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GENERICITY OF GEODESIC FLOWS WITH
POSITIVE TOPOLOGICAL ENTROPY ON S2

GONZALO CONTRERAS-BARANDIARÁN &
GABRIEL P. PATERNAIN

Abstract
We show that the set of C∞ Riemannian metrics on S2 or RP2 whose
geodesic flow has positive topological entropy is open and dense in the C2

topology. The proof is partially based on an analogue of Franks’ lemma for
geodesic flows on surfaces.

To the memory of Michel Herman

1. Introduction

Let M be a closed surface endowed with a C∞ Riemannian met-
ric g and let φgt be the geodesic flow of g. One of the most important
dynamical invariants that one can associate to φgt to roughly measure
its orbit structure complexity is the topological entropy, which we shall
denote by htop(g). The first question one asks about htop(g) is whether
it vanishes or not. If htop(g) > 0 a well-known result of A. Katok [25]
states that the dynamics of φgt presents transverse homoclinic intersec-
tions and as a consequence the number of periodic hyperbolic geodesics
grows exponentially with length. Moreover, other conclusions of a more
geometrical nature can be drawn. Given p and q in M and T > 0, define
nT (p, q) as the number of geodesic arcs joining p and q with length ≤ T .
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R. Mañé showed in [35] that

lim
T→∞

1
T

log
∫
M×M

nT (p, q) dp dq = htop(g),

and therefore if htop(g) > 0, we have that on average the number of
arcs between two points grows exponentially with length. Even better,
K. Burns and G.P. Paternain showed in [13] that there exists a set of
positive area in M such that for any pair of points p and q in that set,
nT (p, q) grows exponentially with exponent htop(g).

When the Euler characteristic of M is negative a result of E.I.
Dinaburg [15] ensures that htop(g) > 0 for any metric g. Moreover,
Katok in [26] showed that htop(g) is greater than or equal to the topo-
logical entropy of a metric of constant negative curvature and the same
area as g, with equality if and only if g itself has constant curvature.
Therefore one is left with the problem of describing the behavior of
the functional g �→ htop(g) on the two-sphere (projective space) and
the two-torus (Klein bottle). It is well-known that these surfaces admit
various completely integrable metrics with zero topological entropy: flat
surfaces, surfaces of revolution, ellipsoids and Poisson spheres. On the
other hand V. Donnay [17] and Petroll [41] showed how to perturb a
homoclinic or heteroclinic connection to create transverse intersections.
Applying these type of perturbations to the case of an ellipsoid with
three distinct axes one obtains convex surfaces with positive topological
entropy. Examples of these type were first given by G. Knieper and H.
Weiss in [30]. Explicit real analytic convex metrics arising from rigid
body dynamics were given by Paternain in [39].

We would like to point out that Katok’s theorem mentioned above
about the existence of transverse homoclinic intersections when the
topological entropy is positive, together with the structural stability
of horseshoes implies that the set of C∞ metrics for which htop(g) > 0
is open in the Cr topology for all 2 ≤ r ≤ ∞. Therefore, the relevant
question about topological entropy for surfaces with nonnegative Eu-
ler characteristic is the following: when is the set of C∞ metrics with
positive topological entropy dense?

Let us recall that a Riemannian metric is said to be bumpy if all
closed geodesics are nondegenerate, that is, if the linearized Poincaré
map of every closed geodesic does not admit a root of unity as an eigen-
value. An important tool for proving generic properties of geodesic flows
is the bumpy metric theorem which asserts that the set of Cr bumpy
metrics is a residual subset of the set of all Cr metrics endowed with
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the Cr topology for all 2 ≤ r ≤ ∞. The bumpy metric theorem is tradi-
tionally attributed to R. Abraham [1], but see also Anosov’s paper [3].
Recall that a closed geodesic is said to be hyperbolic if its linearized
Poincaré map has no eigenvalue of norm one and it is said to be elliptic
if the eigenvalues of its linearized Poincaré map all have norm one but
are not roots of unity. For a surface with a bumpy metric the closed
geodesics are all elliptic or hyperbolic.

Let us recall some facts about heteroclinic orbits. Let SM be the
unit sphere bundle of (M, g). Given two hyperbolic periodic orbits γ, η,
of the geodesic flow φt, a heteroclinic orbit from γ to η is an orbit φR(θ)
such that

lim
t→−∞

d(φt(θ), γ) = 0 and lim
t→+∞

d(φt(θ), η) = 0.

The orbit φR(θ) is said to be homoclinic to γ if η = γ. The weak
stable and weak unstable manifolds of the hyperbolic periodic orbit γ
are defined as

W s(γ) : =
{
θ ∈ SM

∣∣∣ lim
t→+∞

d
(
φt(θ), γ

)
= 0

}
,

W u(γ) : =
{
θ ∈ SM

∣∣∣ lim
t→−∞

d
(
φt(θ), γ

)
= 0

}
.

The sets W s(γ) and W u(γ) are n-dimensional φt-invariant immersed
submanifolds of the unit sphere bundle, where n = dimM . Then a
heteroclinic orbit is an orbit in the intersection W u(γ) ∩ W s(η). If
W u(γ) and W s(η) are transversal at φR(θ) we say that the heteroclinic
orbit is transverse. A standard argument in dynamical systems (see [27,
§6.5.d] for diffeomorphisms) shows that if a flow contains a transversal
homoclinic orbit then it has positive topological entropy.1 (Note that for
geodesic flows the closed orbits never reduce to fixed points.) Moreover,
if there is a loop γ0, . . . , γN = γ0 of orbits such that for each i, 0 ≤ i ≤
N − 1, there is a transverse intersection of W u(γi) with W s(γi+1), then
γ0 has a homoclinic orbit and, in particular, φt has positive entropy.

For the case of the two-torus classical results of G.A. Hedlund [22]
and H.M. Morse [37] ensure that for a bumpy metric there are always
heteroclinic geodesics. In fact, minimal periodic geodesics are always hy-
perbolic (for bumpy surfaces) and if we choose in R2 a strip bounded by
two periodic minimal geodesics c+ and c− such that it does not contain
other periodic minimal geodesics, then there exist minimal geodesics c

1In fact it contains a hyperbolic basic set (see below).
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and c∗ such that c is α-asymptotic to c− and ω-asymptotic to c+ and
viceversa for c∗ (cf. [4, Theorem 6.8]). If these heteroclinic connections
are not transverse, they can be perturbed using Donnay’s theorem to
easily obtain Cr density of metrics with positive topological entropy for
all 2 ≤ r ≤ ∞, for the two-torus. Similar arguments can be used for
the Klein bottle. Clearly no argument like the one just described can
be applied to surfaces with no real homology.

One of the main goals of this paper is to show:

Theorem A. The set of C∞ Riemannian metrics g on S2 or RP2

for which htop(g) > 0 is dense in the C2 topology.

Corollary B. The set of C∞ Riemannian metrics g on S2 or
RP2 for which htop(g) > 0 is open and dense in the C2 topology. In
particular, if g belongs to this open and dense set, then the number of
hyperbolic prime closed geodesics of length ≤ T grows exponentially with
T .

From the previous discussion and the theorem we obtain the follow-
ing corollary which answers a question that Detlef Gromoll posed to the
second author in 1988.

Corollary C. There exists a C2 open and dense set U of C∞

metrics on S2 such that for any g ∈ U there exists a set G of positive
g-area such that for any p and q in G we have

lim
T→∞

1
T

log nT (p, q) = htop(g) > 0.

The last corollary is sharp in the sense that the sets G with positive
g-area cannot be taken to have full area. In [12], Burns and Paternain
constructed an open set of C∞ metrics on S2 for which there exists a
positive area set U ⊂M , such that for all (p, q) ∈ U × U ,

lim sup
T→∞

1
T

log nT (p, q) < htop.

It seems quite reasonable to conjecture that on any closed mani-
fold the set of C∞ Riemannian metrics whose geodesic flow exhibits a
transverse homoclinic intersection is open and dense in the Cr-topology
for any r with 2 ≤ r ≤ ∞. Besides its intrinsic interest there is
another motivation for looking at this conjecture. Quite recently, A.
Delshams, R. de la Llave and T. Seara proved the existence of orbits of
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unbounded energy (Arnold diffusion type of phenomenon) for pertur-
bations of geodesic flows with a transverse homoclinic intersection by
generic quasiperiodic potentials on any closed manifold [16]. Hopefully
our methods here can be further developed to the point where they yield
Theorem A for any closed manifold.

Let us describe the main elements that go into the proof of The-
orem A. This will clarify at the same time why we can only obtain
density in the C2 topology. An important tool for proving generic
properties for geodesic flows is a local perturbation result of W. Klin-
genberg and F. Takens [29]. We recall its precise statement in Sec-
tion 2. We shall also see in Section 2 that the bumpy metric theo-
rem, together with Klingenberg-Takens and a new perturbation lemma
(cf. Lemma 2.6) imply the analogue of the Kupka-Smale theorem for
geodesic flows. Namely, that Cr-generic Riemannian metrics on a man-
ifold of any dimension have closed geodesics whose Poincaré maps have
generic (r−1)-jets and the heteroclinic intersections of their hyperbolic
closed geodesics are transversal.

If there exists an elliptic closed geodesic, using the Kupka-Smale
theorem we can approximate our metric by one such that the Poincaré
map of the elliptic closed geodesic becomes a generic exact twist map
in a small neighborhood of the elliptic fixed point. Then a result of
Le Calvez [31] implies that the twist map has positive topological en-
tropy and therefore a metric of class C4 with a nonhyperbolic closed
geodesic can be approximated by one that has positive topological en-
tropy. Details of this argument are given in Section 3. Now we are
faced with the following question: how can we proceed if all the closed
geodesics are hyperbolic and this situation persists in a neighborhood?

It is not known if the two-sphere (or projective space) admits a
metric all of whose closed geodesics are hyperbolic. A fortiori, it is not
known if this can happen for an open set of metrics (see [6] for a thorough
discussion about the existence of a nonhyperbolic closed geodesic).

Let M be a closed surface and let R1(M) be the set of Cr Rieman-
nian metrics on M , r ≥ 4, all of whose closed geodesics are hyperbolic,
endowed with the C2 topology and let F1(M) = int

(
R1(M)

)
be the

interior of R1(M) in the C2 topology. Given a metric g let Per(g) be
the union of the hyperbolic (prime) periodic orbits of g.

Using Mañé’s techniques on dominated splittings in his celebrated
paper [34] and an analogue of Franks’ lemma for geodesic flows we will
show:
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Theorem D. If g ∈ F1(M), then the closure Per(g) is a hyperbolic
set.

Theorem D together with results of N. Hingston and H.-B Radema-
cher (cf. [24, 45, 44]), will show (cf. Section 5):

Theorem 1.1. If a C4 metric on a closed surface cannot be C2-
approximated by one having an elliptic periodic orbit, then it has a non-
trivial hyperbolic basic set.

This theorem together with the previous discussion will allow us to
prove Theorem A.

A hyperbolic set of a flow f t (without fixed points) is a compact
invariant subset Λ such that there is a splitting of the tangent bundle
of the phase space TΛN = Es ⊕ Eu ⊕ Ec which is invariant under the
differential of f t: df t(Es,u) = Es,u, Ec is spanned by the flow direction
and there exist 0 < λ < 1 and N > 0 such that∥∥dfN |Es

∥∥ < λN ,
∥∥df−N |Eu

∥∥ < λN .

A hyperbolic set Λ is said to be locally maximal if there exists an open
neighborhood U of Λ such that

Λ =
⋂
t∈R

f t(U).

A hyperbolic basic set is a locally maximal hyperbolic set which has a
dense orbit. It is said to be nontrivial if it is not a single closed orbit.

It is well-known that nontrivial hyperbolic basic sets have positive
topological entropy [8]. Moreover, the dynamics on such a set can be
modelled on suspensions of topological Markov chains (see [9, 10]).
Also, the exponential growth rate of the number of periodic orbits in
the basic set is given by the topological entropy ([8]):

htop(f t|Λ) = lim
T→+∞

1
T

log #{γ | γ periodic orbit of period ≤ T}.

(For the case of diffeomorphisms all these facts can be found in [27,
Chapter 18].)

Mañé’s theory on dominated splittings is based on Theorem 5.1 be-
low about families of periodic sequences of linear maps: if when per-
turbing each linear map of such a family, the return linear maps remain
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hyperbolic, then their stable and unstable subspaces satisfy a uniform
bound ∥∥TN |Es

∥∥ · ∥∥T−N |Eu

∥∥ < λ1 < 1,(1)

for a fixed iterateN (eventually smaller than the periods), where T is the
differential of our dynamical system. A splitting satisfying the uniform
bound (1) is called a dominated splitting. The uniform bound (1) implies
the continuity of the splitting, i.e., a dominated splitting on an invariant
subset A of a dynamical system extends continuously to the closure A.

The family of (symplectic) linear maps in our situation will be the
following. Consider a periodic orbit γ of the geodesic flow and cut it
into segments of length τ(γ) between ρ and 2ρ for some ρ > 0 which
is less than the injectivity radius . Construct normal local transversal
sections passing through the cutting points. Our family will be given
by the set of all linearized Poincaré maps between consecutive sections
(cf. proof of Proposition 5.5).

In order to apply Theorem 5.1, we first have to change “linear map”
to “symplectic linear map” (cf. Lemma 5.4). Then we have to be able
to modify independently each linearized Poincaré map of time τ on the
periodic orbits, covering a neighborhood of fixed radius of the original
linearized Poincaré map. This is done with the analogue of Franks’
lemma for geodesic flows (cf. Section 4). Thus we obtain a dominated
splitting on the closure of the set of C2 persistently hyperbolic closed
geodesics.

In Contreras [14] it is shown that a dominated invariant splitting
E ⊕ F on a non-wandering (Ω(Λ) = Λ) compact invariant set Λ of a
symplectic diffeomorphism is hyperbolic, provided that E and F have
the same dimension. This is also proved in Ruggiero [48], when the
subspaces E and F are assumed to be lagrangian.

A result of N. Hingston [24] (cf. also Rademacher [24, 45, 44]) states
that if all the periodic orbits of a metric in S2 are hyperbolic, then
they are infinite in number. Assuming that they are C2-persistently hy-
perbolic, the theory above and Smale’s spectral decomposition theorem
imply that their closure contains a nontrivial basic set. (Alternatively,
we could have also used for the 2-sphere the stronger results of Franks
and Bangert [5, 19] which assert that any metric on S2 has infinitely
many geometrically distinct closed geodesics.)

Unfortunately, Mañé’s techniques only work in the C2 topology and
that is why in Theorem A we can prove density of positive topological



8 g. contreras-barandiarán & g.p. paternain

entropy on the two-sphere or projective space only for the C2 topology.
We remark that the lack of a closing lemma for geodesic flows prevent
us from concluding that the geodesic flow of a metric near g is Anosov
as one would expect.

At this point it seems important to remark that if instead of consid-
ering Riemannian metrics we were considering Finsler metrics or hamil-
tonians, then Theorem A would have been a corollary of well-known re-
sults for hamiltonians (cf. [38, 46, 47, 51]). However, as is well-known,
perturbation results within the set of Riemannian metrics are much
harder, basically due to the fact that when we change the metric in
a neighborhood of a point of the manifold we affect all the geodesics
leaving from those points; in other words, even if the size of our neigh-
borhood in the manifold is small, the effect of the perturbation in the
unit sphere bundle could be large. This is the main reason why the
closing lemma is not known for geodesic flows (cf. [43]), even though
there is a closing lemma for Finsler metrics.

Another remark concerns the degree of differentiablity of our met-
rics. Theorem A holds if instead of requiring our metrics g to be C∞

we require them to be Cr for r ≥ 2. Given a C2 metric g0, we can
approximate it by a C∞ metric g1 in the C2 topology. Afterwards
we C2-approximate g1 by a C∞ metric g2 with a basic set. Then the
structural stability theorem works for an open C2-neighborhood of g2
of C2 metrics. We need g1 to be at least C4 in three places: in Franks’
Lemma 4.1; in the proof of Theorem 1.1; and to make the Poincaré map
of an elliptic closed geodesic a twist map. Observe that we actually find
a hyperbolic basic set and not just htop(g) > 0. Katok’s theorem, which
is based on Pesin theory, requires the Riemannian metrics to be of class
at least C2+α. This restriction is overcome in our case by the use of the
structural stability theorem. On the other hand for Corollary C a C∞

hypothesis on the metrics is essential because, as in Mañé’s formula [35],
Yomdin’s theorem [56] is used.

Related Work. There is an unpublished preprint by H. Weiss [54]
that proves that within the set of positively curved 1/4-pinched metrics,
those with positive topological entropy are Cr-dense. Weiss uses a result
of G. Thorbergsson [52] which asserts that any positively curved 1/4-
pinched metric on S2 has a nonhyperbolic closed geodesic and similar
arguments to the ones we give in Section 3, although the Kupka-Smale
theorem for geodesic flows is not proven.

Michel Herman gave a wonderful lecture at IMPA [23] in which he



geodesic flows with positive topological entropy 9

outlined a proof of the following theorem: within the set of C∞ pos-
itively curved metrics on S2 those with an elliptic closed geodesic are
C2-generic. Among other tools, he used an analogue of Franks’ lemma
just like the one we prove in the present paper. As a matter of fact, he
not only pointed out a mistake in a draft of the manuscript we gave him,
but he also explained to us how to solve the self-intersection problem
that appears in the proof. This paper is dedicated to his memory.

It is worth mentioning that Herman’s motivation was a claim by
H. Poincaré [42] that said that any convex surface has a nonhyperbolic
closed geodesic without self-intersections. This claim was proved wrong
by A.I. Grjuntal [20].

Acknowledgements. We would like to thank the referees for
numerous comments and suggestions for improvement.

2. Bumpy metrics and the Kupka-Smale theorem

In this section M is a closed manifold of dimension n. We begin
by recalling some elementary facts. Let φgt be the geodesic flow of the
Riemannian metric g acting on SM , the unit sphere bundle of M . Let
π : SM → M be the canonical projection. Non-trivial closed geodesics
on M are in one-to-one correspondence to the periodic orbits of φgt .
For a closed orbit γ = {φgt (z) : t ∈ [0, a]} of period a > 0 we can
define the Poincaré map Pg(Σ, γ) as follows: one can choose a local
hypersurface Σ in SM through v and transversal to γ such that there
are open neighborhoods Σ0, Σa of v in Σ and a differentiable mapping
δ : Σ0 → R with δ(v) = a such that the map Pg(Σ, γ) : Σ0 → Σa given
by

u �→ φgδ(u)(u),

is a diffeomorphism.
Given a closed geodesic c : R/Z → M , all iterates cm : R/Z → M ;

cm(t) = c(mt) for a positive integer m are closed geodesics too. We shall
call a closed geodesic prime if it is not the iterate of a shorter curve.
Analogously a closed orbit of φgt of period a is called prime if a is the
minimal period. A closed orbit γ (or the corresponding closed geodesic
c) is called nondegenerate if 1 is not an eigenvalue of the linearized
Poincaré map Pc := dγ(0)Pg(Σ, γ). In that case, γ is an isolated closed
orbit and π ◦γ an isolated closed geodesic. Moreover, one can apply the
implicit function theorem to obtain fixed points of the Poincaré map Pg.
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Thus, for a metric g near g there is a unique closed orbit γg for φg near
γ, given by the implicit function theorem, that we call the continuation
of c.

A Riemannian metric g is called bumpy if all the closed orbits of
the geodesic flow are nondegenerate. Since Pcm = Pmc this is equivalent
to saying that if exp(2πiλ) is an eigenvalue of Pc, then λ is irrational.
Let us denote by Gr the set of metrics of class Cr endowed with the Cr

topology for r ≥ 2. We state the bumpy metric theorem [1, 3]:

Theorem 2.1. For 2 ≤ r ≤ ∞, the set of bumpy metrics of class
Cr is a residual subset of Gr.

The bumpy metric theorem 2.1 clearly implies the following:

Corollary 2.2. There exists a residual set O in Gr such that if
g ∈ O then for all T > 0, the set of periodic orbits of φg with period
≤ T is finite.

The canonical symplectic form ω induces a symplectic form on Σ
and Pg(Σ, γ) becomes a symplectic diffeomorphism. Periodic points
of Pg(Σ, γ) correspond to periodic orbits near γ. Let N denote the
orthogonal complement of v = ċ(0) in the tangent space Tπ(v)M . Recall
that N ⊕ N can be identified with the kernel of the canonical contact
form and therefore it is a symplectic vector space with respect to ω. One
can choose Σ such that the linearized Poincaré map Pg(γ) := dvPg(Σ, γ)
is a linear symplectic map of N ⊕N and

Pg(γ)(J(0), J̇(0)) = (J(a), J̇(a)),

where J is a normal Jacobi field along the geodesic π ◦ γ and J̇ denotes
the covariant derivative along the geodesic. After choosing a symplectic
basis for N ⊕N we can identify the group of symplectic linear maps of
N ⊕N with the symplectic linear group Sp(n− 1) of Rn−1 ⊕ Rn−1.

Let Jrs (n − 1) be the set of r-jets of symplectic automorphisms of
Rn−1 ⊕ Rn−1 that fix the origin. Clearly one can identify J1

s (n − 1)
with Sp(n − 1). A set Q ⊂ Jrs (n − 1) is said to be invariant if for all
σ ∈ Jrs (n− 1), σQσ−1 = Q. The property that says that the r-jet of a
Poincaré map Pg(Σ, γ) belongs to Q is independent of the section Σ.

Let γ = {φg0t (v)} be a periodic orbit of period a of the geodesic
flow φg0t of the metric g0 ∈ Gr. Let W be an open neighborhood of
π(v) ∈ M . We choose W so that the geodesic π ◦ γ does not have any
self intersection in W . Denote by Gr(γ, g0,W ) the set of metrics g ∈ Gr
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for which γ is a periodic orbit of period a and such that the support of
g − g0 lies in W .

We now state the local perturbation result of Klingenberg and Tak-
ens [29, Theorem 2].

Theorem 2.3. If Q is an open and dense invariant subset of
Jr−1
s (n−1), then there is for every neighborhood V of g0 in Gr a metric
g ∈ V ∩ Gr(γ, g0,W ) such that the (r − 1)-jet of Pg(Σ, γ) belongs to Q.

As pointed out by Anosov [3], once Theorem 2.1 is proved, combining
Corollary 2.2 and Theorem 2.3 one gets:

Theorem 2.4. Let Q ⊂ Jr−1
s (n− 1) be open, dense and invariant.

Then there exists a residual subset O ⊂ Gr such that for all g ∈ O, the
(r − 1)-jet of the Poincaré map of every closed geodesic of g belongs to
Q.

A closed orbit is said to be hyperbolic if its linearized Poincaré map
has no eigenvalues of modulus 1. If γ is a hyperbolic closed orbit and
θ = γ(0), define the strong stable and strong unstable manifolds of γ at
θ by

W ss(θ) =
{
v ∈ SM | lim

t→+∞
d
(
φgt (v), φ

g
t (θ)

)
= 0

}
,

W su(θ) =
{
v ∈ SM | lim

t→−∞
d
(
φgt (v), φ

g
t (θ)

)
= 0

}
.

Define the weak stable and weak unstable manifolds by

W s(γ) :=
⋃
t∈R

φt
(
W ss(θ)

)
, W u(γ) :=

⋃
t∈R

φt
(
W su(θ)

)
.

It turns out that they are immersed submanifolds of dimension

dimW s(γ) = dimW u(γ) = dimM.

A heteroclinic point is a point in the intersection W s(γ)∩W u(η) for two
hyperbolic closed orbits γ and η. We say that θ ∈ SM is a transversal
heteroclinic point if θ ∈ W s(γ) ∩W u(η), and TθW

s(γ) + TθW
u(η) =

TθSM .
In [17], Donnay showed for surfaces how to perturb a heteroclinic

point of a metric on a surface to make it transversal. In fact a similar
method has been used by Petroll [41] for higher dimensional manifolds
and this method actually gives Cr perturbations. Reference [41] is dif-
ficult to find, but there is a sketch of the proof in [11].
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However, without further analysis, these perturbations do not give
control on the size of the subsets where the stable and unstable manifolds
are made transversal, as is needed for the proof of the Kupka-Smale
theorem. Available proofs of the Kupka-Smale theorem [46, 47] for
general hamiltonians do not apply to geodesic flows without further
arguments.

Using Corollary 2.2 and Theorem 2.4 we show here how to extend
the proof of the Kupka-Smale theorem for hamiltonian flows to the
case of geodesic flows, provided that the perturbations used are local.
The perturbations in [47] are not local. The perturbations in claim
a in [46] are local, they are written for volume preserving flows but
they can be adapted to the hamiltonian case. We choose to present in
Appendix A another kind of perturbation, suitable for use in the proof
of Theorem 2.5 and that could be useful for other types of problems.

Theorem 2.5. Let Q ⊂ Jr−1
s (n− 1) be open, dense and invariant.

Then there exists a residual subset O ⊂ Gr such that for all g ∈ O:

• The (r − 1)-jet of the Poincaré map of every closed geodesic of g
belongs to Q.

• All heteroclinic points of hyperbolic closed geodesics of g are trans-
versal.

Proof. We are going to modify the proof of the Kupka-Smale theo-
rem for general hamiltonians to fit our geodesic flow setting. Let Hr(N)
be the set of Cr Riemannian g metrics such that the (r − 1)-jet of the
Poincaré map of every closed geodesic of g with period ≤ N belongs
to Q. If necessary intersect Q with the set A ⊂ Jr−1(n − 1) of jets of
symplectic maps whose derivative at the origin has no eigenvalue equal
to 1. Then Q is still open, dense and invariant. Since the periodic orbits
of period ≤ N for such g are generic, there is a finite number of them.
Since Q is open and the Poincaré map depends continuously on the
Riemannian metric, Hr(N) is an open subset of Gr. By Theorem 2.4,
Hr(N) is a dense subset of Gr.

Let Kr(N) be the subset of Hr(N) of those metrics g such that for
any pair of hyperbolic periodic orbits γ and η of g with period ≤ N , the
submanifolds W s

N (γ) and W u
N (η) are transversal, where W s

N (γ) is given
by those points θ ∈ W s(γ) with distW s(γ)(θ, γ) < N and similarly for
W u
N (η). Since the stable and unstable manifolds of a hyperbolic orbit

depend continuously on compact parts in the C1 topology with respect
to the vector field, Kr(N) is an open subset of Gr.
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It remains to prove that Kr(N) is dense in Gr, for then the set

Kr :=
⋂
N∈N

Kr(N)

is the residual subset we are looking for.
We see first that in order to prove the density of Kr(N) it is enough

to make small local perturbations. Let γ, η be two hyperbolic periodic
orbits γ, η of period ≤ N . Observe that if the two invariant manifolds
W u(γ), W s(η) intersect, then they intersect along complete orbits. If
they intersect transversally, then they are transversal along the whole
orbit of the intersection point.

A fundamental domain for W u(γ) is a compact subset K ⊂ W u(γ)
such that every orbit in W u(γ) intersects K. Such a fundamental do-
main can be constructed for example inside the strong unstable man-
ifold of γ using Hartman’s theorem (one considers the linearization of
the Poincaré return map in a neighborhood of γ). Moreover there are
fundamental domains which are arbitrarily small and arbitrarily near
to γ. Hence it is enough to make W u

N (γ) transversal to W s
N (η) in a

fundamental domain for W u(γ).
We will use the following perturbation lemma whose proof will be

given after completing the proof of Theorem 2.5:

Lemma 2.6. For every point θ ∈ W u(γ) such that the projection
π|Wu(γ) is a diffeomorphism in a neighborhood of θ, and sufficiently
small neighborhoods θ ∈ V ⊂ V ⊂ U in SM , there are Riemannian
metrics g such that:

1. g is arbitrarily near g in the Cr-topology;

2. g and g coincide outside π(U);

3. γ and η are periodic orbits for g;

4. the connected component of W u
N (γ)∩ V containing θ and the sub-

manifold W s(η) are transversal.

Let θ be in a fundamental domain K for W u(γ). By the inverse
function theorem the projection π|Wu(γ) is a local diffeomorphism at
θ if and only of the tangent space of W u(γ) at θ is transversal to the
vertical subspace i.e., TθW u(γ) ∩ ker dθπ = {0}.

Observe that the manifolds W u(γ) and W s(γ) are lagrangian. A
well-known property of the geodesic flow (cf. [40]) asserts that if W
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is a lagrangian subspace, then the set of times t for which dθφt(W ) ∩
ker dφt θπ �= {0} is discrete and hence at most countable.

By flowing a bit the point θ we obtain another point φt(θ) satisfying
the conditions of the lemma. We can also choose t such that πt(θ)
does not intersect any closed geodesic of period ≤ N . One chooses the
neighborhood U in Lemma 2.6 such that the support of the perturbation
π(U) does not intersect any closed geodesic of period ≤ N . Choose a
neighborhood V such that φt(θ) ∈ V ⊂ V ⊂ U . Applying Lemma 2.6
we obtain a new Riemannian metric g such that g|π(U)c = g|π(U)c and
the connected component of W u

N (γ) ∩ V containing φt(θ) is transversal
to W s(η). If the perturbation is small enough, flowing backwards a
bit we obtain a neighborhood V1 of θ, where W u

N (γ) and W s(η) are
transversal.

Now cover the compact fundamental domain K by a finite number
of these neighborhoods V1 and call them, let us say, W1, . . .Wr. Ob-
serve that in Lemma 2.6 the perturbations are arbitrarily small but the
neighborhood V of transversality is fixed. Since transversality of com-
pact parts of stable (unstable) manifolds is an open condition on g, one
can make the perturbation on Wi+1 small enough so that the invariant
manifolds are still transversal on W1, . . . ,Wi.

In order to make now W u
N (η) transverse to W s

N (γ) one can use the
invariance of the geodesic flow under the flip F (x, v) = (x,−v), so that
W s(γ) = W u(F (γ)) or repeat the same arguments for the geodesic flow
with the time reversed.

This completes the proof of the density of Kr(N). q.e.d.

Proof of Lemma 2.6. Perhaps, the easiest way to prove Lemma 2.6
is to use a perturbation result for general hamiltonian systems. The
Legendre transform L(x, v) = gx(v, ·) conjugates the geodesic flow with
the hamiltonian flow of

H(x, p) :=
1
2

∑
ij

gij(x) pi pj

on the cotangent bundle T ∗M with the canonical (and fixed) symplectic
form ω =

∑
i dpi ∧ dxi. Here gij(x) is the inverse of the matrix of the

Riemannian metric.
Observe that the stable and unstable manifolds are lagrangian sub-

manifolds of T ∗M .
Now use a local perturbation result for the hamiltonian flow (e.g.,

[46, Claim a, Th. 3] or A.3 in Appendix A) to obtain a new hamiltonian
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flow which has W u(γ) transversal to the old W s(η) in a neighborhood
V . The stable manifold W s(η) only depends on the future times and
on the future it only accumulates on the periodic orbit η so up to the
perturbation it does not change.

If the perturbation is small enough, then the new piece of unstable
manifold W̃ u(γ) in the support of the perturbation U still projects in-
jectively to M . Let p : π(U) → T ∗

π(U)M be such that the connected

component of W̃ u(γ) ∩ U containing γ is

Graph(p) =
{(
x, p(x)

) ∣∣x ∈ π(U)
}
.

Define a new Riemannian metric by

gij(x) =

{
2H(x, p(x)) gij(x) if x ∈ π(U),
gij(x) if x /∈ π(U).

Then g is Cr near g, coincides with g on the complement of π(U) and
its hamiltonian satisfies

H
(
x, p(x)

)
=

1
2

∑
ij

gij(x) pi(x) pj(x)(2)

=
1
2

∑
ij

gij(x)
2H(x, p(x))

pi(x) pj(x)

=
H(x, p(x))

2H(x, p(x))
=

1
2
, for x ∈ π(U).

Then W̃ u(γ) is a lagrangian submanifold of T ∗M which is in the
energy level H ≡ 1

2 of the hamiltonian for g and which coincides with
the unstable manifold of γ in a neighborhood of γ. By Lemma A.1,
W̃ u(γ) is invariant under the geodesic flow of g and hence is the unstable
manifold of γ for g. q.e.d.

3. Twist maps and topological entropy

We say that a homeomorphism of the annulus f : [0, 1]× S1 ←↩ is a
twist map if for all θ ∈ S1 the function [0, 1] � r �→ π2 ◦ f(r, θ) ∈ S1 is
strictly monotonic.

For a proof of the Birkhoff’s normal form below see Birkhoff [7],
Siegel and Moser [49] or Le Calvez [32, Th. 1.1]. For a higher dimen-
sional version for symplectic maps see Klingenberg [28, p. 101].
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Birkhoff’s Normal Form 3.1. Let f be a C∞ diffeomorphism de-
fined on a neighborhood of 0 in R2 such that f(0) = 0, f preserves the
area form dx∧dy, and the eigenvalues of d0f satisfy |λ| = 1 and λn �= 1
for all n ∈ {1, . . . , q} for some q ≥ 4.

Then there exists a C∞ diffeomorphism h, defined on a neighborhood
of 0 such that h(0) = 0, h preserves the form dx ∧ dy and in complex
coordinates z = x+ iy ≈ (x, y) one has:

h ◦ f ◦ h−1(z) = λ z e2πiP (zz) + o(|z|q−1),

where P (X) = a1X + · · ·+ amX
m is a real polynomial of degree m with

2m+ 1 < q.
The coefficients ai, 1 ≤ i ≤ m ≤ q

2 − 1 are uniquely determined by
f .

In polar coordinates the function g = h ◦ f ◦ h−1 is written as

(r, θ) �−→
(
r + µ(r, θ), θ + α+ a1r

2 + · · ·+ amr
2m + ν(r, θ)

)
,

where λ = e2πi α. If a1 �= 0 and |r| ≤ ε is small enough, then ∂
∂r (π2 ◦ g)

has the same nonzero sign as a1 and hence g is a twist map in [0, ε]×S1.

We shall use following result:

Proposition 3.2 (Le Calvez [33, Remarques p. 34]). Let f be a
diffeomorphism of the annulus R× S1 such that it is a twist map, it is
area preserving, the form f∗(Rdθ)−Rdθ is exact and:

(i) If x is a periodic point for f and q is its least period, the eigen-
values of dxf q are not roots of unity.

(ii) The stable and unstable manifolds of hyperbolic periodic orbits
of f intersect transversally (i.e., whenever they meet, they meet
transversally).

Then f has periodic orbits with homoclinic points.

We are now ready to show:

Proposition 3.3. Let g0 be a metric of class Cr, r ≥ 4, on a surface
M with a nonhyperbolic closed geodesic. Then there exists a C∞ metric
g arbitrarily close to g0 in the Cr topology with a nontrivial hyperbolic
basic set. In particular, htop(g) > 0.
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Proof. Let Qh ⊂ J3
s (1) be the subset of 3-jets of symplectic auto-

morphisms which are hyperbolic at the origin. Given k ∈ Z, k �= 0, let
Qk ⊂ J3

s (1) be

Qk =
{
σfα,a1σ

−1
∣∣σ ∈ J3

s (1), a1 �= 0, α /∈ {nk |n ∈ Z}
}
∪Qh,

where fα,a1 : R2 → R2 is given by fα,a1(r, θ) = (r, θ + α+ a1r
2) + o(r3)

in polar coordinates. Now let Q =
⋂
kQk. By Birkhoff’s normal form

(with q = 4), the set Qk is open, dense and invariant.
By the Kupka-Smale Theorem 2.5 there is a residual subset Ok ⊂ Gr

(r ≥ 4) such that any metric in Ok has the two properties stated in the
theorem. Since

⋂
kOk is a residual subset, we can Cr-approximate g0,

r ≥ 4, by a C∞ metric g with a nonhyperbolic closed orbit γ such that
the 3-jet of its Poincaré map is in Q and g satisfies the conditions (i)
and (ii) in Proposition 3.2.

The symplectic form on TM induced by the Riemannian metric,
induces a symplectic form on a local transverse section Σ to γ, which is
preserved by the Poincaré map Pg(Σ, γ). By Darboux’s theorem, using
a change of coordinates we can assume that Σ is a neighborhood of 0 in
R2 and that the symplectic form on Σ is the area form of R2.

By the definition of Q, the Poincaré map f = Pg(Σ, γ) is conjugate
to a twist map f0 = h f h−1 when written in polar coordinates. In order
to apply Proposition 3.2 we show below a change of coordinates which
transforms f0 into an exact twist map of the annulus R+ × S1. Then
the existence of a homoclinic orbit implies the existence of a nontrivial
hyperbolic basic set.

Consider the following maps

(x, y) −−−→ (r, θ) −−−→ (1
2r

2, θ) = (R, θ)

D
P−−−→ R+ × S1 −−−→ R+ × S1

f0

� � �T
D −−−→ R+ × S1 −−−→ R+ × S1

where D = {z ∈ C | |z| < 1}, P−1(r, θ) = (r cos θ, r sin θ). Write
G(x, y) = (1

2r
2, θ) = (R, θ), the upper composition. Then G∗(Rdθ) =

1
2 (x dy − y dx) =: λ. Observe that dλ = dx ∧ dy is the area form in
D. Since D is contractible, f0

∗(λ) − λ is exact. Then T ∗(Rdθ) − Rdθ
is exact. Since R(r) = 1

2 r
2 is strictly increasing on r > 0, T is a twist

map iff f0 is a twist map. q.e.d.
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4. Franks’ lemma for geodesic flows of surfaces

Let γ = {φgt (v) | t ∈ [0, 1]} be a piece of an orbit of length 1 of the
geodesic flow φgt of the metric g ∈ Gr. Let Σ0 and Σt be sections at
v and φt(v) respectively. We have a Poincaré map Pg(Σ0,Σt, γ) going
from Σ0 to Σt. One can choose Σt such that the linearized Poincaré
map

Pg(γ)(t)
def= dvPg(Σ0,Σt, γ)

is a linear symplectic map from N0 := N(v)⊕N(v) to Nt := N(φtv)⊕
N(φtv) and

Pg(γ)(t)(J(0), J̇(0)) = (J(t), J̇(t)),

where J is a normal Jacobi field along the geodesic π ◦ γ and J̇ denotes
the covariant derivative along the geodesic. Let us identify the set of all
linear symplectic maps from N0 to Nt with the symplectic group

Sp(1) := {X ∈ R
2×2 |X∗

JX = J},

where J =
[

0 1
−1 0

]
.

Suppose that the geodesic arc π ◦ γ(t), t ∈ [0, 1], does not have any
self intersection and let W be a tubular neighborhood of it. We denote
by Gr(γ, g,W ) the set of metrics g ∈ Gr for which γ is a piece of orbit
of length 1 and such that the support of g − g lies in W .

When we apply the following theorem to a piece of a closed geodesic
we cannot avoid to have self intersections of the whole geodesic. Sup-
pose given a finite set of non-self intersecting geodesic segments F =
{η1, . . . , ηm} with the following properties:

1. The endpoints of ηi are not contained in W ;

2. The segment π ◦ γ|[0,1] intersects each ηi transversally.

Denote by Gr(γ, g,W,F) the set of metrics g ∈ Gr(γ, g,W ) such that
g = g in a small neighborhood of W ∩ ∪mi=1ηi([0, 1]).

Consider the map S : Gr(γ, g,W )→ Sp(1) given by S(g)= Pg(γ)(1).
The following result is the analogue for geodesic flows of the infinites-
imal part of Franks’ lemma [18, lem. 1.1] (whose proof for general
diffeomorphisms is quite simple).

Theorem 4.1. Let g0 ∈ Gr, r ≥ 4. Given U ⊂ G2 a neighborhood
of g0, there exists δ = δ(g0,U) > 0 such that given g ∈ U , γ, W and F

as above, the image of U ∩ Gr(γ, g,W,F) under the map S contains the
ball of radius δ centered at S(g0).
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The time 1 in the preceding statement was chosen to simplify the
exposition and the same result holds for any time τ chosen in a closed
interval [a, b] ⊂]0,+∞[; now with δ = δ(g0,U , a, b) > 0. In order to fix
the setting, take [a, b] = [12 , 1] and assume that the injectivity radius of
M is larger than 1. This implies that there are no periodic orbits with
period smaller than 2 and that any periodic orbit can be cut into non
self-intersecting geodesic segments of length τ with τ ∈ [12 , 1]. We shall
apply Theorem 4.1 to such segments of a periodic orbit choosing the
supporting neighborhoods carefully as we now describe.

Given g ∈ Gr and γ a prime periodic orbit of g let τ ∈ [12 , 1] be such
that mτ = period(γ) with m ∈ N. For 0 ≤ k < m, let γk(t) := γ(t+kτ)
with t ∈ [0, τ ]. Given a tubular neighborhood W of π◦γ and 0 ≤ k < m
let Sk : Gr(γ, g,W )→ Sp(1) be the map Sk(g) = Pg(γk)(τ).
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Figure 1: Avoiding self-intersections.

Let W0 be a small tubular neighborhood of γ0 contained in W .
Let F0 = {η0

1, . . . , η
0
m0
} be the set of geodesic segments η given by
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those subsegments of γ of length τ whose endpoints are outside W0

and which intersect γ0 transversally at η(τ/2) (see Figure 1). We now
apply Theorem 4.1 to γ0, W0 and F0. The proof of this theorem also
selects a neighborhood U0 of W0 ∩ ∪m0

i=1η
0
i ([0, τ ]). We now consider γ1

and we choose a tubular neighborhood W1 of γ1 small enough so that if
γ1 intersects γ0 transversally, then W1 intersected with W0 is contained
in U0 (see Figure 1). By continuing in this fashion we select recursively
tubular neighborhoods W0, . . . ,Wm−1, all contained in W , to which we
successively apply Theorem 4.1. This choice of neighborhoods ensures
that there is no interference between one perturbation and the next. In
the end we obtain the following:

Corollary 4.2. Let g0 ∈ Gr, r ≥ 4. Given a neighborhood U of g0
in G2, there exists δ = δ(g0,U) > 0 such that if g ∈ U , γ is a prime
closed orbit of φg and W is a tubular neighborhood of c = π ◦γ, then the
image of U ∩ Gr(γ, g0,W )→ Πm−1

k=0 Sp(1) under the map (S0, . . . , Sm−1)
contains the product of balls of radius δ centered at Sk(g0) for 0 ≤ k <
m.

The arguments below can be used to show that g − g can be sup-
ported not only outside a finite number of intersecting segments but
outside any given compact set2 of measure zero in γ. This is done by
adjusting the choice of the function h in (10).

The nature of these results (i.e., the independence on the size of the
neighborhood W ) forces us to use the C1 topology on the perturbation
of the geodesic flow, thus the C2 topology on the metric. The size
δ(g0,U) > 0 in Theorem 4.1 and Corollary 4.2 depends on the C4-norm
of g0.

Proof of Theorem 4.1. Let us begin by describing informally the
strategy that we shall follow to prove Theorem 4.1. At the beginning
we fix most of the constants and bump functions that are needed. Using
Fermi coordinates along the geodesic c = π ◦ γ, we consider a family of
perturbations following Klingenberg and Takens in [29]. We show that
the map S is a submersion when restricted to a suitable submanifold
of the set of perturbations. To obtain a size δ that depends only on g0
and U and that works for all g ∈ U , γ and W we find a uniform lower
bound for the norm of the derivative of S using the constants and the

2But to use this argument to support g− g outside a given infinite set of geodesic
segments of length ≥ 1

2
one needs to bound from below their angle of intersection

with c.
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bump functions that we fixed before. This uniform estimate can only
be obtained in the C2 topology.

The technicalities of the proof can be summarized as follows. To ob-
tain a C2 perturbation of the metric preserving the geodesic segment c =
π◦γ one needs a perturbation of the form (12), with α(t, x) = ϕ(x)βA(t),
where ϕ(x) is a bump function supported in an ε-neighborhood in the
transversal direction to c and βA(t) is given by formula (31). The deriva-
tive of βA(t) with respect to A is given by formula (20). The second
factor in (20) is used to make the derivative of S surjective,3 and the
first factor h(t) is an approximation of a characteristic function used
to support the perturbation outside a neighborhood of the intersect-
ing segments in F = {η1, . . . , ηm}. Then inequality (8) shows that if
the neighborhood W of c is taken small enough, the C2 norm of the
perturbation is essentially bounded by only the C0 norm of βA(t). In
order to bound the C2 norm of βA from (31) in Equation (8), we use
the hypothesis g0 ∈ G4 to have a bound for the second derivative of the
curvature K0(t, 0) of g0 along the geodesic c.

By shrinking U if necessary, we can assume that

‖g‖C2 ≤ ‖g0‖C2 + 1 for all g ∈ U .(3)

Let k1 = k1(U) > 1 be such that if g ∈ U and φt is the geodesic flow of
g, then

‖dvφt‖ ≤ k1 and ‖dvφ−1
t ‖ ≤ k1 for all t ∈ [0, 1](4)

and all v ∈ S1
gM . Let 0 < λ� 1

2 and let k2 = k2(U , λ) > 0 be such that

max
|t−1/2|≤λ

‖dvφt − dvφ1/2‖ ≤ k2 and max
|t−1/2|≤λ

‖dvφ−1
t − dvφ−1

1/2‖ ≤ k2

(5)

for all g ∈ U and all v ∈ S1
gM . If λ = λ(g0,U) is small enough, then

0 < k2 <
1

16 k3
1

< 1 < k1.(6)

Let δλ and ∆λ : [0, 1] → [0,+∞[ be C∞ functions such that δλ
has support on [12 − λ,

1
2 [, ∆λ has support on ]12 ,

1
2 + λ],

∫
δλ(t) dt =∫

∆λ(t) dt = 1 and the support of ∆λ is an interval.

3The functions δλ(t) and ∆λ(t) are approximations to a Dirac delta at t = 1
2
.
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Let k3 = k3(g0,U , λ) = k3(g0,U) = k3(λ) be

k3 := k2
1

[
‖δλ‖C0 +

∥∥δ′λ∥∥C0 + ‖∆λ‖C0

(
1 + ‖g0‖C2

)
+
∥∥∆′′

λ

∥∥
C0

]
(7)

where δ′λ and ∆′′
λ are the first and second derivatives of the functions δλ

and ∆λ with respect to t.
Given ε with 0 < ε < 1, let ϕε : R → [0, 1] be a C∞ function such

that ϕε(x) = 1 if x ∈ [− ε
4 ,

ε
4 ] and ϕε(x) = 0 if x /∈ [− ε

2 ,
ε
2 ]. In Lemma 4.5

it is proven that ϕε(x) can be chosen such that∥∥ϕε(x)β(t)x2
∥∥
C2 ≤ k4 ‖β‖C0 + k4 ε ‖β‖C1 + ε2 ‖β‖C2 .(8)

for some fixed k4 > 0 (independent of ε) and any β : [0, 1]→ R of class
C2.

Choose 0 < �� 1/(4k2
1k3). From (6), we have that

1
k2

1

− k3 �− 4 k1k2 >
1

2k2
1

.(9)

Let h : [0, 1] → [0, 1] be a C∞ function supported outside a neigh-
borhood of the intersecting points and the endpoints of the support of
∆λ,

supp(h) ⊂ [0, 1] \
[
γ−1(∪mi=1ηi) ∪ ∂ supp(∆λ)

]
and such that ∫ 1

0
|h(t)− 1| dt ≤ �.(10)

We now introduce Fermi coordinates along the geodesic arc c = π◦γ.
All the facts that we will use about Fermi coordinates can be found in
[21, 28]. Take an orthonormal frame {ċ(0), E} in Tc(0)M . Let E(t)
denote the parallel translation of E along c. Consider the differentiable
map Φ : [0, 1]× R→M given by

Φ(t, x) = expc(t)
(
xE(t)

)
.

This map has maximal rank at (t, 0), t ∈ [0, 1]. Since c(t) has no self
intersections on t ∈ [0, 1], there exists a neighborhood V of [0, 1] × {0}
in which Φ|V is a diffeomorphism.

Choose

ε1 = ε1(g0,U , γ,F) > 0(11)
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such that the segments ηi do not intersect the points with coordinates
(t, x) with |x| < ε1 and t ∈ supp(h) and such that [0, 1]× [−ε1, ε1] ⊂ V
and Φ([0, 1]× [−ε1, ε1]) ⊂W .

Let [g0(t, x)]ij denote the components of the metric g0 in the chart
(Φ, V ). Let α(t, x) denote a C∞ function on [0, 1] × R with support
contained in V \ Φ−1[∪mi=0ηi([0, 1])]. We can define a new Riemannian
metric g by setting

g00(t, x) = [g0(t, x)]00 + α(t, x)x2 ;(12)
g01(t, x) = [g0(t, x)]01;
g11(t, x) = [g0(t, x)]11;

where we index the coordinates by x0 = t and x1 = x.
For any such metric g we have that (cf. [21, 28]):

gij(t, 0) = gij(t, 0) = δij , 0 ≤ i, j ≤ 1;

∂k g
ij(t, 0) = ∂k gij(t, 0) = 0, 0 ≤ i, j, k ≤ 1;

where [gij ] is the inverse matrix of [gij ].
We need the differential equations for the geodesic flow φt in hamil-

tonian form. It is well-known that the geodesic flow is conjugated to
the hamiltonian flow of the function

H(x, y) =
1
2

∑
ij

gij(x) yi yj .

Hamilton’s equations are

d
dt xi = Hyi =

∑
j

gij(x) yj ,

d
dt yk = −Hxk

= −1
2

∑
i,j

∂
∂xk

gij(x) yi yj .

Let F be the set of the Riemannian metrics given by (12) endowed
with the C2 topology. One easily checks that F ⊂ Gr(γ, g0,W,F). Let

V := F ∩ U .

Using the identity d
dt (dφt) = (dX ◦ φt) · dφt, with X = d

dtφt
∣∣
t=0

, we
obtain the differential equations for the linearized hamiltonian flow, on
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the geodesic c(t) (given by: t, x = 0, y0 = 1, y1 = 0), which we call the
Jacobi equation:

d

dt

∣∣∣∣
(t,x=0)

[
a
b

]
=
[

Hyx Hyy

−Hxx −Hxy

] [
a
b

]
=
[

0 I
0 0
0 −K 0

] [
a
b

]
,(13)

where

K(t, 0) = 1
2
∂ 2

∂x2 g
00(t, 0) = −1

2
∂ 2

∂x2 g00(t, 0).(14)

Let
K0(t, 0) := 1

2
∂ 2

∂x2 g
00
0 (t, 0).

It is easy to check that

K(t, 0) = K0(t, 0)− α(t, 0).(15)

By comparison with the usual Jacobi equation4 we get that K(t, 0) is
the curvature at the point c(t) for the metric g.

Observe from (12) that the conditions5

a0(t) = 〈h, ċ〉g =
∑
i
g0i(t, 0) ai(t) ≡ 0 ,

b0(t) = ȧ0(t) = 〈b, ċ〉g ≡ 0 ,
(16)

are invariant among the metrics g ∈ F and satisfy (13). In particular
the subspaces

Nt = {(a, b) ∈ Tc(t)TM | a0 = b0 = 0} ≈ R× R

are invariant under (13) for all g ∈ F . From now on reduce the Jacobi
Equation (13) to the subspaces Nt.

We need uniform estimates for all g ∈ V. Fix g ∈ V and write

At = A
g
t =

[
0 1

−K(t, 0) 0

]
2×2

(17)

4The geometric notion of curvature is not really used. The reader might just use
Equation (14) as the definition of curvature in this section.

5Here the products 〈h, ċ〉g and 〈b, ċ〉g are not needed to follow the argument.
In fact, here ċ(t) is the hamiltonian orbit corresponding to the geodesic c(t) in the
cotangent bundle and 〈 , 〉g is the Riemannian metric in the cotangent bundle induced
by g, whose coefficients are those of the inverse matrix [gij ]. These products are
included in (16) to suggest the reader that the following subspace Nt is just the
reduction of the space of Jacobi fields to those Jacobi fields which are orthogonal to
the geodesic.
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where K is from (15). Let Xt = Xg
t = dφt|N0 : N0 → Nt be the solution

of the Jacobi Equation (13) for g:

Ẋt = AtXt.(18)

The time 1 map X1 is a symplectic linear isomorphism: X∗
1JX1 = J,

where J =
[

0 1
−1 0

]
. Differentiating this equation we get the tangent

space of the symplectic isomorphisms at X1: TX1 = {Y ∈ R2×2 |X∗
1JY

is symmetric}. Observe that, since X1 is symplectic:

TX1 = X1 · TI(19)

and that TI is the space of 2×2 matrices of the form6 Z =
[
b c
a −b

]
.

Let us consider the map given by

F � g H�−→ Xg
1 ∈ Sp(1).

Equivalently, H is the restriction of S : Gr(γ, g0,W )→ Sp(1) to F . We
shall show that H is a submersion at any g ∈ V. We start by finding
a uniform lower bound for the norm of dgH restricted to a suitable
subspace.

Lemma 4.3. Consider a small parameter s near zero and write
gs = g + αsx2

1 dx0 ⊗ dx0 ∈ F where

αs(t, x) := ϕε(x) βs(t),

where βs(t) satisfies βs=0(t) ≡ 0 and

∂βs(t)
∂s

∣∣∣∣
s=0

= h(t)
{
δ(t) a+ δ′(t) b−

(
∆λ(t)K(t, 0) + 1

2 ∆′′
λ(t)

)
c
}
,

(20)

where a, b, c ∈ R, 0 ≤ h(t) ≤ 1 satisfies (10), K(t, 0) is the curvature of
g at (t, 0) and 0 < ε < ε1. In particular αs has support contained in V .

Then ∥∥dgH( ddsgs∣∣s=0

)∥∥ ≥ 1
2k3

1

∥∥[ b c
a −b

]∥∥ .
6If dim M > 2 the elements of TI have the form [ b c

a d ], with a and c symmetric
and d = −b∗. The arguments shown here are not sufficient to cover this case.
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We use h(t) to support the perturbation of the Riemannian metric
outside the intersecting segments and also to bound the C2 norm of the
term ∆′′

λ(t)

∆λ(t)

(
e−h∆λc − 1

)
in Equation (31).

Proof. From (13) and Kgs(t, 0) = Kg(t, 0)−αs(t, 0), we see that Xgs
t

satisfies
Ẋgs
t = (At +Ds

t )X
gs
t ,

where At is from (17) and Dt =
[

0 0
αs(t,0) 0

]
. Thus the derivative of the

map H satisfies dgH
(
d
dsgs

∣∣
s=0

)
= Z1, where

Żt = At Zt + EtXt,

where Et = d
ds

∣∣
s=0

Ds
t = h(t)

[
0 0

∂β
∂s |s=0

(t) 0

]
. Writing Zt = XtWt and

using that Ẋt = AtXt, we get that Ẇt = X−1
t EtXt. Hence

Z1 = X1

∫ 1

0
X−1
t EtXt dt .(21)

Write A :=
[
b c
a −b

]
. We have to prove that

‖Z1‖ ≥
1

2k3
1

‖A‖ for all g ∈ V.

We compute the integral in (21). Write B =
[

0 0
b 0

]
and C =

[
0 0

−c/2 0

]
.

Then, using (18),∫ 1

0
X−1
t δ′λ(t)B Xt dt = −

∫ 1

0
δλ(t)

[
(X−1

t )′BXt +X−1
t BX ′

t

]
dt

=
∫ 1

0
δλ(t)X−1

t

[
AtB −BAt

]
Xt dt

=
∫ 1

0
δλ(t)X−1

t

[
b 0
0 −b

]
Xt dt .

∫ 1

0
X−1
t ∆′′

λ(t)C Xt dt

=
∫ 1

0
∆′
λ(t)X

−1
t

[− c
2

0

0 c
2

]
Xt dt

=
∫ 1

0
∆λ(t)X−1

t

[
At

[−c/2 0
0 c/2

]
−
[−c/2 0

0 c/2

]
At

]
Xt dt

=
∫ 1

0
∆λ(t)X−1

t

[
0 c

1
2
(K(t,0) c+ cK(t,0)) 0

]
Xt dt .
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Hence,∫ 1

0
X−1
t

Et
h(t)

Xt dt

=
∫ 1

0
δλ(t) X−1

t

[
b 0
a −b

]
Xt dt+

∫ 1

0
∆λ(t) X−1

t [ 0 c
0 0 ] Xt dt .

Write P (t)=X−1
t

Et
h(t) Xt, Q1(t)=X−1

t

[
b 0
a −b

]
Xt, Q2(t)=X−1

t [ 0 c
0 0 ] Xt

and Q(t) = X−1
t

[
b c
a −b

]
Xt. Then∫ 1

0
P (t) dt =

∫ 1

0
δλ(t)Q1(t) dt+

∫ 1

0
∆λ(t)Q2(t) dt.(22)

Using (4) we have that

‖δλ(t)Q1(t)‖ ≤ ‖δλ‖C0

∥∥X−1
t

∥∥ √2 max{|a|, |b|} ‖Xt‖
≤ ‖δλ‖C0 · k1 · ‖A‖ · k1.

Similarly

‖∆λ(t)Q1(t)‖ ≤ ‖∆λ‖C0 k
2
1 |c| ≤ ‖∆λ‖C0 k

2
1 ‖A‖ .

Hence, using (7), we have that

‖P‖0 ≤ k2
1 (‖δλ‖C0 + ‖∆λ‖C0) ‖A‖(23)

≤ k3(λ) ‖A‖ .

From (21), we have that

Z1 = X1

∫ 1

0
h(t) P (t) dt.(24)

Observe that∥∥∥∥∫ 1

0
δλ(t)Q1(t) dt−Q1

(
1
2

)∥∥∥∥ ≤ ∫ 1

0
δλ(t)

∥∥Q1(t)−Q1(1
2)
∥∥ dt

≤ Oλ(Q1,
1
2),∥∥∥∥∫ 1

0
∆λ(t)Q2(t) dt−Q2

(
1
2

)∥∥∥∥ ≤ ∫ 1

0
∆λ(t)

∥∥Q2(t)−Q2(1
2)
∥∥ dt

≤ Oλ(Q2,
1
2),
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where Oλ(Qi, 1
2) := max|t−1/2|≤λ

∥∥Qi(t)−Qi(1
2)
∥∥. Thus, using (22),∥∥∥∥∫ 1

0
h(t)P (t) dt−Q

(
1
2

)∥∥∥∥
=
∥∥∥∥∫ hP dt−

∫ 1

0
P dt+

∫
P dt−Q

(
1
2

)∥∥∥∥
≤
∥∥∥∥∫ (h− 1)P

∥∥∥∥+
∥∥∥∥∫ δλ(t)Q1(t)−Q1

(
1
2)
∥∥∥∥

+
∥∥∥∥∫ ∆λ(t)Q2(t)−Q2

(
1
2)
∥∥∥∥ ,

≤ ‖P‖0
∫
|h− 1|+Oλ(Q1,

1
2) +Oλ(Q2,

1
2)

≤ ‖P‖0
∫
|h− 1|+ 2 Oλ(Q, 1

2) , because Q = Q1 +Q2.

If f, g : [0, 1]→ R2×2, by adding and subtracting f(t) g(1
2), we obtain

the formula

Oλ(f g, 1
2) ≤ ‖f‖0 Oλ(g, 1

2) +Oλ(f, 1
2)
∥∥g(1

2)
∥∥ .(25)

Also, if e ∈ R2×2 is constant, then

Oλ(e f, 1
2) ≤ ‖e‖ Oλ(f, 1

2).(26)

Write A =
[
b c
a −b

]
. Using formulas (25), (26), we obtain from (4)

and (5) that

Oλ(Q, 1
2) = Oλ(X−1

t AXt,
1
2)

≤ ‖X−1
t ‖0Oλ(AXt,

1
2) +Oλ(X−1

t , 1
2) ‖A‖ ‖X1/2‖0

≤ ‖X−1
t ‖0 ‖A‖ Oλ(Xt,

1
2) +Oλ(X−1

t , 1
2) ‖A‖ ‖X1/2‖0

≤ 2 k1 k2 ‖A‖ .

Also, from (23) and (10),

‖P‖0
∫
|h− 1| ≤ ‖A‖ k3(λ)

∫
|h− 1| ≤ k3 ‖A‖ �.

Moreover

‖A‖ =
∥∥X1/2 Q

(
1
2

)
X−1

1/2

∥∥ ≤ k2
1

∥∥Q(1
2

)∥∥ .
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Hence, using (9),∥∥∥∥∫ hP dt

∥∥∥∥ ≥ ∥∥Q(1
2)
∥∥− ∥∥∥∥∫ hP −Q(1

2)
∥∥∥∥

≥
(

1
k2
1
− k3 �− 4 k1 k2

)
‖A‖

≥ 1
2k2

1

‖A‖ .

This implies that the transformation TI � A �→
∫ 1
0 h(t)P (t) dt ∈ TI

is onto. From (19) and (24), the map TI � A �→ Z1 ∈ TX1 is surjective.
Moreover, using (4) and (24),

k1 ‖Z1‖ ≥
∥∥X−1

1 Z1

∥∥ =
∥∥∥∥∫ 1

0
hP dt

∥∥∥∥ ≥ 1
2k2

1

‖A‖ .

Thus

‖Z1‖ ≥
1

2k3
1

‖A‖ for all g ∈ V.

q.e.d.

We shall combine Lemma 4.3 with the next lemma to prove the
theorem.

Lemma 4.4. Let N be a smooth connected Riemannian 3-manifold
and let F : R3 → N be a smooth map such that

|dxF (v)| ≥ a > 0 for all (x, v) ∈ TR
3 with |v| = 1 and |x| ≤ r.(27)

Then for all 0 < b < a r,{
w ∈ N | d

(
w,F (0)

)
< b

}
⊆ F

{
x ∈ R

3 | |x| < b
a

}
.

Proof. Let w ∈ N with d
(
w,F (0)

)
< b. Let β : [0, 1] → N be

a differentiable curve with β(0) = F (0), β(1) = w and |β̇| < b. Let
τ = sup(A), where A ⊂ [0, 1] is the set of t ∈ [0, 1] such that there exist
a unique C1 curve α : [0, t] → R3 such that α(0) = 0, |α(s)| < r and
F (α(s)) = β(s) for all s ∈ [0, t]. By the inverse function theorem τ > 0,
A is open in [0, 1] and there exist a unique α : [0, τ [→ R3 such that
F ◦ α = β. By (27),∣∣β̇(s)

∣∣ =
∥∥dα(s)F

∥∥ · |α̇(s)| ≥ a |α̇(s)| , for all s ∈ [0, τ [.(28)
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Thus, |α̇| ≤ 1
a max0≤t≤1

∣∣β̇(t)
∣∣. This implies that α is Lipschitz and

hence it can be extended continuously to [0, τ ]. Observe that |α(τ)| < r,
for if |α(τ)| ≥ r, then

b ≥ b τ ≥
∫ τ

0

∣∣β̇(s)
∣∣ ds ≥ a ∫ τ

0
|α̇(s)| ds ≥ a r,

contradicting the hypothesis b < ar. This implies that the set A is
also closed in [0, 1]. Thus A = [0, 1] and τ = 1. From (28), writing
x = α(1) ∈ F−1{w},

|x| ≤ length(α) =
∫ 1

0
|α̇(t)| dt ≤ 1

a

∫ 1

0
|β̇(t)| dt < b

a
.

q.e.d.

We now see that the condition (27) of Lemma 4.4 holds in our set-
ting. Let k5 = k5(g0,U , γ,F) and k6 = k6(g0,U , γ,F) be

k5 : = ‖δλ‖0 +
∥∥δ′λ∥∥0

+
[
‖∆λ‖0 ‖g0‖C2 + 1

2

∥∥∆′′
λ

∥∥
0

]
e‖∆λ‖0 ,

k6 : = max
|c|≤1

{
2 ‖h‖C2

[
‖δλ‖C2 +

∥∥δ′λ∥∥C2

]
+ 2 ‖g0‖C4

∥∥(e−h∆λc − 1
)∥∥

C2

+
∥∥∥ ∆′′

λ

2∆λ
(e−h∆λc − 1)

∥∥∥
C2

}
,

observe that since ∆λ > 0 on supp(h), the last term in k6 is finite.
Let 0 < ρ1 < 1 be such that the closed ball

BG2(g0, ρ1) ⊆ U .(29)

Choose 0 < ε = ε(g0,U , γ,F) < ε1, small enough so that

(ε k4 + ε2) k6 ≤ 1
2 ρ1.

Choose 0 < δ < 1 such that

k4 k5 (2k3
1 δ) + (ε k4 + ε2) k6 ≤ ρ1 < 1 and 2 k3

1δ ≤ 1.(30)

For A =
[
b c
a −b

]
, let

(31) βA(t) := h(t)
{
δλ(t) a+ δ′λ(t) b

}
+
(
K0(t, 0) + ∆′′

λ(t)

2 ∆λ(t)

) (
e−h(t) ∆λ(t) c − 1

)
;
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and let gA ∈ Gr−2(γ, g0,W,F) be the Riemannian metric

gA := g0 + ϕε(x)βA(t)x2 dt⊗ dt.

Observe that βA = 0 when h(t) = 0, so that g = g0 in a neighborhood
of the intersections of the segments ηi with c = π ◦ γ. Then the choice
of ε < ε1 from (11), ensures that g = g0 in a neighborhood of the
intersecting segments.

Observe that
∂βA
∂a

= h(t) δλ(t),
∂βA
∂b

= h(t) δ′λ(t),

∂βA
∂c

= −h(t)
{
∆λ(t)

(
K0(t, 0) + βA(t)

)
+ 1

2 ∆′′
λ(t)

}
,

In particular, the directional derivatives of the map TI � A �→ βA are
given by formula (20). (Note that K0(t, 0) + βA(t) is the curvature of
gA at (t, 0).) Indeed,

∂βA
∂c

+ h(t) ∆λ(t)βA(t) = h(t)2 ∆λ(t)
{
δλ(t) a+ δ′λ(t) b

}
− h(t)

{
K0(t, 0) ∆λ(t) + 1

2 ∆′′
λ(t)

}
= −h(t)

{
K0(t, 0) ∆λ(t) + 1

2 ∆′′
λ(t)

}
,

because ∆λ(t) δλ(t) ≡ 0 and ∆λ(t) δ′λ(t) ≡ 0.
Define F : TI → Sp(1) by

F (A) = S(gA) = dċ(0)φ
gA
1

∣∣
N1
.

Applying Lemma 4.3, we get that if gB ∈ V, then the derivative dBF
satisfies

‖(dBF ) ·A‖ ≥ 1
2 k3

1

‖A‖ , if gB ∈ V.(32)

LetG : TI →Gr−2(γ, g0,W,F) be the mapG(A)=gA. By Lemma 4.5,
we have that

‖G(A)− g0‖C2 =
∥∥ϕε(x)βA(t)x2

∥∥
C2(33)

≤ k4 ‖βA‖C0 + ε k4 ‖βA‖C1 + ε2 ‖βA‖C2

Observe that for |c| ≤ 1 we have that∣∣ e−h∆λc − 1
∣∣ ≤ |c| max

|c|≤1

∣∣∣ ∂∂c(e−h∆λc − 1
)∣∣∣ ≤ |c|∆λ e

‖∆λ‖0 , if |c| ≤ 1.
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Then, if |c| ≤ 1,∣∣∣K0(t, 0) + ∆′′
λ(t)

2 ∆λ(t)

∣∣∣ ∣∣ e−h∆λc − 1
∣∣ ≤ [ |K0|∆λ + 1

2 |∆
′′
λ|
]
e‖∆λ‖0 |c|

≤ |c|
[
‖g0‖C2 ‖∆λ‖0 + 1

2

∥∥∆′′
λ

∥∥
0

]
e‖∆λ‖0

Hence
‖βA‖C0 ≤ k5 ‖A‖ , if ‖A‖ ≤ 1.

Since ‖f · g‖C2 ≤ 2 ‖f‖C2 ‖g‖C2 , ‖βA‖C1 ≤ ‖βA‖C2 ≤ k6. Then from
(33) we get that

‖G(A)− g0‖C2 ≤ k4 k5 ‖A‖+(ε k4+ε2) k6, if ‖A‖ ≤ 1 and G(A) ∈ U .

By definition of ρ1 in (29), we can write W := BG2(g0, ρ1) ∩ G(TI) ⊂
V ⊂ U . Then (30) implies that

G
(
BTI

(0, 2 k3
1 δ)

)
⊆ W ⊂ V.

Thus the hypothesis gB ∈ V of (32) is satisfied and we can consider the
following diagram.

TI ⊃ B(0, 2 k3
1δ) W ⊂ V ⊂ G2

Sp(1).

�G

��������
F

�

�

�

�

�

�

�

��
H

Applying Lemma 4.4 to F in (32), with r = 2 k3
1 δ and a = 1

2 k3
1
, we

get that

BSp(1)(S(g0), δ) ⊆ F
(
BTI

(0, 2 k3
1 δ)

)
⊆ F (G−1(W)) ⊂ S

(
U ∩ Gr(γ, g0,W,F)

)
.

q.e.d.

Bump functions

Lemma 4.5. There exist k4 > 0 and a family of C∞ functions
ϕε : [−ε, ε]n−1 → [0, 1] such that ϕε(x) ≡ 1 if x ∈ [− ε

4 ,
ε
4 ]n−1, ϕε(x) ≡ 0

if x �∈ [− ε
2 ,

ε
2 ]n−1 and for any C2 map B : [0, 1] → R(n−1)×(n−1) the

function α(t, x) := ϕε(x) x∗B(t)x satisfies,

‖α‖C2 ≤ k4 ‖B‖C0 + ε k4 ‖B‖C1 + ε2 ‖B‖C2 ,

with k4 independent of 0 < ε < 1.
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Proof. Let ψ : [−1, 1] → [0, 1] be a C∞ function such that ψ(x) ≡
1 for |x| ≤ 1

4 and ψ(x) ≡ 0 for |x| ≥ 1
2 . Given ε > 0 let ϕ =

ϕε : [−ε, ε]n−1 → [0, 1] be defined by ϕ(x) =
∏n−1
i=1 ψ

(
xi
ε

)
. Let B ∈

R(n−1)×(n−1) and let β(x) = ϕ(x)x∗Bx. Then

‖β‖0 ≤ ε2 ‖B‖(34)
dxβ = (dxϕ) x∗Bx+ ϕ(x) x∗(B +B∗)

∂ϕ
∂xi

= 1
ε ψ

′ (xi
ε

) n−1∏
k �=i

ψ(xk
ε )

‖dxϕ‖ ≤ 1
ε ‖dψ‖0(35)

‖dxβ‖ ≤ 3 ε ‖B‖ ‖ψ‖C1(36)

d2
xβ = (d2

xϕ) x∗Bx+ 2 (dxϕ) x∗ (B +B∗) + ϕ(x) (B +B∗)
∂2ψ

∂xi ∂xj
= 1

ε2
ψ′′(xi

ε

)∏
k �=i

ψ
(
xk
ε

)
δij + 1

ε2
ψ′(xi

ε

)
ψ′(xi

ε

) ∏
k �=i,j

ψ
(
xk
ε

)
(1− δij).∥∥d2

xϕ
∥∥ ≤ 1

ε2
max

{ ∥∥d2ψ
∥∥

0
, ‖dψ‖20

}
≤ 1

ε2
‖ψ‖2C2 .∥∥d2

xβ
∥∥ ≤ ‖ψ‖2C2 ‖B‖ (1 + 4 + 2)

≤ 7 ‖ψ‖2C2 ‖B‖ .(37)

Let k4 := 4 + 3 ‖ψ‖C1 + 7 ‖ψ‖2C2 . Then from (34), (36) and (37), we
have that

‖β‖C2 ≤ k4 ‖B‖ .(38)

Now let α(t, x) := ϕ(x)x∗B(t)x. Observe that

‖α‖C2 ≤ sup
t
‖α(t, ·)‖C2 + sup

x
‖α(·, x)‖C2 + 2

∥∥∥ ∂2 α
∂x ∂t

∥∥∥
0
.

≤ ‖β‖C2 + ε2 ‖B‖C2 + 2
∥∥∥ ∂2 α
∂x ∂t

∥∥∥
0
.

But, using (35),

∂2 α
∂x ∂t = dxϕ · x∗B′(t)x+ ϕ(x)

[
x∗B′(t) +B′(t)x

]∥∥∥ ∂2 α
∂x ∂t

∥∥∥ ≤ ε ‖ψ‖C1 ‖B′ ‖0 + 2 ε ‖B′ ‖0
≤ 1

2 k4 ε ‖B‖C1 .

Hence, using (38),

‖α‖C2 ≤ k4 ‖B‖C0 + k4 ε ‖B‖C1 + ε2 ‖B‖C2 .

q.e.d.
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5. Dominated splittings for geodesic flows

We say that a linear map T : RN → RN is hyperbolic if it has no
eigenvalue of modulus 1. The stable and unstable subspaces of T are

Es(T ) :=
{
v ∈ R

N | lim
n→+∞

Tn(v) = 0
}
,

Eu(T ) :=
{
v ∈ R

N | lim
n→+∞

T−n(v) = 0
}
.

5.1 Periodic sequences of symplectic maps

Let GL(RN ) be the group of linear isomorphisms of RN . We say that
a sequence ξ : Z → GL(RN ) is periodic if there exists n0 ≥ 1 such
that ξj+n0 = ξj for all j ∈ Z. We say that a periodic sequence ξ is
hyperbolic if the linear map

∏n0−1
i=0 ξi is hyperbolic. In this case the

stable and unstable subspaces of
∏n0−1
i=0 ξi+j are denoted by Es

j (ξ) and
Eu
j (ξ) respectively.

Given two periodic families of sequences in GL(RN ), ξ = {ξ(α) |α ∈
A} and η = {η(α) |α ∈ A}, define

d(ξ, η) = sup
{
‖ξ(α)
n − η(α)

n ‖
∣∣ α ∈ A, n ∈ Z

}
.

We say that two periodic families are periodically equivalent if they
have the same indexing set A and for all α ∈ A the minimum periods
of ξ(α) and η(α) coincide. We say that a family ξ is hyperbolic if for all
α ∈ A, the periodic sequence ξ(α) is hyperbolic. Finally, we say that
a hyperbolic periodic family ξ is stably hyperbolic if there exists ε > 0
such that any periodically equivalent family η satisfying d(η, ξ) < ε is
also hyperbolic.

Theorem 5.1 (Mañé, [34, Lemma II.3]) . If {ξ(α) |α ∈ A} is a
stably hyperbolic family of periodic sequences of linear isomorphisms of
RN , then there exist constants m ∈ Z+ and 0 < λ < 1 such that for all
α ∈ A, j ∈ Z:∥∥∥∥∥

m−1∏
i=0

ξ
(α)
j+i

∣∣∣Es
j (ξ

(α))

∥∥∥∥∥ ·
∥∥∥∥∥[

m−1∏
i=0

ξ
(α)
j+i

]−1∣∣∣Eu
j+m(ξ(α))

∥∥∥∥∥ ≤ λ.
Denote by Sp(1) = SL(2,R) the group of symplectic linear maps in

R2. Lemma 5.4 below shows that if a periodic sequence ξ of symplec-
tic maps in R2 is stably hyperbolic among the periodic sequences in
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Sp(1) and supα
∥∥ξ(α)

∥∥ <∞, then it is also stably hyperbolic among the
sequences in GL(R2). Thus we get:

Corollary 5.2. If {ξ(α) |α ∈ A} is a family of periodic sequences in
Sp(1) which is stably hyperbolic in Sp(1), and supα ‖ξ(a)‖ < ∞. Then
there exist constants m ∈ Z+ and 0 < λ < 1 such that for all α ∈ A,
j ∈ Z: ∥∥∥∥∥

m−1∏
i=0

ξ
(α)
j+i

∣∣∣Es
j (ξ

(α))

∥∥∥∥∥ ·
∥∥∥∥∥[

m−1∏
i=0

ξ
(α)
j+i

]−1∣∣∣Eu
j+m(ξ(α))

∥∥∥∥∥ ≤ λ.
Remark 5.3. Write TNj :=

∏N−1
i=0 ξ

(α)
j+i. Using that ‖AB‖≤‖A‖ ‖B‖

for A,B ∈ GL(R2) we get that for all N ≥ 1 and all α ∈ A, j ∈ Z,∥∥∥TmNj

∣∣Es
j (ξ

(α))
∥∥∥ ∥∥∥[TmNj

]−1∣∣Eu
j+Nm(ξ(α))

∥∥∥ < λN .

Lemma 5.4. Let Fk ∈ GL(R2), Tk ∈ Sp(1) with ‖Fk − Tk‖ < ε for
k = 1, . . . , N , where

2 ε
(

1 + 2 max
1≤j≤N

‖Tj‖
)
< 1

2 .

Suppose that F = FN ◦FN−1 ◦ · · · ◦F1 is not hyperbolic. Then there exist
Ak ∈ Sp(1) such that

‖Ak − Tk‖ < 16 ε
(

2 + max
1≤j≤N

‖Tj‖
)2

and A := AN ◦AN−1 ◦ · · · ◦A1 is not hyperbolic.

Proof. Suppose first that F has complex eigenvalues λ and λ. Since
F is not hyperbolic, |λ| = |λ| = 1, and hence det F = +1.

Let e1 = (1, 0), e2 = (0, 1) and

λk := detFk = ω(Fk e1, Fk e2).

Since ω(a, b) ≤ |a| |b|, we have that

|λk − 1| = |ω(Fke1, Fke2)− ω(Tke1, Tke2)|
≤ |ω(Fke1 − Tke1, Fke2)− ω(Tke1, Tke2 − Fke2)|
≤ ε ‖Fk‖+ ε ‖Tk‖
≤ 2 ε

[
2 ‖Tk‖+ 1

]
< 1

2 ,
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in particular, λk is positive. Since
∣∣∣1− 1√

x

∣∣∣ ≤ 2 |x − 1| for 1
2 ≤ x ≤ 3

2 ,
we obtain ∣∣∣1− 1√

λk

∣∣∣ ≤ 4 ε
[
2 ‖Tk‖+ 1

]
.

Since
∏N
k=1 λk = det F = 1,

N∏
k=1

1√
λk

= 1.

Observe that Sp(1) = {A ∈ GL(R2) | detA = +1}. Write

Ak := 1√
λk
Fk.

Then Ak ∈ Sp(1). Also

A = AN ◦ · · · ◦A1 =
(∏N

k=1
1√
λk

)
F = F

is not hyperbolic. Finally,

‖Ak − Tk‖ ≤ ‖Ak − Fk‖+ ‖Fk − Tk‖

≤
∣∣∣1− 1√

λk

∣∣∣ ‖Fk‖+ ε

≤ 4 ε [2 ‖Tk‖+ 1]2 + ε

≤ 4 ε [2 ‖Tk‖+ 2]2 .

Now suppose that F has an eigenvalue 1. The case of an eigenvalue
−1 follows from this case using −T1 and −F1 instead of T1 and F1.

Take a1 �= 0 such that F(a1) = a1. Define inductively

ak+1 := Fk(ak), uk :=
ak
|ak|

.

We shall construct a symplectic map Ak ∈ Sp(1) such that ‖Ak − Tk‖ <(
3+‖Tk‖

)
ε and Ak(uk) = Fk(uk). This will imply that Ak(ak) = ak+1,

A(a1) = a1 and thus that A is not hyperbolic.
Let J(x, y) := (−y, x) and

λk :=
ω(TkJuk, Tkuk)
ω(FkJuk, Fkuk)

=
1

ω(FkJuk, Fkuk)
.

Define Ak ∈ GL(R2) by Ak(uk) = Fk(uk) and Ak(Juk) = λk Fk(Juk).
Then

ω(AkJuk, Akuk) = λk ω(FkJuk, Fkuk) = 1 = ω(Juk, uk),
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so that Ak ∈ Sp(1).
Since ω(a, b) ≤ |a| |b|, we have that

| 1
λk
− 1| =

∣∣ω(FkJuk, Fkuk)− ω(TkJuk, Tkuk)
∣∣

=
∣∣ω(FkJuk, Fkuk − Tkuk) + ω(FkJuk − TkJuk, Tkuk)

∣∣
≤ ε (‖Fk‖+ ‖Tk‖)
≤ ε (2 ‖Tk‖+ 1).

Since |x− 1| ≤ 4
∣∣1− 1

x

∣∣ for 1
2 < x < 3

2 ,

|Ak(Juk)− Tk(Juk)| = |λk Fk(Juk)− Tk(Juk)|
≤ |λk − 1| |Fk(Juk)|+ |Fk(Juk)− Tk(Juk)|
≤ |λk − 1| ‖Fk‖+ ‖Fk − Tk‖
≤ 4ε

[
2 ‖Tk‖+ 1

]
(‖Tk‖+ 1) + ε

≤ 4ε
(
2 + 2 ‖Tk‖

)2
.

Also,

|Ak(uk)− Tk(uk)| = |Fk(uk)− Tk(uk)| ≤ ε.

Since the basis {uk, Juk} is orthonormal, we have that

‖Ak − Tk‖ ≤ 16 ε
(
1 + ‖Tk‖

)2 + ε.

q.e.d.

5.2 The hyperbolic splitting

Let M be a closed 2-dimensional smooth manifold and letR1(M) be the
set of Cr Riemannian metrics on M , r ≥ 4, all of whose closed geodesics
are hyperbolic, endowed with the C2 topology and let F1(M) =
int
(
R1(M)

)
be the interior of R1(M) in the C2 topology.

Given g ∈ Gr(M) let Per(g) be the union of the hyperbolic (prime)
periodic orbits of g. We say that a closed φg -invariant subset Λ ⊂ SM
is hyperbolic if there exists a (continuous) splitting TΛ(SM) = Es ⊕
Ec ⊕ Eu such that:

• Ec = 〈Xg〉 is generated by the vector field of φg.
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• There exist constants K > 0 and 0 < λ < 1 such that:

|dθφgt (ξ)| ≤ K λt |ξ| , for all t ≥ 0, θ ∈ Λ, ξ ∈ Es(θ);∣∣dθφg−t(ξ)∣∣ ≤ K λt |ξ| , for all t ≥ 0, θ ∈ Λ, ξ ∈ Eu(θ).

We shall show now:

Theorem D. If g ∈ F1(M), then the closure Per(g) is a hyperbolic
set.

We state a local version which implies Theorem D. Let U ⊆ SM
be an open subset and let R1(U) be the set of Riemannian metrics
g ∈ Gr(M) such that all the periodic orbits of φg contained in U are
hyperbolic. Let Per(g, U) be the union of the periodic orbits of φg

entirely contained in U . Let F1(U) = intC2

(
R1(U)

)
.

Proposition 5.5. If g ∈ F1(U), then the closure Per(g, U) is hy-
perbolic.

Proof. Observe that on a C2 neighborhood U of g each periodic
orbit in Per(g, U) can be continued and its continuation (see Section 2)
is hyperbolic, because otherwise one could produce a non-hyperbolic
orbit.

Cut the closed orbits in Per(g, U) into segments of length in [14�,
1
2�]

where � is the injectivity radius of g. Given a closed orbit γ in Per(g, U)
construct normal local transversal sections Σi to φg passing through the
cutting points γ(ti) of γ. Given a nearby metric g, cut the continuation
γg of γ along the Σi’s: γg(t

g
i ) ∈ Σi. Then γg is cut in the same number

of segments as γ is, so that the families

F(g) =
{
d
γg(tgi )

φg
tgi+1−t

g
i

|N g(γg(tgi ))

∣∣ γ ∈ Per(g, U), 0 ≤ i ≤ n(γ)
}

in Sp(N g(θ)) are periodically equivalent, where

N g(θ) = {ξ ∈ TθS(M, g) | 〈dπξ, θ〉g = 0}

and n(γ) is the number of segments in which we cut γ.

Lemma 5.6. If g ∈ F(U) then the family F(g) is stably hyperbolic.

Proof. Since g ∈ F1(U), there exists a C2-neighborhood U of g
in Gr(M) such that for all g ∈ U , the family F(g) is hyperbolic. Let
δ = δ(g,U) > 0 be given by Corollary 4.2. For γ ∈ Per(g, U), write

ξ
(γ)
i := dγ(ti)φ

g
ti+1−ti |Ni , ti := tgi , Ni := N g(γg(ti)).
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Suppose that the family

F(g) =
{
ξ
(γ)
i

∣∣ γ ∈ Per(g, U), 1 ≤ i ≤ ni(γ)
}

is not stably hyperbolic. Then there exist a periodic orbit γ ∈ Per(g, U)
for g and a sequence of symplectic linear maps ηi : Ni → Ni+1 such
that

∥∥ ηi − ξ(γ)i

∥∥ < δ and
∏n(γ)
i=1 ηi is not hyperbolic. Observe that the

perturbations of Franks’ Lemma 4.1 do not change the subspaces N (θ)
along the selected segment of c(t). By Corollary 4.2 there is another
Riemannian metric g ∈ U such that γ is also a closed orbit for g, tgi = ti,
N g(tgi ) = Ni and dγ(ti)φ

g
ti+1−ti |Ni = ηi. Let τ(γ) :=

∑n(γ)
i=1 ti be the

period of γ. Since the linearized Poincaré map for (γ, g) is

dγ(0)φ
g
τ(γ)

∣∣
N1

=
∏n(γ)
i=1 ηi,

the closed orbit γ is not hyperbolic for the metric g ∈ U . This contra-
dicts the choice of U . q.e.d.

Applying Corollary 5.2 — and Remark 5.3 if necessary (the time
spacing between cut points may vary) — we get that there exist λ < 1
and T > 0 such that

∥∥dθφT ∣∣Es(θ)
∥∥ · ∥∥dφT θ φ−T

∣∣Eu(φT θ)
∥∥ < λ for all θ ∈ Per(g, U);

(39)

where φ = φg.
Write Λ(g) = Per(g, U). For θ ∈ Λ(g) let

S(θ) : = span
{
ξ ∈ N g(θ)

∣∣∣ ∃〈θn〉⊆Per(g,U), limn θn=θ;
∃ξn∈Es(θn), limn ξn=ξ.

}
U(θ) : = span

{
ξ ∈ N g(θ)

∣∣∣ ∃〈θn〉⊆Per(g,U), limn θn=θ;
∃ξn∈Eu(θn), limn ξn=ξ.

}
Then the domination condition (39) implies that∥∥dθφT ∣∣S(θ)

∥∥ · ∥∥dφT θ φ−T
∣∣
U(φT θ)

∥∥ ≤ λ, for all θ ∈ Λ(g).(40)

We show now that the domination condition (40) implies that S⊕U
is a continuous splitting of N|Λ(g) = S ⊕ U . First observe that S(θ) ∩
U(θ) = {0} for all θ ∈ Λ(g); because if ξ0 ∈ S(θ) ∩ U(θ), writing
ξT := dθφT (ξ0), we would have that

|ξT | ≤
∥∥dθφT ∣∣S(θ)

∥∥ · |ξ0| ≤ ∥∥dθφT ∣∣S(θ)

∥∥ ·∥∥dφT θ φ−T
∣∣
U(φT θ)

∥∥ · |ξT | ≤ λ |ξT |.
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But the definitions of S and U imply that dimS(θ) ≥ dimEs(θn) and
that dimU(θ) ≥ dimEu(θn) if limn θn = θ and θn ∈ Per(g, U). There-
fore N (θ) = S(θ) ⊕ U(θ) and limn S(θn) = S(θ), limU(θn) = U(θ) in
the appropriate Grassmann manifold.

The continuity of the bundles S and U and their definition imply
that S(θ) = Es(θ) and U(θ) = Eu(θ) when θ ∈ Per(g, U). Observe that
if θ ∈ Per(g, U) then Es(θ) and Eu(θ) are7 lagrangian subspaces of
N (θ) because

ωg(u, v) = lim
t→+∞

ωg
(
dθφt(u), dθφt(v)

)
= 0,

where ωg is the symplectic form induced by g. The continuity of the
bundles S and U and the continuity of ωg imply that the subspaces S(θ)
and U(θ) are lagrangian for all θ ∈ Λ(g). Then the next proposition due
to Ruggiero [48, Proposition 2.1] (cf. also [14]) shows that Per(g, U) is
hyperbolic.

Proposition 5.7. Let S(θ) ⊕ U(θ) be a continuous, invariant la-
grangian splitting defined on a compact invariant set X ⊂ SM . The
splitting is dominated if and only if it is hyperbolic.

A hyperbolic set Λ is said to be locally maximal if there exists an
open neighborhood U of Λ, such that Λ is the maximal invariant subset
of U , i.e.,

Λ =
⋂
t∈R

dφgt (U).

A basic set is a locally maximal hyperbolic set with a dense orbit. It is
nontrivial if it is not a single closed orbit.

Given a continuous flow φt on a topological space X a point x ∈ X
is said wandering if there is an open neighborhood U of x and T > 0
such that φt(U) ∩ U = ∅ for all t > T . Denote by Ω(φt|X) the set of
non-wandering points for (X,φt). Recall:

Smale’s Spectral Decomposition Theorem for Flows 5.8 ([50,
27]) . If Λ is a locally maximal hyperbolic set for a flow φt, then there
exists a finite collection of basic sets Λ1, . . .ΛN such that the non-wan-
dering set of the restriction φt

∣∣
Λ

satisfies

Ω
(
φt
∣∣
Λ

)
=

N⋃
i=1

Λi.

7This is trivial in our case of dimN (θ) = 2 and dim Es(θ) = dim Eu(θ) = 1.



geodesic flows with positive topological entropy 41

Corollary 5.9. If the number of geometrically distinct periodic
geodesics is infinite and g ∈ F1(M), then Per(g) contains a nontriv-
ial hyperbolic basic set.

Proof. Let Λ = Per(g). Since g ∈ F1(M), Theorem D implies that
Λ is a hyperbolic set. By Proposition 6.4.6 in [27], there exists an open
neighborhood U of Λ such that the set

ΛU :=
⋂

t∈R
φgt (U)

is hyperbolic. Since Λ = Per(g), its non-wandering set is Ω(φt|Λ) = Λ.
By definition of ΛU , Λ ⊆ ΛU and hence Λ = Ω(φt|Λ) ⊆ Ω(φt|ΛU

).
By Corollary 6.4.20 in [27], the periodic orbits are dense in the non-
wandering set Ω(φt|ΛU

) of the locally maximal hyperbolic set ΛU . Thus
Λ ⊆ Ω(φt|ΛU

) ⊆ Per(g) = Λ. By Theorem 5.8, the set Λ = Ω(φt|ΛU
)

decomposes into a finite collection of basic sets. Since the number of
periodic orbits in Λ is infinite, at least one of the basic sets Λi is not a
single periodic orbit, i.e., it is nontrivial. q.e.d.

N. Hingston proves in [24] that if M is a simply-connected manifold
rational homotopy equivalent to a compact rank-one symmetric space
with a metric all of whose closed geodesics are hyperbolic then

lim inf
�→∞

n(�)
log(�)
�

> 0,

where n(�) is the number of geometrically distinct closed geodesics of
length ≤ �.

Rademacher proves:

Theorem 5.10 (Rademacher [44, Cor. 2]) . For a C4-generic met-
ric on a compact Riemannian manifold with finite fundamental group
there are infinitely many geometrically distinct closed geodesics.

Thus we have (As we mentioned in the introduction, we could have
also used the stronger results of Franks and Bangert [5, 19] which assert
that any metric on S2 has infinitely many geometrically distinct closed
geodesics.):

Theorem 1.1. If a C4 metric on a closed surface cannot be C2-
approximated by one having an elliptic closed geodesic, then it has a
nontrivial hyperbolic basic set.

Theorem 1.1 together with Proposition 3.3 completes the proof of
Theorem A.
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Appendix A. Perturbation of lagrangian manifolds

In this appendix we prove a perturbation lemma for invariant la-
grangian submanifolds of an autonomous hamiltonian suitable for use
in the proof of the Kupka-Smale theorem for geodesic flows.

Let V be a 2n-dimensional vector space. A symplectic form ω on
V is an antisymmetric bilinear map which is nondegenerate, i.e., for all
v ∈ V \ {0} there exists w ∈ V such that ω(v, w) �= 0. We say that a
subspace E ⊂ V is isotropic if ω|E ≡ 0 and that it is lagrangian if E
is isotropic and dimE = n = 1

2 dimV . This is the maximal dimension
that an isotropic subspace can have.

A symplectic manifold (M, ω) is a 2n-dimensional smooth manifold
together with a symplectic form ω, i.e., a 2-form which is nondegenerate
at each tangent space. A lagrangian submanifold N ⊂M is a submani-
fold such that each tangent space TxN is a lagrangian subspace of TxM.
In particular, dimN = n.

Lemma A.1. Let (M, ω) be a symplectic manifold and H :M→ R

be a smooth function. If N is a lagrangian submanifold of (M, ω) such
that N ⊂ H−1{k} for some k ∈ R then the hamiltonian vector field X
of H is tangent to N . In particular, N is a union of orbit segments of
the hamiltonian flow.

Proof. The hamiltonian vector field X is defined by iXω = −dH.
In particular, on the level set Σ = H−1{k} we have that iXω|Σ =
dH|Σ ≡ 0. Then iXω|N ≡ 0. Then for all x ∈ N the subspace Ex :=
TxN ⊕ 〈X(x)〉 is isotropic. If X(x) /∈ TxN then dimEx = n+ 1 which
is impossible. Thus X(x) ∈ TxN . q.e.d.

We shall use a special coordinate system associated to a lagrangian
submanifold that we shall call Darboux coordinates for the lagrangian
manifold.

Lemma A.2. Let N be a lagrangian submanifold contained in an
energy level H−1{k} of a hamiltonian H : M → R on a symplectic
manifold (M, ω). Let θ ∈ N and suppose that θ is not a singularity of
the hamiltonian vector field of H. Then there exist a neighborhood U in
M and a coordinate system (x, p) : U → Rn × Rn such that:

(a) ω =
∑

i dpi ∧ dxi.

(b) N ∩ U = [p ≡ 0].

(c) The hamiltonian vector field of H on N is given by XH |N = ∂
∂x0

.
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Proof. By Weinstein’s theorem [53], [2, Th. 5.3.18], [36, Th. 3.32]
there is a neighborhood W1 of N which is symplectomorphic to a neigh-
borhood of the zero section of T ∗N with its canonical symplectic form,
sending N to the zero section N × 0.

By Lemma A.1, N is invariant under the hamiltonian flow φt of H.
Let V be a flow box for the restriction φt|N containing θ ∈ V and choose
a local chart x : V → Rn for N such that x(θ) = 0 ∈ Rn and X|V = ∂

∂x0
,

where X|V is the restriction of the hamiltonian vector field to N ∩ V .
The canonical symplectic coordinates associated to the chart (V, x)

are given by (x, p) : V × Rn → T ∗
VN , pi = dxi. The pull-back of the

canonical symplectic form for T ∗N in these coordinates is
∑

i dpi ∧ dxi.
The zero section V × 0 ⊂ N × 0 ⊂ T ∗N is given by [p ≡ 0]. Now
compose this chart (x, p) with the symplectomorphism to obtain the
required chart. q.e.d.

This is our perturbation lemma for invariant lagrangian submani-
folds.

Lemma A.3. Let N and K be two lagrangian submanifolds inside
an energy level H−1{k} of a hamiltonian H : M → R of a symplectic
manifold (M, ω). Let θ ∈ N be a nonsingular point for the hamiltonian
vector field. Let (t, x; p), t ≡ x0, be Darboux coordinates coordinates for
N , 0 ≤ t ≤ 1, |x| < ε as in Lemma A.2. Choose 0 < ε2 < ε1 < ε.
Then there exist a sequence Nn of lagrangian submanifolds of (M, ω)
such that:

(a) Nn → N in the C∞ topology.

(b) Nn ∩ A = N ∩ A, where A :=
{
(t, x; p)

∣∣ maxi |xi| ≥ ε1 or 0 ≤
t ≤ 1

4

}
.

(c) H(Nn ∩B) = {k}, where B = A ∪
{
(t, x; p)

∣∣ 1
2 ≤ t ≤ 1

}
.

(d) Nn ∩ D is transversal to K, where D = {(t, x; p) | t = 1, and
maxi |xi| < ε2}.

Proof. Let ϕ : [−ε, ε]n−1 → [0, 1] be a C∞ function such that
ϕ(x) = 0 if maxi |xi| > ε1 and ϕ(x) = 1 if x ∈ [−ε2, ε2]n−1. Given
s = (s1, . . . , sn−1) ∈ Rn−1 with |s| small, let hs : [−ε, ε]n−1 → R be the
function hs(x) := 1 + ϕ(x)

∑n−1
i=1 si xi. Then

dxhs = (s1, . . . , sn−1), if x ∈ [−ε2, ε2]n−1;
dxhs = 0, if max

i
|xi| > ε1.
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Let ps : {1} × [−ε, ε]n−1 → Rn be defined by ps(1, x) := (ps0(x), dxhs),
where ps0(x) : [−ε, ε]n−1 → R is defined by the equation

H
(
(1, x); ps0(x)

)
= k.(41)

Since the curves t �→ (t, x, p = 0) are solutions of the hamiltonian equa-
tions,

Hp0

(
(1, x), 0

)
≡ 1 �= 0.

By the implicit function theorem, for s small we can solve Equation (41)
for (s, x) �→ ps0(x) and this is a C∞ function on s and x.

The graph of ps:

Graph(ps) :=
{(

(1, x); ps(x)
) ∣∣x ∈ [−ε, ε]n−1

}
⊂ H−1{k}

is an isotropic submanifold of H−1{1
2}. Indeed, its tangent vectors are

generated by ξi =
(
(0, ei); ∂p

s

∂xi

)
and

dp ∧ dx (ξi, ξj) =
n−1∑
k=0

∂psk
∂xi

dxk(ej)−
∂psk
∂xj

dxk(ei)

=
∂psj
∂xi
− ∂psi
∂xj

=
∂2h

∂xi∂xj
− ∂2h

∂xj∂xi
= 0.

When s is near zero, the submanifold Graph(ps) is C∞ near

Graph(p0) :=
(
{1} × [−ε, ε]n−1

)
× {e0} ⊂ N .

The tangent subspace to Graph(p0) is generated by the vectors ξ0i =(
(0, ei); 0

)
. Condition (c) in Lemma A.2 implies that, the hamiltonian

vector field on N is X =
(
(1, 0); 0

)
. Then X is transversal to Graph(p0).

Then for s small, the hamiltonian vector field X is also transversal to
Graph(ps).

Let

Ns =
[

1
2 ≤ t ≤ 1

]⋂[
|x| < ε

]⋂
φ[−2 ε,0]

(
Graph(ps)

)
,

We are adding the flow direction to the isotropic submanifold Graph(ps)
of the energy level [H ≡ k]. Then Ns is also isotropic. Since dimNs = n,
Ns is a lagrangian submanifold. Since the projection π|N is a diffeomor-
phism and when s→ 0, Ns converges toN in the C∞ topology, it follows
that π|Ns is also a diffeomorphism for s small. Then Ns is the graph
of a 1-form η(t, x) ∈ T ∗B defined on [12 , 1]× [−ε, ε]n−1. Since Ns is
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a lagrangian submanifold, the 1-form ηs is closed. Since its domain is
contractible, ηs is exact: ηs = d(t,x)us. Adding a constant if necessary
we can assume that us = hs on {1} × [−ε, ε]n−1. Extend us to a C∞

function on B such that

us(t, x) = t, if max
i
|xi| > ε1 or t < 1

4 .

lim
s→0

us(t, x) = t, in the C∞ topology.

This can be done using the Whitney extension theorem [55].
By constructionH(dus) ≡ k ≡ H(K) on t ∈ [12 , 1]. Since Graph(dus)

and K are lagrangian submanifolds, they are invariant under the hamil-
tonian vector field. Hence Graph(dus) and K are transversal over (t, x)
∈ [12 , 1]× [−ε2, ε2]n−1 if and only if their intersections with [t = 1],

(
x,

∂xus(1, x)
)

and K ∩ [t = 1] are transversal over x ∈ [−ε2, ε2]n−1. By
construction of us we have that

∂xus(1, x) = s ∈ R
n−1 for x ∈ [−ε2, ε2]n−1.

Observe that the submanifolds Graph(dus) on (t, x) ∈ [12 , 1]× [−ε2, ε2],
parametrized by s are a foliation of (t, x; p) ∈ [12 , 1] × [−ε2, ε2]n−1 ×
[−δ, δ]n−1. The projection of K ∩ [t = 1] into the transverse direction
to the foliation is given by [−ε2, ε2]n−1 � x �→ dxv where the function
v : [−ε, ε]n−1 → R is defined by K ∩ [t = 1] = Graph(dv). Therefore
Graph(dus) is transversal to K if and only if s is a regular value for
x �→ dxv. By Sard’s theorem the set of regular values of dv has total
measure, in particular there is a sequence sn → 0 of regular values. The
sets Nn := Graph(dusn) are the required lagrangian manifolds. q.e.d.
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