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CONFORMAL ACTIONS OF SIMPLE LIE GROUPS
ON COMPACT PSEUDO-RIEMANNIAN

MANIFOLDS

URI BADER & AMOS NEVO

Abstract
As is well-known, the real rank of a simple Lie group that acts conformally
on a pseudo-Riemannian manifold is bounded by means of the signature of
the manifold. We give a precise description of the action whenever the real
rank of the group reaches that bound, assuming the action is minimal.

1. Introduction and statement of results

1.1 Introduction

The isometry group of a compact Riemannian manifold must be com-
pact by the Arzela-Ascoli Theorem. This is no longer the case for
the group of conformal transformations. Indeed, it is well known that,
letting Hn denote hyperbolic n-space, the isometry group Isoo(Hn) �
SOo(n, 1) acts conformally on ∂Hn � Sn−1. A well known conjecture of
A. Lichnerowicz, considered by J. Lelong-Ferrand and M. Obata, asserts
that these are the only examples:

Theorem (Lelong-Ferrand [14, 6], Obata [15]). If M is a compact
Riemannian manifold and the group of conformal transformations of
M , Conf(M), is not compact, then M � Sn, endowed with the standard
conformal structure.
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It is natural to inquire whether a similar result can be established
for the conformal transformation group of a compact Lorentz, and more
generally, pseudo-Riemannian manifold. This problem is one source of
motivation for the present study.

Given a general compact pseudo-Riemannian manifold M of signa-
ture (p, q), the only constraint we are aware of on the (finite dimensional
Lie) group Conf(M) is that the real rank of its semisimple component
is bounded by min{p, q} + 1. This fact follows immediately from the
following (denoting the real rank of G by rkR(G)):

Theorem (Zimmer, [21]). Assume G is a semisimple Lie group
with finite center, acting faithfully on a compact manifold M , and pre-
serving an H-structure, where H is a real-algebraic group. Then rkR(G)
≤ rkR(H).

The algebraic structure present in the case of pseudo-Riemannian
manifold is the real algebraic group of conformal linear transforma-
tions H = CO(p, q) � SO(p, q) × R∗

+, and as is well known rkR(H) =
min{p, q} + 1.

Let now G be a semisimple Lie group of higher real-rank that acts
on M preserving an H-structure and a volume form. In this case, a
number of rigidity phenomena arise, both in terms of the topology of the
underlying manifold, as well as the structure of the action itself. These
have been studied extensively (see e.g., [22, 7]). We note, however,
that the proof of these rigidity results depend crucially on the existence
of an invariant volume form (or at least a finite invariant measure)
on the manifold. It is an interesting problem to consider the case of
conformal transformations, which preserve a non-unimodular structure,
and establish whether analogous rigidity phenomena persist in some
form. This is our second source of motivation for the present study.

1.2 Statement of results

We first note that each of the groups G = SOo(p, q) admit a conformal
action on a compact homogeneous pseudo-Riemannian manifold of sig-
nature (p − 1, q − 1). This manifold is the product of the two spheres
Sp−1×Sq−1, and is a 2-fold cover of the homogeneous projective variety
G/Q, where Q is the maximal parabolic subgroup of least codimension
in SOo(p, q). The spaces G/Q will be denoted by Cp−1,q−1, and will con-
stitute our standard models for conformal actions on compact pseudo-
Riemannian manifolds. The pseudo-Riemannian manifold Cp−1,q−1 is
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Riemannian if and only if p = 1 (or q = 1), and in that case, we retrieve
Sq−1 (or Sp−1), which is the standard model for a conformal action on
a compact Riemannian manifold. For a more explicit description of the
standard spaces we refer to §2.4.

Our framework will be that of compact manifolds with a bilinear
structure, namely endowed with a bilinear form in each tangent space.
We emphasize that we do not require anything further from the bilinear
forms, and in particular they need not be symmetric or even nondegen-
erate. This setup is considerably more general than that of G-actions
preserving a pseudo-Riemannian structure. We begin by formulating
a general lower bound on the dimension of an isotropic subspace in a
bilinear manifold.

Theorem 1. Let G be a connected almost simple real Lie group
with finite center. Assume G acts conformally (and nontrivially) on a
compact manifold with a bilinear structure M . Then there exists some
point m ∈ M , where the bilinear form on Tm(M) has an isotropic sub-
space of dimension at least rkR(G) − 1.

As noted already, in §2.4 we will show that the group SO(p, q) acts on
compact homogeneous space, preserving a pseudo-Riemannian structure
up to a scalar factor. We will also show that SL(3,R) acts on a compact
homogeneous space, preserving a symplectic structure up to a scalar
factor. Clearly, finite covers of these groups will act similarly on finite
covers of these spaces. Furthermore, any outer automorphism of the
group gives rise to a twisted action on the same space. The actions
obtained by this prescription will be called standard models of conformal
actions. We refer to §2.4 for more details and a complete list. In the
presence of an upper bound on the dimension of an isotropic subspace
in a bilinear manifold, we will show the following

Theorem 2. Let G and M be as in Theorem 1. Assume that
the maximum dimension of an isotropic subspace of Tm(M) is at most
rkR(G) − 1, for all m ∈M . Then:

• G must be locally isomorphic to either SO(p, q), or SL(3,R).

• There exists a closed G-orbit in M .

• Any closed G-orbit in M is equivariantly and conformally diffeo-
morphic to a standard model.

Theorem 2 has the following two corollaries. The first considers
pseudo-Riemannian manifold admitting a group of conformal transfor-
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mations with simple subgroup of real rank which is the maximum al-
lowed by Zimmer’s Theorem (or by Theorem 1). It asserts that if the
action is minimal, then the group is determined uniquely (up to local
isomorphism), and the action, which turns out to be transitive, is also
uniquely determined (up to finite covers).

Corollary 3. Assume that G is a connected almost simple Lie
group. Assume that G acts conformally and minimally on a pseudo-
Riemannian manifold M of signature (p, q), and has real rank min{p, q}
+1. Then:

• G is locally isomorphic to SO(p+ 1, q + 1).

• M is a homogeneous G-space, and M is conformally and equiv-
ariantly diffeomorphic to a finite cover of the standard model Cp,q

(see §2.4).

Our second corollary considers even dimensional manifold with a
bilinear structure where the form at each tangent space is a nondegen-
erate symplectic form. Such manifolds we call symplectic manifolds (we
do not require the 2-form to be closed). Here it turns out that the
real rank of a simple subgroup of the conformal group must be strictly
smaller than the maximum allowed by Zimmer’s Theorem (or by The-
orem 1). The only exception arises from a symplectic structure on P2

arising from the cross-product structure on R3, an example that will be
discussed further in §2.4.

Corollary 4. Let G be a connected almost simple Lie group of real
rank n + 1. Assume that G acts conformally (and nontrivially) on a
compact symplectic manifold of dimension 2n. Then G = SL(3,R) or its
universal cover, and M is conformally and equivariantly diffeomorphic
to P2 or its universal cover S2. The action of G on P2 is either the one
arising from the standard action of G on R3 or its twist by the nontrivial
outer automorphism of G.

Our proof of Theorem 1 depends on establishing the existence of a
continuous nonconstant G-equivariant map from a minimal subset M ′

of M to a projective algebraic variety U . The variety we choose to
consider is the product of the projective space of bilinear forms on the
Lie algebra of G with the Grasmann variety consisting of Lie algebras
of stability groups of points of M ′. The stability group Q of any point
u in the image of M ′ stabilizes the form induced on the Lie algebra
(via the orbit map). At the same time, Q normalizes the stabilizer of
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any point in the preimage of u. In addition, for some point u0, Q is
co-compact (and algebraic), hence contains a maximal R-split torus,
A. One constructs from the action of G on M ′ a conformal faithful
linear representation of the torus A. The weight spaces associated to a
codimension one subtorus which acts isometrically (with respect to the
induced form) are used to construct an isotropic subspace of dimension
at least rkR(G)− 1 in the tangent space of every point of the pre-image
of u0.

The proof of Theorem 2 consists of analyzing further the confor-
mal linear representation of the maximal torus just described. This
representation is in fact a subrepresentation of the tensor square of the
co-adjoint representation of the torus on the Lie algebra. Inspecting the
root systems of real simple groups, one can often construct an isotropic
subspace of dimension greater than rkR(G)− 1, contradicting the addi-
tional assumption of an upper bound on the dimension of an isotropic
subspace. The proof then proceeds by determining explicitly for which
Lie algebras the construction yields an isotropic subspace of dimension
exactly rkR(G) − 1.

1.3 Remarks and relevant references

As noted already, our work is motivated by a conjecture of Lichnerowicz
in conformal Riemannian geometry on the one hand, and by rigidity phe-
nomena associated with simple isometry groups in pseudo-Riemannian
geometry on the other hand.

We recall that R. Zimmer [20] showed that the noncompact semisim-
ple component of the isometry group of a compact Lorentz manifold is
locally-isomorphic to SL(2,R). This result was generalized by M. Gro-
mov to the case of a pseudo-Riemannian manifold of any signature.

Both of these results are dependent on the fact that the volume form
is stabilized by isometries, hence the group preserves a finite measure.
This allows the use of variants of the Borel density Theorem (see e.g.,
[22]).

Another approach, which dispensed with the assumption of finite in-
variant measure, appeared first in Kowalsky’s thesis [12] (see also [13]).
This method allowed Kowalsky to characterize the isometry groups of
Lorentz manifolds under the sole assumption of non-properness of the
action, rather than the compactness of the manifold. Furthermore, this
method yielded some results on conformal actions on Lorentzian mani-
folds.
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One idea introduced by Kowalsky is that the non-properness of the
action of a split torus implies the existence of large dimensional isotropic
subspace of the tangent space to the orbit at some point of the manifold.
To obtain this conclusion she used implicitly a map from the manifold
to the space of bilinear forms on the Lie algebra, and considered the
dynamics of the action of a split torus in the latter space. Our approach
is motivated by these ideas, which we develop systematically in the
compact, conformal pseudo-Riemannian case. We have also used some
ideas from [21, 17, 16].

We note that isometry groups of compact and noncompact Lorentz
manifolds were considered by S. Adams and G. Stuck e.g., in [1, 2]
(see also [3]). Isometry groups of Lorentz and more generally pseudo-
Riemannian manifolds were considered by A. Zeghib e.g., in [18, 19].
Finally, we note that in the case of symplectic conformal actions, if the
2-form is closed, and the manifold is of dimension ≥ 4, then every con-
formal transformation is isometric. This result is due to P. Libermann,
see [11, p. 27].

1.4 The next chapters

The paper is organized as follows. In Chapter 2 we present the necessary
definitions relating to G-actions on manifold with a bilinear structure,
and describe the standard models mentioned above. In Chapter 3 we
present some preliminary facts on almost simple algebraic groups that
will be needed later. In Chapter 4, we establish the existence of the
G-equivariant map to the projective variety, and proceed to prove The-
orem 1. Chapter 5 is devoted to a streamlined proof of Theorem 2. The
technical details relating to analysis of the root systems are relegated to
the Appendix. Chapter 6 is devoted to some further remarks on related
matters, including the case of isometric actions.

2. Manifolds with bilinear structure

2.1 Lie group actions

Definition 2.1. An action of a Lie group G on a C∞-manifold is a
C∞-action if the action map G ×M → M is a C∞-map. That is, the
induced map G→ Diff(M) is a group homomorphism.
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For every g ∈ G we have the action map, denoted also by g:

g : M →M, g(m) = gm

and for every m ∈M we have the orbit map, denoted also by m:

m : G→M, m(g) = gm.

The G-action gives a bundle automorphism of the tangent bundle
TM , defined by g(m,V ) = (gm, dgm(V )). G also acts by automorphism
on the trivial bundle M × g by g(m,X) = (gm,Ad(g)X). The orbit
map gives a bundle morphism φ : M × g → TM , defined by φ(m,X) =
(m, dme(X)).

Denoting the inner automorphism of G, h �→ ghg−1 by inn(g), the
following diagram is commutative:

M

G

M .

G

�
�

�

�
g

m

inn(g)

gm

By differentiating at e ∈ G we deduce the commutativity of:

TmM

g

TgmM .

g

�
�

�

�
dgm

dme

Ad(g)

d(gm)e

which gives the formula:

∀X ∈ g : dgm · dme(X) = d(gm)e(Ad(g)X).(1)

We conclude that φ is a G-equivariant bundle morphism.
Define ψ : M → Gr(g) by ψ(m) = ker(dme), where Gr(g) =⋃dim(g)

k=0 Grk(g) denotes the space of all linear subspaces of g. Note the
action is locally free if and only if the map ψ takes the constant value
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{0} ∈ Gr0(g). It follows similarly that ψ is a G-map, where Gr(g) is a
G-space via the adjoint action. Note further that the stability group of
ψ(m) is the normalizer of the stability group of m.

Denote Gm = StabG(m). There is a canonical representation, in-
duced by the action, πm : Gm → GL(TmM) defined by πm(g) = dgm.

2.2 Manifolds with bilinear structure

Definition 2.2. A manifold with a bilinear structure is a couple
(M, s), such that M is a C∞-manifold and s : M → TM∗ ⊗ TM∗ is a
C∞section. We call s the structure of (M, s).

When s is clear from the context we will denote (M, s) by M , and
sm(X,Y ) by 〈X,Y 〉m.

The main examples are:

1. (M, s) is called a Riemannian manifold if for all m ∈ M , sm is a
positive definite symmetric form on TmM .

2. (M, s) is called a pseudo-Riemannian manifold if M is connected,
and ∀m ∈ M , sm is a nondegenerate symmetric form on TmM .
The signature σ(sm) is a constant, denoted σ(M).

3. (M, s) is called a symplectic manifold if for all m ∈ M , sm is a
nondegenerate anti-symmetric form on TmM (we do not require
the form s to be closed).

Recall that given a vector space with a bilinear form (V,B), a sub-
space W < V is called isotropic if every two vectors in W are perpen-
dicular, that is B|W×W = 0.

2.3 Lie groups action on manifolds with bilinear struc-
ture

Let (M, s) be a manifold with a bilinear structure. Given a diffeomor-
phism t : M →M we define a new structure on M , ts, by:

(ts)m(X,Y ) = st(m)(dtm(X), dtm(Y )).

Definition 2.3. For a manifold with a bilinear structure (M, s) and
a diffeomorphism t, we call t an isometry if ts = s. We call t a conformal
map if ts = λs for some scalar valued function λ : M → R∗

+.
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Definition 2.4. Let G be a Lie group acting on M . If for all g ∈ G,
g : M → M is an isometry, we say that G acts isometrically on M . If
for all g ∈ G, g : M → M is a conformal map, we say that G acts
conformally on M .

Notice that G acts isometrically on M if and only if the section
s is a G-map, with respect to the natural action of G on the bundle
T ∗M ⊗ T ∗M . In this case we construct a G-equivariant map r : M →
g∗ ⊗ g∗. The G-bundle-map φ : M × g → TM gives rise to a G-bundle-
map φ∗ : T ∗M ⊗ T ∗M → M × (g∗ ⊗ g∗). Denoting r = pr2 ◦ φ∗ ◦ s,
where pr2 denotes the projection on the second coordinate, we obtain
the desire map.

Similarly, if G acts conformally on M then the map s : M →
P(T ∗M × T ∗M) is a G-equivariant map (if s is known to exist then
the converse holds also). If for all m ∈ M , dme(g) = Tm(Gm) is
not isotropic (under sm) then one can define φ∗ : P(T ∗M ⊗ T ∗M) →
M × P(g∗ ⊗ g∗), induced by φ. This is also a G-equivariant map. Com-
posing with s and projecting on the second coordinate, we obtain the
G-equivariant map r : M → P(g∗ ⊗ g∗).

We keep this conclusion for future reference as:

Lemma 2.5. If G acts conformally on the manifold with a bilinear
structure M , such that the map r defined above is non-vanishing (that
is, r(m) �= 0 for all m ∈ M) then r : M → P(g∗ ⊗ g∗) is a well defined
C∞ G-map.

The following Lemma establishes the fact that in the homogeneous
case the bilinear structure is determined uniquely by its value at any
point.

Lemma 2.6. Let G be a Lie group. Let M be a G-homogeneous
space. Let m0 be a point in M , and denote H = StabG(m0). Assume
s0 is a bilinear form on Tm0M . We then have:

• If the representation πm0 : H → GL(Tm0M) is orthogonal then
there is a unique bilinear structure s on M such that s(m0) = s0,
and that G acts isometrically on (M, s).

• If the representation πm0 : H → GL(Tm0M) is conformal then (up
to a conformal equivalence) there is a unique bilinear structure
s on M such that s(m0) = s0, and that G acts conformally on
(M, s).
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2.4 The standard models for conformal actions

Let Rp,q be the vector space Rp+q endowed with the bilinear form Bp,q

defined by Bp,q(x, y) = 〈x, y〉 =
∑p

i=1 xiyi −
∑p+q

i=p+1 xiyi. The signa-
ture of this form is denoted by (p, q). The group of linear orthogonal
transformation of Rp,q is denoted by O(p, q), and the group of linear
conformal transformation is denoted by CO(p, q).

The additive group Rp+q acts on itself, so we have an action of
O(p, q)� Rp+q on the homogeneous space O(p, q)� Rp,q/O(p, q) � Rp+q

(we are identifying the coset O(p, q) with 0 ∈ Rp+q). The form s0 = Bp,q

on T0R
p+q is O(p, q)-invariant. Using Lemma 2.6 we get a bilinear

structure on Rp,q. We call Rp+q with this bilinear structure Ep,q. Ep,q

is a pseudo-Riemannian manifold of signature (p, q). In fact Ep,q is the
manifold with a bilinear structure obtained by identifying every tangent
space of Rp+q with Rp,q.

What are the O(p, q) orbits in Ep,q? Identifying Ep,q with Rp,q one
can define the norm function f(x) = 〈x, x〉 on Ep,q. Define Ft = {x ∈
Ep,q − {0} | f(x) = t}. The tangent spaces to Ft are subspaces of
the tangent spaces to Ep,q, so the submanifold Ft inherits a bilinear
structure from Ep,q. What is the restricted form on Ft? Observing that

∀x ∈ Ep,q, ∀y ∈ TxEp,q grad(f)x(y) = 〈2x, y〉
we see that TxFf(x) is parallel to {x}⊥, hence both subspaces have the
same bilinear form. If t > 0, then Ft is a sub-pseudo-Riemannian mani-
fold of signature (p−1, q). If t < 0, then Ft is a sub-pseudo-Riemannian
manifold of signature (p, q−1). F0 is not a pseudo-Riemannian manifold
but has a bilinear structure of signature (p − 1, q − 1, 1) (by this nota-
tion we mean that the restricted form has a one dimensional radical in
every tangent space). Observe that for all x ∈ F0, Rx− {0} ⊂ F0, and
Rx = rad(TxF0). Passing to projective quotient we get the manifold F 0.
F 0 has a natural bilinear structure defined up to a scalar multiple (at
any point). Fixing such a structure we obtain our canonical examples
of conformal actions, which we denote by Cp−1,q−1. Since O(p, q) acts
isometrically on F0, its action on Cp−1,q−1 is conformal.

Standard models for conformal actions on compact pseudo-
Riemannian manifolds.

We call the action of SO(p, q) (as well as locally-isomorphic groups with
finite center) on Cp,q (as well as its finite covers) the standard models of
conformal action on a compact pseudo-Riemannian manifold of signa-
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ture (p, q). In the case where G = SO(4, 4) (and in this case only) there
exist three non-equivalent actions of G on C3,3 obtained by twisting the
standard action by an outer automorphism of G of order three. We
consider these additional actions as standard models too.

We note that all the groups SO(q, q) admit a nontrivial outer auto-
morphism, but if q �= 4, the twisted action obtained is equivalent to the
standard one. This fact will be observed in the course of the proof of
Theorem 2.

We now consider the canonical example of a conformal action on a
symplectic manifold.

Standard models for conformal actions on compact symplectic
manifolds.

Identify the tangent planes to S2 with their parallel copies through the
origin. Form ∈ S2 and x, y ∈ TmS

2 denote sm(x, y) = 〈x×y,m〉. (M, s)
is a two-dimensional symplectic manifold. The action of SL(3,R) (or its
2-fold cover group) on S2 (or P2) which arises from the natural action
on rays in R3 is conformal with respect to this symplectic form. In ad-
dition there is another action obtained on the same spaces by twisting
the above action by the nontrivial outer automorphism of SL(3,R). We
call these actions the standard models of conformal action on compact
symplectic manifolds.

3. Preliminary results

We list here some simple facts which are well known. We provide
short proofs for the sake of completeness.

By a real algebraic group we mean a group of finite index in the
group of real points of a complex algebraic group defined over R. For
such a group G, we denote by GC the associated connected complex
algebraic group.

Recall that a (complex) solvable algebraic group is a semi-direct
product of a subtorus and of its unipotent radical. We use the term R-
split solvable algebraic group to denote a subgroup of finite index in the
set of real points of a solvable algebraic group defined over R, if it has a
maximal subtorus which is R-split. Such a connected group, G, admits
a composition series G = G0 ⊃ G1 ⊃ · · · ⊃ Gs = {e} consisting of
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connected closed real algebraic subgroups such that Gi/Gi+1 � (R,+)
or (R∗

+, ·) for 0 ≤ i < s. The following Lemma is a simple variation on
Borel’s fixed point theorem [4, §15.2].

Lemma 3.1. Let G be a connected R-split solvable algebraic group.
Let V be an algebraic variety, defined over R, and assume GC acts
algebraically on V , and that the action is defined over R. Let U be a
G-invariant, (Hausdorff) compact subset of the real points of V . Then
there exist a G-fixed point in U .

Proof. We argue by induction on the dimension of G. Assume
G = G0 ⊃ G1 ⊃ · · · ⊃ Gs = {e} is a composition series as above, and
assume G1 has a fixed point in U . We then have an algebraic action of
G/G1 � (R,+) or (R∗

+, ·) on the compact subset U ′ consisting of G1-
fixed points in U . A minimum dimensional orbit in U ′ must be closed in
U ′, since otherwise its boundary, which consists of smaller dimensional
orbits, lies outside U ′. But a compact algebraic factor of (R,+) or
(R∗

+, ·) is a single point. We end up with a G/G1-fixed point in U ′,
hence a G-fixed point in U . q.e.d.

Recall that an almost-simple group G is of finite index in the set of
real-points of a semisimple algebraic group defined over R, i.e., it is a
real algebraic group.

Lemma 3.2. Let G be an almost-simple Lie group, and Q < G a
cocompact proper algebraic subgroup. Then:

1. Q contains a maximal R-split torus.

2. Q is contained in a proper parabolic subgroup of G.

3. If G is a split form, then Q is of finite index in a parabolic sub-
group.

Proof. Let A be a maximal R-split torus. Let Φ be the root system
of G with respect to A, and Π the set of positive roots. Let N < G
be the connected unipotent subgroup with Lie algebra n =

⊕
α∈Π gα.

Let N ′ < G be the connected unipotent subgroup with Lie algebra
n′ =

⊕
α∈−Π gα. AN is a connected R-split solvable algebraic group

which acts algebraically on G/Q. By Lemma 3.1, AN has a fixed point
in G/Q, hence AN is contained in a conjugate of Q. We can assume
(by picking a conjugate of A in the first place, and if necessary changing
the notion of positivity in Φ) that AN < Q. Now:

1. Follows immediately from the discussion above.
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2. Q contains N . If it was reductive it would contain N ′ too. Indeed,
A is a maximal torus of Q, and the root system of A in Q is invari-
ant under multiplication by −1. Furthermore, the multiplicities
of α and −α must be the same. The group generated by N and
N ′ is normal, hence it is G itself. It follows that Q contains a
nontrivial unipotent-radical. Q is contained in the normalizer of
this radical, and this normalizer itself is contained in a parabolic
subgroup (Borel and Tits, [5, §3.1]).

3. IfG is a split form thenAN is of finite index in a minimal parabolic
subgroup. Hence a finite extension of Q is a parabolic subgroup,
since it contains a minimal parabolic subgroup.

q.e.d.

Lemma 3.3. Let G be an almost-simple Lie group, H < G a
proper subgroup, A ≤ NG(H) an R-split torus. Then the representation
induced by the adjoint representation of A on g/h is faithful.

Proof. Assuming the representation is not faithful, h contains all
eigenspaces of some t ∈ A with nonzero eigenvalues. The algebra gener-
ates by all such spaces is a nontrivial ideal, hence h = g, contradicting
the properness assumption. q.e.d.

It will be significant in our considerations below to have a lower
bound for the codimensions of subgroups of a simple group.

Lemma 3.4.

1. Let H be an almost simple complex algebraic group, H ′ a proper
Zariski closed subgroup. Then codimC(H ′) ≥ rk(H).

2. Let G be an almost-simple Lie group, G′ a proper closed subgroup.
Then codimR(G′) ≥ rk(GC) ≥ rkR(G).

Proof.

1. Assume H ′ < H is a proper algebraic subgroup of minimal codi-
mension. As is well known [4, §5.1], there exists a representation
H → GL(V ) for some complex vector space V , and there exists
a line L < V such that H ′ is the stabilizer of L in H. By pass-
ing to a quotient space if necessary one can assume there are no
H-invariant lines in V . Stating the above in other words, there
exist an algebraic action of H on a projective space P = P(V )
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with no H-fixed points, and there is a point p = [L] ∈ P such
that H ′ = StabH(p). In the Zariski closure of the orbit H · p
there are no H-fixed points, and no orbits of dimension smaller
than codimC(H ′) (by minimality of codimension). It follows that
the orbit H · p � H/H ′ is closed, hence it is a projective va-
riety. Therefore H ′ is a parabolic subgroup, hence contains a
maximal torus A. Restricting the adjoint representation of H
to A, and passing to the representation on the quotient space
h/h′, (which must be faithful by Lemma 3.3), we conclude that
rk(H) = dimC(A) ≤ rk(GL(h/h′)) = dimC(h/h′) = codimC(H ′).

2. Assume now that G is a real algebraic group which is almost
simple. Let G′ < G be a proper subgroup of minimal codimension.
Assume also, without loss of generality, that G′ is connected. By
the simplicity assumption NG(G′)o = G′, and therefore Ad(G′)
is the connected component of Ad(G) ∩ StabGL(g)(g′). The latter
group is the real points of an algebraic group defined over R,
so G′ is real-algebraic. By the foregoing result codimR(G′, G) =
codimC(G′

C, GC) ≥ rk(GC), and of course rk(GC) ≥ rkR(G).

q.e.d.

Finally, we recall the following result (and its proof) from [21].

Lemma 3.5. Let G be a simple Lie group acting on the connected
manifold M . Let m ∈ M be a G-fixed point, and assume πm = 1 (see
§2.1). Then G acts trivially on M .

Proof. Let K be a maximal compact subgroup in G. Using the
compactness of K one can assume M is a Riemannian manifold and K
acts on it isometrically. It follows, using the exponential map, that K
acts trivially in a neighborhood of n ∈ M if and only if n is fixed and
πn = 1. The set of points satisfying both conditions is obviously open
and closed. It is not empty by assumption, so the connectivity of M
implies the triviality of the action of K. The action of G on M has a
nontrivial kernel so it is trivial by simplicity. q.e.d.

4. Proof of Theorem 1

We begin with the following linear version of Theorem 1. Note
that the bilinear form we consider below need not be symmetric, nor
nondegenerate.
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Lemma 4.1. Let (V,B) be a real vector space with a bilinear
form. Let O(B), CO(B) be the orthogonal and the conformal groups
of B, respectively. Then V has an isotropic subspace U of dimension
dim(U) = rkR(O(B)) ≥ rkR(CO(B)) − 1.

Proof. First observe that rkR(O(B)) = rkR(CO(B)) − 1, unless
B is the zero form and then obviously, rkR(O(B)) = rkR(CO(B)) =
GL(V ) = dim(V ). Let l = rkR(O(B)). Let A be a maximal R-split
torus of O(B), and denote a = Lie(A). Then a is R-diagonalizable in
V . Let α, β be weights of a, and Vα, Vβ be the corresponding weight
spaces. Observe that if α+ β �= 0 then Vα ⊥ Vβ, and Vβ ⊥ Vα, because
for x ∈ Vα, y ∈ Vβ and t ∈ a such that (α+ β)(t) �= 0,

B(x, y) = B(exp(t)x, exp(t)y) = e(α+β)(t)B(x, y).

The representation of a on V is faithful, so the weights of this represen-
tation span a∗. Let the weights α1, . . . , αl be a basis of a∗. U =

⊕
Vαj

is isotropic subspace of V of dimension at least l. q.e.d.

Our next Lemma is essential. It ensures the existence of an equiv-
ariant map to a projective G-space. This map will be our main tool in
the proofs of Theorems 1 and Theorem 2. Recall the definition of the
map r : M → g∗ ⊗ g∗, given at §2.3.

Lemma 4.2. Let G and M be as in Theorem 1. Assume that
the maximum dimension of an isotropic subspace of Tm(M) is at most
rkR(G) − 1, for all m ∈ M . Then the map r : M → g∗ ⊗ g∗ is non-
vanishing.

Proof. It follows from Lemma 3.4 that r(m) �= 0 whenever m is not
a fixed point. Indeed the dimension of the orbit Gm is at least rkR(G),
and therefore the tangent space to the orbit cannot be isotropic (by
assumption), so r(m) is nonzero.

We will show there are no fixed points. Assume m is a fixed point.
G acts conformally, but since every character of G is trivial, its repre-
sentation πm on TmM is actually orthogonal. It follows that the rep-
resentation πm is trivial, by our assumption on the maximal dimension
of an isotropic subspaces and by Lemma 4.1. Using Lemma 3.5 we get
that the action of G on M is trivial, a contradiction. q.e.d.

Proof of Theorem 1. Assume there is no isotropic subspace of
Tm(M) of dimension rkR(G) − 1, for all m ∈ M . Using Lemma 4.2
r is non-vanishing so the continuous G-map r : M → P(g∗ ⊗ g∗) is well
defined (see Lemma 2.5).
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We now define another continuous G-map to a different projective
space. Let M ′ ⊂M be the set of points with stability group of maximal
dimension. M ′ is a compact G-invariant subset (see e.g., [17]). Recall
the map ψ : M → Gr(g), which assigns to each point in M the Lie
algebra of its stability group. ψ is a continuous map on M ′ (but not on
M) by [17, Lemma 2.1]. From now on we consider the restriction of ψ
to M ′.

The map r × ψ : M ′ → P(g∗ ⊗ g∗) × Gr(g) is a continuous G-
map. Denote the image of M ′ by U . G acts algebraically on the space
P(g∗ ⊗ g∗) × Gr(g). In particular any minimum dimensional orbit in U
is closed (in the relative topology), hence compact. The stabilizer Q of
a point in such an orbit is real algebraic and cocompact, hence contains
a maximal R-split torus (by Lemma 3.2, part I). We then have a point
u ∈ U and a maximal R-split torus A < Q that fixes u.

Let m be a point in the pre-image of u. Denote H = StabG(m),
h = Lie(H), and note that H < G since there are no G-fixed points (see
the proof Lemma 4.2). By construction, the adjoint action of A on g

is conformal with respect to the form r(m) since A < Q. h is clearly
contained in the radical of r(m), and is normalized by Q and hence also
by A. Therefore A acts on g/h as well, the form r(m) descends to a
form on g/h, and A acts conformally on the latter. Furthermore the
representation of A on g/h is faithful by Lemma 3.3. By Lemma 4.1,
g/h contains an isotropic subspace of dimension rkR(G) − 1.

Finally, g/h is naturally identified with the tangent space to the
orbit Tm(Gm), and we obtain a contradiction to the assumption that
there is no (rkR(G)− 1)-dimensional isotropic subspace of TmM . q.e.d.

5. Proof of Theorem 2

5.1 Beginning the proof of Theorem 2

Through out this section we will denote l = rkR(G). The proof begins
exactly as the proof of Theorem 1, except now our leading assumption
is that we do not have any l-dimensional (instead of l − 1) isotropic
subspaces of any of the tangent-spaces. We pick-up at the last sentence
of the proof, just before using Lemma 4.1, and keep on from there.
To summarize: we have a point m ∈ M and a cocompact algebraic
subgroup Q < G which both normalizes the stabilizer H of m, and acts
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conformally on g with respect to the bilinear form r(m) via the adjoint
representation.

We note that the upper bound on the dimension of an isotropic
subspace implies thatQ is a proper subgroup ofG. Indeed, Q = NG(h)∩
StabG(r(m)), so in particular if Q = G then h is an ideal. Since there
are no fixed points and G is simple, h = 0, and we can identify Tm(Gm)
with g. Furthermore, G acts conformally with respect to the form r(m)
on g. Since G is simple G must preserve the form, hence by Lemma 4.1
there exists an isotropic subspace of dimension l, a contradiction.

Recall that by Lemma 3.2, Q is contained in a proper parabolic
subgroup. Fix such a parabolic subgroup and denote it by P . Q also
contains a maximal R-split torus, which we denote A. We fix a root
system Φ of A in g = Lie(G), a set of positive roots Π, and a set of
simple roots ∆. We assume from now on that p = Lie(P ) and all other
parabolic subalgebra that occurs are standard (for the construction of
the standard parabolic subalgebra see the Appendix).

Let a = Lie(A), h = Lie(H), p = Lie(P ) and q = Lie(Q). h < q <
p < g are all semisimple a-modules, hence admit direct sum comple-
ments: h̆ > q̆ > p̆ > ğ = 0. h̆ � g/h, g = h ⊕ h̆, and similarly for q̆ and
p̆. r(m) restricts to a form on h̆. h̆ might be identified with a subspace
of TmM as well, and under this identification s(m)|

h̆
= r(m)|

h̆
.

The weights of the natural representation of G on the space of all
bilinear forms, g∗ ⊗ g∗, are simply Φ̂ + Φ̂ (where Φ̂ = Φ ∪ {0}). As an
a-module we have the decomposition

g∗ ⊗ g∗ =
⊕

λ∈Φ̂+Φ̂

Vλ

where Vλ is the set of bilinear forms, B, on g satisfying for all t ∈ a,
and u, v ∈ g

B(exp(t)u, exp(t)v) = eλ(t)B(u, v).

(Note that Vλ is not the weight space of λ, but of −λ, since the action on
g∗ involves taking an inverse. Nevertheless, we use the above convention,
for convenience.) Keeping in mind that for u ∈ gα and v ∈ gβ we have

B(exp(t)u, exp(t)v) = e(α+β)(t)B(u, v)

it follows that the forms in Vλ are characterized by:

α+ β �= λ⇒ gα ⊥ gβ.



372 u. bader & a. nevo

We apply this fact to the form r(m) ∈ g∗ ⊗ g∗. By our choice of m the
form r(m) is A-invariant up to a scalar multiple, hence there is a weight
λ ∈ a∗ such that r(m) ∈ Vλ.

The proof will now proceed according to the following three steps.
In step one we show that g is isomorphic to so(p, q) or sl(3,R). This fact
is established by showing that only in these Lie algebras the weights, Λ,
appearing in the a-module p̆ give rise to an isotropic subspace, W , whose
dimension is bounded by rkR(g) − 1. We also show that the parabolic
subalgebra p is uniquely determined (for a given g). Step one will take
most of the effort and will be divided into two parts, one dealing with
all root systems except Al, and the other dealing with the case where
the root system is of type Al. In step two we show that p = h, so that
H = StabG(m) is cocompact. In step three we show that the compact
orbitG/H ⊂M is conformally equivalent to one of the standard models.

First we note the following facts and we refer to [8, Ch. X, pp.
530-535] for their verification.

Fact 5.1.

• A real simple Lie algebra is determined uniquely by the type of its
real root system, together with the multiplicities of the long and
the short roots [8, p. 535, Ex. 9].

• If the type of the real root system is Bl and the long roots have
multiplicity one, then the Lie algebra is isomorphic to so(l, l+n),
where n is the multiplicity of the short roots [8, Table VI, see also
Ex. 8].

• If the type of the real root system is Dl there is only one root
lengths. If the multiplicity is one, then the Lie algebra is isomor-
phic to so(l, l) [8, Table VI, see also Ex. 8].

• If the type of the real root system is Al there is only one root
length. If the multiplicity is one, then the Lie algebra is isomorphic
to sl(l + 1,R) [8, Table VI].

Our strategy is to use the information that the dimension of an
isotropic subspace is bounded by l− 1 in order to determine the type of
the Lie algebra, together with the multiplicities.

We will now focus our attention on the a-module p̆. Denote the
restriction of the form from h̆ to p̆ by 〈·, ·〉. From now on we will consider
only this form and only the space p̆ unless stating otherwise. We suggest
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that it may be helpful to read the first paragraph of the Appendix for
some definitions and notations.

Denote by Λ the set of weights (or roots) of the a-module p̆. The
existence of λ gives a natural splitting of the set Λ into three parts,
Λ = Λ1 ∪ Λ3 ∪ Λ2, where:

• Λ1 = {α ∈ Λ | λ− α ∈ Λ, λ− α �= α}. Λ1 itself splits into pairs of
distinct roots, {α, β} such that α+β = λ. For such a pair, gα⊕gβ

is perpendicular to its complement (in p̆), and each of gα, gβ is
isotropic.

• Λ2 = {1
2λ} ∩ Λ. In this case we can not tell a-priori whether the

space g 1
2
λ is isotropic or not. (Note that 1

2λ may fail to be a root.)

• Λ3 = {α ∈ Λ | λ − α /∈ Λ}. For such roots, gα is radical with
respect to the form 〈· , ·〉 on p̆.

Notice that any of the above sets might be empty.
Denote by Λ′

1 a set consisting of one weight of each of the pairs in
Λ1. The following subspace of p̆,

W =
⊕
α∈Λ′

1

gα ⊕
⊕
β∈Λ3

gβ

is an isotropic subspace of dimension at least �1
2(|Λ| − 1)�. Indeed, the

dimension of the isotropic subspace W is at least

|Λ′
1| + |Λ3| ≥ |Λ′

1| +
1
2
|Λ3| =

1
2
(|Λ| − |Λ2|) ≥ 1

2
(|Λ| − 1).

On the other hand, by assumption dim(W ) ≤ l−1, hence it follows that
|Λ| ≤ 2l − 1.

It turns out that the three conditions above, namely the upper bound
on the number of weights appearing in the complement of a parabolic
subalgebra, the additional structure imposed on Λ by the weight λ, and
the upper bound on the dimension of an isotropic subspace, are very
restrictive. We now turn to a case by case analysis to determine the
possible couples (g, p) that might occur.

5.2 Beginning Step 1: Root systems other than Al

We will make use of the following lemma, which is an immediate conse-
quence of Lemma A.1 in the Appendix.
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Lemma 5.2. Let Φ be a root system of rank l, whose type is not
Al. Assume that for some maximal parabolic subalgebra p the number
of weights in the module p̆ is less than 2l. Then Φ is of type Bl, Cl or
Dl, and p is the standard parabolic subalgebra associated with the simple
root α1 (under the standard ordering of the simple roots, see [8], the
table in page 470 and the discussion preceding).

Utilizing this lemma we now analyze the set Λ and determine the
multiplicities of the long and the short roots.

Bl (l ≥ 2): By Lemma 5.2, Λ = {e1, e1 ± ei | 1 < i ≤ l}. We claim that
the only possible splitting of Λ obtains for λ = 2e1, and:

Λ1 = {e1 ± ei | 1 < i ≤ l}
and

Λ2 = {e1}, Λ3 = ∅.
This claim follows because for any other choice of λ, Λ′

1 ∪ Λ2 will
contain at most one weight (indeed, the equation α + β = λ has
at most one solution in Λ). Therefore

dim(W ) ≥ |Λ′
1| + |Λ3| = |Λ| − |Λ′

1 ∪ Λ2| = 2l − 2

and 2l − 2 ≥ l for l ≥ 2.

Assuming λ = 2e1, in order to have dim(W ) ≤ l−1, the dimension
of ge1−ei , ge1+ei must be exactly one. The latter dimension is the
multiplicity of the long roots. Denoting the multiplicity of the
short roots by n, Fact 5.1 implies that g � so(l + n, l). This
possibility is realized in the action of SO(l+ n, l) on the standard
model C l+n−1,l−1 (see §2.4).

Cl (l ≥ 3): By Lemma 5.2, Λ = {2e1, e1 ± ei | 1 < i ≤ l}. One can
see, as in the previous case, that λ must be equal to 2e1. On the
other hand, λ can not be equal to 2e1, because then 2e1 ∈ Λ3,
and choosing e1 + ei ∈ Λ′

1 for 1 < i ≤ l, we get dim(W ) ≥ l,
contradicting our assumptions.

Hence the case that Φ is of type Cl, l ≥ 3 can not arise (observe
that the case C2 is covered by B2).

Dl (l ≥ 4): By Lemma 5.2, Λ = {e1±ei | 1 < i ≤ l}. As in the previous
cases it is easy to see that in order to have dim(W ) ≤ l − 1
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we must have λ = 2e1. In this case, again, the pairs must be
{e1 + ei, e1 − ei}, but in contrast to the Bl case, Λ2 is empty.
Clearly, the dimension of ge1−ei , ge1+ei must be exactly one. This
latter dimension is the multiplicity of the long (and all) roots.
Once again, by Fact 5.1, we get g � so(l, l). This possibility is
realized in the action of SO(l, l) on the standard model C l−1,l−1

(see §2.4).

For l = 4 the parabolic subalgebras associated with α1, α3 and α4

are mapped to one another by an outer automorphism of order
three. Hence there exist three distinct homogeneous actions of
SO(4, 4) on C3,3 (see §2.4). Finally, we note that the case of D3

is covered by the A3 case discussed below.

5.3 Concluding Step 1: The root system Al

We now turn to the case where Φ is of type Al. We have already seen
examples of conformal actions of groups of type Al, for l = 1, 2, 3. Recall
that SO(n, 1) is of type A1 and it acts conformally on Sn−1, SL(3,R) is
of type A2 and it acts conformally on the symplectic manifold S2, and
SO(3, 3) is of type A3 and it acts conformally on C2,2 (see §2.4). We
will show that groups of type Al, l > 3 can not act conformally without
having an l-dimensional isotropic subspace. Also in the cases l = 1, 2, 3
we determine what the parabolic subgroup p must be. We continue our
analysis of the set Λ of weights appearing in p̆ and the multiplicities of
the roots, as in the §5.2.

We first consider the case l = 1.

l = 1: Denoting the roots multiplicity by n, it follows that g � so(n +
1, 1). p must be the only proper standard parabolic subalgebra.

This possibility is realized in the action of SO(n + 1, 1) on the
standard model Cn,0 � Sn (see §2.4).

In order to handle the case where l > 1 we will use the following
lemma, which follows immediately from Lemma A.2 in the Appendix.

Lemma 5.3. Let Φ be a root system of type Al. Let p be a maximal
parabolic subalgebra which is different than those associates to the simple
roots α1 or αl. We then have the following:

• The number of weights in the module p̆ satisfies |Λ| ≥ l + 1.
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• Assume l ≥ 3. If |Λ| = l + 1 then l = 3 and p is the maximal
parabolic subalgebra associated with α2.

The roots of Al are ei − ej (1 ≤ i, j ≤ l+1). One can easily see that
Λ1 contains at most two pairs. The case of two pairs arises for example
when λ = e1 + e2 − e3 − e4, and Λ1 = {e1 − e3, e2 − e4, e1 − e4, e2 − e3}.
Then

λ = (e1 − e3) + (e2 − e4) = (e1 − e4) + (e2 − e3).

One can see also that Λ1 and Λ2 can not both be nonempty, because all
roots are of the same length (the equation α+ β = 2γ does not have a
nontrivial solution where α, β and γ are on the circle).

In case Λ1 is not empty we have (since Λ1 has at most two pairs)

l − 1 ≥ dim(W ) ≥ |Λ′
1| + |Λ3||Λ| − 1

2
|Λ1| ≥ |Λ| − 2.

In case Λ2 is not empty we have

l − 1 ≥ dim(W ) ≥ |Λ3| = |Λ| − |Λ2| ≥ |Λ| − 1.

Either way we get |Λ| ≤ l+ 1. By Lemma 5.3, this inequality can occur
in only three cases:

l = 3 and p is the maximal parabolic subalgebra associated to
α2.

This is case two of Lemma 5.3. Here

Λ = Λ1 = {e1 − e3, e2 − e4, e1 − e4, e2 − e3}

and dim(W ) = |Λ′
1| = 2 = l−1 only if the roots multiplicity is one.

In this case (according to Fact 5.1) g � sl(4,R) � so(3, 3). This
possibility is realized in the action of SO(3, 3) on the standard
model C2,2 (see §2.4).

l is arbitrary, and p is the maximal parabolic associated with
α1.

In this case

Λ = {e1 − ej | 2 ≤ j ≤ l + 1}
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and |Λ| = l. Since the sums of distinct weights in Λ are distinct,
Λ1 can contain at most one pair. It follows that |Λ′

1|+ |Λ3| ≥ l−1
(whether Λ1 is empty or Λ2 is empty). The dimension of W is
then greater or equal to l − 1 times the roots multiplicity. At the
same time, by assumption, it is smaller or equal to l − 1 so the
roots multiplicity is one, hence (by Fact 5.1) g � sl(l + 1,R).

From now on we will consider the form r(m) on g. First notice
that in the case g � sl(l + 1,R), we can and will assume that the
parabolic subalgebra p actually coincides with q, by Lemma 3.2.
In particular p acts conformally on g (by the definition of q).
Equivalently, we have that 〈[Xα, Xβ], Xγ〉 + 〈Xβ, [Xα, Xγ ]〉 is a
constant multiple of 〈Xβ, Xγ〉, for β, γ ∈ Λ and α /∈ Λ (namely
when Xα ∈ p). We always assume Xα ∈ gα and so on.

We now proceed to show that if l > 2 then the form has an l-
dimensional isotropic subspace, namely p̆ itself, which contradicts
our assumption. We focus our attention on the radical of the form.
First note that if l > 2 then Λ3 is nonempty, hence the radical is
nonzero. Indeed, Λ has l weights, and |Λ1 ∪ Λ2| is at most two.
On the other hand, we claim that if the radical is nonzero, it must
coincide with p.

Recall that, since any root space is one dimensional, we have that
[gα, gβ] = gα+β for α, β, α+ β ∈ Φ.

Assume β ∈ Λ3 (and therefore, gβ is radical) and γ ∈ Λ is arbi-
trary. We will show that gγ is radical. Let δ ∈ Λ be arbitrary
root. If δ = β then 〈Xγ , Xδ〉 = 〈Xδ, Xγ〉 = 0. Assume δ �= β, and
note that δ, β ∈ Λ, hence they are of the form e1 − ei, e1 − ej . So
δ − β = ej − ei is in Φ − Λ. Denoting α = δ − β ∈ Φ − Λ, given
Xβ ∈ gβ and Xδ ∈ gδ there exist Xα such that [Xα, Xβ] = Xδ.
Since α ∈ Φ − Λ, Xα is in p, hence acts conformally. Since Xβ is
radical we have

〈[Xα, Xγ ], Xβ〉 + 〈Xγ , [Xα, Xβ]〉 = C · 〈Xγ , Xβ〉 = 0

hence

〈Xγ , Xδ〉 = 〈Xγ , [Xα, Xβ]〉 = −〈[Xα, Xγ ], Xβ〉 = 0

and similarly

〈Xδ, Xγ〉 = 〈[Xα, Xβ], Xγ〉 = −〈Xβ, [Xα, Xγ ]〉 = 0.
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This proves that p is contained in the radical if l > 2.

We conclude that l = 2. Since the parabolic subalgebra we
consider here is the one associated to α1, we have Λ = Λ1 =
{e1 − e2, e1 − e3}. This possibility is realized in the action of
SL(3,R) on the standard model S2, (see §2.4).

l is arbitrary, and p is the maximal parabolic associated with
αl.

The parabolic subalgebra associated with αl is the image of the
parabolic subalgebra associated with α1 under an outer automor-
phism of the Lie algebra. This implies that for l = 2 (and only
in this case) there is another conformal action of SL(3,R). This
action is on the Grasmann variety of two planes in R3 which is
one of the standard models in §2.4.

This concludes the discussion of all possible cases, and the determi-
nation of the possible pairs (g, p) promised in Step 1.

5.4 Steps 2 and 3: Existence of a compact orbit, finitely
covering a standard model

We first summarize the notations and conclusion of the discussion so far.
We are given a compact manifold with a bilinear structure M , and a
simple group G of real rank l, acting conformally on M , and we assume
that the dimension of a maximal isotropic subspace is bounded by l−1.
We have focused our attention on a certain point m ∈ M and denoted
its stability group by H. We have seen that H is contained in a proper
parabolic subgroup which we have denoted by P . The pair (g, p) must
be one of the pairs described in Step 1 (§5.2, 5.3). Furthermore, each
of those pairs is realized by an action on a standard model.

We now show that the Lie algebras h and p coincide. Indeed, the
dimension of the isotropic subspace W < p̆ is exactly l−1. This follows
from examination of all possible cases in step one. Another fact that
follows from this examination is the following observation: in all possible
cases λ− Λ = Λ, or in other words, α ∈ Λ if and only if λ− α ∈ Λ. As
a result, if h is a proper subalgebra of p then there exists a root α such
that gα < h̆ and gλ−α ∩ p̆ = 0. Since α + β �= λ ⇒ gα ⊥ gβ, It follows
that W ⊕gα is an isotropic subspace that contain W properly, hence its
dimension is at least l, which is a contradiction.
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We conclude that h = p and H is of finite index in the parabolic
subgroup P of G. The orbit Gm is isomorphic to a finite cover G/P ,
and in particular is compact. The same conclusion holds for any closed
orbit. To see that, assume M1 ⊂ M is a closed orbit. Note first that
we have already seen that M contains no fixed points (see the proof of
Lemma 4.2). Upon reflection one sees that the arguments used so far
in the proof of Theorem 2 apply equally well to the subbundle of the
tangent bundle which is tangent to the orbits. Hence they apply equally
well when we consider the action ofG onM1. It follows that the stability
group of a point in M1 is of finite index in P . This conclude the proof
of step two, namely the fact that every closed G-orbit is isomorphic as
a G-space to a finite cover of G/P .

It remains to prove step three, namely that a closed orbit is confor-
mally equivalent to a finite cover of one of the standard models. First
notice that one can substitute a standard model instead of M in the ar-
guments of step one and two. This is permissible since the bound l − 1
on the dimension of an isotropic subspace is satisfied for the standard
models, as we invite the reader to verify. Since the action on the stan-
dard model is transitive, we deduce that the model action is conformally
and equivariantly isomorphic to G/P . Clearly, it remains to show that
this conformal structure on G/P (the one which makes it conformally
equivalent to the standard model) is unique.

This follows from the fact that p < so(p+1, q+1) contains a copy, s,
of so(p, q) (or sp(1,R) if g � sl(3,R)) whose action on Tm(G ·m) � g/p
must be faithful. Indeed, otherwise, by Lemma 3.5, its action on the
orbit is trivial, hence the action of G itself is trivial because it has a
nontrivial kernel. The conformal action of s on g/h = g/p � Rp+q

(or the action of sp(1,R) on g/h = g/p � R2) is actually orthogonal,
by simplicity. It is easy to see that any s-invariant form on Rp+q (or
sp(1,R)-invariant form on R2) is a constant times the usual one. To see
this fact, note that s is a real form of sC = so(p + q,C) (or sp(1,C)),
which acts irreducibly on Cp+q (or C2), and use the following:

Claim. If S is a semisimple subgroup of GL(n,R) and SC acts
irreducibly on Cn then the space of S-invariant forms on Rn is at most
one dimensional.

The claim follows from the following three facts: Every two linearly
independent complex forms have a degenerate (complex) linear combi-
nation, the radical of an invariant complex form is an invariant complex
subspace, and finally, S is Zariski dense in SC.
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We see that the conformal structure on G/P coincides with that of
the standard model in the tangent space to a certain point, hence, by
Lemma 2.6, it coincides everywhere.

This concludes the proof of Theorem 2.

6. Some further results and remarks

We list here for completeness some results that follow quite easily
from the discussion above, and will be very brief in their explanation.

6.1 A generalization of Theorem 1

Notice that in the proofs of Lemma 4.1 and hence of Theorem 1, no
harm is done if we assume that the form is not necessarily bilinear, but
multilinear. We will define:

Definition 6.1. A manifold with a k-linear structure is a couple
(M, s), such that M is a C∞-manifold and s : M → T ∗M⊗k is a C∞-
section. We call s the structure of (M, s).

A subspace of a vector space with a multilinear structure is called
isotropic if the restriction of the form to this subspace is the zero form.
The proof of Theorem 1 applies without change to show the following:

Theorem 5. Let G be a connected almost simple real Lie group with
finite center. Assume G acts conformally (and nontrivially) on a com-
pact manifold with a multilinear structure M . Then there exists some
point m ∈ M , where the multilinear form on Tm(M) has an isotropic
subspace of dimension at least rkR(G) − 1.

6.2 The isometric case

We now comment briefly on the case where the action of the almost
simple group G on the manifold M is isometric. The result below should
be compared with [7, 5.3] and [18] where it is obtained for pseudo-
Riemannian manifolds under the assumption that the volume induced
by the pseudo-Riemannian structure is finite, and by use of the Borel
density theorem. Below, we do not need an invariant volume form, and
we allow the bilinear (or multilinear) forms to be singular, for example.

Theorem 6. Let G be a connected almost simple noncompact real
Lie group with finite center. Assume G acts isometrically (and nontriv-
ially) on a compact manifold with a multilinear structure M . Then for
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every point m ∈M , the form induces on g, r(m), is a G-invariant form
(with respect to the adjoint representation of G on g).

Proof. Consider the equivariant map r : M → g∗⊗k (see §2.3).
Clearly U = span(r(M)) is a G invariant subspace, and every G-orbit
in it is bounded. This property is established as follows. If u1 . . . uk ∈
r(M) span U , then writing u = b1u1 + . . . bkuk, we have that G · u is
bounded since each G · ui is bounded, being contained in the compact
set r(M). Therefore given an R-split torus, its connected component
must act trivially (i.e., with eigenvalues equal to 1). It follows that the
action of G itself is trivial. q.e.d.

Note that a similar proof can be given for any real algebraic group
which does not have a compact factor.

Consider again the case of bilinear forms. Here it is easy to classify
real G-invariant forms on g. For an almost simple complex group, there
is evidently a unique (up to a scalar multiple) invariant complex form,
that is the Killing form. If G is real there are two possibilities.

g has no complex structure: GC is then almost simple as well (see
e.g., [10, 6.94]). Because G is Zariski dense in GC there is a unique
(up to scalars) G-invariant complex bilinear form on gC. It follows
that the space of real invariant forms on g is also one dimensional,
and so must be spanned by the Killing form on g.

g has a complex structure: Denote g = sR for some complex simple
Lie algebra s. gC is isomorphic to s⊕s (see e.g., [10, 6.94]). So the
space of real invariant forms on g is 2-dimensional and is obviously
spanned by the real and imaginary parts of the Killing form of s.
Observe that the real part of the Killing form of s is equal the
Killing form of g.

We call G absolutely simple if g has no complex structure. We can
now state (compare [7, 5.3] and [18]).

Corollary 7. Let G be a connected almost simple noncompact real
Lie group with finite center. Assume G acts isometrically (and non-
trivially) on a compact manifold with a bilinear structure M . If G is
absolutely almost simple , then for every point m ∈M , the form induced
on g, r(m), is a scalar multiple of the Killing form. In general, the
induced form is invariant, symmetric, nondegenerate and of the same
signature as the Killing form, unless it is the zero form.
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Finally, we observe that if the bilinear structure on M gives rise to
an invariant volume form of finite total mass, then the foregoing result
can easily be deduced from Borel’s density Theorem. Here one need not
assume that M is compact. For the proof, one notes that the image of
the measure on M under the map r is supported on G-fixed forms on g.
Hence for almost every point in M the induced form on g is G-invariant.
The set of such points is obviously dense and closed. Hence the same
conclusion applies to every point in M .

6.3 A lower bound for minimum codimension of closed
subgroups

Lemma 3.4 gives the lower bound rkR(G) for the codimension of closed
subgroups of an almost simple group. The proof shows also that the
subgroup of minimal codimension is always a maximal parabolic sub-
group. An elaborate list of the maximal parabolic subgroup of minimum
codimension in every simple group appears in [16]. We need only an es-
timate which we establish directly by an elementary argument.

In the Appendix below we actually calculate a lower bound to the
codimension of all maximum dimensional parabolic subgroups of every
simple group. In particular, it turns out that the bound in Lemma 3.4
is realized only for groups locally isomorphic to SL(n,R). We conclude:

Corollary 8. Let G be an almost-simple Lie group which is not
locally isomorphic to SL(n,R), G′ a proper closed subgroup of G. Then

codim(G′) ≥ 2 · rkR(G) − 2.

This bound is realized only in groups locally isomorphic SO(n, n).

We remark that the foregoing corollary implies that the map r :
M → P(g∗ ⊗ g∗) exists under weaker conditions than those stated in
Lemma 4.2 (or the assumptions of Theorem 2). This map gives a non-
trivial smooth projective factor defined on M .

Appendix

A. Standard parabolic subalgebras

Let us recall some facts about the structure of standard parabolic
subalgebras first (compare e.g., [10, 9]). Let g be a simple real Lie
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algebra. Let a be a maximal R-split abelian subalgebra of g, and Let
Φ ⊂ a∗ be the root system related to a. Let Π be the set of positive
roots associated to a fixed chosen positivity, and ∆ be the related set of
simple roots. For every subset I ⊂ ∆ one can define ΦI = Φ ∩ span(I)
and ΠI = Π ∩ span(I). Define also

pI = g0 ⊕
⊕
−α∈Π

gα ⊕
⊕
β∈ΠI

gβ

p̆I , the direct a-module complement to pI , is then given by

p̆I =
⊕

α∈Π−ΠI

gα

Write Π̆I = Π − ΠI . It is clear that dim(p̆I) ≥ |Π̆I |. The latter is very
easy to compute given the type of Φ and I, using the fact that if Γ is
the Dynkin diagram of Φ then ΓI , the diagram of the root system ΦI , is
obtained from Γ by erasing all vertices not in I, and all edges connected
to them. |Π| is given by the following table (see e.g., [9, p. 66]):

Type Al Bl, Cl (BC)l Dl E6 E7 E8 F4 G2

Number of
Positive
Roots

(
l+1
2

)
l2 l2 + l l2 − l 36 63 120 24 6

Notice that ΦI is not irreducible in general, and we have ΦI =∏
i ΦJi , where ΓJi are the connected components of ΓI . We deduce

|ΠI | = Σi|ΠJi |.
In what follows, the simple roots of a given root system are ordered

according to the standard order as in [8, Ch. X, §3].

Lemma A.1. Let Φ be a root system of rank l, whose type is not
Al. Let ∆ be the set of simple roots, and I a subset of ∆ such that
|Π̆I | < 2l. It follows that Φ is of type Bl, Cl or Dl, and I = ∆ − {α1},
unless Φ = D4. In the latter case I = ∆ − {α3}, and I = ∆ − {α4}
occur also.

Proof. Denote Ii = ∆ − {αi}. It is enough to proof the Lemma
assuming I = Ii for some i ∈ ∆, for then if I �= I1 then I ⊂ Ii for some
i > 1 and |Π̆I | ≥ |Π̆Ii | ≥ 2l.

We do a case by case analysis.

Bl, Cl (l ≥ 2): Assume first that l ≥ 3 and I = Ii = ∆ − {αi} for some
2 ≤ i ≤ l. Define J1 = {1, . . . , i − 1}, J2 = {i + 1, . . . , l}. Ii =
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J1 ∪J2 and ΓJ1 ,ΓJ2 are the connected components of ΓI . ΓJ1 ,ΓJ2

are Dynkin diagrams of root systems of type Ai−1 and Bl−i (or
Cl−i) respectively, so ΦI is of type Ai−1 ×Bl−i ( or Ai−1 ×Cl−i).
From the table above we deduce |Π̆I | = |Π| − (|ΠJ1 | + |ΠJ2 |) =
l2 − (

(
(i−1)+1

2

)
+ (l − i)2) = 1

2 i(4l − 3i+ 1) ≥ 2l.

For l = 2, |Π̆∅| = 4 = 2l and |Π̆I1 | = |Π̆I2 | = 3 = 2l − 1.

Note that B2 and C2 are the same root system, but with a dif-
ferent order of the two simple roots. Therefore the pair B2, I2 is
equivalent to C2, I1, and the pair C2, I2 is equivalent to B2, I1.
Hence these extra solutions are redundant.

We summarize: |Π̆I | ≤ 2l − 1 implies I = I1 (and |Π̆I1 | = 2l − 1).

(BC)l (l ≥ 1): Assume l = 1. Then Π = {α, 2α}, ∆ = {α}, and I,
which is a proper subset of ∆, must be the empty set. Then
|Π̆I | = 2 = 2l.

We now assume l ≥ 2. As before, we assume I = Ii for some
i. The root systems of types Bl and Cl are subsystems of Φ so
|Π̆(BC)l

I | is at least |Π̆Bl
I | or |Π̆Cl

I |. Recall that Π̆(BC)l

I is exactly
the set of positive roots whose expansion as a linear combination
of simple roots contains a nonzero multiple of αi. αi belongs to
one of the subsystems Bl or Cl, so the claim follows. In light
of the previous discussion of Bl and Cl, we may assume I = I1.
We conclude by exhibiting a root in Π̆(BC)l

I , which is not in Bl.
Indeed, it is easy to check that 2α1 is a positive integral linear
combination of simple roots, with a nonzero α1 component.

Dl (l ≥ 4): Assume first that I = Ii = ∆−{αi} for some 2 ≤ i ≤ l− 2.
Define J1 = {1, . . . , i − 1}, J2 = {i + 1, . . . , l}. Ii = J1 ∪ J2 and
ΓJ1 ,ΓJ2 are the connected components of ΓI . ΓJ1 ,ΓJ2 are Dynkin
diagrams of root systems of type Ai−1 and Dl−i correspondingly,
so ΦI is of type Ai−1 × Dl−i. From the table above we deduce
|Π̆I | = |Π|−(|ΠJ1 |+|ΠJ2 |) = (l2−l)−(

(
(i−1)+1

2

)
+(l−i)2−(l−i)) =

1
2 i(4l − 3i− 1) ≥ 2l.

Assume l ≥ 5. If i = l − 1 or l then ΦIi is of type Al−1 and
|Π̆I | = (l2 − l) − (

l
2

)
= 1

2 l(l − 1) ≥ 2l.

We summarize: For l > 4, |Π̆I | ≤ 2l − 1 implies I = I1 (and
|Π̆I1 | = 2l − 2). For l = 4 the possibilities I = I3 and I = I4 also
occur.
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E6: Deleting α1 or α6 leaves D5, and |Π̆I | = 14.
Deleting α2 leaves A5. |Π̆I | = 21.
Deleting α3 or α5 leaves A1 ×A4. |Π̆I | = 25.
Deleting α4 leaves A2 ×A1 ×A2, and |Π̆I | = 29.
In any case |Π̆I | > 12 = 2l.

E7: |Π̆I1 | = 33 |Π̆I2 | = 42 |Π̆I3 | = 47
|Π̆I4 | = 53 |Π̆I5 | = 50 |Π̆I6 | = 42
|Π̆I7 | = 27
In any case |Π̆I | > 14 = 2l.

E8: |Π̆I1 | = 78 |Π̆I2 | = 92 |Π̆I3 | = 98
|Π̆I4 | = 106 |Π̆I5 | = 104 |Π̆I6 | = 97
|Π̆I7 | = 83 |Π̆I8 | = 57
In any case |Π̆I | > 16 = 2l.

F4: |Π̆I1 | = 15 |Π̆I2 | = 20
|Π̆I3 | = 20 |Π̆I4 | = 15
In any case |Π̆I | > 8 = 2l

G2: |Π̆I1 | = |Π̆I2 | = 5 > 4 = 2l

q.e.d.

Note that in all cases above |Π̆I | ≥ 2l − 2. We deduce that if for
some I, |Π̆I | < 2l − 2 than Φ is of type Al.

Lemma A.2. Let Φ be a root system of type Al. Let ∆ be the set
of simple roots, and I a subset of ∆ which is not equal to ∆ − {α1} or
∆ − {αl}. We then have the following:

• |Π̆I | ≥ l + 1.

• Assume l ≥ 3. If |Π̆I | = l + 1 then l = 3 and I = ∆ − {α2}.

Proof. We prove the first statement first. Denote Ii = ∆ − {αi}.
|Π̆I1 | = |Π̆Il

| = l, hence it is enough to proof the Lemma assuming
I = Ii for some 2 ≤ i ≤ l − 1, because for any other I, I � Ii for some
i, and then |Π̆I | > |Π̆Ii |. Assuming I = Ii we can assume l ≥ 3.

Define J1 = {1, . . . , i−1}, J2 = {i+1, . . . , l}. Ii = J1∪J2 and ΓJ1 ,ΓJ2

are the connected components of ΓI . ΓJ1 ,ΓJ2 are Dynkin diagrams of
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root systems of type Ai−1 and Al−i correspondingly, so ΦI is of type
Ai−1 ×Al−i. From the table above we deduce

|Π̆I | = |Π| − (|ΠJ1 | + |ΠJ2 |)

=
(
l + 1

2

)
−

(
(i− 1) + 1

2

)
−

(
(l − i) + 1

2

)

= i(l + 1 − i).

Assuming l ≥ 3, 2 ≤ i ≤ l − 1 we obtain

|Π̆Ii | = i(l + 1 − i) ≥ 2(l − 1) ≥ l + 1.(2)

For proving the second statement observe first that for I = ∆ −
{α1, αl}, |Π̆I | = 2l − 1 > l + 1. Therefore, it is enough to assume that
I = Ii for some 2 ≤ i ≤ l − 1, because for any other I, I � Ii for some
2 ≤ i ≤ l − 1, and then |Π̆I | > |Π̆Ii |.

In order to have equality in equation (2), one must have 2(l − 1) =
l + 1, which implies l = 3, and i(4 − i) = i(l + 1 − i) = 2(l − 1) = 4,
which implies i = 2. q.e.d.
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