◦ v3)(t1, t2, t3), T ) �≡ 0,

(2.7)

in view of the generic rank of η. From (2.7) and (2.6), we may choose a
multiindex β0 ∈ N

N−1 such that

∆̃(t1, t2, T ) :=

[
∂|β0|∆
∂tβ0

3

(t1, t2, t3, T )

]
∣∣t3=t1

�≡ 0 and(2.8)

∆̃(t1, t2, (H ◦ v2)(t1, t2)) ≡ 0.

Note that by using the identity v3(t1, t2, t1) = v1(t1) (which follows from
(2.3)), we may rewrite

∆̃(t1, t2, T ) = ∆̂
(
t1, t2, (((∂βG) ◦ v1)(t1))|β|≤|β0|, T

)
for some holomorphic function ∆̂ defined in a neighborhood of(

0, 0, ((∂βG)(0))|β|≤|β0|, 0
)

.

Now as in [11, 12], by differentiating the second identity in (2.8) with
respect to t2, setting t2 = 0, using the identity v2(t1, 0) = 0, and ap-
plying Artin’s approximation theorem [1], we may find for any positive
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integer k a convergent power series mapping Y k(t1) which agrees up to
order k with (((∂βG) ◦ v1)(t1))|β|≤|β0| at the origin and which satisfies
the identity

∆̂(t1, t2, Y k(t1), (H ◦ v2)(t1, t2)) ≡ 0.(2.9)

Moreover, by choosing k large enough, we may achieve the condition
∆̂(t1, t2, Y k(t1), T ) �≡ 0 in view of (2.8). We may therefore apply Lem-
ma 2.1 (i) to conclude that H ◦ v2 is convergent. Since M is of finite
type at 0, it is easy to see that the generic rank of v2 is N , and hence,
from Lemma 2.1 (ii) it follows that H is convergent. The proof of
Proposition 2.2 (i) is complete.

Let B, H as in (ii). Expand B as a Taylor series as follows B(Z, ζ, T̃ ,
T ) =

∑∞
j=0 bj(Z, ζ, T̃ )T j . There are two cases to consider.

First case. There exists j0 such that bj0(Z, ζ,H(ζ)) �≡ 0 for (Z, ζ) ∈
M. Then B(Z, ζ,H(ζ), T ) is nontrivial for (Z, ζ) ∈ M and the conver-
gence of H follows from Proposition 2.2 (i) proved above.

Second case. For all j, bj(Z, ζ,H(ζ)) ≡ 0 for (Z, ζ) ∈ M. Since
B(Z, ζ, T̃ , T ) �≡ 0 for (Z, ζ) ∈ M, there exists j1 such that Bj1(Z, ζ, T̃ ) �≡
0 for (Z, ζ) ∈ M. The convergence of the series H then follows from
Lemma 2.1 (i) by noticing that Bj1(ζ, Z, H(Z)) ≡ 0 for (Z, ζ) ∈ M.
This completes the proof of Proposition 2.2 (ii). q.e.d.

3. Proofs of Theorems 1.3 and 1.2

Proof of Theorem 1.3. Without loss of generality, we may assume
that p = p′ = 0. We choose local holomorphic coordinates Z ′ =
(z′, w′) ∈ C

N × C near the origin so that the Levi-nondegenerate real-
analytic hypersurface M ′ is given by the equation

w′ = Θ(z′, z′, w′),(3.1)

where Θ = Θ(χ′, Z ′) is a holomorphic function near the origin in C
N ×

C
N+1. We set ρ′(Z ′, Z ′) := w′ − Θ(z′, z′, w′) and may assume (see [4])

that Θ(χ′, z′, 0) vanishes at the origin up to order one and also satisfies

Θχ′
jz′k(0) = 0, for j �= k, Θχ′

jz′j (0) = ±1, j, k = 1, . . . , N.(3.2)

In these coordinates, we split the formal map F as follows F = (f, g) ∈
C

N × C, where f = (f1, . . . , fN ). At the source C
N space, we denote
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our coordinates by Z = (z, w) ∈ C
N−1 ×C which we may assume to be

normal coordinates as in (2.2) and (2.3). Since F sends M into M ′, we
have the formal identity

g(ζ) = Θ(f(ζ), F (Z)), for (Z, ζ) ∈ M,(3.3)

where M is the complexification of M as given by (2.1). Let L1, . . . ,
LN−1 be a basis of holomorphic vector fields (in a neighborhood of
0 in C

N × C
N , with holomorphic coefficients in (Z, ζ)) tangent to (a

neighborhood of 0 in) M that annihilate the projection C
N × C

N �
(Z, ζ) 	→ Z ∈ C

N . Applying each Lj to (3.3), we obtain

Ljg(ζ) =
N∑

k=1

Θχ′
k
(f(ζ), F (Z))Ljfk(ζ).(3.4)

By (3.4) and our choice of Θ, we have (Ljg)(0) = 0 for all j
and therefore, since F is an embedding, the rank of the matrix(Ljfk(ζ)

)
1≤j≤N−1
1≤k≤N

is equal to N − 1 at the origin. Then after inter-

changing the components of f if necessary, we may assume that the
rank of the matrix

(Ljfk(ζ)
)

1≤j≤N−1
1≤k≤N−1

equals N −1 at the origin. There-

fore, by using Cramer’s rule to (3.4), taking the complex conjugate of
(3.3), we obtain the system of formal equations


g(Z) = Θ(f(Z), F (ζ))
Θχ′

k
(f(ζ), F (Z)) = Θχ′

N
(f(ζ), F (Z)) Pk((LjF (ζ))1≤j≤N−1)

+Sk((LjF (ζ))1≤j≤N−1),

(3.5)

for k = 1, . . . , N − 1 and (Z, ζ) ∈ M. Here each Pk, Sk is a convergent
power series centered at ((LjF )(0))1≤j≤N−1 (that is even rational). In
view of (3.2), we may solve the system (3.5) by making use of the implicit
function theorem to obtain the vectorial formal identity

(f1(Z), . . . , fN−1(Z), g(Z))(3.6)

= Ψ(Z, ζ, ((∂αF )(ζ))|α|≤1, fN (Z)), for (Z, ζ) ∈ M,

where

Ψ = (Ψ1, . . . ,ΨN−1, ΨN+1)

= Ψ(Z, ζ,Λ, T ) ∈ (
C{Z, ζ,Λ − ((∂αF )(0))|α|≤1, T})N

.



170 n. mir

(Here we have used the fact that the vector fields Lj , j = 1, . . . , N − 1,
have holomorphic coefficients in (Z, ζ).) For k ∈ {1, . . . , N +1}, k �= N ,
we write the Taylor expansion

Ψk(Z, ζ,Λ, T ) =
∞∑
i=0

ϕk,i(Z, ζ,Λ)T i.(3.7)

Applying again each vector field Lj to (3.6), we obtain for all k as above

0 = Lj

(
Ψk(Z, ζ, ((∂αF )(ζ))|α|≤1, fN (Z))

)
(3.8)

=
∞∑
i=0

Lj

(
ϕk,i(Z, ζ, ((∂αF )(ζ))|α|≤1)

)
(fN (Z))i , (Z, ζ) ∈ M.

Note that there is a convergent power series Ψ̃k,j(Z, ζ, Λ̂, T )∈C{Z, ζ, Λ̂−
((∂αF )(0))|α|≤2, T} such that

Ψ̃k,j(Z, ζ, ((∂αF )(ζ))|α|≤2, fN (Z))(3.9)

= Lj

(
Ψk(Z, ζ, ((∂αF )(ζ))|α|≤1, fN (Z))

)
.

Now, as in [7], we come to a dichotomy which will give the convergence
of the map F (in any case).

First case. There exist indices k0, j0 and i0 such that

Lj0

(
ϕk0,i0(Z, ζ, ((∂αF )(ζ))|α|≤1

) �≡ 0 for (Z, ζ) ∈ M.

Then the formal power series Ψ̃k0,j0(Z, ζ, ((∂αF )(ζ))|α|≤2, T ) is nontriv-
ial for (Z, ζ) ∈ M and satisfies Ψ̃k0,j0(Z, ζ, ((∂αF )(ζ))|α|≤2, fN (Z)) ≡ 0
on M. Since M is Levi-nondegenerate and therefore of finite type at
0, the convergence of fN then follows from Proposition 2.2 (i). Using
(3.6), the now established convergence of fN and Proposition 2.2 (i), we
obtain the convergence of all other components of the map F .

Second case. For all indices k, j and i we have

Lj

(
ϕk,i(Z, ζ, ((∂αF )(ζ))|α|≤1

) ≡ 0 for (Z, ζ) ∈ M.

This means that for any j ∈ {1, . . . , N − 1},

Lj

(
Ψ(Z, ζ, ((∂αF )(ζ))|α|≤1, T )

) ≡ 0 for (Z, ζ) ∈ M.
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From this, it is then easy to see that there exists a C
N -valued formal

power series mapping Φ(Z, T ) such that

Φ(Z, T ) = Ψ(Z, ζ, ((∂αF )(ζ))|α|≤1, T ), (Z, ζ) ∈ M.(3.10)

By (3.10) and Proposition 2.2 (i) applied to the real-analytic hypersur-
face M × C ⊂ C

N+1 (that is of finite type), we obtain that Φ(Z, T )
defines a holomorphic map near 0 ∈ C

N+1. We may therefore rewrite
(3.6) as follows

(f1(Z), . . . , fN−1(Z), g(Z)) = Φ(Z, fN (Z)).(3.11)

For (Z, T ) ∈ C
N × C sufficiently close to the origin, we set

h(Z, T ) := (Φ1(Z, T ), . . . ,ΦN−1(Z, T ), T, ΦN+1(Z, T )) ∈ C
N+1.(3.12)

Consider the holomorphic function defined near the origin in C
N ×C

N ×
C × C by

R(Z, ζ, T, T̃ ) := ρ′(h(Z, T ), h(ζ, T̃ )).(3.13)

Note that necessarily R(Z, ζ, T, T̃ ) does not vanish identically for (Z, ζ,
T, T̃ ) ∈ (M×C

2, 0) since otherwise M ′ would contain a complex curve
through the origin which is impossible by assumption. In view of (3.12)
and (3.11) we have h(Z, fN (Z)) = F (Z) and therefore since F sends M
into M ′, we have

R(Z, ζ, fN (Z), fN (ζ)) ≡ 0, for (Z, ζ) ∈ M.(3.14)

Then by applying Proposition 2.2 (ii) to (3.14), we obtain that fN is
convergent and hence F too in view of (3.11). The proof of Theorem 1.3
is complete. q.e.d.

Proof of Theorem 1.2. Let F : (CN , p) → (CN+1, p′) be a given
formal CR transversal map sending M into M ′. As in the proof of
Theorem 1.3, we may assume that p = p′ = 0. Since M and M ′ are
Levi-nondegenerate and F is CR transversal, F is a formal embedding
(see e.g., [9, 5]). Therefore we may follow the same proof as that of The-
orem 1.3 and we notice that the only place (in that proof) where the
fact that the target hypersurface does not contain any complex curve
through 0 is used is to show that the holomorphic function R given by
(3.13) does not vanish identically for (Z, ζ, T, T̃ ) ∈ (M × C

2, 0). We
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now show that this latter condition holds automatically under the as-
sumptions of Theorem 1.2, which will finish its proof. By contradiction
suppose that R(Z, ζ, T, T̃ ) ≡ 0 for (Z, ζ, T, T̃ ) ∈ (M × C

2, 0). This
means in view of (3.13) that h(Z, T ) ∈ M ′ for all (Z, T ) ∈ M × C suffi-
ciently close to the origin. We now claim that h is local biholomorphism
of C

N+1. Indeed, by using e.g., the arguments of [5, Lemma 5.1], we
may assume, after composing the map F with an automorphism of the
hyperquadric tangent to M ′, that the following normalization condition
holds for the N -th component of F :

∂FN

∂z
(0) = 0.(3.15)

Since F is CR transversal we have ∂g/∂w(0) �= 0 (see e.g., [9, 5]) and
therefore, since F is an embedding, the map Z 	→ (f1(Z), . . . , fN−1(Z),
g(Z)) is a formal biholomorphism of C

N . From this fact and the identi-
ties (3.11), (3.12) and (3.15), it is easy to see that the Jacobian matrix of
h has indeed rank N +1 at the origin, which proves the claim. We there-
fore have a local biholomorphism h of C

N+1 satisfying h(M × C) = M ′

(as germs through the origin), which is impossible in view of the Levi-
nondegeneracy assumption on M ′. The proof of Theorem 1.2 is therefore
complete. q.e.d.
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