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DEHN FILLINGS OF LARGE HYPERBOLIC
3-MANIFOLDS

S. BOYER, C. McA. GORDON & X. ZHANG

Abstract
Let M be a compact, connected, orientable, hyperbolic 3-manifold whose
boundary is a torus and which contains an essential closed surface S. It is
conjectured that 5 is an upper bound for the distance between two slopes
on ∂M whose associated fillings are not hyperbolic manifolds. In this paper
we verify the conjecture when the first Betti number of M is at least 2 by
showing that given a pseudo-Anosov mapping class f of a surface and an
essential simple closed curve γ in the surface, then 5 is an upper bound for
the diameter of the set of integers n for which the composition of f with
the nth power of a Dehn twist along γ is not pseudo-Anosov. This sharpens
an inequality of Albert Fathi. For large manifolds M of first Betti number
1 we obtain partial results. Set

C(S) = {slopes r | ker(π1(S) → π1(M(r))) �= {1}}.

A singular slope for S is a slope r0 ∈ C(S) such that any other slope in
C(S) is at most distance 1 from r0. We prove that the distance between two
exceptional filling slopes is at most 5 if either (i) there is a closed essential
surface S in M with C(S) finite, or (ii) there are singular slopes r1 �= r2 for
closed essential surfaces S1, S2 in M .

1. Introduction

Consider a compact, connected, orientable, irreducible 3-manifold
M whose boundary is a torus. We shall assume throughout that M is
hyperbolic. This means that its interior admits a complete hyperbolic
metric of finite volume. A slope on ∂M is a ∂M -isotopy class of un-
oriented essential simple closed curves. As usual, ∆(r1, r2) denotes the
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distance between two slopes r1 and r2 on ∂M , i.e., their minimal ge-
ometric intersection number. The diameter of a set S of slopes is the
quantity

∆(S) = max{∆(r1, r2) | r1, r2 ∈ S} ∈ {0, 1, 2, 3, . . . ,∞}.

The Dehn filling of M with slope r is the manifold M(r) obtained
by attaching a solid torus V to M by a homeomorphism ∂V → ∂M
which sends a meridian curve of V to a simple closed curve in ∂M of
slope r. Thurston’s hyperbolic Dehn surgery theorem implies that all
but finitely many fillings of M are hyperbolic manifolds [31], and there
has been a great deal of interest in describing the possible configurations
for the set of exceptional slopes

E(M) = {r |M(r) is not hyperbolic}.

The second author has examined the known manifolds for which E(M)
is large and it is interesting to note that they are all fillings of the
Whitehead link exterior [13]. Consideration of these examples led him
to the following conjecture.

Conjecture 1.1 (Gordon). If M is a compact, connected, ori-
entable, hyperbolic 3-manifold whose boundary is a torus then #E(M) ≤
10 and ∆(E(M)) ≤ 8. Moreover if W is the Whitehead link exterior,
T a component of ∂W , and M �∼= W (T ;−1), W (T ; 5), W (T ; 5/2), or
W (T ;−2), then ∆(E(M)) ≤ 5 and #E(M) ≤ 8.

A manifold M as above is called large if it contains a closed essen-
tial surface. Otherwise it is called small. It turns out that W (T ;−1),
W (T ; 5), W (T ; 5/2), W (T ;−2) are each small (see the Appendix) and
so it is expected that ∆(E(M)) ≤ 5 whenever M is large, for instance
when the first Betti number of M , denoted b1(M) below, is at least 2.
We shall prove:

Theorem 1.2. Let M be a compact, connected, orientable, hyper-
bolic 3-manifold whose boundary is a torus.

(1) If b1(M) ≥ 2, then ∆(E(M)) ≤ 5 and #E(M) ≤ 7.

(2) If b1(M) ≥ 3, then ∆(E(M)) ≤ 4 and #E(M) ≤ 6.

It has proven difficult to analyze E(M) by methods of a purely dif-
ferential geometric nature and topologists have adopted an approach
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related to Thurston’s hyperbolisation conjecture. This is what we do
here. Consider the set of topologically exceptional slopes

ETOP (M) = {r |M(r) is reducible, toroidal,
or Seifert fibred, or π1(M(r)) is finite}.

It is well-known that ETOP (M) ⊆ E(M) and the hyperbolisation con-
jecture asserts that these two sets are, in fact, equal. When b1(M) ≥ 2,
Thurston’s hyperbolisation theorem for Haken manifolds [32, Theorem
2.5] (see also Chapter VIII of [1]) implies that M(r) is hyperbolic if and
only if it contains no essential 2-spheres or tori, and is not Seifert fibred.
The case when M(r) is either reducible or toroidal can be understood
through the application of known results. Our contribution to the proof
of Theorem 1.2(1) deals with the possibility that M(r) is Seifert fibred.
A key special case arises when M is the exterior of a knot γ which
lies in a fibre S of a locally trivial surface bundle over the circle with
smooth monodromy f : S → S. Let Tγ : S → S denote a Dehn twist
along γ. In this setting, the exceptional surgery problem translates into
understanding the set

N (f, γ) = {n | Tn
γ f is not a pseudo-Anosov mapping class}.

Fathi [8] has shown that N (f, γ) has diameter at most 6 by studying
the action of the mapping class group of S on its space of measured
laminations. In order to prove Part (1) of Theorem 1.2, it is necessary
for us to improve his result by 1.

Theorem 1.3. Let S be a closed connected orientable surface of
positive genus. Suppose that f : S→S is a pseudo-Anosov diffeomor-
phism and γ is a simple closed essential curve in S. Then the set of
integers n for which Tn

γ f is not pseudo-Anosov has diameter at most 5.

It seems reasonable to expect that the diameter of N (f, γ) is at
most 4. For instance, it is easy to see that this is the case when S
is a torus. Further, Fathi derived this bound in the case where γ is a
separating curve ([8, Theorem 5.4]. See also Inequality 2.3). Our next
result provides further evidence in the case where 1 is an eigenvalue of
f∗ : H1(S) → H1(S).

Theorem 1.4. Let S be a closed connected orientable surface of
positive genus. Suppose that f : S→S is a pseudo-Anosov diffeomor-
phism and γ is a simple closed essential curve in S. Let f∗ be the auto-
morphism of H1(S) induced by f and suppose that |f∗ − I| = 0. Then
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the set of integers n for which Tn
γ f is not pseudo-Anosov has diameter

at most 4.

In the final sections of the paper we consider the case where M is
large, though allowing the possibility that b1(M) = 1. Given a closed,
essential surface S in M , set

C(S) = {r | S compresses in M(r)}.

A singular slope for S is a slope r0 on ∂M such that S compresses
in M(r0) but stays incompressible in M(r) if ∆(r, r0) > 1. By Wu’s
theorem (Theorem 6.1), a singular slope for S exists as long as C(S) �= ∅.
Moreover:

- A singular slope for S is unique if C(S) is infinite.

- Each slope in C(S) is a singular slope for S if C(S) is finite.

It turns out that the slopes in E(M) are located close to singular slopes
for surfaces.

Theorem 1.5. Let M be a compact, connected, orientable, hy-
perbolic 3-manifold whose boundary is a torus and suppose that r0 is a
singular slope of a closed essential surface S ⊂ M . Then

∆(r0, r) ≤




1 if M(r) is either small or reducible
1 if M(r) is Seifert and S does not separate
2 if M(r) is toroidal and C(S) is infinite
3 if M(r) is toroidal and C(S) is finite.

Since Haken manifolds satisfy the hyperbolisation conjecture and
closed Seifert manifolds are either small, or reducible, or toroidal, or
contain non-separating horizontal surfaces, the following is immediate.

Corollary 1.6. Suppose that r0 is a singular slope of a closed
essential surface S ⊂ M and r ∈ E(M). Then

∆(r0, r) ≤
{

2 if C(S) is infinite
3 if C(S) is finite.

There are several topologically significant situations when the exis-
tence of a closed essential surface and associated singular slope r0 are
guaranteed by conditions on the filling M(r0). Here is one such. Man-
ifolds which admit Seifert structures whose base orbifolds are either a
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2-sphere with at most three cone singularities, or a projective plane with
at most one cone singularity, are called small Seifert manifolds. Other-
wise they are called big Seifert. They are called very big Seifert if they
are big Seifert but do not have a base orbifold of the form P 2(p, q), or
S2(2, 2, 2, 2), or the Klein bottle K. Evidently the generic Seifert fibred
space is very big.

Theorem 1.7. Let M be a compact, connected, orientable, hyper-
bolic 3-manifold whose boundary is a torus. Suppose that M(r0) is a big
Seifert fibred manifold whose base orbifold B is not of the form P 2(p, q).
If B is the Klein bottle or S2(2, 2, 2, 2), assume that b1(M) ≥ 2. Then
r0 is a singular slope of a closed essential surface S ⊂ M .

The reader may notice that the role of a singular slope of a surface
in Theorem 1.5 is reminiscent of that of degeneracy slopes of branched
surfaces in theorems from the theory of laminations. Let B be an essen-
tial branched surface in M . We call a slope r0 on ∂M the degeneracy
slope of B if B is disjoint from ∂M and some component of the exterior
E(B) of B is a collar T × I on ∂M = T × {0} with a nonempty set
of cusps on T × {1} whose slope corresponds to r0 on T × {0}. This
condition on E(B) implies that B remains essential in M(r) whenever
∆(r0, r) ≥ 2.

Theorem 1.8 ([38, Theorem 2.5]). If r0 is a degeneracy slope
for some essential branched surface in M and r ∈ ETOP (M), then
∆(r0, r) ≤ 2.

There are various conditions under which the existence of degener-
acy slopes has been verified. For instance this will be the case when
b1(M) > 1 ([10]) or when M fibres over the circle with pseudo-Anosov
monodromy ([12, Theorem 5.3]). Gabai and Mosher have claimed the
existence of appropriate essential branched surfaces and degeneracy
slopes in general, though we shall not use this.

Theorem 1.9. Suppose that M is a compact, connected, ori-
entable, hyperbolic 3-manifold with b1(M) = 1.

(1) If there is a closed, essential surface S ⊂ M such that C(S) is
finite, then ∆(E(M)) ≤ 5.

(2) If there are at least two different slopes on ∂M each of which is a
singular slope of an essential closed surface, then ∆(E(M)) ≤ 5.

(3) If there are at least two different slopes on ∂M each of which is ei-
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ther a singular slope of an essential closed surface or a degeneracy
slope of an essential branched surface, then ∆(ETOP (M)) ≤ 5.

According to Theorem 1.7, a very big Seifert filling slope on ∂M is
a singular slope of a closed essential surface.

Corollary 1.10. Suppose that M is a compact, connected, ori-
entable, hyperbolic 3-manifold with a torus boundary. If M has two
very big Seifert fillings, then ∆(E(M)) ≤ 5.

There are various open conjectures concerning Seifert surgery on a
hyperbolic knot K in the 3-sphere. For instance it is thought that a
nontrivial Seifert surgery slope r on such a knot is integral; this means
that ∆(r, µK) = 1 where µK is the meridional slope of K. It is known
that the only Seifert manifolds which could possibly arise as nontrivial,
non-integral surgery on a hyperbolic knot are small and have base orb-
ifolds of the form S2(p, q, r) where p, q, r ≥ 2 [2, Corollary 1.7]. It is
also thought that no very big Seifert manifold can arise as surgery on a
hyperbolic knot in S3. We prove:

Theorem 1.11. Suppose that K is a hyperbolic knot in the 3-
sphere with exterior MK . Suppose further that r is a non-meridional
slope on ∂MK such that MK(r) is Seifert fibred.

(1) If K is a small knot, then MK(r) is not a very big Seifert manifold.

(2) If r0 is a singular slope of an essential closed surface in MK , then
∆(r0, µK) ≤ 1 and ∆(r0, r) ≤ 1.

(3) If µK is a singular slope of an essential closed surface in MK ,
then r is an integral slope. In particular, this occurs if either µK

is a boundary slope or there is an essential closed surface S in MK

such that C(S) is finite.

(4) If K admits a very big Seifert surgery slope r0, then r0 is integral
and ∆(r0, r) ≤ 1. Hence K admits no more than two very big
Seifert surgeries, and if two, then:

- They correspond to successive integral slopes.

- If r is non-integral, it is half-integral.

(5) If K is amphicheiral and MK(r) is a big Seifert manifold, then K
is fibred and r is the longitudinal slope.
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The paper is organized as follows. In §2 we analyze compositions
of pseudo-Anosov diffeomorphisms with powers of a Dehn twist, conse-
quently proving Theorem 1.3 and part of Theorem 1.4. To complete the
proof of the latter theorem we must investigate the distance between
toroidal filling slopes on the boundary of manifolds M with b1(M) ≥ 3.
This is done in §3. In §4 we introduce the notions of hollow product and
new annuli and prove, for instance, that often in the absence of the lat-
ter, we are working with the former. This will be of importance several
times in the paper. Theorem 1.2 is dealt with in §5 and singular slopes
associated to closed essential surfaces are examined in §6. In particular
we prove Theorem 1.5 here. Sections 7 and 8 are devoted to the proofs
of Theorem 1.9 and Theorem 1.11 respectively. In §9 we give some
examples of non-hyperbolic Dehn fillings of large hyperbolic manifolds,
illustrating how close our results are to being sharp. Finally we prove
that most fillings of the Whitehead link exterior are small manifolds in
the Appendix.

The authors would like to thank Feng Luo for making them aware
of Albert Fathi’s work [8].

2. Dehn twists, pseudo-Anosov diffeomorphisms and
exceptional fillings

Let S be a closed, connected, orientable surface of positive genus
and f : S → S an orientation preserving diffeomorphism. The mapping
torus of f

W (f) = (S × I)/{(x, 1) = (f(x), 0)}

is a locally-trivial S-bundle over the circle. It is straightforward to
see that W (f) is toroidal when f is reducible, and Seifert fibred when
f is periodic. A major contribution of Thurston was to prove that
W (f) is a hyperbolic manifold if and only if the genus of S is larger
than one and f is pseudo-Anosov [33] (see also [27]). In this section
we investigate surgeries on a knot K ⊂ W (f) which corresponds to an
essential simple closed curve γ lying in a fixed fibre S ⊂ W (f). Let M be
the exterior of such a knot K in W (f). A parallel of γ on S determines
the canonical slope c of K. If we orient c and the meridian µ of K,
their associated homology classes form an ordered basis {α(µ), α(c)}
for H1(∂M). Let M(m

n ) denote the manifold obtained by filling M
along the slope corresponding to mα(µ) + nα(c). The following lemma
is due to Stallings [30].
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Lemma 2.1 (Stallings). Let γ be an essential simple closed curve
on S and K the associated knot in W (f). Then M( 1

n) ∼= W (Tn
γ f) where

Tγ : S → S is a Dehn twist along γ.

It follows then, in the case that genus(S) > 1, that M( 1
n) is hy-

perbolic if and only if Tn
γ f is pseudo-Anosov. Long and Morton [23]

observed that when f is a pseudo-Anosov diffeomorphism, K is a hy-
perbolic knot (see Lemma 2.2 below), and hence Thurston’s hyperbolic
Dehn surgery theorem implies that the set of integers n for which Tn

γ f
is not pseudo-Anosov is finite.

Lemma 2.2 (Long-Morton). Let γ be an essential simple closed
curve on S and let K be the associated knot in W (f). If the genus of S
is at least 2 and f is pseudo-Anosov, then K is a hyperbolic knot.

Proof. Since b1(M) ≥ 2 it suffices to show that M is irreducible
and atoroidal [32, Theorem 2.5]. Consider then an embedded 2-sphere
Σ ⊂ int(M). Since S �∼= S2, any S-bundle over the circle is irreducible.
In particular Σ = ∂B where B is a 3-ball in M(1

0) = W (f). Since γ is
an essential curve in S, K cannot lie in the interior of B. Thus B ⊂ M
and so M is irreducible.

The fact that M is atoroidal is proved in Lemma 1.1 of [23]. They
show that an essential torus in M may be isotoped so that its inter-
section with S yields an essential link in S invariant under f . This
intersection can never be empty because there is no such torus in S× I.

q.e.d.

Albert Fathi greatly sharpened the finiteness result of Long and
Morton by showing that if f is pseudo-Anosov, though Tn

γ f and Tm
γ f

are not, then |n − m| ≤ 6 [8, Theorem 0.1]. Actually Fathi, following a
suggestion of Francis Bonahon, observed that the condition that f be
pseudo-Anosov can be relaxed to requiring that the pair (f, γ) fills S.
This means that given any essential simple closed curve γ′ on S, there is
some j ∈ Z such that the geometric intersection number i(γ′, f j(γ)) is
positive. Equivalently we may choose integers j1, j2, . . . , jn and isotopic
images of f j1(γ), f j2(γ), . . . , f jn(γ) which cut S into a family of 2-disks.
For instance if f is irreducible, then given any essential γ, (f, γ) fills S.

Theorem 2.3 ([8, Theorem 5.1]). Suppose that S is a closed,
connected, orientable surface, γ an essential simple closed curve in S,
and f an orientation preserving diffeomorphism of S such that (f, γ)
fills S. If neither Tn

γ f nor Tm
γ f is pseudo-Anosov, then |n − m| ≤ 6.
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Fathi’s theorem is proved in the following fashion. Let MF(S) be
the space of measured foliations on the surface S. He observes, after
Thurston, that for a mapping class g of S to be pseudo-Anosov, it is
necessary and sufficient for it to have no periodic points in MF(S),
meaning that g has no finite orbits ([8, Theorem 2.1]). This property
can be detected in an elementary fashion. It suffices to find a function
A : MF(S) → R such that for any measured foliation F , there are
integers k, m and a constant C ∈ (1,∞) with A(gk(F)) ≥ CA(F) and
A(gm(F)) > 0 ([8, Lemma 1.2]). Fathi’s choice for this function is

A(F) = i(F , γ) ∈ [0,∞)

where i(·, ·) denotes geometric intersection. He observes that since (f, γ)
fills S, there is a least positive integer k = k(f, γ) such that i(γ, fk(γ)) >
0 and then proves that there is a real constant λ0 such that for every
F ∈ MF(S) and every integer n, the inequality

(2.1) A([Tn
γ f ]k(F)) + A([Tn

γ f ]−k(F)) ≥ [|n − λ0| − 1]i(γ, fk(γ))A(F)

holds [8, Proposition 5.2]. Consequently
(2.2)

max{A([Tn
γ f ]k(F)), A([Tn

γ f ]−k(F))} ≥ [|n − λ0| − 1]
2

i(γ, fk(γ))A(F).

From this it is straightforward, using the criterion above, to show

Lemma 2.4 (cf. Proof of [8, Theorem 5.4]). If

[|n − λ0| − 1]
2

i(γ, fk(γ)) > 1,

or equivalently |n − λ0| > 1 + 2
i(γ,fk(γ))

, then Tn
γ f is pseudo-Anosov.

Hence if neither Tn
γ f nor Tm

γ f is pseudo-Anosov, then

(2.3) |n − m| ≤ 2 +
4

i(γ, fk(γ))
.

This estimate immediately yields Theorem 2.3.
Next we present a mild refinement of Fathi’s result which, when

combined with work of the second author, allows us to improve Fathi’s
bound from 6 to 5 (see Theorem 2.6 below).

Lemma 2.5. Using the notation developed above, if

[|n − λ0| − 1]
2

i(γ, fk(γ)) ≥ 1,

then Tn
γ f is not a periodic mapping class.
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Proof. Set g = Tn
γ f and observe that under our hypotheses, inequal-

ities (2.1) and (2.2) become

A(gk(F)) + A(g−k(F)) ≥ 2A(F)

max{A(gk(F)), A(g−k(F))} ≥ A(F)

for every F ∈ MF(S). Replacing F by gmk(F) we obtain

(2.4) A(g(m+1)k(F)) + A(g(m−1)k(F)) ≥ 2A(gmk(F))

and

(2.5) max{A(g(m+1)k(F)), A(g(m−1)k(F))} ≥ A(gmk(F))

for every F ∈ MF(S) and every integer m. If g is periodic, there is an
integer m0 such that

(2.6) A(gm0k(F)) ≥ A(gmk(F)) for all m.

The inequalities (2.4), (2.5) and (2.6) together imply the following equal-
ity

A(gm0k(F)) = A(g(m0+1)k(F)) = A(g(m0−1)k(F)).

Inductively, this equality holds if m0 is replaced by any integer m. In
particular taking m = 0 gives

i(γ,F) = i(γ, gk(F)) = i(g−k(γ),F) for every F ∈ MF(S).

Since i(γ, f j(γ)) = 0 for 1 ≤ j < k, we have g−k(γ) = [f−1T−n
γ ]k(γ) =

f−k(γ) and therefore

i(γ,F) = i(f−k(γ),F) for every F ∈ MF(S).

It follows that γ = fk(γ) and thus i(γ, fk(γ)) = 0, contrary to the
definition of k. Thus g cannot be periodic. q.e.d.

Theorem 1.3 is a special case of our next result.

Theorem 2.6. Let S be a closed connected orientable surface of
positive genus. Suppose that f : S→S is a diffeomorphism and γ is a
simple closed essential curve in S such that (f, γ) fills S. Then the set
of integers n for which Tn

γ f is not pseudo-Anosov has diameter at most
5.
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Proof. First suppose that S is a torus. The homomorphism which
associates g∗ ∈ SL(H1(S)) to a mapping class g is an isomorphism. Fur-
ther g is pseudo-Anosov if and only if |tr(g∗)| > 2. It is straightforward
to prove that since (f, γ) fills S, there is an integer c �= 0 such that
tr((Tn

γ f)∗) = tr(f∗) + nc, which implies the desired conclusion.
Next suppose that the genus(S) > 1 and that Tn

γ f and Tm
γ f are not

pseudo-Anosov, where |n − m| = 6 (cf. Theorem 2.3). By Lemma 2.4,

max{|n − λ0|, |m − λ0|} ≤ 3

and so
6 = |n − m| ≤ |n − λ0| + |m − λ0| ≤ 6.

It follows that |n − λ0| = |m − λ0| = 3 and so by Lemma 2.5, neither
Tn

γ f nor Tm
γ f is a periodic mapping class of S. They are reducible

then and thus both W (Tn
γ f) and W (Tm

γ f) are toroidal manifolds. Let
M be the exterior of the knot in W (f) corresponding to γ, so that
W (Tn

γ f) = M( 1
n) and W (Tm

γ f) = M( 1
m) (cf. Lemma 2.1). Since M is

also homeomorphic to the exterior of the knot in W (T j
γf) corresponding

to γ, by choosing j � n, m we may apply Lemmas 2.2 and 2.4 to see that
M is hyperbolic. The second author proved [14, Theorem 1.2] that if the
distance between two toroidal slopes on the boundary of a hyperbolic
manifold is larger than 5, then that manifold has first Betti number 1.
But this contradicts the fact that b1(M) ≥ 2 and 6 = |n−m| = ∆( 1

n , 1
m).

Hence |n − m| ≤ 5. q.e.d.

Theorem 1.4 follows from the following result.

Proposition 2.7. Let S be a closed connected orientable surface
of positive genus. Suppose that f : S→S is a diffeomorphism and γ is
a simple closed essential curve in S such that (f, γ) fills S. Let f∗ be
the automorphism of H1(S) induced by f and suppose that |f∗ − I| = 0.
Then the set of integers n for which Tn

γ f is not pseudo-Anosov has
diameter at most 4.

Proof. We shall assume that the genus of S is at least two, since
the case when S is a torus was dealt with in the first paragraph of the
previous proof. It was also noted in that proof that the exterior M of
γ in W (f) is a hyperbolic manifold and that there is a choice of basis
for H1(∂M) ∼= Z2 such that M(1

j ) ∼= W (T j
γf).

Let N(S) ⊂ W (f) be a collar neighborhood of S and set W0 =
W (f)\int(N(S)). Evidently W0

∼=S×I. The isomorphisms Hj(W (f), S)
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∼= Hj(W (f), N(S)) (homotopy) ∼= Hj(W0, ∂W0) (excision) ∼= Hj−1(S)
(Thom isomorphism) can be used to convert the exact sequence

H2(W (f), S) → H1(S) → H1(W (f)) → H1(W (f), S)
→ H0(S) → H0(W (f))

into an exact sequence

H1(S)
f∗−1−→ H1(S) → H1(W (f)) → Z → 0.

Thus |f∗ − I| = 0 if and only if b1(W (f)) ≥ 2. Any Seifert fibred space
whose first Betti number is larger than 1 admits an essential torus,
and therefore if Tn

γ f and Tm
γ f are not pseudo-Anosov, both W (Tn

γ f)
and W (Tm

γ f) are toroidal. The proposition is thus a consequence of
Theorem 3.1, the main result of the next section. q.e.d.

3. Toroidal slopes on manifolds with large Betti number

The second author proved that the distance between toroidal filling
slopes on the boundary of a large hyperbolic 3-manifold M is at most 5
[14]. In order to prove Proposition 2.7, it is necessary to improve this
result by 1 under the assumption that b1(M) ≥ 3.

Theorem 3.1. Let M be a compact, connected, orientable hyper-
bolic 3-manifold whose boundary is a torus and whose first Betti num-
ber is at least 3. Suppose that M(r1) and M(r2) are toroidal. Then
∆(r1, r2) ≤ 4.

We will assume that M is as in the hypotheses of Theorem 3.1, and
that ∆ = 5, and will show that this leads to a contradiction. Throughout
we let |X| denote the number of path components of a space X.

We use α or β to denote either 1 or 2, and when they appear together,
then {α, β} = {1, 2}.

Let Vα denote the filling solid torus in M(rα). Amongst all essential
tori in M(rα), let Tα be one such that |Tα ∩ Vα| is minimal. Then
Fα = Tα ∩ M is an essential punctured torus in M with boundary
slope rα. By an isotopy we may assume that no arc component of
F1 ∩ F2 is boundary parallel in Fα, and no circle component of F1 ∩ F2

bounds a disk in Fα. As usual we define the intersection graph Γα in
Tα, taking Tα ∩ Vα as vertices and arc components of F1 ∩ F2 as edges.
We assume that the reader is familiar with the basic terms and facts in
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this setting, such as the labeling and signs of vertices, the parity rule,
Scharlemann cycles and their labelings, Scharlemann disks, S-cycles,
extended S-cycles, positive (negative) edges, parallel edges, the labeling
of endpoints of edges, the labeling of the corners of a face of Γα, the
reduced graph Γ̂ of a graph Γ, the edge class of an edge in Γα and
its width. We take [14], [18], [37], and [3] as references. Let nα be
the number of vertices of Γα, or equivalently, the number of boundary
components of Fα.

Lemma 3.2 ([3, Lemma 2.2 (1)]). If Γα contains a Scharlemann
cycle then Tβ is separating, and hence nβ is even.

Lemma 3.3. Suppose that Tβ separates M(rβ), into X1 and X2.
If Γα contains a Scharlemann cycle such that the corresponding Scharle-
mann disk lies in Xi, i = 1 or 2, then Xi is a Q-homology S1 × D2.

Proof. Suppose without loss of generality that Γα contains a 12-
Scharlemann cycle, and that the corresponding Scharlemann disk f lies
in X1. Let H12 be the 1-handle consisting of that part of Vβ between
fat vertices 1 and 2 of Γβ on Tβ, lying in X1. Let W = N(Tβ ∪H12∪f).
Then ∂W = Tβ ∪ T ′

β, say, where T ′
β is a torus, and W is a Q-homology

T 2 × I. Moreover, |T ′
β ∩ Kβ| = nβ − 2, and so, by the minimality of

nβ, T ′
β bounds a solid torus V ′ in M(rβ). Then X1 = W ∪ V ′ is a

Q-homology S1 × D2. q.e.d.

Corollary 3.4. Γα cannot have Scharlemann cycles lying on op-
posite sides of Tβ.

Proof. If it did, we would have M(rβ) = X1 ∪Tβ
X2, where Xi is a

Q-homology S1 ×D2, i = 1 and 2. Hence b1(M(rβ)) ≤ 1, implying that
b1(M) ≤ 2, contradicting our hypothesis on M . q.e.d.

Lemma 3.5.

(1) If Γα has more than nβ/2 mutually parallel positive edges, then
Γα has an S-cycle.

(2) If nβ is odd then Γα cannot have more than (nβ − 1)/2 mutually
parallel positive edges.

(3) If nβ ≥ 4 then Γα does not have an extended S-cycle.

(4) Γα cannot have more than nβ/2+2 mutually parallel positive edges.

(5) If Γα has nβ/2 + 2 mutually parallel positive edges then nβ ≡
0 (mod 4 ).
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(6) Γα cannot have three S-disks with distinct label pairs lying on the
same side of Tβ.

Proof. (1) This is [6, Corollary 2.6.7].
(2) This follows from (1) and Lemma 3.2.
(3) This is [3, Lemma 2.10] or [18, Theorem 3.2].
(4) If nβ �= 2, this is [3, Lemma 2.11]. For the case nβ = 2, see (5)

below.
(5) Suppose that Γα has a family of nβ/2 + 2 mutually parallel

positive edges. Then nβ is even by (2). If nβ ≡ 2 (mod 4) then, using
(3) when nβ > 2, we see that the extremal bigons of the family are S-
cycles lying on opposite sides of Tβ. But this contradicts Corollary 3.4.
(Cf. [37, Corollary 1.8].)

(6) This is [18, Theorem 3.5]. q.e.d.

Lemma 3.6. Suppose nβ = 4, and that Γα has a disk face of odd
order. Then Γα does not have four mutually parallel positive edges.

Proof. Suppose that Γα has four mutually parallel positive edges.
By Lemma 3.5 (3) we may assume that these edges are as shown

2 1 4

1 2 3 4

3

By Lemma 3.2, Tβ is separating, and hence every face of Γα either
has corners in {12, 34} or in {23, 41}. Let g be a disk face of Γα of odd
order.

Suppose that g is a (12, 34)-face. Then, without loss of generality, g
has an odd number of 12-corners, and an even number (possibly zero) of
34-corners. But this contradicts [20, Lemma 5.13] (taking f and f1 there
to be the 12- and 34-S-cycles shown above, respectively, and f2 = g).

Suppose that g is a (23, 41)-face. Then g and the (23, 41)-bigon face
shown above represent linearly independent elements of the Z/2-vector
space on generators 23 and 41. Hence, if these faces lie in X2, where
M(rβ) = X1 ∪Tβ

X2 and the 12-S-cycle lies in X1, then it follows, as
in the proof of Lemma 3.3, that X2 is a Z/2-homology S1 × D2. This,
together with Lemma 3.3, implies that b1(M(rβ)) ≤ 1, and hence that
b1(M) ≤ 2, contrary to hypothesis. q.e.d.

Lemma 3.7. Let Γ be a reduced graph on a torus with no vertex
of valency less than 5. Then Γ has a 3-gon face.
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Proof. Let V , E and F be the number of vertices, edges and disk
faces of Γ, respectively. Then 2E ≥ 5V . Assume that Γ has no 3-gon
face. Then 2E ≥ 4F . Therefore

0 ≤ V − E + F ≤ 2E

5
− E +

E

2
= − E

10
,

a contradiction. q.e.d.

Lemma 3.8. The vertices of Γα are not all of the same sign.

Proof. Suppose that the vertices of Γα are all of the same sign. Write
n = nβ.

First note that the reduced graph Γ̂α has no vertex of valency less
than 5. For, if it did, we would have

5n ≤ 4
(n

2
+ 2

)

by Lemma 3.5 (4), giving n ≤ 2. But n = 1 is impossible (by the parity
rule), while in the case n = 2 every disk face of Γα is a Scharlemann
cycle, and we are done by Corollary 3.4.

Hence Γα has a 3-gon face, by Lemma 3.7. By a standard Euler
characteristic argument, Γ̂α has a vertex of valency less than or equal
to 6. Hence, by Lemma 3.5 (4),

5n ≤ 6
(n

2
+ 2

)
,

and therefore n ≤ 6. But n = 6 is impossible by Lemma 3.5 (5),
n = 1, 3 or 5 is impossible by Lemma 3.5 (2), n = 2 is impossible, as
argued above, by Corollary 3.4, and n = 4 is impossible by Lemma 3.6.

q.e.d.

Lemma 3.9. Γα has at most nβ mutually parallel negative edges.

Proof. Suppose Γα has nβ+1 mutually parallel negative edges. Then
by [14, Lemma 4.2] the corresponding permutation has only one orbit
(note that (M, ∂M) is not cabled since M is hyperbolic), and hence all
the vertices of Γβ have the same sign, contradicting Lemma 3.8. q.e.d.

It follows from Lemma 3.8 that nα > 1, α = 1, 2. We will now
proceed to show that nα > 2, α = 1, 2.

Lemma 3.10. Suppose nβ = 2. Then Γα cannot have more than
two mutually parallel edges.



278 s. boyer, c. gordon & x. zhang

Proof. Γα cannot have more than two mutually parallel positive
edges by Lemma 3.5 (5).

Note that the vertices of Γβ are of opposite sign, by Lemma 3.8.
Hence if Γα has three mutually parallel negative edges, then the corre-
sponding edges of Γβ are loops, two at vertex 1 (say) and one at vertex
2. The two loops at vertex 1 are parallel in Γβ. Hence we have edges
that are parallel on both graphs, which contradicts [14, Lemma 2.1].

q.e.d.

Lemma 3.11. Suppose nβ = 2, and that Tβ separates M(rβ), into
X1 and X2. If Γα has a 3-gon face that lies in Xi, i = 1 or 2, then Xi

is a Z/2-homology S1 × D2.

Proof. Let f be a 3-gon face of Γα, and suppose without loss of
generality that f lies in X1. Let H12 = Vβ ∩ X1, and let W = N(Tβ ∪
H12 ∪ f). Then ∂W = Tβ ∪ T ′

β, where T ′
β is a torus, and W is a Z/2-

homology T 2 × I. Since T ′
β ∩ Kβ = ∅, T ′

β bounds a solid torus V ′ in
M(rβ). Hence X1 = W ∪ V ′ is a Z/2-homology S1 × D2. q.e.d.

Proposition 3.12. nβ �= 2.

Proof. For convenience write m = nα, n = nβ, and suppose n = 2.
Let E denote the number of edges of Γα, and Fk the number of disk

faces of Γα of order k, k ≥ 2. Each vertex of Γα has valency ∆n = 10,
so E = 5m.

Then
m − E +

∑
k

Fk ≥ χ(Tα) = 0,

giving

(3.1) 4m ≤
∑

k

Fk.

We also have
2E ≥

∑
k

kFk,

giving

(3.2) 10m ≥
∑

k

kFk.

Multiplying (3.1) by 3 and subtracting (3.2) gives

2m ≤ F2 −
∑
k≥4

(k − 3)Fk.
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Hence F2 ≥ 2m, and if F2 = 2m then Fk = 0 for k ≥ 4.
We first show that one of the 2-gon faces of Γα is an S-cycle. So

suppose not. Since F2 ≥ 2m, there exists a vertex v of Γα with at least
four 2-gon faces of Γα incident to v. By Lemma 3.10, no two of these
can share an edge, and hence we get four 1-edges and four 2-edges at
v, which correspond to loops in Γβ. Hence there is only one parallelism
class of loops in Γβ at vertex 1, containing four v-edges. It follows that
Γβ has nα + 1 parallel loops, contradicting either Lemma 3.5 (4) (when
nα > 2) or Lemma 3.10 (when nα = 2).

By Lemma 3.2, Tβ separates M(rβ) into X1 and X2, and Γα has an
S-cycle lying in X1, say. By Corollary 3.4, Γα has no S-cycle in X2.

Let G be the graph on Tα with the same vertices as Γα, and whose
edges are in one–one correspondence with the F2 2-gons of Γα, in the
obvious way.

First suppose that F2 > 2m. Then a simple Euler characteristic
argument shows that G has a 2-gon or 3-gon face. A 2-gon face of G
would give rise to three mutually parallel edges of Γα, contradicting
Lemma 3.10. Let g be a 3-gon face of G. At least two of the vertices of
g are of the same sign, and so the edge of g joining these two vertices
corresponds to an S-cycle in Γα, lying in X1. Hence g corresponds to a
3-gon face of Γα lying in X2. Therefore X2 is a Z/2-homology S1×D2 by
Lemma 3.11, and we get a contradiction as in the proof of Corollary 3.4.

Finally, suppose that F2 = 2m. Then the only faces of Γα are 2-gons
and 3-gons. Again, a simple Euler characteristic argument shows that
all faces of G are 4-gons. Such a face corresponds to the union along an
edge of two 3-gons faces of Γα. Thus again there is a 3-gon face of Γα

in X2, and we are done as before. q.e.d.

So from now on we shall assume that nα > 2, α = 1, 2.

Lemma 3.13. Suppose nβ = 4. Then Γα does not have four
mutually parallel positive edges.

Proof. By Lemma 3.9 and Lemma 3.5 (4), Γα cannot have more than
nβ mutually parallel edges. Therefore Γ̂α has no vertex of valency less
than 5, and hence Γα has a 3-gon face by Lemma 3.7. The conclusion
now follows from Lemma 3.6. q.e.d.

Proposition 3.14. Γ̂α has no vertex of valency less than or equal
to 5.

Proof. As noted above, no vertex of Γ̂α can have valency less than 5.
Let u be a vertex of Γ̂α of valency 5. Then, by Lemma 3.5 (2)
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and (4), Lemma 3.13 and Lemma 3.9, each edge class at u is negative.
Therefore all u-edges of Γβ are positive. Let v be a vertex of Γ̂β of
valency at most 6. Since no two u-edges at v are parallel in Γβ, there
are at least 5 positive edge classes at v. Hence, writing n = nα, we have

5n ≤ 5(n/2 + 2) + n,

giving n ≤ 6. But n = 6 is impossible by Lemma 3.5 (5), n = 3 or 5 is
impossible by Lemma 3.5 (2), and n = 4 is impossible by Lemma 3.13.

q.e.d.

Proof of Theorem 3.1. By Lemma 3.8 and Proposition 3.12, we may
assume that nα > 2, α = 1, 2. By Proposition 3.14 we may assume that
each vertex of Γ̂α has valency 6, α = 1, 2. Since positive edges of Γα

correspond to negative edges of Γβ, we may assume that Γ1 has at least
as many positive edges as negative edges. Hence, writing n = n2, there
exists a vertex u of Γ1 with at least 5n/2 positive edges incident to it.

Using Lemma 3.5 (4) and (2), we see that at least three of the six
edge classes of Γ1 at u must be positive.

If there are at least five positive edge classes at u, then we get
a contradiction, using Lemma 3.5 (2), (4) and (5), Lemma 3.9 and
Lemma 3.13.

Suppose there are four positive and two negative edge classes at u.
Then, by Lemma 3.5 (4) and Lemma 3.9, we get

5n ≤ 4(n/2 + 2) + 2n,

giving n ≤ 8. But n = 3, 5 or 7 are impossible by Lemma 3.5 (2), and
n = 6 is impossible by Lemma 3.5 (5).

If n = 4, then by Lemma 3.13 and Lemma 3.9 the four positive
classes have width 3, and the two negative classes have width 4. Then,
without loss of generality, using Corollary 3.4, the positive classes to-
gether contain a 12-S-cycle, a 34-S-cycle, and a (23, 41)-bigon. Since Γ1

also has a 3-gon face, the proof of Lemma 3.6 now gives a contradiction.
If n = 8, then the four positive edge classes must have width 6, and

the two negative edge classes width 8. But then it is easy to see that the
positive edge classes contain either an extended S-cycle, contradicting
Lemma 3.5 (3), or three S-cycles on distinct label pairs lying on the
same side of T2, contradicting Lemma 3.5 (6).

Finally, consider the case where there are three positive and three
negative edge classes at u. Then 5n/2 ≤ 3(n/2 + 2), giving n ≤ 6.
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As before, n = 6 is impossible by Lemma 3.5 (5), and n = 3 or 5 by
Lemma 3.5 (2). If n = 4, then there must be a positive edge class
of width 4, contradicting Lemma 3.13. This completes the proof of
Theorem 3.1. q.e.d.

Remark 3.15. The above proof of Theorem 3.1, with obvious mod-
ifications, also gives the following result: If M is a connected compact
orientable hyperbolic 3-manifold whose boundary consists of k > 3 tori,
then for any fixed boundary torus T of M , any two toroidal filling slopes
of M along T have distance at most 4. Combining this with known re-
sults, it follows that 4 is also an upper bound for the distance between
two non-hyperbolic Dehn filling slopes for M along T ; see [15] for details.

4. Hollow products and new annuli

Throughout this section, S denotes a connected closed orientable
surface of genus larger than one, U = S × [0, 1] is the product I-bundle
over S, and P : U→S is the natural projection map. Note that every
essential annulus in U is vertical, that is, isotopic to P−1(C) for some
essential simple closed curve C in S [34].

If K is a knot in int (U) which is isotopic to the center circle of some
essential annulus A∗ in U , then its exterior W = U−int (N(K)) is called
a hollow product. Let A be one of the two components of A∗∩W . Then
A is an essential annulus in W with one boundary component in ∂N(K)
and the other on ∂W \ ∂N(K). The slope c of the curve A ∩ ∂N(K)
is called the canonical slope of W . If µ denotes the meridional slope of
the knot, then ∆(c, µ) = 1. Obviously W (c) is ∂-reducible and twisting
along the annulus A shows that W (r) ∼= W (r′) if ∆(r, c) = ∆(r′, c) = 1.
A simple homological calculation implies that if ∆(r, c) �= ∆(r′, c), then
W (r) �∼= W (r′). In particular W (r) is a product I-bundle if and only if
∆(r, c) = 1.

Lemma 4.1. Suppose that W is a hollow product with canonical
slope c. Then:

(1) W (r) is a product I-bundle if and only if ∆(r, c) = 1.

(2) W (r) is ∂-reducible if and only if r = c.

Proof. Part (1) was observed above. Part (2) follows from [6, The-
orem 2.4.3] (or Theorem 6.1 in the present paper) and Part (1). q.e.d.
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Let W be a compact, connected, irreducible, orientable 3-manifold
and r a slope on a toral boundary component of W . A new annulus
in W (r) is an essential annulus A such that W contains no annulus A′

which has the same boundary as A. We are interested in situations
where new annuli arise. Our next lemma leads to such situations.

Lemma 4.2. Let P : U = S × I → S be a product I-bundle. Let
F0 ⊂ S be either a 2-disk or an essential annulus, and suppose that K
is a knot in int(U) which can be isotoped off each essential annulus in
P−1(S \ F0). Then K is isotopic to a knot contained in P−1(F0).

Proof. Consider first the case where F0 is a 2-disk. It is well known
(see, e.g., [9, Lemme, p. 249]) that there are a transverse pair of non-
isotopic essential simple closed curves C1, C2 in S \ F0 which intersect
minimally and such that each component of S\(C1∪C2) is an open disk.
Denote by A1, A2 the essential annuli P−1(C1), P−1(C2) ⊂ P−1(S \
int(F0)). Our hypotheses allow us to suppose that K ⊂ U \ A1 and
to produce an isotopy of U , rel ∂, which moves A2 to an annulus A′

2

disjoint from K and transverse to A1. No circle component of A1 ∩ A′
2

can be essential in A1 or A′
2 as C1 and C2 are not isotopic. Thus any

circle component C of this intersection is inessential in both A1 and A′
2.

We may assume that C was chosen to be innermost in A1 amongst all
such circles. Hence if D ⊂ A1 and D′ ⊂ A′

2 are the disks bounded by C,
then D∩D′ = C so that D∪D′ is a 2-sphere in U . The irreducibility of
U implies that D∪D′ is the boundary of a 3-ball B ⊂ U . Observe that
we can isotope A′

2 through B, rel the complement of an arbitrarily small
neighborhood of D′, so as to eliminate C from A1 ∩A′

2. Moreover, this
can be done in such a way that no new components are added to the
intersection. After a finite number of such isotopies we can arrange for
each component of A1 ∩ A′

2 to be an arc. Our hypothesis that C1 and
C2 intersect minimally implies that these arcs travel from one end of A1

to the other. Since each component of S \ (C1 ∪ C2) is an open disk,
it follows that the boundaries of the pieces obtained by cutting open U
along A1 and A′

2 are 2-spheres, and hence bound 3-balls in U . As K
lies in one of these pieces, it can be isotoped into the 3-ball P−1(F0).

Consider next the case where F0 ⊂ S is an essential non-separating
annulus. Let S1 = S \ F0 and choose a transverse pair of non-isotopic
essential simple closed curves C1, C2 in S1 which intersect minimally
and such that each component of S1 \ (C1 ∪ C2) is either an open disk
or a noncompact annulus whose boundary is a circle component of ∂F0.
Let A1, A2 be the essential annuli in U associated to C1, C2. Without
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loss of generality we may suppose K ∩ A1 = ∅. Next isotope A2, rel ∂,
to an annulus A′

2 ⊂ U \K which is transverse to A1 and P−1(∂F0). It is
possible, as above, to remove by isotopy all circle intersections between
A′

2 and the annuli A1, P
−1(∂F0). It follows that A′

2 ⊂ P−1(int(S1)).
By construction, the closure of the components of the complement of
A1 ∪ A′

2 in P−1(S1) have boundaries which are either 2-spheres or tori
which contain a component of ∂F0. Since U is irreducible and atoroidal,
the pieces of P−1(S1) in this decomposition are 3-balls and solid tori on
whose boundaries some component of ∂F0 lies as a longitude. Since K
lies in the complement of A1∪A′

2, it is contained in either a 3-ball piece,
and hence can be isotoped into P−1(F0), or the union of P−1(F0) and
the two solid tori, in which case it can also be isotoped into P−1(F0).

The case when F0 ⊂ S is an essential separating annulus is han-
dled similarly, so we only outline the steps involved. Let S1, S2 be the
components of S \ F0 and choose a transverse pair of non-isotopic essen-
tial simple closed curves Cj1, Cj2 in int(Sj) which intersect minimally
and such that each component of Sj \ (Cj1 ∪ Cj2) is either an open
disk or a noncompact annulus whose boundary is a circle component of
∂F0 (j = 1, 2). Let Aj1, Aj2 be the essential annuli in U associated to
Cj1, Cj2. One first shows that K can be isotoped into the complement
of A11 ∪ A21. Next A12 and A22 are isotoped, rel ∂, to annuli A′

12 and
A′

22 which lie in the complement of K ∪ P−1(∂F0) and which intersect
A11 ∪ A21 in arcs running from one end of these annuli to the other.
The proof is completed exactly as is done in the last case. q.e.d.

Corollary 4.3. Let W be a compact, connected, irreducible, ori-
entable 3-manifold and r a slope on a toral boundary component T of
W . If W (r) ∼= S × I is a product I-bundle, then W (r) contains a new
annulus.

Proof. Since the isotopy class of an essential annulus in an I-bundle
is determined by its boundary, to say that W (r) contains no new annu-
lus is equivalent to stating that any essential annulus in W (r) can be
isotoped into W . Thus the previous lemma implies that T is contained
in a 3-ball in W (r). But this is impossible as it implies W would be
reducible. Thus the conclusion of the corollary must hold. q.e.d.

Our next corollary provides a recognition result for hollow products.

Corollary 4.4. Suppose that W is a compact, connected, ori-
entable, irreducible, atoroidal 3-manifold whose boundary contains a
torus T . Let r be a slope on T . Suppose W (r) ∼= S × I and γ is
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an essential simple closed curve in S × {0} or S × {1}. Then either W
is a hollow product or W (r) contains a new annulus A with ∂A∩γ = ∅.

Proof. Identify W (r) with S × I and let P : W (r) → S be the
projection. Suppose that γ = C × {0} where C is an essential curve in
S and that W (r) contains no new annulus with boundary disjoint from
γ. Since annuli in S × I with the same boundaries are isotopic, rel ∂,
any essential annulus in P−1(S \C) can be isotoped into W . Therefore
Lemma 4.2 shows that we may assume T is contained in the solid torus
V = P−1(N(C)). Note that ∂V cannot compress in W , as otherwise
W would be reducible. Obviously γ is a longitude of V . Since W is
atoroidal, ∂V is parallel in W to T . It follows from this that W is a
hollow product. q.e.d.

The interesting nature of new annuli is underscored by our next
proposition.

Proposition 4.5. Let r, s be slopes on a toral boundary component
of a compact, connected, irreducible, orientable 3-manifold W . If W (r)
contains a new annulus A and W (s) contains an essential disk D such
that ∂A ∩ ∂D = ∅, then ∆(r, s) ≤ 1.

Proof. Assume ∆ = ∆(r, s) > 1. Let Kr, Ks be the cores of the
filled solid tori in W (r), W (s) respectively. Choose A so that |A ∩ Kr|
is minimal amongst all annuli in W (r) with the same boundary, and
similarly for D. Then, as usual, we get intersection graphs ΓA, ΓD on
A, D respectively. Note that since ∂A ∩ ∂D = ∅, these graphs contain
no boundary edges. Suppose that ΓA represents all types (see [17]).
Then by [19, Lemma 4.4], there is a collection D of disk faces of ΓA

such that, if we tube D along the annuli in ∂Vs corresponding to the
corners that appear in the elements of D, and compress the resulting
surface along the disks D, then we get a disk D′. Since ∂D′ = ∂D and
|D′ ∩Ks| < |D∩Ks|, this contradicts our minimality assumption on D.
Hence ΓA does not represent all types. The argument of [18, Theorem
2.5] then shows that ΓD contains a great p-web Λ, where p = |A ∩ Kr|.
Since each of the p labels appears ∆ ≥ 2 times at each vertex of Λ, and
(by definition of a p-web) there are at most p edge endpoints at vertices
of Λ that do not belong to edges of Λ, there is a label x such that Λ
contains a great x-cycle. Hence ΓD contains a Scharlemann cycle ([6,
Lemma 2.6.2]). But this allows us to construct an annulus A′ in W (r)
with ∂A′ = ∂A and |A′ ∩ Kr| < p, contradicting our choice of A. q.e.d.

Proposition 4.6. Let r, s be slopes on a toral boundary component
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of a compact, connected, irreducible, orientable, atoroidal 3-manifold W .
If W (r) is a product I-bundle and W (s) is ∂-reducible, then ∆(r, s) = 1.

Proof. By the previous proposition we may suppose that there is
no new annulus in W (r) whose boundary is disjoint from that of a
boundary-compressing disk for W (s). Corollary 4.4 and Lemma 4.1(2)
now show that W is a hollow product with canonical slope s. Then
Lemma 4.1(1) implies that ∆(r, s) = 1. q.e.d.

5. Fillings of manifolds of large first Betti number

In this section we prove Theorem 1.2. Recall that under the hypothe-
ses of this theorem, M is a compact, connected, orientable, hyperbolic
3-manifold whose boundary is a torus and whose first Betti number is
at least 2. We noted in the introduction that if M(r) is not hyperbolic,
then it is either reducible, toroidal, or Seifert fibred. In the latter case
we may assume that M(r) is irreducible and atoroidal, and so the fact
that b1(M(r)) ≥ 1 implies that M(r) is a surface bundle over S1 with a
periodic monodromy ([22, Theorem VI.34]). The base orbifold of M(r)
is necessarily of the form S2(p, q, r) where 1

p + 1
q + 1

r < 1. It follows
that b1(M(r)) = 1 and so b1(M) = 2. In particular, when b1(M) ≥ 3
all exceptional filling slopes are either reducible or toroidal.

A torally bounded compact 3-manifold has Euler characteristic zero,
hence b2(M) = b1(M) − 1 ≥ 1. We can therefore choose a closed,
connected, orientable, non-separating, essential surface S in M which
is Thurston norm minimizing. Since M is atoroidal, the genus of S is
larger than one. According to work of Gabai [10, Corollary], there is
a slope r0 on ∂M such that for any slope r �= r0, S remains Thurston
norm minimizing in M(r) (in particular it is essential) and M(r) is
irreducible. We call the slope r0 a degeneracy slope for S.

The proof of the following result is contained implicitly in [38, proof
of Theorem 3.3].

Proposition 5.1. Under our assumptions, if M(r) is non-hyper-
bolic, then ∆(r, r0) ≤ 1.

Proof. We shall assume that the reader is familiar with terminology
in [10] and [38]. By [10], there is a sequence

(M, ∂M) = (M0, δ0)
S1−→ (M1, δ1)

S2−→ · · · Sn−→ (Mn, δn)

of sutured manifold decompositions (where δi is the suture on Mi) such
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that:

- δ0 = ∂M = T0, S1 = S.

- Each (Mi, δi) is taut and each separating component of Si+1 is a
product disk.

- (Mn, δn) is a union of a product sutured manifold and a sutured
manifold T0 × I whose suture on ∂M = T0 = T0 × 0 is the entire
torus and on T1 = T0 × 1 is a nonempty set of annuli.

Gabai [11] associates to this sequence a branched surface B in M disjoint
from ∂M which fully carries an essential lamination λ. By [38, Lemma
2.1], λ is fully carried by an essential branched surface B′ which is a
λ-splitting of B. Let X (resp. X ′) be the component of M \ int(N(B))
(resp. M \ int (N(B′)) containing T0 = ∂M . Note that X ⊂ X ′ since B′

is a splitting of B. It follows from Gabai’s construction that X = T0×I
and its vertical boundary ∂vX is a nonempty set contained in T1. By
the definition of a sutured manifold, T1 \ ∂vX consists of two nonempty
parts ∂+X and ∂−X, both of which meet each component of ∂vX. It
follows that ∂vX consists of at least two parallel disjoint annuli in T1.
It turns out that the core curves of these annuli are parallel in X to a
curve of slope r0 on T0 and that B′ remains essential in M(r) if r �= r0.
It follows that there are two essential annuli A+, resp. A−, in X, each
having one boundary component in T0 and the other on a component
of ∂+X, resp. ∂−X. Since X ⊂ X ′, A+, A− are also essential annuli in
X ′.

We may assume that r �= r0 and therefore M(r) is either toroidal
or atoroidal, Seifert fibred. The argument of [38, Theorem 3.3] shows
that ∆(r, r0) ≤ 1 when M(r) is toroidal, so assume M(r) is atoroidal,
Seifert fibred. An application of [38, Theorem 1.8 (2)] shows that if
∆(r, r0) > 1, then X ′(r) is not an I-bundle over a surface F with ∂vX

′(r)
the I-bundle over ∂F . But then by [4], M(r) cannot be atoroidal Seifert
fibred and hence ∆(r, r0) ≤ 1 as claimed. q.e.d.

Fix slopes r1, r2 ∈ E(M) for which ∆(r1, r2) = ∆(E(M)). If we can
show that ∆(r1, r2) ≤ 5, then by Proposition 5.1 we have #∆(E(M)) ≤
7, and therefore the proof of Part (1) of Theorem 1.2 will be complete.
Similarly it suffices to prove that ∆(r1, r2) ≤ 4 when b1(M) ≥ 3 to
deduce Part (2).

We may assume that neither r1 nor r2 is r0 by the preceding propo-
sition. In particular we may suppose that they are not reducible filling
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slopes. On the other hand, if both r1 and r2 are toroidal filling slopes,
then ∆(r1, r2) ≤ 5 in the general case ([14]), while ∆(r1, r2) ≤ 4 when
b1(M) ≥ 3 (Theorem 3.1). Since we observed above that all excep-
tional filling slopes are either reducible or toroidal when b1(M) ≥ 3,
we have completed the proof of Part (2) of Theorem 1.2. We focus on
Part (1) then. From the discussion immediately above, we may assume
that M(r1) is atoroidal Seifert fibred and M(r2) is either toroidal or
atoroidal Seifert fibred.

Let W denote M cut along S; then ∂W consists of two copies S± of
S, and a torus ∂M . Since M is hyperbolic and S is incompressible in M ,
W is irreducible, ∂-irreducible, and atoroidal. It is also ∂M -anannular
in the sense that it contains no essential annulus whose boundary lies
in ∂M . We use W (r) to denote the manifold obtained by Dehn filling
W along ∂M with slope r.

Lemma 5.2. If W is a hollow product, then ∆(r1, r2) ≤ 5.

Proof. Let W be a hollow product defined by an essential simple
closed curve γ ⊂ S. Note that the canonical slope c defined in §4 is
the degeneracy slope r0 for S in our current situation. It follows from
Lemma 2.1, and the discussion preceding it, that if r is a slope on ∂M
such that ∆(r, c) = 1, then M(r) is an S-bundle over the circle. Since M
is hyperbolic, there is such a slope with M(r) being hyperbolic. In par-
ticular the monodromy f : S → S of the bundle M(r) → S1 is pseudo-
Anosov and therefore (f, γ) fills S. Since ∆(rj , c) = ∆(rj , r0) = 1 (j =
1, 2), there is an integer nj such that M(rj) = W (Tnj

γ f) (Lemma 2.1).
By Theorem 2.6 we have 5 ≥ |n1 − n2| = ∆(r1, r2), and so we are done.

q.e.d.

Recall that the genus of S is larger than 1. By hypothesis we may
isotope S to be horizontal in the Seifert manifold M(r1). As S is non-
separating, it is a fibre in a realization of M(r1) as an S-bundle over
S1 ([22, Theorem VI.34]). In particular W (r1) ∼= S × I and so W (r1)
contains a new annulus (Corollary 4.3). Let A be such an annulus
chosen, amongst all new annuli, to have minimal intersection with ∂M .
Then A ∩ W is an essential punctured annulus in W with boundary
slope r1.

Lemma 5.3. If W (r2) contains an essential torus or W contains
an essential punctured annulus with boundary slope r2, then ∆(r1, r2) ≤
5.

Proof. When W (r2) contains an essential torus, then ∆(r1, r2) ≤ 5
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by [14, Proposition 12.2]. When W contains an essential punctured
annulus with boundary slope r2, then by [14, Proposition 12.3], either
∆(r1, r2) ≤ 5 or W is a hollow product. Lemma 5.2 implies that the
lemma holds in the latter case. q.e.d.

The proof of Theorem 1.2 (1) now splits into two cases. Recall that
we have assumed that r2 �= r0 and therefore S remains essential in
M(r2). If M(r2) is atoroidal Seifert, then W (r2) ∼= S × I and thus con-
tains a new annulus (Corollary 4.3). It follows that W contains an essen-
tial punctured annulus with boundary slope r2 and thus ∆(r1, r2) ≤ 5
(Lemma 5.3). On the other hand suppose that M(r2) is toroidal. We
claim that either W (r2) is toroidal or r2 is a boundary slope associated
to an essential punctured annulus lying in W . To see this, let T be an
incompressible torus in M(r2) such that the lexicographically ordered
pair (|T ∩ S|, |T ∩ ∂M |) is minimal. Then T ∩ W (r2) is either an in-
compressible torus or a disjoint union A =

∐n
i=1 Ai of essential annuli.

(This follows from the minimality of |T ∩ S| and the incompressibility
of S in M(r2).) In the latter case, let Fi = Ai ∩ W , 1 ≤ i ≤ n, and
F = A∩W =

∐n
i=1 Fi. Using the minimality of |T ∩∂M |, standard disk

replacement arguments show that F , and hence each Fi, is incompress-
ible and boundary incompressible in W . Since M is atoroidal, some
Ai, say A1, must meet ∂M . Then F1 is an essential punctured annulus
in W with boundary slope r2. This proves the claim. So we may now
appeal to Lemma 5.3 to get ∆(r1, r2) ≤ 5. This completes the proof of
Part (1) of Theorem 1.2.

6. Singular slopes and exceptional fillings

Throughout this section we take M to be a compact, connected,
orientable, torally bounded hyperbolic 3-manifold which is large, that
is, there is a closed, essential surface S ⊂ M . Let W be the component
of the exterior of S in M which contains ∂M . Evidently W is irreducible,
∂-irreducible, atoroidal and ∂M -anannular. The following fundamental
theorem is due to Y.-Q. Wu.

Theorem 6.1 ([35]). If r1 and r2 are two slopes on ∂M ⊂ ∂W
for which W (r1) and W (r2) are ∂-reducible, then either

(i) ∆(r1, r2) ≤ 1, or

(ii) ∆(r1, r2) > 1 and there are a component S �= ∂M of ∂W and an
annulus A properly embedded in W such that ∂A consists of an
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essential curve on S and an essential curve C0 ⊂ ∂M . Moreover
if r0 denotes the slope of C0 and r is a slope on ∂M , then W (r)
is ∂-reducible if and only if ∆(r0, r) ≤ 1.

In the rest of this section we shall make the following assumption:

(∗) There is a slope r0 on ∂M such that S compresses in M(r0)
but is incompressible in M(r) if ∆(r, r0) > 1.

In this case we call r0 a singular slope for S. For instance Wu’s result
guarantees that a singular slope for a given closed essential surface exists
as long as that surface compresses in some filling of M . Our goal is to
understand the relationship between r0 and the set E(M) of exceptional
filling slopes of M .

There are several situations when the existence of a closed essential
surface and singular slope are guaranteed by conditions on the fillings
of M . We describe two of them next.

Proposition 6.2 (cf. Theorem 2.0.3 of [6]). Suppose that b1(M) = 1
and that r0 is a boundary slope such that M(r0) is neither a connected
sum of two lens spaces nor a Haken manifold, nor S1 × S2 if r0 is
not a strict boundary slope. Then r0 is a singular slope of some closed
essential surface in M .

Proof. This result is essentially Theorem 2.0.3 of [6], which pro-
vides, under the conditions of the proposition, a closed essential surface
(of genus larger than one) in M . It is the compressibility of the closed
essential surface in M(r0) and verification of r0 being a singular slope
which must be addressed. Assume that M(r0) is neither a connected
sum of two lens spaces, nor a Haken manifold, nor S1 × S2 if r0 is not
a strict boundary slope. Choose a separating, essential surface F in
M with a nonempty boundary of slope r0 and which, subject to these
conditions, has a minimal number of boundary components. In case
M(r0) ∼= S1×S2 assume that F does not consist of fibres in some fibra-
tion of M over the circle. If F is non-planar, we can use [6, Addendum
2.2.2] and the remarks that precede it to find the desired surface, while
when F is planar, we use the argument in the last paragraph of [6, p.
285]. q.e.d.

The second situation arises under the assumption of a certain type
of Seifert filling of M . Let X(G) denote the PSL2(C)-character variety
of a finitely generated group G. When G is the fundamental group of a
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path-connected space Y , we shall sometimes write X(Y ) for X(π1(Y )).
Note that a surjective homomorphism G → H induces an injective mor-
phism X(H) → X(G) by precomposition. A curve X0 ⊂ X(G) is called
nontrivial if it contains the character of an irreducible representation.

Each γ ∈ G determines an element fγ of the coordinate ring C[X(G)]
where if ρ : G → PSL2(C) is a representation and χρ the associated
point in X(G), then fγ(χρ) = tr(ρ(γ))2 (see, e.g., [2, §3]). When G =
π1(M), any slope r on ∂M determines an element of π1(M) well-defined
up to conjugation and taking inverse. Hence it induces a well-defined
fr ∈ C[X(M)].

The following theorem was announced in the introduction.

Theorem 1.7. Let M be a compact, connected, orientable, irre-
ducible hyperbolic 3-manifold whose boundary is a torus. Suppose that
M(r0) is a big Seifert fibred manifold whose base orbifold B is not of
the form P 2(p, q). If B is the Klein bottle or S2(2, 2, 2, 2), assume that
b1(M) ≥ 2. Then r0 is a singular slope of a closed essential surface
S ⊂ M .

Proof. First assume that the base orbifold B of M(r0) is hyperbolic.
Corollary 13.3.7 of [31] shows that the real dimension of the Teichmüller
space T (B) of B is at least 2. Since X(M) ⊃ X(M(r0)) ⊃ X(πorb

1 (B)) ⊃
T (B), the complex dimension of X(M(r0)) is at least 1. We claim that in
fact, X(M(r0)) contains a nontrivial algebraic component of complex
dimension 2 or more. If this were not the case, T (B) would be an
open set in a nontrivial curve X0 ⊂ X(M(r0)). When χρ ∈ T (B), ρ
is the holonomy of a hyperbolic structure on B and it is well known
that if γ ∈ πorb

1 (B) has infinite order, then fγ(χρ) is a real number
which is essentially the length of the unique geodesic in this structure
representing the conjugacy class of γ (see e.g., [9, Lemme 1, p. 135]).
Deforming χρ in T (B) shows that fγ |X0 is nonconstant. But then it
must take on non-real values, contrary to the fact that it is real-valued
on an open subset T (B) ⊂ X0.

Thus X(M) has a subvariety of complex dimension 2 or larger on
which fr0 is constant and which contains the character of an irreducible
representation. Hence if r1 �= r0 is any other slope, it is easy to con-
struct a nontrivial curve X0 ⊂ X(M) on which both fr0 and fr1 are
constant. It follows that fr|X0 is constant for each slope r ([2, §5]) and
in particular for each ideal point x of X0 and slope r on ∂M , fr(x) ∈ C.
Proposition 4.10 and Claim (p. 786) of [2] now imply that r0 is a singular
slope for a closed, essential surface in M .
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The only possibilities for B when it is not hyperbolic are the torus
T , the Klein bottle K, or S2(2, 2, 2, 2). Note that in each case, M(r0)
contains no essential surface of genus different from 1. Further, we have
b1(M) ≥ 2: when B = T this is because H1(M) → H1(M(r0)) →
H1(πorb

1 (B)) = Z2 is surjective, and when B = K, or S2(2, 2, 2, 2), this
is by hypothesis. Hence there is a Thurston norm minimizing, non-
separating surface S in M whose genus is at least 2. But then S com-
presses in M(r0). According to [10, Corollary], S compresses in at most
one filling of M , and therefore r0 is a singular slope for S. q.e.d.

Theorem 1.5 asserts that if r0 is a singular slope of some closed
essential surface in M and r a slope on ∂M , then

∆(r0, r) ≤




1 if M(r) is either small or reducible
1 if M(r) is Seifert and S does not separate
2 if M(r) is toroidal and C(S) is infinite
3 if M(r) is toroidal and C(S) is finite.

The proofs of these assertions are contained in the results which follow.

Proposition 6.3. If r0 is a singular slope for a closed essential
surface S in M and r is a reducible filling slope, then ∆(r, r0) ≤ 1.

Proof. If ∆(r, r0) > 1 then S is essential in M(r) and so our hy-
potheses imply that W (r) is reducible. According to Scharlemann [29],
(W, ∂M) is cabled, contrary to the fact that M is hyperbolic. Thus
∆(r, r0) ≤ 1. q.e.d.

Recall that a 3-manifold which contains no closed essential surfaces
is called small.

Corollary 6.4. If r0 is a singular slope for a closed essential
surface S in M and r is a small filling slope, then ∆(r, r0) ≤ 1.

Proposition 6.5. If r0 is a singular slope for a non-separating,
closed essential surface S in M and r is a Seifert filling slope, then
∆(r, r0) ≤ 1.

Proof. Suppose that ∆(r, r0) > 1, so that S remains essential in
M(r). Since S must be horizontal in M(r) and is non-separating,
W (r) ∼= S×I. But this contradicts Proposition 4.6. Hence ∆(r, r0) ≤ 1.

q.e.d.

Proposition 6.6. Suppose that r0 is a singular slope for a closed
essential surface S in M such that C(S) is infinite. If r is a toroidal
filling slope, then ∆(r, r0) ≤ 2.
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Proof. Suppose otherwise that ∆(r, r0) ≥ 3. Then S is incom-
pressible in M(r), so that W (r) is ∂-irreducible. According to Propo-
sition 6.3, W (r) is irreducible and Theorem 4.1 of [38] implies that it
is atoroidal. Any essential torus in M(r) must intersect S, as well as
∂M . Choose one, T say, such that the lexicographically ordered pair
(|T ∩S|, |T ∩ ∂M |) is minimal. Arguing as in the last paragraph of Sec-
tion 5, we have that T ∩ W (r) is a set of essential annuli, A1, . . . , An,
at least one of which, say A1, must intersect ∂M , and that if we let
F1 = A1 ∩ W , then F1 is an essential punctured annulus in W .

Since C(S) is infinite, there is an essential annulus A in W with one
boundary component in ∂M of slope r0 and the other on ∂W \ ∂M .
Isotope A in W so that A ∩ F1 has a minimal number of components.
Then no circle component of A ∩ F1 can bound a disk in A or F1.
Standard cut-paste arguments also show, using (1) the essentiality of
A and F1 in W , (2) the irreducibility and ∂-irreducibility of W , (3)
the minimality assumption on |A ∩ F1|, and (4) the essentiality of A1

in W (r), that no arc component of A ∩ F1 is boundary parallel in A
or F1. Thus in F1, every arc component of A ∩ F1 connects an inner
boundary (i.e., a component of F1 ∩ ∂M) to an outer boundary (i.e., a
component of ∂A1). Fix an inner boundary component of F1 and note
that since ∆(r0, r) ≥ 3, there are at least three arcs of F1 ∩ A incident
to it. In particular two of these arcs must be incident to the same outer
boundary component of F1. These two arcs, together with two arcs in
∂F1, cobound a disk E1 ⊂ A1. An innermost argument then shows that
there exist two arcs a1 and a2 in A∩E1 which are parallel and adjacent
in F1, connecting one inner boundary and one outer boundary of F1. Let
D2 be the disk in F1 cobounded by a1 and a2. Note that the interior of
D2 is disjoint from A. The arcs a1 and a2 also cut off a disk D3 from A
which glues together with D2 to form a properly embedded annulus A∗
in W with one boundary component in ∂M and the other on ∂W \∂M .
One checks from the form of the construction that the inner boundary
component of A∗ is an essential curve on ∂M whose slope has distance
1 from both r0 and r. But this implies that W ∼= ∂M × [0, 1] (cf. the
proof of Lemma 2.5.3 of [6]), which is impossible. Hence it must be that
∆(r, r0) ≤ 2. q.e.d.

Note that the proof of Proposition 6.6 actually shows that if W
contains an essential annulus with one boundary component on ∂M
with slope r0, then ∆(r0, r) ≤ 2 for any toroidal filling slope r of M
(without the assumption that C(S) is infinite).



dehn fillings 293

Proposition 6.7. Suppose that r0 is a singular slope for a closed
essential surface S in M such that C(S) is finite. If r is a toroidal filling
slope of M , then ∆(r, r0) ≤ 3.

Proof. Assume otherwise that ∆(r0, r) > 3. We will show that this
leads to a contradiction.

First we may assume that W contains no essential annulus that has
exactly one boundary component on ∂M . For if such an annulus exists,
the finiteness of C(S) implies that the singular slope r0 must be the
∂M slope of that annulus. We may then apply Proposition 6.6 and the
remark following its proof to obtain a contradiction.

We plan to apply the arguments of [28] where our Proposition 6.7
was proved under the extra assumption that W be anannular. In our
current setting, W may contain an essential annulus whose boundary
lies in ∂W \ ∂M . This is the only new difficulty that we need pay
attention to.

As in the proof of Proposition 6.6, we may assume that W (r) is
irreducible, atoroidal, and ∂-irreducible. Choose an essential torus T in
M(r) so that the lexicographically ordered pair (|T ∩ S|, |T ∩ ∂M |) is
minimal. Then T ∩ W (r) consists of disjoint essential annuli in W (r),
at least one of which intersects ∂M , and each component of T ∩ W is
an essential surface in W .

We call a properly embedded incompressible annulus A in W (r) co-
annular if ∂A bounds an annulus in ∂W (r). Note that if A is co-annular
in W (r) and A′ is the annulus in ∂W (r) with ∂A = ∂A′, then the torus
A∪A′ bounds a solid torus in the irreducible, atoroidal manifold W (r).
In particular, A separates W (r).

Lemma 6.8. Let A1 be a component of W (r)∩T such that A1∩∂M
is nonempty. If there is an annulus A2 in W (r) such that ∂A2 = ∂A1,
int(A1)∩ int(A2) = ∅, and |A2∩∂M | < |A1∩∂M |, then W (r)∩T has a
component which is co-annular in W (r) and has nonempty intersection
with ∂M .

Proof. We may assume that A2 has been selected, amongst all annuli
satisfying the conditions of the lemma, to minimize the lexicograph-
ically ordered pair (|A2 ∩ ∂M |, |A2 ∩ T |). Since W (r) is irreducible
and atoroidal, the torus A1 ∪ A2 bounds a solid torus V∗ in W (r) such
that T ∩ V∗ is a set of disjoint essential annuli. Let A∗ be one such
annulus that is outermost toward A2, i.e., if A′ in A2 is the annulus
bounded by ∂A∗, then A∗ ∪ A′ bounds a solid torus V ′ ⊂ V∗ whose
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interior is disjoint from T . Observe that |A∗ ∩ ∂M | > |A′ ∩ ∂M |. When
int(A2) ∩ T = ∅ this follows from our hypotheses. On the other hand,
when int(A2) ∩ T �= ∅, if |A∗ ∩ ∂M | ≤ |A′ ∩ ∂M | we could replace A′

in A2 by A∗ to obtain, after a small isotopy, an annulus A′
2 which has

all the properties of A2 listed in the statement of the lemma and which
satisfies (|A′

2 ∩ ∂M |, |A′
2 ∩ T |) < (|A2 ∩ ∂M |, |A2 ∩ T |), contrary to our

choices.
Now let T ′ be the torus in M(r) obtained from T by replacing the an-

nulus A∗ ⊂ T by A′. Then |T ∩S| = |T ′∩S| while |T ′∩∂M | < |T ∩∂M |.
Therefore T ′ bounds a solid torus V ′′ in M(r). The intersection S ∩V ′′

consists of a set of incompressible annuli in V ′′ since S is incompressible
in M(r). Every such annulus is boundary parallel in V ′′. Let A3 be an
outermost such annulus and let A4 be the annulus in ∂V ′′ which is paral-
lel to A3 in V ′′. Since every component of T ∩W (r), resp. T ∩ (M \ W ),
is essential in W (r), resp. M \ W , A4 must contain the annulus A′. Now
let A5 be the annulus obtained from A4 by replacing A′ by A∗. Then it
is evident that A5 is a component of W (r) ∩ T which is co-annular and
intersects ∂M . q.e.d.

Now we choose a component A of W (r) ∩ T in such a way that if
W (r) ∩ T contains a co-annular component which intersects ∂M , then
A is such a component, and if W (r) ∩ T contains no co-annular com-
ponents which intersect ∂M , then A is any component of W (r) ∩ T
which has nonempty intersection with ∂M . Suppose that A ∩ ∂M has
n components. Then n > 0. Let F2 = A ∩ W . Then F2 is an essential
punctured annulus in W .

Amongst all compressing disks in W (r0), let D be one which inter-
sects ∂M minimally, say with m intersection components. Let F1 =
D∩W . Then F1 is an essential punctured disk in W . We have assumed
that m > 1. As usual, we may assume, up to isotopy in W , that F1∩F2

contains no circle component that bounds a disk in F1 or F2, and no
arc component that is ∂-parallel in F1 or F2 (cf. the proof of Proposi-
tion 6.6). Again we have two intersection graphs: Γ1 in the disk D and
Γ2 in the annulus A.

Lemma 6.9. If Γ1 has a Scharlemann cycle, then A is co-annular.

Proof. Let D′ be the Scharlemann disk bounded by the Scharlemann
cycle with label pair, say {1, 2}. Let U be a regular neighborhood of
A ∪ H12 ∪ D′ in W (r). Then ∂U is a torus. The annulus A may be
considered as an annulus in ∂U and A′ = ∂U \ int(A) is an annulus such
that |A′ ∩ ∂M | = |A∩ ∂M | − 2. Hence by Lemma 6.8 and our choice of
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A, A must be co-annular. q.e.d.

Lemma 6.10. Γ1 cannot have two Scharlemann cycles with differ-
ent label pairs.

Proof. Suppose that Γ1 has two Scharlemann disks with different
label pairs, say {i, i + 1} and {j, j + 1}. Let D1 and D2 be the Scharle-
mann disks bounded by the two Scharlemann cycles respectively. Let
U1 be a regular neighborhood of A∪Hi,i+1 ∪D1 in W (r). Then U1 is a
solid torus in the irreducible, atoroidal manifold W (r). Also, consider-
ing A as lying in ∂U1, the annulus A′ = ∂U1 \ int(A) is not parallel to
A through U1. Similarly construct U2 from the other disk D2.

Now if D1 and D2 lie on different sides of A, then it is easy to
see that U1 ∪ U2 is a Seifert fibered space over the disk with exactly
two cone points and thus ∂(U1 ∪U2) is incompressible in U1 ∪U2. Since
W (r) is assumed to be irreducible and ∂-irreducible, ∂(U1∪U2) must be
incompressible in W (r) as well. Thus it is an essential torus in W (r).
But this contradicts our assumption that W (r) is atoroidal. On the
other hand if D1 and D2 are on the same side of A, then their label
pairs must be disjoint. Let U be a regular neighborhood of A∪Hi,i+1 ∪
D1 ∪ Hj,j+1 ∪ D2 in W (r). Again it is easy to see that U is a Seifert
fibered space over the disk with exactly two cone points, which yields a
contradiction as in the former case. Thus the lemma holds. q.e.d.

Lemmas 2.1-2.6 of [28] each hold in our current situation. (Lemma
2.1 (5) and Lemma 2.3 of [28] follow from our Lemma 6.9; Lemma 2.1 (3)
of [28] is reproved here as Lemma 6.10; Lemma 2.6 of [28] holds because
we have assumed that W contains no embedded annulus with exactly
one boundary component contained in ∂M ; the rest of the results of §2
of [28] hold in our setting with proofs identical to those given there).
Arguing exactly as in §3 of [28], one obtains a contradiction. We have
now completed the proof of Proposition 6.7. q.e.d.

7. Fillings of large manifolds of first Betti number 1

In this section we shall assume that M is large and has first Betti
number 1. Our goal is to prove Theorem 1.9:

(1) If there is a closed, essential surface S ⊂ M such that C(S) is
finite, then ∆(E(M)) ≤ 5.

(2) If there are at least two different slopes on ∂M each of which is a
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singular slope of an essential closed surface, then ∆(E(M)) ≤ 5.

(3) If there are at least two different slopes on ∂M each of which is
either a singular slope of an essential closed surface or a degeneracy
slope of an essential branched surface, then ∆(ETOP (M)) ≤ 5.

Proof of Part (1). Suppose that M is a large hyperbolic manifold
with b1(M) = 1. Suppose that S is a closed essential surface in M .
The slopes in E(M) are partitioned into two groups. The first consists
of those slopes r ∈ E(M) which either lie in C(S) or for which M(r) is
reducible. The second group are the slopes in E(M)\C(S) whose fillings
are irreducible. In particular these fillings are Haken and therefore sat-
isfy the geometrisation conjecture [32]. Hence they are either toroidal
or Seifert. We claim that the Seifert filling slopes in this group are also
toroidal. To see this, suppose that S stays essential in the Seifert filling
M(r). Isotope S to a horizontal surface in M(r). As b1(M) = 1, S
separates M and so splits M(r) into the union of two twisted I-bundles
over non-orientable surfaces. It follows that the surface underlying the
base orbifold B of M(r) is also non-orientable. Hence M(r) is toroidal
unless B = RP 2 or RP 2(p). But the latter cannot occur as the cor-
responding Seifert manifolds have no closed essential surface of genus
larger than one. Hence E(M) is contained in the union of C(S) with
the set of reducible or toroidal filling slopes. As C(S) is finite, Wu’s
theorem (Theorem 6.1) shows that ∆(C(S)) ≤ 1, while ∆(r1, r2) ≤ 5 if
r1, r2 are either reducible or toroidal filling slopes by [19], [14], [26] and
[37]. Finally since ∆(C(S)) ≤ 1, each slope r0 ∈ C(S) is a singular slope
for S. An appeal to Corollary 1.6 finishes the proof.

Proof of Part (2). If there is a closed, essential surface S in M for
which C(S) is finite, then the desired conclusion follows from what we
have just proved. Assume then that C(S) is infinite for each closed,
essential surface S in M . In particular, each such surface uniquely
determines a singular slope r0 on ∂M . According to Corollary 1.6 we
have ∆(r0, r) ≤ 2 for each r ∈ E(M). The proof is completed by
applying the following easily verified fact: if r1, r2 are distinct slopes on
∂M and S is the set of slopes of distance no more than 2 from r1 and
r2, then ∆(S) ≤ 5.

Proof of Part (3). The proof is similar to that of Part (2). In this
case we also need to apply Theorem 1.8. q.e.d.
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8. Seifert surgery on hyperbolic knots in the 3-sphere

Suppose that K is a hyperbolic knot in the 3-sphere with exterior
MK . Suppose further that r is a non-meridional slope on ∂MK such
that MK(r) is Seifert fibred. Theorem 1.11 states that:

(1) If K is a small knot, then MK(r) is not a very big Seifert manifold.

(2) If r0 is a singular slope of an essential closed surface in MK , then
∆(r0, µK) ≤ 1 and ∆(r0, r) ≤ 1.

(3) If µK is a singular slope of an essential closed surface in MK , then
r is an integral slope. In particular, this occurs if either µK is a
boundary slope or there is an essential closed surface S in MK

such that C(S) is finite.

(4) If K admits a very big Seifert surgery slope r0, then r0 is integral
and ∆(r0, r) ≤ 1. Hence K admits no more than two very big
Seifert surgeries, and if two, then:

- They correspond to successive integral slopes.

- If r is non-integral, it is half-integral.

(5) If K is amphicheiral and MK(r) is a big Seifert manifold, then K
is fibred and r is the longitudinal slope. We prove these assertions
one by one.

Proof of Part (1). When K is small, the dimension of X(MK), the
PSL2(C)-character variety of π1(MK), is at most one ([5, Proposition
2.4]). If B denotes the base orbifold of MK(r), then X(πorb

1 (B)) ⊂
X(MK(r)) ⊂ X(MK). Hence the dimension of X(πorb

1 (B)) is bounded
above by 1. On the other hand, if B is hyperbolic with Teichmüller
space T (B), there is a sequence of inclusions

T (B) ⊂ X(πorb
1 (B)) ⊂ X(MK(r)) ⊂ X(MK).

Thus dimR T (B) ≤ 2. Since H1(MK(r)) is cyclic and MK(r) is very
big, the base orbifold B is of the form S2(p1, . . . , pn) with n ≥ 4 and
max{p1, p2, p3, p4} > 2, or P 2(p1, . . . , pn) with n ≥ 3. In the latter
case one can verify that B is hyperbolic (cf. [31, Theorem 13.3.6]).
Further dimR T (B) = 2n − 3 ≥ 3 ([31, Corollary 13.3.7]), which is
impossible. In the former case, B is again hyperbolic. The real dimen-
sion T (S2(p1, . . . , pn)) is given by 2n − 6 ≥ 2 and so B has the form
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S2(p1, p2, p3, p4). Furthermore, since the complex dimension of X(MK)
is 1, T (B) contains an open subset of an algebraic component X0 of
X(πorb

1 (B)) ⊂ X(MK). But the argument in the proof of Theorem 1.7
shows that this is false. Hence MK(r) is not a very big Seifert manifold.

Proof of Part (2). If r0 is a singular slope of an essential closed
surface S ⊂ MK , then ∆(r0, µK) ≤ 1 as µK ∈ C(S). In fact r ∈ C(S) as
well. To see this, suppose otherwise. Then S is isotopic to a horizontal
incompressible surface in MK(r) and therefore is either non-separating
or splits MK(r) into two twisted I-bundles over a closed non-orientable
surface. Neither possibility can arise in our situation as a closed surface
in S3 is necessarily orientable and separating. Now that r ∈ C(S), we
automatically have ∆(r0, r) ≤ 1.

Proof of Part (3). The first assertion follows from Part (2). Propo-
sition 6.2 implies that µK is a singular slope of a closed essential surface
in MK if µK is a boundary slope. Also, if S is an essential closed surface
in MK and C(S) is finite, each of its slopes is a singular slope of S. In
particular this is true for µK .

Proof of Part (4). Let ri be a very big Seifert surgery slope on ∂MK .
By Theorem 1.7, ri is a singular slope of some closed essential surface
Si in MK and therefore an appeal to Part (2) completes the proof.

Proof of Part (5). If r is a very big Seifert surgery slope of K, then so
is its image slope under an orientation reversing diffeomorphism of MK .
By Part (3), the only possibility is for r to be the longitudinal slope of
K. Then MK(r) admits a closed non-separating essential surface. It
follows that MK(r) fibres over the circle ([22, Theorem VI.34]) and so
K is a fibred knot [11, Corollary 8.19].

If r is a big Seifert surgery slope, but not a very big one, then
the base orbifold of MK(r) is either K, S2(2, 2, 2, 2), or P 2(p, q). The
first two are ruled out by homological considerations, while Motegi has
proved that the last one is impossible ([25, Theorem 1.3]). q.e.d.

9. Examples

We begin by constructing infinitely many examples which show that
the first inequality in Theorem 1.5 is sharp.

Example 9.1 (a) Let K be an arborescent knot K of type II with
exterior MK and meridional slope µK . Wu shows that if ∆(r, µK) = 1
and r is not a boundary slope, then MK(r) is small [36]. Then µK is
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the singular slope of a closed essential surface in MK (Theorem 6.1),
and thus the distance between a singular slope and a small filling slope
can be 1.

(b) Eudave-Munoz and Wu [7] generalized work of Gordon and
Litherland [16] to produce infinitely many hyperbolic 3-manifolds Wp

(p ≥ 2) which admit two distinct reducible fillings. Fix p ≥ 2 and
set W = Wp. The boundary of W is a union of two tori T1, T2 and
there are distinct slopes r1, r2 on T1 such that W (r1) ∼= P 3#Q1 and
W (r2) ∼= P 3#Q2 where Q1, Q2 admit Seifert structures whose base orb-
ifolds are of the form D2(2, 2), D2(2p, 2p) respectively. If sj is the slope
on ∂Qj = T2 represented by a fibre of the Seifert structure, then Q(r)
has a nonabelian fundamental group whenever ∆(r, sj) ≥ 2. Choose a
slope r on T2 such that M = W (r) is hyperbolic and ∆(r, s1), ∆(r, s2) ≥
2. It is not hard to see that M has first Betti number 1, and therefore
we can apply Theorem 2.0.3 of [6] to the boundary slopes r1, r2 to see
that both are singular slopes of closed essential surfaces in M . Hence
the distance between a singular slope and a reducible filling slope can
be 1.

Our next example shows that the second inequality in Theorem 1.5
is sharp.

Example 9.2 Let P be a closed orientable irreducible atoroidal
Seifert fibred manifold with a non-separating closed incompressible sur-
face S of genus larger than one. Then P is a S-bundle over S1. Let
f : S→S be the monodromy of the bundle, which is an irreducible peri-
odic diffeomorphism. Note that for any simple closed essential curve K
in S, (f, K) fills S. Let M = P − int (N(K)). Then b1(M) = 2. There
is a closed essential surface S∗ in M , which is a parallel copy of S in P .
The surface S∗ cuts M into a hollow product W . Let c be the canonical
slope of W and let µ be the meridian slope of K. Then by Theorem 2.3
and (the proof of) Lemma 2.1, M(r) are hyperbolic S∗-bundles over S1

for most of the slopes r with ∆(c, r) = 1. Thus for such a slope r, M(r)
has a pseudo-Anosov monodromy. Also the core curve Kr of the filling
solid torus is isotopic to an essential closed curve in a surface fibre of
M(r). So it follows from Lemma 2.2 that M is hyperbolic. Note that c
is the singular slope of S∗ and obviously µ �= c is a Seifert filling slope.

Our next example provides a family of infinitely many hyperbolic Mn

with b1(Mn) = 2, #(E(Mn)) ≥ 4 and ∆(E(Mn)) ≥ 2 (cf. Theorem 1.2).

Example 9.3 Consider the (2, 2, n)-pretzel link in S3 (Figure 1),



300 s. boyer, c. gordon & x. zhang

n 
cr

os
si

ng
s

K

K

1

2

Figure 1: (2, 2, n)-pretzel link.

where n > 1 is an odd integer. The link consists of two components,
one, denoted K1, being the trivial knot and the other, denoted K2,
the (2, n)-torus knot. It follows that the link is not a torus link (since
its two components are not isotopic to each other in S3). Let Yn be
the exterior of the link and let Ti be its torus boundary component
corresponding to Ki. On each Ti slopes are parameterized by standard
meridian-longitude coordinates.

We first show that Yn is hyperbolic. Note that the link is alternating.
Thus by [24] we only need to show that the link is non-split and prime.
With a single application of Kirby-Rolfsen surgery calculus, we see that
Yn(T1, 1/k) is a hyperbolic 2-bridge knot exterior for all k large (cf. [21]).
It follows directly that the link is non-split (for otherwise Yn(T1, 1/k)
should always be the (2, n)-torus knot exterior). It also follows that the
link is prime. For otherwise, Yn contains an essential torus T which
bounds a solid torus V in S3 such that there is a meridian disk of
V which intersects the link in exactly one point. This torus must be
compressible in Yn(T1, 1/k) for all k. So T and T1 bound a cable space,
and thus any meridian disk of the solid torus V must intersect K1 at
least twice, giving a contradiction.

Next we show that Mn = Yn(T2, 0) is hyperbolic. Note further that
for large k, Yn(T1, 1/k) is the exterior of a hyperbolic 2-bridge knot
exterior whose 0-slope is not the boundary slope of essential punctured
sphere or torus [21]. Thus Yn(T1, 1/k; T2, 0) is a hyperbolic manifold
for all large k. It follows that if Yn(T2, 0) is reducible, then it must
be a connected sum of a closed hyperbolic manifold and a solid torus
whose meridian slope is the 0-slope on T1. But then Yn(T1, 1/0; T2, 0)
is also hyperbolic, contradicting the fact that Yn(T1, 1/0; T2, 0) is the
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same manifold obtained by Dehn surgery on S3 along the (2, n)-torus
knot with the 0-slope, which is Seifert fibred. It also follows that if
Yn(T2, 0) contains an essential torus, then it is cabled and the slope of
the cabling annulus is the 0-slope on T1. In other words, if Yn(T2, 0)
contains an essential torus, then Yn(T1, 0; T2, 0) contains a lens space
summand. But this is impossible since lk(K1, K2) = 0, and therefore
the first homology of Yn(T1, 0; T2, 0) with Z-coefficients is Z⊕Z. Noting
that b1(Yn(T2, 0)) = 2, Yn(T2, 0) must be hyperbolic.

Finally we show that b1(Mn) = 2, and E(Mn) ⊃ {0, 1, 2, 1/0}. Again
since the linking number of K1 and K2 is zero, H1(Mn; Z) = Z⊕Z. We
have just noted that Mn(1/0) is the same manifold as that obtained by
0-Dehn surgery on S3 along the (2, n)-torus knot, and thus is a Seifert
fibred manifold. From the standard link diagram of K1 ∪ K2, we see
that there is an once punctured torus in Yn with its boundary in T1

with slope 0. It follows that Mn(0) contains a non-separating torus and
thus Mn(0) is not hyperbolic. Again by Kirby-Rolfsen surgery calculus,
Mn(1) is the same manifold as that obtained by Dehn surgery on S3

along the (2, n + 2)-torus knot with the 0-slope. Thus Mn(1) is Seifert
fibred. Also from the link diagram of K1 ∪ K2, we see that there is
a twice punctured Klein bottle with one boundary component on T1

with slope 2 and the other boundary component on T2 with slope 0 (a
spanning surface of the link). Thus Mn(2) contains a Klein bottle and
so is not hyperbolic.

Note that the meridian slope of Mn must be the degeneracy slope for
Mn defined in Section 5 since the unique non-separating essential closed
surface in Mn(1) has genus larger than that of the unique non-separating
essential closed surface in Mn(1/0).

We suspect that E(Mn) is precisely the set {0, 1, 2, 1/0}. For a fixed
n, this can be checked using the SnapPea program. By Theorem 1.2
and Proposition 5.1, we only need to check the slopes 3, 4, 5,−1,−2,−3.

The following example shows that, for any n ≥ 2, there is a hyper-
bolic M such that b1(M) ≥ n, having two toroidal filling slopes r1 and
r2 with ∆(r1, r2) = 2 (cf. Theorem 1.2 and Theorem 3.1).

Example 9.4 Let P be a pair of pants, and let K be the knot in
P × I shown in Figure 2. Let X = P × I − int (N(K)) be the exterior
of K. Then ∂X has two components, a torus T0 = ∂N(K), and a
genus two surface P0 ∪ P1 ∪ (∪3

i=1Ai), where Pi = P × {i}, i = 0, 1, and
A1, A2, A3 are annuli. Let Ci denote a core of Ai, i = 1, 2, 3. It is easy
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Figure 2: The knot K in P × I.

to show that:

(1.1) X is irreducible.

(1.2) X is atoroidal.

(1.3) Any incompressible annulus A in X with ∂A ⊂ P1 ∪P2 is parallel
into ∂X.

Also, parameterizing slopes on T0 in the obvious way, we have (see [15,
proof of Theorem 5.3]):

(1.4) X(0) contains an annulus A0 with ∂A0 = C1 ∪ C2, and X(2)
contains a Möbius band B with ∂B = C3.

Let W be a compact, orientable, irreducible, ∂-irreducible, orient-
able, anannular 3-manifold with ∂W a surface of genus 2, and b1(W ) ≥
n+1. Decompose ∂W as P ∪∂ Q, where P and Q are pairs of pants. Let
W0, W1 be copies of W , and let Y = X ∪W0∪W1, where Wi is glued to
X along Pi, i = 0, 1. Then ∂Y = T0 ∪S, where S is the genus 2 surface
Q0 ∪ Q1 ∪ (∪3

i=1Ai). Note that Pi is incompressible in Y , i = 0, 1. It
also follows easily, using (1.1) and (1.2) above, and the properties of W ,
that:

(2.1) S is incompressible in Y .

(2.2) Y is irreducible.

(2.3) Y is atoroidal.

Note that we still have A0 ⊂ Y (0) and B ⊂ Y (2).
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(2.4) There is no essential annulus A in Y with ∂A contained in S.

Proof. Let A be such an annulus. We may assume that A∩(P0∪P1)
is a disjoint union of circles and properly embedded arcs, and that no
circle component bounds a disk in either A or P0 ∪ P1.

If A ∩ (P0 ∪ P1) has an arc component that is boundary parallel in
A, let α be an outermost such, cutting off a disk D ⊂ A. Then D is
contained in either X or (say) W0. But in both cases it is clear that we
may isotope A to eliminate α. Hence we may assume that A∩ (P0 ∪P1)
consists of either circles that are cores of A, or arcs with one endpoint
on each component of ∂A.

In the first case, using (1.3) above and the fact that W is anannular,
we see that A is parallel into ∂Y , a contradiction. (This includes the
case when A ∩ (P0 ∪ P1) = ∅.)

In the second case, there is an adjacent pair of arcs α1, α2 on A which
cut off a disk D that lies in (say) W0. Thus ∂D = α1 ∪ β1 ∪ α2 ∪ β2,
where β1 and β2 are arcs in ∂A ∩ Q0. Since W0 is ∂-irreducible, either
the arcs β1 and β2 are boundary parallel in Q0, or the arcs α1 and α2

are boundary parallel in P0. In both cases, we may isotope A to reduce
|∂A∩(P0∪P1)|, (in the second case using the boundary incompressibility
of A). q.e.d.

Let Z = S × I ∪ H ∪ V be defined as follows. Here H is a round
1-handle, H ∼= S1 × I × I, attached along S1 × I × {0, 1} to A1 ∪A2 in
S × {1}, and V is a solid torus, attached along a (2, 1)-annulus in ∂V
to A3 in S × {1}. Then ∂Z = S ∪ S′, where S = S × {0} and S′ ∼= S.
It is not hard to show:

(3.1) Z is ∂-irreducible.

(3.2) Z is irreducible.

(3.3) Z is atoroidal.

Let W ′ be another copy of W , and let U = Z ∪S′ W ′. Then, from
(3.1), (3.2), (3.3) and the properties of W , we have:

(4.1) U is ∂-irreducible.

(4.2) U is irreducible.

(4.3) U is atoroidal.

Finally, define M = Y ∪S U . Then:
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(5.1) M is irreducible.

(5.2) M is atoroidal.

(5.3) b1(M) ≥ n ≥ 2.

Thus M is hyperbolic. Let A′
0 be an extension of the core annulus of

the round 1-handle H ⊂ Z, with ∂H = C1 ∪ C2. Then M(0) contains
A0 ∪∂ A′

0. We can choose the attaching map of H so that A0 ∪∂ A′
0 is a

Klein bottle.
Note also that C3 ⊂ S ×{0} bounds a Möbius band B′ in Z. Hence

M(2) contains the Klein bottle B ∪∂ B′. Hence each of M(0), M(2) is
either toroidal or reducible. But any two reducible fillings have distance
at most 1 [19], and a reducible filling and a toroidal filling on a large
hyperbolic manifold have distance at most 1 [38]. Hence M(0) and M(2)
are both toroidal.

Appendix

Let W be the exterior of the Whitehead link pictured in Figure 3
and r a slope on a boundary component of W . We will denote by Mr the
r Dehn filling of W . Since there is an isotopy of S3 which interchanges
the two boundary components of W , we have

Mr(s) ∼= Ms(r).

Identify the slopes on either component of ∂W with Q∪{1
0} in the usual

way.
Proposition. For each slope r �= 0, 4 on a boundary component of

W , the manifold Mr contains no closed, essential surface.

Proof. Assume that Mr contains a closed, essential surface S. From
above we have Mr( 1

n) = M 1
n
(r) for each n ∈ Z. It can easily be seen that

M 1
n

is the exterior of the 2-bridge knot corresponding to the rational

fraction −2
4n−1 . In particular it is small [21] and therefore so is M 1

n
(r)

as long as r is not a boundary slope of M 1
n
. Again by [21] we see

that r �= 0, 4 is a boundary slope of M 1
n

for at most one n. Hence S

compresses in Mr( 1
n) for infinitely many n. It follows by Wu’s theorem

(Theorem 6.1) that S is incompressible in Mr(m
n ) as long as |m| > 1.
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Figure 3: The Whitehead link.

  

r− r−



r

N M(r)

Figure 4: A double cover.

This is true, in particular, for Mr(2) = M2(r). We show that this is not
the case.

The double cover of the exterior of the “horizontal” component of
the Whitehead link restricts to a double cover of W , and subsequently
induces the double cover N → M2(r) depicted in Figure 4. Blowing
down the component labeled “1” shows that N is homeomorphic to the
manifold obtained by performing r − 2 surgery on both components of
L2,4, the (2, 4) torus link (Figure 5). The exterior of L2,4 is a Seifert
manifold whose base orbifold is an annulus with exactly one cone point,
and its order is 2. Moreover, since r �= 4, the distance d between the
slopes r−2 and 2, the fibre of the Seifert structure on the exterior of L2,4,
is nonzero. Thus N is a Seifert manifold with base orbifold S2(2, d, d).
The first homology of N ∼= L2,4(r − 2, r − 2) has order |r(r − 4)|, and



306 s. boyer, c. gordon & x. zhang

therefore our constraints on r imply that N is a small manifold ([22,
VI.13]). But this contradicts the fact that the inverse image of S in N
is an essential closed surface. Thus the manifold Mr is small. q.e.d.

r− r−

N

r−r−

=≅

Figure 5: N as surgery on a torus link.
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