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ON THE CONSTRUCTION OF CONTACT
SUBMANIFOLDS WITH PRESCRIBED TOPOLOGY

A. IBORT, D. MARTÍNEZ-TORRES & F. PRESAS

Abstract
We prove the existence of contact submanifolds realizing the Poincaré dual
of the top Chern class of a complex vector bundle over a closed contact
manifold. This result is analogue in the contact category to Donaldson’s
construction of symplectic submanifolds. The main tool in the construction
is to show the existence of sequences of sections which are asymptotically
holomorphic in an appropiate sense and that satisfy a transversality with es-
timates property directly in the contact category. The description of the ob-
tained contact submanifolds allows us to prove an extension of the Lefschetz
hyperplane theorem which completes their topological characterization.

1. Introduction and statement of the main results

Recently, S. Donaldson has proved the existence of symplectic sub-
manifolds that realize the Poincaré dual of a large enough integer mul-
tiple of the canonical cohomology class defined by the symplectic struc-
ture of a given closed symplectic manifold [4]. The main idea in Don-
aldson’s theorem is to construct symplectic submanifolds as zero sets
of appropriate sections of powers of the prequantizable line bundle L
over the symplectic manifold M . Later on, D. Auroux and R. Paoletti
have proved an extension of Donaldson’s theorem, where now a wider
family of symplectic submanifolds are constructed as the zero sets of
asymptotically holomorphic sections of vector bundles. These bundles
are obtained by tensoring an arbitrary complex bundle with large pow-
ers of the prequantizable line bundle L [2], [3], [14]. In his paper, D.
Auroux also shows that, asymptotically, all submanifolds constructed
from a given vector bundle E are isotopic for k large enough. Paoletti
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has also shown that the classical special position theorems adapt to the
symplectic category [15]. Moreover, Donaldson’s techniques can provide
a nearly holomorphic embedding of symplectic manifolds in CP

N [13].
These results open new directions of research on symplectic geometry
and have a wide range of applications (see for instance the review paper
[5]). The key idea to understand these works is the concept of ample-
ness of a complex holomorphic bundle. It allows the flexibilization of
the bundles in the holomorphic category by means of increasing their
curvatures. Ampleness has been exploited extensively in the Kähler set-
ting. Donaldson in his outbreaking work [4] has translated the definition
of ampleness to the symplectic category. The most important idea in
this work is the definition of asymptotic holomorphicity for sequences
of sections of bundles which are more and more twisted.

In this paper we extend the previous ideas to the contact category.
Recall that a contact manifold is an odd dimensional manifold C to-
gether with a completely nonintegrable hyperplane distribution D on
it. Such a distribution will be called a contact distribution. Not very
much is known about the topology of contact manifolds (see the reviews
by Y. Eliashberg [8, 6], [12] and references therein). One important tool
to obtain general results has been the use of holomorphic methods. The
theory of pseudoholomorphic curves—and disks—can be developed in
the contact setting (see the recent work on this direction by Y. Eliash-
berg, H. Hofer and D. Salamon [7], [10]). However, there were not more
holomorphic techniques in the contact setting. Even though Donald-
son’s construction in the symplectic category was a triumph of ideas
partly inspired by Kodaira’s embedding theorem, the basic tools in the
construction of asymptotically holomorphic sections actually used in the
proof of the theorem were based in simple methods of local conformal
geometry of a symplectic manifold, a subtle transversality theorem with
estimates and a globalization process. We will show in this paper how
these ideas can be refined to extend Donaldson’s construction to the
contact category.

A contact submanifold of a contact manifold (C,D) is a submanifold
N such that TN ∩ D is a contact distribution on N . We will show
that, analogously to the symplectic situation, we can construct contact
submanifolds as zero sets of sections of complex bundles over the contact
manifold. These submanifolds will in general be homologically trivial
because of the triviality of the cohomology class defined by the contact
structure. However we can adapt to the contact setting a refined version
of Donaldson’s theorem proved by D. Auroux and R. Paoletti that will
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allow us to construct contact submanifolds realizing the Poincaré dual
of the top Chern class of any vector bundle over the contact manifold.
More precisely, we will prove:

Theorem 1. Let C be a compact contact manifold of dimension
2n + 1 and E → C a rank r complex bundle over C (r ≤ n) with top
Chern class cr(E). Then, there exists a contact submanifold W of C
realizing the Poincaré dual of cr(E) on H2n+1−2r(C,Z). Moreover, the
inclusion i : W → C induces an isomorphism on homotopy groups πp

for p ≤ n− r− 1 and a surjection on πn−r (resp. on homology groups).

Up to now the only results similar to Theorem 1 have been ob-
tained in dimension 3 where a special class of contact submanifolds (in
fact, curves) have been constructed for some contact structures. These
contact curves the closed orbits of the Reeb vector field. The Wein-
stein conjecture asserts that such closed orbits always exist; it has been
proved in some partial cases [10]. The only general tool to construct
submanifolds in general dimension is the Gromov’s h-principle, but this
does not give a general method to decide when is possible to construct
a contact submanifold [9]. Moreover his techniques only apply in codi-
mension greater than two.

Theorem 1 imposes two conditions. One purely topological is the
transversality of the submanifolds with respect to the contact structure.
The second one is geometric and asserts the nonintegrability of the
induced hyperplane structure. Even the topological one is not trivial,
because it is not an easy problem to build a submanifold transverse
to a hyperplane distribution. In fact, it cannot be solved by a local
perturbation of a given manifold.

We will leave the discussion of the relationship between the sym-
plectic and the contact construction for a forthcoming paper. This
relationship offers important aspects, for instance in dimension three it
would connect our construction with the results on pseudoholomorphic
curves in symplectizations obtained in [10, 7].

1.1 Strategy of the proof and the contents of the paper

We will reproduce the main results of Donaldson-Auroux theory di-
rectly in the context of exact contact manifolds. For that we will use a
characterization of contact submanifolds obtained by using the almost
complex geometry of the contact distribution, this is, the contact anal-
ogous of the ∂ and ∂ operators, obtained by projecting the (1, 0) and
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(0, 1) components of the exterior differential to the symplectic bundle
defined by the contact distribution D. Then, we will show how to con-
struct a sequence of sections of a rank r complex bundle E → C that
satisfy this characterization asymptotically. Notice that, contrary to
the situation in the symplectic category, the line bundle L → C de-
fined by an exact contact structure with the condition curv(L) = iω is
trivial because the cohomology class of ω = dθ vanishes. However, the
symplectic bundle D → C defined by the contact structure, carries a
conformal class of symplectic structures. Then we will consider the fam-
ily of symplectic structures on D given by kω where k ∈ Z

+ and ω is as
always the restriction of the presymplectic 2-form dθ to D. This family
of symplectic bundle structures will replace the line bundles L⊗k → C
in Donaldson-Auroux theory.

The main results in Donaldson-Auroux theory adapt immediately to
this situation provided that we use a parametrized transversality with
estimates theorem which constitutes a generalization of the transversal-
ity with estimates argument used in Donaldson’s and Auroux’ papers
(see Section 4.2), and that follows the proof of [2]. The key idea is
to approximate locally the contact distribution by a 1-parametric fam-
ily of symplectic submanifolds, and then a generalization of Auroux’
works gives us the result. Then we will prove the existence of contact
submanifolds realizing the Poincaré dual of cr(E).

The result also applies to nonexact contact submanifolds. We need
only to develope a Z2-invariant theory, because every contact manifold
can be double covered by an exact contact manifold. This will be de-
veloped in Subsection 4.4.

From the topological point of view the obtained submanifolds ver-
ify a generalization of the Lefschetz hyperplane theorem. This will be
proved in Section 5 and constitutes the second half of Theorem 1. The
proof is based in the same Morse theory argument that Donaldson and
Auroux have used to obtain their results in the symplectic category.

The conclusion of the main theorem, Theorem 1, is quite striking
because it shows that there are contact codimension 2 submanifolds
which determine strongly the homotopy type of the initial manifold.
Also, these submanifolds do exist in a lot of homology classes of the
manifold, always including the trivial one.

Finally, Section 2 is devoted to state some notation and preliminary
facts on contact manifolds that will be used elsewhere along the paper,
and Section 3 is devoted to introduce and discuss the fundamental no-
tion of sequences of asymptotically holomorphic sections, both in the
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symplectic and in the contact category, and the notion of transversality
with estimates, a notion that will play a central role in the proof of the
main results of this paper.

2. Preliminary notions on contact manifolds

2.1 Almost complex structures on contact manifolds

As it was indicated in the introduction a contact manifold is a pair
(C,D) whereD is a completely nonintegrable hyperplane distribution on
C. Locally, such distribution is defined by the kernel of a 1-form θ, this
is, Dx = Ker θ(x) and, the locally defined 2-form, dθ, is nondegenerate
when restricted to D. We observe that if we replace the 1-form θ by θ′ =
fθ with f a nonvanishing function, the corresponding 2-form changes
as dθ′ = df ∧ θ + fdθ. Thus restricted to D, dθ′ and dθ define the
same conformal symplectic structure. In this sense a contact manifold
(C,D) carries a canonical conformal symplectic bundle D → C provided
by the hyperplane distribution together with its conformal symplectic
structure. Conversely, a conformal symplectic structure defined on a
hyperplane distribution D, such that there exists a local potential θ
for the local symplectic structure with Ker θ = D, defines a contact
structure.

We will say that the contact structure on C is exact if there exists
a globally defined 1-form θ defining the contact distribution D. In such
case a global symplectic structure dθ can be fixed in the conformal class,
and the bundle D → C becomes a symplectic bundle.

An exact contact structure will define a nonsingular vector field R,
the Reeb field, by means of iRθ = 1, iRdθ = 0. Hence, we have a natural
splitting of the tangent bundle TC = D ⊕ 〈R〉 (this is also true in the
nonexact case, but 〈R〉 is not trivial in that case.) We will say that a
1-form α is horizontal if iRα = 0 and vertical otherwise. Notice that
a contact form θ is vertical. In fact, any 1-form uniquely decomposes
as α = αD + aθ, with αD horizontal and a = iRα. The canonical
splitting of the tangent bundle will induce a natural decomposition of
the cotangent bundle T ∗C = D∗⊕〈θ〉. Notice that changing the contact
1-form θ will make R to change, and the corresponding splittings will
change too. The splitting of the tangent bundle TC allows to fix a
metric g compatible with the contact structure of the form g = gD ⊕ gR

where gR is a metric on the 1 dimensional real bundle generated by R
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and such that gR(R,R) = 1, and gD is a metric on D compatible with
dθ|D in the sense that there exists an almost complex structure J in D
such that gD = dθ(·, J ·). Thus, 〈R〉⊥ = D and,

g = gD + θ ⊗ θ(2.1)

We will say that such g is a contact metric.

2.2 Contact submanifolds

Let i : N → C be a submanifold of the contact manifold (C,D). We
will say that N is transverse to the contact structure if i is transverse to
the contact distribution D, i.e., if i∗(TN) is transverse to D. The sub-
manifold N is transverse to the contact structure if and only if i∗(TN)
is not contained in the contact distribution D at any point of i(N).

Definition 1. A contact submanifold of the contact manifold
(C,DC) is a triple (N,DN , i) where (N,DN ) is a contact manifold and
i : N → C is an embedding such that DN = i−1∗ (DC).

Let i : N → C be a submanifold of the contact manifold (C,D).
Then the set

DN = {u ∈ TN | i∗(u) ∈ D } = i−1
∗ (D)(2.2)

will define a distribution of codimension 1 on N if the map i is trans-
verse to D. Moreover by construction i∗(DN ) ⊂ DC . Clearly, if θC

is a local contact form for the distribution DC , then θN = i∗θC will
define DN , i.e., Ker θN = DN . However the pair (N,DN ) will not be
in general a contact manifold because the restriction to DN of dθN

could be degenerate. So, to obtain a contact submanifold we need two
conditions: transversality to the distribution and nondegeneracy of the
induced distribution.

If on the other hand, i : N → C is a submanifold and (N,DN , i)
is a contact submanifold with local form θN obtained as restriction of
a local form θC of C, then i must be transverse to DC because if this
were not the case, at some point x, i∗(TxN) ⊂ DC(x) and Ker θC(x) =
TxN �= Ker θN (x).

We will identify in what follows a submanifold N with its image
i(N) on C and will omit the map i in the discussions if there is no risk
of confussion. Later, we will need the following fact:
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Lemma 1. Let N be a (2r + 1)-dimensional submanifold of the
contact manifold (C,D). Then N will be a contact submanifold of C if
and only if TN ∩ D is a conformal symplectic subbundle of D of rank
2r.

Proof. We have seen already that N must be transverse to the con-
tact distribution D and that if θ is a local contact form for D, then the
1-form θN = i∗θ generates the distribution DN = TN

⋂
D on N where

i : N → C denotes the submanifold embedding. Thus, the conformal
symplectic structure of DN will be defined locally by the symplectic 2-
form ωN = dθN = i∗dθ = i∗ω and DN is locally a symplectic subbundle
of D, hence a conformal symplectic subbundle of D of rank 2r.

Conversely, if DN = TN
⋂
D is a subbundle of rank 2r, then N

is transverse to D. Consider the local 1-form θN = i∗θ on N , where
θ is a local contact form defining locally the contact distribution D.
Clearly, DN ⊂ Ker θN , but since DN defines a hyperplane distribution,
DN = Ker θN . Moreover as DN is a conformal symplectic subbundle,
then dθN is nondegenerate on DN , hence, DN is a contact distribution.

q.e.d.

2.3 Bundles on contact manifolds

As we pointed out in the introduction, the basic tool to construct sym-
plectic submanifolds is the use of sections of an appropriate line bundle
over the given symplectic manifold. For symplectic forms of integer
class, the bundle we choose is the line bundle whose curvature is given
by the symplectic form itself. In the exact contact manifold case, the
class defined by the contact structure is trivial. Thus we shall be con-
sidering the trivial line bundle L = C × C over C for the discussion to
follow. For exact contact manifolds (C, θ) the bundle L comes equipped
with a connection ∇L defined by the contact form itself, namely,

∇Ls = ds− iθs,

for any section s of the bundle. The tensor powers L⊗k of L continue to
be trivial but the connections ∇L⊗k , which they are equipped with, are
defined by the 1-forms ikθ, that still continue to define the same contact
distribution D = Ker kθ ⊂ TC. However the corresponding symplectic
structures ωk on D are also rescaled as ωk = kω. The Reeb vector fields
Rk are thus given by Rk = k−1R and we define a metric gk as

gk = kgD + kθ ⊗ θ.(2.3)
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We will call gk the rescaled contact metric. Notice that |Rk|gk
= k−1/2

for this metric, and so it is not a contact metric.
We shall consider in what follows the family of (trivial) line bun-

dles L⊗k with the hermitian connections ∇L⊗k induced on them by the
connection ∇L, which have curvature −ikω.

We shall consider in addition a rank r hermitian vector bundle E →
C with hermitian connection ∇E and the tensor products L⊗k ⊗ E
equipped with the connection induced by ∇L⊗k and ∇E with curvature

R = I ⊗RE − ikω ⊗ I,(2.4)

where RE denotes the curvature of ∇E .

2.4 Contact submanifolds as zero sets of sections of com-
plex bundles

In this section we will take profit of the previous discussion to mimic
Donaldson theory in the setting of exact contact manifolds.

Let (C, θ) be a closed exact contact manifold and s a smooth section
of the trivial complex line bundle L over C transverse to the zero section
of L. The level set W = s−1(0) either will be empty or a smooth real
codimension 2 submanifold of C. In the latter case, the tangent space of
this submanifold at a given point x will be Ker∇s(x). As we noticed in
Section 2.1, there is a natural splitting T ∗C = D∗⊕〈θ〉, and any 1-form
α decomposes uniquely as α = αD + (iRα)θ. Thus if u ∈ TxC denotes
a tangent vector to C at x, then u = uD + u⊥, where uD ∈ Dx and
u⊥ = (iuθ)R is the orthogonal vector to uD, then αD(u) = α(uD). We
will denote by αD either the form so defined and also the restriction of α
to the subspace D. Finally, choosing an almost complex structure J on
D compatible with the symplectic structure, we can further decompose
the complex valued 1-forms on D, Λ1(D,C), in its holomorphic and
antiholomorphic components,

Λ1(D,C) = Λ(1,0)(D) ⊕ Λ(0,1)(D),

as
αD = α(1,0) + α(0,1),

where

α(1,0) =
1
2
(αD − iαD ◦ J), α(0,1) =

1
2
(αD + iαD ◦ J).
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Similarly, we can proceed to decompose the space of L-valued 1-
forms Λ1(TC,L) and the L-valued 1-forms on D,

Λ1(D,L) = Λ(1,0)(D,L) ⊕ Λ(0,1)(D,L).

These elementary considerations, lead us to decompose the L-valued
1-form ∇s as

∇s = ∇Ds+ ∇⊥s,(2.5)

where ∇Ds = (∇s)D is the component of ∇s along D and ∇⊥s =
(iR∇s)θ. Further ∇Ds = ∂D,Js + ∂D,Js, with ∂D,Js = (∇Ds)(1,0) ∈
Λ(1,0)(D,L), ∂D,Js = (∇Ds)(0,1) ∈ Λ(0,1)(D,L) the holomorphic and
the antiholomorphic parts of ∇Ds respectively. Hence, we will write ∇s
as

∇s = ∂D,Js+ ∂D,Js+ ∇⊥s.(2.6)

We will use now the following simple linear algebra result:

Lemma 2. Let f : C
n → C be a R-linear application. Then f

decomposes as:
f = f (1,0) + f (0,1),

where f (1,0) and f (0,1) are the holomorphic and antiholomorphic parts of
the application. Then if |f (1,0)| > |f (0,1)|, Ker f is a symplectic subspace
of C

n with respect to the standard symplectic structure.

Two diferent proofs of this result can be found in [11, 4]. The fol-
lowing simple generalization will be useful later on:

Lemma 3. Let f : C
n → C

r be a R-linear application. Then f
decomposes as:

f = f (1,0) + f (0,1),

where f (1,0) and f (0,1) are the holomorphic and antiholomorphic parts of
the application. Given γ > 0, there exists c > 0 such that if |f (0,1)| < c
and f has a right inverse f−1 verifying that |f−1| < γ−1, then Kerf is
a symplectic subspace of C

n.

Proof. We will choose c > 0 along the proof. Let us take a
real basis {e′1, . . . , e′2r} in C

r such that the system of vectors S =
{e1, . . . , e2r}, ei = f−1(e′i), is orthonormal in C

n. Then we extend
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S to a basis {e1, . . . , e2n} in C
n, such that {e2r+1, . . . , e2n} is an or-

thonormal basis of Kerf . Thanks to the bounding of the right inverse
f−1 we can assure that:

|e′j | > γ, for j = 1, . . . , 2r.

Now we have:

|f (1,0)(ei) − f(ei)| = |f (0,1)(ei)| < c, ∀i = 1, . . . 2n.

It is easy to show that {f (1,0)(e1), . . . , f (1,0)(e2r)} is a basis of C
r. To do

it we just have to compute |f−1(e′j)−f−1 ·f (1,0)(ej)| = |f−1 ·f (0,1)(ej)| <
γ−1c. So we obtain that {f−1 ·f (1,0)(e1), . . . , f−1 ·f (1,0)(e2r)} is a linear
independent system because for c small is close to S which is orthonor-
mal. And therefore we obtain that {f (1,0)(e1), . . . , f (1,0)(e2r)} is basis
for c small enough. However, recall that the choice of c only depends
on γ. Now we define the following linear isomorphism:

p : C
r → C

r

f (1,0)(ej) → e′j

Then g = f−1 · p is a right inverse for f (1,0), and it is easy to show that,
perhaps shrinking c, |g| < 2γ−1. Again the chosen c depends only on γ.

Our objective will be to compare Kerf = V with Kerf (1,0) = V (1,0).
We recall that we have chosen an orthonormal basis {e2r+1, . . . , e2n} in
V . Now we define bj = ej + g · f (0,1)(ej), j = 2r + 1, . . . , 2n. It is easy
to show that |bj − ej | ≤ 2γ−1c and bj ∈ V (1,0). So {b2r+1, . . . , b2n} is
a basis of V (1,0), which is arbitrarily close to {e2r+1, . . . , e2n}. We can
conclude that V and V (1,0) are at distance O(c) in the grassmanian of
2(n− r) subspaces GrR(2(n− r), 2n).

Now following [4] we construct a function to measure the symplec-
ticity of the subspaces of R

2n = C
n. We define the Kähler angle of a

real subspace V ∈ GrR(2(n− r), 2n) as:

α : GrR(2(n− r), 2n) → [−1, 1]

V �→ (ω0|V )2(n−r)

volg|V

volg|V is the volume form in V defined by the standard metric in R
2n

and ω0 is the standard symplectic form in R
2n. So the Kähler angle

is positive if and only if V is a symplectic subspace (preserving the
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orientation). Even more if V is complex, α(V ) = 1. Obviously, α is a
continuous function.

Recall now that V (1,0) is a complex subspace. Thus α(V (1,0)) = 1
and by the continuity of α and the compactness of GrR(2(n − r), 2n)
we obtain that for a fixed c small enough α(V ) > 0. Therefore V is
symplectic for that c and the proof is concluded. q.e.d.

Applying Lemma 2 we can prove the following result which will be
the key idea for our approach:

Lemma 4. Let s be a smooth section of L→ C. Then if

|∂D,Js| < |∂D,Js|,(2.7)

at the zero set W = s−1(0), then W is a contact submanifold of C.

Proof. First we prove that TW is transverse to D at a point x ∈W .
By (2.7) we have that dDs is surjective. So we can find a vector v ∈ D
such that 〈ds(x), v〉 = −〈ds(x), R〉 then 〈ds(x), v − R〉 = 0. Therefore
v −R ∈ TW and it is not in D, and then TW is transverse to D.

It remains to check that DW is completely nonintegrable, but DW =
Ker∇Ds, and if |∂D,Js| < |∂D,Js|, then by Lemma 2, DW is a symplectic
subspace of D and, because of Lemma 1, DW is a contact distribution.

q.e.d.

In what follows we will simply write ∂ and ∂ instead of ∂D,J and
∂D,J respectively whenever it causes no confussion.

2.5 Exact coverings of nonexact contact manifolds

Let C be a smooth manifold and D a hyperplane distribution on it
not necessarily of contact type. Let D0 denote the annihilator of D,
i.e., for each x ∈ C, D0

x = {αx ∈ T ∗
xC|αx(u) = 0,∀u ∈ Dx }. The

annihilator D0 defines a rank 1 subbundle of the cotangent bundle T ∗C.
The restriction of the canonical symplectic form ω0 on T ∗C toD0 defines
an exact 2-form on it. This form degenerates along the zero section of
the bundle D0 → C. We shall denote by SD(C) the principal R

∗-bundle
over C obtained by removing the zero section of D0. Notice that if
there exists a globally defined 1-form θ such that D = Ker θ, then the
bundle π : SD(C) → C will be trivial because θ itself defines a nowhere
vanishing smooth section of it. However, the 2-form ω induced on SD(C)
by the canonical symplectic structure ω0 could be degenerate. It is easy
to realize that such form will be symplectic if and only if D is a contact
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distribution on C. Thus we will call (SD(C), ω) the symplectization of
the contact manifold (C,D).

If we choose a bundle metric η on the bundle D0 → C, the sphere
bundle defined by it, i.e., Ĉ = {α ∈ D0|η(α, α) = 1 }, is a double
covering of the manifold C. It is obvious that Ĉ → C will be trivial if
and only if the contact structure on C is exact. If the contact structure
on C is not exact, then, the covering Ĉ carries an exact contact structure
that lifts the one in C. More precisely, we define the lifted contact
structure as follows. We shall denote the points in Ĉ as x̂ and by
π : Ĉ → C the canonical projection. Then a tangent vector û ∈ Tx̂Ĉ
belongs to the contact distribution D̂ if π∗(û) ∈ Dx, with x = π(x̂).
Now it is clear that SD̂(Ĉ) = π∗SD(C) is trivial, hence the lifted contact
structure D̂ is exact.

The Z2 action of the structure group of the double covering Ĉ → C is
clearly defined by anticontactomorphisms. In other words, there exists
an involutive anticontact diffeomorphism a : SD(C) → SD(C) given by
a(α) = −α, for any α ∈ Ĉ, we mean by this that a∗θ = −θ. In fact, it
extends to a symplectic Z2 action on SD(C).

The symplectic manifold SD(C) carries a distinguished class of al-
most complex structures. We first notice that for any compatible al-
most complex structure JD on the symplectic bundle D → C we can
construct a lifted compatible almost complex structure Ĵ on SD(C) as
follows. The quotient bundle TSD(C)/π∗(D) = νC(D) is a symplectic
bundle and we can split TSD(C) = π∗D ⊕ νC(D) by fixing the bundle
metric η. We shall choose then a compatible almost complex structure
J ′ on νC(D) and define Ĵ = JD ⊕ J ′. More concretely in the exact
case, choose a trivialization of SD(C) = C×R

∗
0, then denoting by λ the

scaling coordinate on R
∗
0, and by πD : TSD(C) → π∗D the orthogonal

projection, we have

Ĵ(x,λ)(ẋ, λ̇) = ((JD)xπD(ẋ) + λ̇Rx,−θx(ẋ)),

where R denotes the Reeb field of the contact structure. This compat-
ible almost complex structure verifies that a∗Ĵ = Ĵ , i.e, it is invariant
under the Z2 action on SD(C). Moreover, the lifted distribution D is
Ĵ-complex. We shall call it compatible almost complex structure of
contact type.
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3. Asymptotically holomorphic sections and transversality

Once we have characterized codimension 2 contact submanifolds of
C arising as zeroes of sections satisfying the basic inequality (2.7), we
will follow [4], [2], [3], to show that such sections do indeed exist. In
fact we will do more and show that sections satisfying a weaker holo-
morphicity condition do exist for large values of an integer parameter
k. This property combined with a transversality condition will imply
(2.7). Moreover we will extend the discussion to arbitrary hermitian
vector bundles, using the transversality condition given by Lemma 3.
Let us make these comments precise.

3.1 Definitions

Let X be a riemannian manifold with metric g and D ⊂ TX be a
subbundle carrying an almost complex structure J . Let Ek → X, k ∈
N, be a family of hermitian complex bundles of rank r equipped with
hermitian connections ∇k.

The metric g allows to decompose TX = D ⊕ D⊥, hence using
this decomposition the metric g can be written as g = gD ⊕ g⊥D. We
will consider the family of rescaled metrics gk = kg. The bundle of Ek-
valued forms onX decomposes as Λ1(X,Ek) = Λ1(D,Ek)⊕Λ1(D⊥, Ek).
Moreover, the almost complex structure J on D allows to decompose
Λ1(D,Ek) into the holomorphic and the antiholomorphic part

Λ1(D,Ek) = Λ(1,0)(D,Ek) ⊕ Λ(0,1)(D,Ek).

The covariant differential ∇L⊗ksk of a section sk of Ek decomposes, in
analogy with Equations (2.5-2.6), as

∇ksk = (∇k)Dsk + ∇⊥
k sk,

and
(∇k)Dsk = ∂k,D,Jsk + ∂k,D,Jsk.

As usual the k,D, J subindex in the (1, 0) and (0, 1) components of
∇ksk will be omitted if there is no risk of confussion.

Definition 2. A sequence sk of sections of the bundles Ek is said to
be asymptotically (D, J)-holomorphic if there exist constants cp, p ∈ N,
such that for all k and at every point x ∈ X the following bounds are
satisfied:

|sk| ≤ c0, |∇psk|gk
≤ cp, |∇p−1∂sk|gk

≤ cpk
−1/2, p ≥ 1,(3.8)
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where the norms of the derivatives are evaluated with respect to the
metrics gk.

The previous definition embraces the notion of asympotically J-
holomorphic sequence of sections used in Auroux’s work [2]-[3]. In fact,
if X is a symplectic manifold (M,ω) of integer class, we shall consider
D = TM and an almost complex structure J on M compatible with ω.
The metric g will be the metric defined by the almost complex and the
symplectic structures by g(·, ·) = ω(·, J ·). The rescaled metrics gk will
be now kg. Donaldson considered the family of complex line bundles
Ek = L⊗k →M where L→M is the prequantizable line bundle whose
first chern class is [ω]/2π carrying the connection ∇ whose curvature
is −iω and Auroux extended the discussion to the family of complex
bundles Ek = E⊗L⊗k, where E is an hermitian rank r bundle over M .
Then a sequence of asymptotically (D, J)-holomorphic sections with D
and J as above will be simply called asymptotically J-holomorphic.

Moreover, in this paper we will also be concerned with the situation
where X is an exact contact manifold (C, θ). Now, the subbundle D
will be the contact distribution Ker θ and g will be a contact metric
on C. Hence the rescaled metrics gk will have the form gk = kg =
kgD + kθ ⊗ θ. We shall consider the prequantizable line bundle L over
C with connection ∇ whose curvature is −idθ and the family of bundles
Ek = L⊗k, or Ek = E ⊗ L⊗k. In this situation a sequence of (D, J)-
holomorphic sections will be called asymptotically contact-holomorphic.
More precisely:

Definition 3. Let E be a complex hermitian bundle over the exact
closed contact manifold (C, θ). Let ∇E be an hermitian connection on
E and ∇k the sequence of connections on Ek = E⊗L⊗k with curvature
form RE − ikdθ. Let J be a compatible almost complex structure on
the symplectic bundle D = Ker θ ⊂ TC. A sequence of sections sk of
Ek is called asymptotically contact-holomorphic if they verify

|sk| ≤ c0, |∇psk|gk
≤ cp, |∇p−1∂sk|gk

≤ cpk
−1/2, p ≥ 1,(3.9)

for some family of constants cp, where the norms of the derivatives are
evaluated with respect to the rescaled contact metrics gk.

If we construct a sequence of asymptotically contact-holomorphic
sections (or of asymptotically J-holomorphic sections) such that |∇Dsk|
is uniformly bounded below when sk = 0, it is obvious from Lemma 4
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that the zero sets Wk of sections sk for large k will be smooth con-
tact submanifolds (resp. symplectic submanifolds). Thus to guarantee
that the zero sets of the sections sk are contact submanifolds (or sym-
plectic submanifolds in the symplectic category), we need to require a
transversality property.

Definition 4. Let s be a section of a complex vector bundle E
over the Riemannian manifold X with distribution D, and η > 0. The
section s is said to be η-transverse to 0 along D if, at any point x ∈ X
where |s(x)| < η, the covariant derivative restricted to D, ∇Ds : Dx ⊂
TxX → Ex, is surjective and has a right inverse of norm less than η−1.

We will say that a sequence sk of sections of a family of bundles Ek

is asymptotically η-transverse to zero along D, if sk is η-transverse to 0
along D for k large enough.

We will often say simply that sk is transverse to zero along D if
such η does exist. In the symplectic case, we will say for short that
sk is transverse to zero and in the contact case we will say that sk is
transverse to zero along the contact distribution or we will omit the
later if there is no risk of confusion.

We will obtain immediately the following:

Lemma 5. Let sk be a sequence of asymptotically J-holomorphic
sections transverse to zero of the family of vector bundles Ek over the
symplectic manifold M . Then, for k large enough, the zero set Wk of
sk is a symplectic submanifold of M .

Analogously, in the contact case, let sk be a sequence of asympto-
tically contact-holomorphic sections of the vector bundles Ek over the
contact manifold (C, θ) such that they are transverse to zero. Then, for
large enough k, the zero set Wk of sk is a contact submanifold of C.

Proof. The first statement is the starting point in the work of Don-
aldson and Auroux to construct symplectic submanifolds. The second
statement is obvious from Lemma 2 and Lemma 3. q.e.d.

3.2 Results

The theorem we will prove can thus be stated as follows:

Theorem 2. Let (C, θ) be a closed exact contact manifold and E
a rank r complex bundle over C. There exists a sequence sk of asymp-
totically contact-holomorphic sections transverse to 0 of the bundles
Ek = E ⊗ L⊗k where L is the trivial line bundle over C.
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The similar result in the symplectic category, that constitutes the
main result in [2], can be stated as follows.

Theorem 3. Let (M,ω) be a closed symplectic manifold with sym-
plectic form of integer class and E a rank r complex bundle over M .
There exists a sequence of asymptotically J-holomorphic sections trans-
verse to 0 of the bundles Ek = E ⊗ L⊗k where L is the prequantizable
line bundle over M .

The strategy to prove Theorems 2 and 3 will be to start with a
given family of asymptotically contact-holomorphic sections sk, (or J-
holomorphic in the symplectic case) for instance sk = 0, and perturb
them in order to obtain transversality to 0. That this can be done in
the symplectic category is the content of the following result.

Theorem 4 ([2]). Let E be a rank r complex bundle over the
closed symplectic manifold M . Let Jt, t ∈ [0, 1], be a continuous family
of compatible almost complex structures. Let ε > 0 and sk,t be a family
of sequences of asymptotically Jt-holomorphic sections on E⊗L⊗k such
that they and their derivatives depend continuously on t. Then, there
exist a real number η > 0 (depending on ε, M , sk,t and their deriva-
tives), and a family of asymptotically Jt-holomorpic sequences σk,t, such
that:

i) σk,t and their derivatives depend continuously on t.

ii) For k large enough we have, |σk,t − sk,t|C1,gk
< ε.

iii) σk,t is η-transverse to 0.

The proof of the theorem is based in three main ingredients: ex-
istence of localized sections, local transversality with estimates and a
globalization process. This discussion is carried out in full detail in [2]
and [3] and we will not repeat it here.

Remark. Auroux’ techniques can be easily extended to symplec-
tic manifolds with contact boundary. However, we cannot keep the iso-
topy results if the manifold has boundary. The main obstacle, roughly
speaking, is that we cannot assure that the constructed isotopy does
not cross the border. This phenomenom will be also understood locally
afterwards.

In the contact category, we can proceed similarly as the following
theorem states.
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Theorem 5. Let ε > 0 and let sk be a sequence of asymptotically
contact-holomorphic sections of the bundles E ⊗ L⊗k over the closed
contact manifold C. Then there exists a real number η > 0 (depending
on ε, sk and their derivatives), and a sequence of asymptotically contact-
holomorphic sections σk of E ⊗ L⊗k such that

|sk − σk|C0,gk
≤ ε,

and σk is η-transverse to 0.

It is clear that Theorem 5 implies Theorem 2 and the first half of
the proof of the main Theorem 1 will be finished.

This perturbation theorem is the analogue of Theorem 2 in [2], which
implies Theorem 3 above, for symplectic manifolds. Notice that in such
case, the theorem was proved for families of sequences parametrized by
t ∈ [0, 1]. This extension does not seem possible in the contact category
as we will see later. This is not the only important difference between
the symplectic and the contact case. In the symplectic category the
perturbed sequence σk can be chosen arbitrarily close to the initial in
C1-norm but this will not be the case in the contact case. We only obtain
small C0 perturbations, however we will show that we can construct
perturbed sequences satisfying the required transversality property C1-
close to the unperturbed one sk, in the D directions. This will be made
more precise later on.

There is not a straightforward relationship between the contact and
symplectic situations. It is possible to define asymptotically contact-
holomorphic sequences with different bounds in the Reeb directions,
however we define it in this way to be able to compare the contact and
symplectic sequences in forthcoming papers.

Theorem 5 will be proved in detail in Section 4. We will see that, in
spite of the deep resemblance between the symplectic and the contact
category, the proof of Theorem 5 will require a thorough reelaboration
of the arguments in [4] and [2].

4. An extension of Donaldson-Auroux theory to exact
contact manifolds

As we mentioned already, there are three main ingredients to prove
the central Theorems 5 and 2. The first one is the existence of local-
ized asymptotically contact-holomorphic sections. The second one is a
transversality theorem with estimates and the third and last one, is a
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globalization process. We will devote the next three sections to discuss
them. We adapt the discussion in [2] to the contact category.

We say that a real number appearing in the statement or along
the proof of the results to follow is a universal constant if it depends
exclusively on the geometry of the manifold. Also we will say that a
polynomial is a universal polynomial if depends only on the geometry
of the manifold.

4.1 The local theory

As we have noticed before, to put up Donaldson’s construction we need
to have localized sections whose behaviour under scaling we control
adequately. The precise notion of localization we will need is given by
the following definition.

Definition 5. A section sk of a bundle Ek → X has Gaussian
decay in Cr-norm away from a point x ∈ X if there exist a polynomial
P and a constant λ > 0 such that for all y ∈ X, |sk(y)|, |∇ksk(y)|gk

, ...
|∇r

ksk(y)|gk
, are all bounded by P (dk(x, y)) exp(−λdk(x, y)2).

The Gaussian decay of a family of sections sk are said to be uniform
if there exists P , λ such that the bounds hold for all sections of the
family independent of k and of the point x at which the decay occurs
for a given section, (i.e., if P and λ are universal).

The first result we will prove is the existence of sequences of asymp-
totically contact-holomorphic sections with uniform Gaussian decay in
C2-norm for the bundles L⊗k over a contact manifold C. To set up this
result we use Donaldson’s construction as summarized in the following
lemma which is a particular instance of Lemma 3 in [2].

Lemma 6. Let (M,ω) be a symplectic manifold with symplectic
form of integer class and L the prequantizable line bundle with first
Chern class c1(L) = [ω]/2π. Let J be a compatible almost complex
structure in M , which determines a family of metrics gk = kω(·, J ·).
Then there exists a constant cs > 0 such that given any x ∈ M , there
exist sections sk,x of L⊗k over X with the following properties: the
sections sk,x are asymptotically J-holomorphic; the bound |sk,x| ≥ cs
holds over the ball of gk-radius 10 around x; and finally, sk,x has unifrom
Gaussian decay in C2-norm away from x.

The proof in the contact case is now a direct corollary:

Lemma 7. Let (C, θ) be a closed contact manifold. There exists
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a universal constant cs > 0, such that given any point x ∈ C, there
exists a sequence of asymptotically contact-holomorphic sections σk,x of
L⊗k → C satisfying |σk,x| ≥ cs at every y in a ball of gk-radius 10
centered at x and the sections σk,x have uniform Gaussian decay away
from x in C2-norm.

Proof. We consider (C, θ) embedded in the symplectized manifold
SD(C) as the graph of θ, which we denote as above by Ĉ. Thus the
prequantizable bundle of the symplectization restricts to C as the pre-
quantizable bundle L. Moreover the almost complex structure on D
can be extended to a contact type almost complex structure Ĵ . The
sequence of metrics gk on C are the restriction of the metrics kω̂(·, Ĵ ·)
to Ĉ � C. So given a point x ∈ C we obtain a sequence of sections ŝk,x

in SD(C) with uniform Gaussian decay in C2-norm away from x. Obvi-
ously the restriction σk,x of ŝk,x to Ĉ satisfies all the required properties.

q.e.d.

Now we can construct the contact analogue of the J-holomorphic
global sections built by Donaldson. We simply globalize the construction
to arrive to the construction of a section sk =

∑
j wjσj , |wj | ≤ 1, where

σj = σk,xj
denotes a localized section around the point xj and xj are the

centers of a finite covering by Darboux charts of C, where the distance
between centers is bounded below by a fixed constant.

Lemma 8. For any choice of coefficients wj such that |wj | ≤ 1, the
section sk satisfies:

|sk| ≤ c, |∂sk|gk
≤ ck−1/2, |∇∂sk|gk

≤ ck−1/2,

|∇sk|gk
< c, |∇∇sk|gk

< c,

everywhere on C.

In Subsection 4.3 we will precise this result to achieve transversality
to 0 in the sequence.

We shall describe now the local model we are going to work with.
Let x be a point in the contact manifold C. Using the contact Dar-
boux theorem, cfr. [1], we can find a local chart ϕ : U → Ux, where
U = B2n+1(r) is an open ball of R

2n+1 of radius r, Ux is an open neigh-
borhood of x, ϕ(0) = x, and such that ϕ∗θ = θ0 = ds + xidyi with
(xi, yi, s) natural coordinates on R

2n+1. It is obvious that scaling the
chart ϕ by a factor ρ−1 we obtain a new chart ϕρ on R

2n+1 that trans-
forms the contact form kθ in k(ρ−1ds + ρ−2xidyi). Hence, if ρ = k1/2,
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then the contact form kθ becomes θρ = ϕ∗
ρ(kθ) = k1/2ds + xidyi. We

will call such trivialization a ρ-Darboux chart. It is important to notice
that the distribution Ker θk1/2 tends to the trivial horizontal distribu-
tion R

2n ×{0} when k goes to ∞ in a ball of fixed radius in R
2n+1. We

will formalize this idea with the folowing definitions:

Definition 6. The maximum angle ∠M between 2m-dimensional
subspaces U, V in R

n is defined as:

∠M (U, V ) = maxu∈U{∠(u, V )}.
Definition 7. A sequence of contact distributions Dk in a set V ⊂

R
2n+1, r > 0, is c-asymptotically flat if

∠M (Dk(0), Dk(y)) < ck−1/2, ∀y ∈ V.

The sequence Dk is said to be asymptotically flat if it is c-asymptotically
flat for some c > 0.

Obviously the distributions associated to the sequence of contact
forms θk1/2 are asymptotically flat in any ball in R

2n+1.
Restricting the symplectic bundle D to Ux and using the natural

identifications provided by the chart ϕ, the chosen compatible almost
complex structure J define a map:

J̃ : U ⊂ R
2n+1 → End(D0),

with D0 = Ker θ0, and J̃2 = −I. But there is a natural complex struc-
ture J̃0 in the contact distribution on R

2n+1 which is obtained from the
standard complex structure J0 in R

2n = C
n splitting R

2n+1 = R
2n ×R,

identifying the factor R
2n with C

n, and lifting J0 to the canonical con-
tact distribution D0 by the vertical projection R

2n+1 → R
2n along the s

axis in R
2n+1. Notice that J̃0 is well defined because the contact distri-

bution D0 is not perpendicular to the horizontal hyperplane R
2n ×{ 0 }

(in fact is tangent at 0). We shall denote the Cauchy-Riemann opera-
tors defined with respect to the almost complex structures J̃ and J̃0 by
∂ and ∂0 respectively.

All the precedent considerations can be applied also to the contact
manifold (B2n+1(r), Dk), where Dk is asymptotically flat. We can simi-
larly define a canonical complex structure J̃k inDk by vertical projection
of the canonical one in R

2n ×{0}, we can define ∂ and ∂ operators, etc.
The best holomorphic approximation that we can obtain is expressed

in the following lemma which is similar to Lemma 2 in [2]:
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Lemma 9. Near any point x of a contact manifold C, there exists
a contact Darboux chart ϕ : U ∼= Bgk

(x, r) → V ⊂ R
2n+1, r > 0, such

that ϕ satisfies |∇ϕ| = O(1), |∇∇ϕ| = O(1), on a ball of universal
radius r around x ∈ C, and the restriction of Tϕ : TC → TV to D fails
to be (J, J0)-holomorphic, J0 the standard complex structure in D0, by
an amount that vanishes at x and grows no faster than the distance to
the origin, |∂ϕ(y)| = O(|y|), and |∇∂ϕ| = O(1). Finally for the inverse
map ϕ−1 : V → Bgk

(x, r) ⊂ C the following bounds are verified in a
universal way:

|y|2 = O(dg(ϕ−1(x), ϕ−1(y))), |∇ϕ−1| = O(1), |∇∇ϕ−1| = O(1).

The map ϕ will be called a nearly contact-holomorphic Darboux chart
with respect to the almost complex structure J on D and the canonical
complex structure J̃0 on R

2n.

Proof. We choose a Darboux chart at x, ϕ̂ : Bgk
(x, r) → V ⊂ R

2n+1

verifying ϕ̂∗θ = ds + xdy. The constant c can be chosen in a universal
way because of the compactness of C. We need to assure also that
the standard complex structure J0 in D0 ⊂ R

2n+1 and ϕ̂∗J coincide
at ϕ̂(x) = 0. We follow the proof of the contact Darboux Theorem in
Section H of Appendix 3 in [1]. The proof uses the local immersion
in the symplectization through the graph of the local form θ, there we
use the symplectic Darboux Theorem to obtain Darboux coordinates
ϕ̂(y) = (p0, . . . , pn, q0, . . . , qn).

Following [1] we can assure that the contact manifold is locally given
by the equation p0 = 0. Notice that in general

Dx = ϕ̂∗D(x) �= {p0 = q0 = 0}.

But we can choose a standard symplectic basis (e1, . . . , en, f1, . . . , fn)
in Dx. Also we can choose a standard symplectic basis (e0, f0) in D⊥

x ,
assuring that p0(e0) = 0. The orthogonal operation is made with re-
spect to the symplectic form in the symplectization. Now, we define the
transformation:

η : R
2n+2 → R

2n+2

∂

∂pi
→ ei

∂

∂qi
→ fi.
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The map η is symplectic and if we compose η ◦ ϕ̂ we obtain that, in
these new Darboux coordinates, C is again locally defined by the equa-
tion p0 = 0 and also Dx is complex, in fact Dx = {p0 = q0 = 0}.
Finally performing a symplectic transformation in Dx we can assure
that J = (J0)|D. From this point we follow the proof of [1] and it is
easy to check that the constructed contact Darboux chart verifies that
ϕ∗(J0)(x) = J(x) at the point x. We cannot assure more because the
two complex structures are related through a, in general nonvanishing,
Nijenhuis type tensor at the origin. By the compactness of C the bounds
in the derivatives of ϕ are easy to check. The last inequalities in the
statement of the lemma are assured by the fact that ϕ is a isometry at
x and by the compactness of C. Now following the discussion in Section
2 of [4] it is easy to verify that the bounds in the antiholomorphic parts
are correct. q.e.d.

We shall choose the connection ∇ on L defined by −iθ whose curva-
ture is precisely −idθ. Now we trivialize this line bundle using a local
section σ0 in a neighborhood of a point x described by a nearly contact-
holomorphic contact chart as in Lemma 9. We can always choose, per-
haps after a gauge transformation, a trivializing section σ0 in U ⊂ R

2n+1

such that the operator ∂ takes the following form on sections σ = fσ0,

∂(fσ0) = (∂f +
1
4

∑
α

(zα(dzα)(0,1) − zα(dzα)(0,1))f)σ0,(4.10)

where we have used the identification R
2n ∼= C

n provided by zα =
xα + iyα and R

2n+1 ∼= C
n × R with coordinates (z, s). The ∂ operator

acting on f in formula (4.10) is defined using the J̃ complex structure.
However using the J̃0 structure we obtain the operator ∂0 defined as:

∂0(fσ0) = (∂0f +
1
4

∑
α

zαdzαf)σ0.

Along the proof of the globalization process we will need detailed
information on the local structure of the submanifolds Wk = s−1

k (0).
The remaining of this section is devoted to find such description.

Suppose now that we have found a sequence of asymptotically contact-
holomorphic sections sk of the rank r complex vector bundles Ek which
are η-transverse to 0. By the η-transversality property, their zero sets
Wk are contact submanifolds for k large enough. Moreover, we have
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that |∇∇sk| < c′, so given m ∈ N there exists a constant c = c(m) such
that ∀y ∈ Bgk

(x, c),

|∇sk(x) −∇sk(y)| < η/m.(4.11)

This implies thatWk
⋂
Bgk

(x, c) is diffeomorphic to a ball if we choosem
large enough, and in fact C1-close to the image of the tangent space at x
through a nearly J-holomorphic chart. Namely using a nearly contact-
holomorphic chart we interpret Wk as a submanifold in R

2n+1. Also,
the tangent space of Wk at 0 ∈ R

2n+1 can be interpreted as a subpace
in R

2n+1. We say that, because of Equation (4.11) these submanifolds
can be made arbitrarily C1-close, by taking c small enough.

Notice, now, that the rescaled metric gk and the rescaled metric
gW
k , defined in the contact manifold Wk using any compatible almost

complex structure Jk on DW
k = D

⋂
TWk, do not coincide along Wk.

Moreover, by the bounds (3.9) on the asymptotic contact-holomorphic
sequence sk we can choose an almost holomorphic structure Jk onDW

k ⊂
Wk such that J|DW

k
− Jk : DW

k ⊂ TWk → D ⊂ TC verifies that |J|DW
k

−
Jk| = O(k−1/2) with respect to the gk metric in C. Notice, however,
that the Reeb vector field of C does not coincide with the one defined in
Wk and so we can not compare gk and gW

k , even in this case. However,
in the proof of the following proposition we will avoid this comparison,
using the η-transversality of the sequence. It is possible to establish such
relation, giving an alternative proof of Proposition 1. Let us trivialize
Wk in the following form:

Proposition 1. There exist real numbers c, ĉ > 0 independent of
k ∈ N and x ∈ C such that for any point x ∈ Wk, the set BW (c) =
Bgk

(x, c)
⋂
Wk, the restriction to Wk of the ball of gk-radius c around

x, is the domain of a contact chart ψk : BW (c) → B̂ = B2(n−r)+1(2),
where B̂ carries an asymptotically flat contact structure θW

k . Moreover,
ψk verifies the following estimates over B̂:

|∇ψk| = O(1), |∇∇ψk| = O(1).

Also BW (ĉ) ⊂ ψ−1
k (B2(n−r)+1(1)). Finally ψ−1

k verifies the following
bounds:

|∇ψ−1
k | = O(1), |∇∇ψ−1

k | = O(1),

|∂ψ−1
k | = O(k−1/2), |∇∂ψ−1

k | = O(k−1/2).
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All the norms are computed with respect to the gk metric in C, restricted
to Wk, and the standard euclidean metric in R

2(n−r)+1. The ∂ and ∇∂
operators are defined with respect to the J fixed on C and to the standard
Ĵk associated to θW

k in R
2(n−r)+1. Finally, the result also applies when

Wk = C.

Before starting the proof we pick two simple results from [13]. First
we give the following

Definition 8. The minimum angle between two nonzero subspaces
U, V of R

n is defined as follows:

• If dimU + dimV < n then ∠m(U, V ) = 0.

• If their intersection is not transversal then ∠m(U, V ) = 0.

• If their intersection is transversal then let W be their intersection.
Define Uc as the orthogonal subspace in U to W , and Vc in the
same way. Then ∠m(U, V ) = minu∈Uc−{0}{∠(u, Vc)} ∈ [0, π/2].

The result we will need to use is

Lemma 10 (Proposition 3.7 in [13]). Given ε > 0 and U ∈
Gr(m,n), V ∈ Gr(r, n) subspaces satisfying that ∠m(U, V ) > ε, then
there are γ0 > 0 and a constant C, depending only on ε, such that for
any γ < γ0, if U ′ ∈ Gr(m,n) and V ′ ∈ Gr(r, n) verify that

∠M (U,U ′) < γ, ∠M (V, V ′) < γ,

then U ′ and V ′ intersect transversally and ∠M (U
⋂
V,U ′ ⋂V ′) < Cγ.

Now, let us start the proof.

Proof of Proposition 1. We choose a nearly J-holomorphic chart
ϕx on a neighborhood of x ∈ C as given by Lemma 9. Obviously for k
large enough ϕx is well-defined in the ball of gk-radius c, for any fixed
c > 0. We scale R

2n+1 by a factor k1/2 to obtain a new nearly contact-
holomorphic chart ϕk, which is now a k1/2-Darboux chart. If Wk = C
we have finished because by Lemma 9, ψk = ϕk verifies all the required
properties: it is an isometry at x, and the behaviour of its derivatives
can be controlled by universal constants in the ball.

Recall that it is easy to assure, perhaps shrinkig c, that:

3
4
gk(v, w) ≤ g((ϕk)∗v, (ϕk)∗w) ≤ 4

3
gk(v, w),

∀v, w ∈ TxBW (c)),∀x ∈ BW (c).
(4.12)
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Now we take the vector space Lk = (ϕk)∗(x)(Wk). We choose an uni-
tary basis (f1, . . . , fn−r) in (ϕk)∗(D

⋂
Wk) ⊂ Dk1/2(0) = Kerθk1/2(0).

We complete it to a basis in Dk1/2(0) by choosing an unitary basis
(fn−r+1, . . . , fn) in the orthogonal complementary subspace. The basis
(f1, if1, . . . , fn, ifn) is orthonormal. We choose f2n+1 ∈ (ϕk)∗(Wk), an
unitary vector in the orthogonal toDW

k (0), to complete a basis in R
2n+1.

Recall now that in R
2n+1 = C

n × R the standard basis (e1, . . . , e2n+1)
verifies

e2j = i · e2j−1, j = 1, . . . , n.

So we define an application λ : R
2n+1 → R

2n+1 as:

λ(fj) = e2j−1, j = 1, . . . , n.
λ(i · fj) = e2j , j = 1, . . . , n.
λ(f2n+1) = e2n+1.

By the η-transversality of the sequence and its asymptotic contact-
holomorphic bounds we can verify that:

d1g(v, w) ≤ g(λv, λw) ≤ d2g(v, w), ∀v, w ∈ R
2n+1,(4.13)

where d1, d2 > 0. We leave this comprobation to the reader, which
basically depends on checking that f2n+1 has an angle greater that ε > 0
with respect to Dk(0). Now, we call Φk = λ ◦ ϕk. We push-forward
θk1/2 through λ to obtain θ′

k1/2 in R
2n+1. This contact form is, again,

asymptotically flat in every ball in R
2n+1 by the inequalities (4.13). The

map Φk, obviously, verifies:

c1gk(v, w) ≤ g((Φk)∗v, (Φk)∗w) ≤ c2gk(v, w),
∀v, w ∈ TBgk

(x, c),
(4.14)

where c1, c2 > 0 are fixed constants. Also, Φk is contact. More-
over, it verifies the same boundings in the antiholomorphic derivatives
that ϕk, changing the universal constants. We decompose R

2n+1 =
R

2(n−r)+1 ⊕ R
2r, where R

2(n−r)+1 = 〈e1, . . . , e2(n−r), e2n+1〉 and R
2r =

〈e2(n−r)+1, . . . , e2n〉
Define ŝk = Φ−1

k ◦ sk. Now, recall that shrinking c we can make
Wk topologically trivial in the ball Bgk

(x, c). Even more its image by
Φk is C1-close to R

2(n−r)+1. So there exists an unique application τk :
R

2(n−r)+1 → R
2r defined by:

ŝk(x, τk(x)) = 0(4.15)
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Notice that τk(0) = 0 and ∇τk(0) = O(k−1/2). From the former con-
siderations, defining ψ−1

k (x) = Φ−1
k (x, τk(x)) we obtain

d1gk(v, w) ≤ g((ψk)∗v, (ψk)∗w) ≤ d2gk(v, w),
∀v, w ∈ TBgk

(x, c),
(4.16)

where d1, d2 > 0 are fixed constants. From inequalities (4.16) it is easy
to check the bounds in the derivatives of ψk and ψ−1

k in the statement of
the proposition. To do that we define pr−1

k (x) = (x, τk(x)). Also define
θW
k = (pr−1

k )∗θ′
k1/2 . Obviously ψk is a contact chart. Our objective now

is to assure that θW
k is asymptotically flat in V = ψk(Bgk

(x, c)
⋂
Wk).

We can assure that V ⊂ R2(n−r)+1 is contact, perhaps shrinking c, with
respect to the restriction θ′V of θ′

k1/2 .
We need more precision to control the behaviour of θW

k . Recall that
Φk(Wk) is defined by the zero set of ŝk. Define now:

Lsk = ∂kŝk(0) + ∇⊥
k ŝk(0).

With the usual identifications Lsk : R
2n+1 → E ⊗ L⊗k. We know that

Ker Lsk = 〈e1, . . . , e2(n−r), e2n+1〉 = R
2(n−r). Shrinking c indepen-

dently of k we can assure that ŝk is η′-transverse along D′
k = Kerθ′

k1/2

and Lsk is η′-transverse along D′
k in V , η′ > 0. D′

k is asymptotically flat
in V , so given any 0 < t < 1 we know that ŝk and Lsk are tη′-transverse
to the horizontal distribution Dh = 〈e1, . . . , e2n〉 ⊂ R

2n+1, when k is
large enough. We claim tha the spaces Dh, D′

k and Wk are in the hy-
pothesis of Lemma 10. First, it is clear that ∠M (Dh, D

′
k) = O(k−1/2).

Second, Wk is the zero set of ŝk and ŝk is transverse to D′
k; this inmedi-

ately implies that ∠m(Wk, D
′
k) ≥ ε (ε not depending on k). We leave

the check of this property to the careful reader. Therefore, applying
Lemma 10, we obtain:

∠M (Dh

⋂
Wk, D

′
k

⋂
Wk) < c′k−1/2.(4.17)

The following step is the observation that

(prk)∗(Dh

⋂
Wk) = Dh

⋂
KerLsk

and
(prk)∗(D′

k

⋂
Wk) = KerθW

k .

So, using Equations (4.17) and:

d′1〈v, w〉 ≤ 〈(prk)∗ v, (prk)∗ w〉 ≤ d′2〈v, w〉,
∀v, w ∈ TΦk(Bgk

(x, c)),
(4.18)
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we obtain that θW
k is asymptotically flat.

To finish we have only to check the antiholomorphic bounds. A
direct argument shows that:

|∂Φk| = O(k−1/2), |∇∂Φk| = O(k−1/2).(4.19)

To bound the derivatives of τk : R
2(n−r)+1 → R

2r we differenciate
Equation (4.15). We will compute the derivatives assuming that R

2r

is equipped with the standard complex structure. Then the antiholo-
morphic derivatives are the natural ones. We claim that the obtained
bounds are:

|∂τk| = O(k−1/2), |∇∂τk| = O(k−1/2).(4.20)

First, we check that for any vector v in R
2r = 〈e2(n−r)+1, . . . , e2n〉 we

have got |∇ŝk(v)| > c′′, c′′ > 0 independent of k (this property is only
the η′-transversality of ŝk). With this observation and the asymptotic
holomorphic bounds of ŝk, it is easy to set up the inequalities (4.20).
Using Equation (4.17) we finally obtain that:

|∂pr−1
k | = O(k−1/2), |∇∂pr−1

k | = O(k−1/2).

Now, the chain rule gives us the desired estimates. q.e.d.

4.2 Transversality with estimates

Now, as in Donaldson’s original paper, we have reached the heart of
the problem, as far as we have to show that the sections we construct
are such that |∂s| > ε > 0 on the zero set of s. The main technical
tool to prove it is a finer notion of transversality with estimates than
the one used in [4] and which was based on results on the complexity
of semialgebraic sets [17]. What we will need is a generalization of the
notion of parametrized controlled transversality for families of functions,
the one used in [2] and [3].

Theorem 6. Let fk : B+ × [0, 1] → C be a sequence of functions
where B+ is the ball of radius 11/10 in C

n and B+ × [0, 1] is equipped
with a sequence of contact forms θ(k) whose distributions are asympto-
tically flat. Let 0 < δ < 1/2 be a constant and let σ = δ(log(δ−1))−p,
where p is a universal integer. Assume that fk satisfies the following
bounds for k large enough over B+ × [0, 1]

|fk| ≤ 1, |∂0fk| ≤ σ, |∇∂0fk| ≤ σ,
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where ∂0 is the (0, 1) operator defined in D(k) = Ker θ(k) by the com-
plex structure J̃0. Then for k large enough there exists a smooth curve
wk : [0, 1] → C such that |wk| < δ and the function fk − wk is σ-
transverse to zero. Moreover if we have |∂fk/∂s| < 1 and |∂∇fk/∂s| < 1
then we can choose wk and a fixed function Φ : [0, 1/2] → R such that
|diwk/ds

i| < Φ(δ), (i = 1, 2), djwk/ds
j(0) = 0 and djwk/ds

j(1) = 0,
∀j ∈ N, where c is a universal constant.

Proof. Recall that the notion of η-transverse to 0 involves the restric-
tion of ∇fk to the contact distribution Dk, Definition 4. We obtain that
for k large enough the distribution D(k) = Ker θ(k) and the horizon-
tal distribution Dh = C

n × {0} have maximum angle less than dk−1/2,
d > 0 fixed, so we have that the derivatives in the Dk and in the Dh

directions are at distance O(k−1/2) because |∂fk/∂s| = O(1) (even after
perturbing with wk). But then δ(log(δ−1))−p-transversality in Dh di-
rection assures δ(log(δ−1))−p′-transversality in Dk direction with p′ > p
for k large enough. The proof is finished once we prove the following
lemma. q.e.d.

Lemma 11. Let f : B+ × [0, 1] → C be a complex valued function,
where B+ is the ball of radius 11/10 in C

n. Let 0 < δ < 1/2 be a
constant and let σ = δ(log(δ−1))−p, where p is a suitable fixed universal
integer. Assume that fs satisfies the following bounds over B+ × [0, 1]

|fs| ≤ 1, |∂fs| ≤ σ, |∇∂fs| ≤ σ.

Then there exists a smooth curve w : [0, 1] → C such that |w| < δ and the
function fs−w(s) is σ-transverse to zero over the unit ball B. Moreover
if we have |∂fs/∂s| < 1 and |∂∇fs/∂s| < 1 then we can choose w and
a fixed function Φ : [0, 1/2] → R such that |diw/dsi| < Φ(δ) (i = 1, 2),
djw/dsj(0) = 0 and djw/dsj(1) = 0 for all j, where c is a universal
constant.

Proof. The lemma is a generalization of Proposition 3 in [2]. We
have to obtain the bounds on the derivatives of the curve w. To be able
to show that we will review Auroux’s original proof.

The first step in the proof is to approximate fs by an holomorphic
function f̃s such that |fs − f̃s|B,C1 < cσ (see [4]). This process does
not hold in B+ and we need to restrict f to the unit ball. Then we ap-
proximate f̃s by a polynomial. We can obtain polynomials gs such that
|gs − f̂s|B,C1 < cσ and their degree d can be estimated by O(log σ−1).
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Following the notation in [2] we denote by Yhs,ε the set of points
x ∈ B such that |∇hs(x)| < ε. The ε-neighborhood of hs(Yhs,ε) will be
denoted by Zhs,ε. Our objective will be to bound the area of the set
Zfs,σ. The first observation is that thanks to the C1 closedness of fs

and gs, i.e., |fs − gs|C1 < cσ, we can do it for Zgs,(c+1)σ. In fact we
obtain that Zfs,σ ⊂ Zgs,(c+1)σ. Now we use a result on the complexity
of semialgebraic real sets to control Ygs,(c+1)σ.

Lemma 12 (Proposition 25 of [4]). Let f : R
m → R be a polyno-

mial of degree d, and let S(θ) ⊂ R
m be the subset S(θ) = {x ∈ R

m :
|x| ≤ 1, |F (x)| ≤ 1+θ }. Then for arbitrarily small θ > 0 there exist fixed
constants C and ν depending only on the dimension m such that S(0)
may be decomposed into pieces S(0) =

⋃
j∈J Sj, where card(J) ≤ Cdν ,

in such way that any pair of points in the same piece Sj can be joined
by a path in S(θ) of length less than Cdν .

Therefore the set Ygs,(c+1)σ can be decomposed in P (d) connected
subsets each one of path-length at most P (d) (P is a fixed polynomial).
The image of each component is included in a ball Bj of radius 2(c +
1)σP (d). So Zgs,(c+1)σ is contained in the union of P (d) balls of radius
3(c + 1)σP (d). This set will be denoted by Z+

s (σ). Also, we define
the set DZ+

s (σ) as the union of the same P (d) balls, but with radius
6(c+1)σP (d), namely with double radius. The complementary of DZ+

s

in the ball of radius δ will be denoted by Gs. If we choose δ verifying
πδ2 > P (d)π(3(c + 1)P (d))2σ2, i.e., δ > Q(d)σ for a fixed polynomial
Q, we obtain that Gs is not empty. Therefore we will have shown that
there exists w : [0, 1] → C verifying the sought property. We have to put
some conditions to assure the continuity and to bound the derivatives
of the choice. For this we will study the connected components of Gs.
We are going to show that they have their area bounded by R(d)σ2 for
certain universal polynomial R, except one of them which has area very
big.

First we suppose that a given component does not meet the bor-
der of the ball. Then its border is defined by the border of DZ+

s (σ).
Therefore the length of the border is less than P (d)2π6(c + 1)P (d)σ.
So the diameter of the component is less than half of this number and
the area is bounded by Q(d)σ2 for a certain universal polynomial Q. If
the component meets the border of the ball we need to be more careful.
Suppose we have two different components verifying this. We can build
a curve in DZ+

s (σ) separating the two components. The length of this
component can be bounded again by P ′(d)σ and so, one of the compo-
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nents has area bounded by Q(d)σ2 for a certain universal polinomial Q.
We have bounded the area of all the components, except perhaps one,
by R′(d)σ2. Remember that we have bounded the area of DZ+

s (σ) by
Q(d)σ2, thus we can choose a polynomial R greater than R′ and Q and
imposing πδ2 >> R(d)σ2 we obtain that the area of the big component
can be made arbitrarily large, i.e., bigger than 10R′(d)σ2 for instance.
This is the bound we find in [2] but we are going to demand that the
area of this component is greater than at least half of the total area,
for instance 3πδ2/5. This large component will be denoted by DV g

σ (s).
Obviously there will be a big component in the complementary of Z+

s (σ)
containing DV g

σ (s) which will be denoted V g
σ (s). Moreover there will be

a big component bounded by Zf(t),σ which will be denoted by Uf
σ (t).

So the existence of these large components is assured if we impose
δ > R(d)σ, for R a universal polynomial depending only on the dimen-
sion 2n. But recall that d = O(log σ−1), then we easily obtain that for
0 < δ < 1/2 there exists a positive integer p such that σ = δ(log(δ−1))−p

implies that δ > R(d)σ. We select this p for the statement of the lemma.
To finish the proof we would have to assure that Uf

σ (t) = U is path
connected. Auroux’s proof is based in the observation that

⋃
s{ s } ×

Zfs,σ is closed. Then it is easy to show that U is semicontinuous and
that implies that U is path connected. Once we have got a path on
Uf

σ (s) is easy to perturb it to get the desired result, but without a
precise bound on the derivatives.

We need to follow an alternative way to obtain the required bounds.
The important point is the following property:

x ∈ Uf
σ (s) ⇒ x ∈ Uf

σ−ε(s+ ε)(4.21)

To check it we will only have to prove that:

|fs − fs+ε|C1 < ε(4.22)

and as σ-transversality is C1-stable we have finished. To prove (4.22)
we use the following inequalities,

|fs(x) − fs+ε(x)| ≤ |f ′τ0(x)|ε,
|∇fs(x) −∇fs+ε(x)| ≤ |∂∇fτ1/∂s(x)|ε,

obtained as an application of the mean value theorem. But now using
the hypothesis |∂fs/∂s| < 1 and |∂∇fs/∂s| < 1 we obtain the desired
result.
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Now we use the fact that DV g
σ (t) has area greater than 3πδ2/5,

then DV g
σ (s1)

⋂
DV g

σ (s2) �= ∅ for any s1, s2 ∈ [0, 1]. We divide the
segment [0, 1] in subsegments of length σ. We choose w0 = H0(0) ∈
DV g

σ (0)
⋂
DV g

σ (σ) and we build a line-segment H0 by choosing H0(s) =
w0,∀s ∈ [0, σ]. Repeating the process we obtain in each subsegment a
function Hi : verifiying that:

1. Hi : [i · σ, (i+ 1) · σ] → B(0, δ),

2. Hi(tσ) = wi, i < t < i+ 1

3. wi ∈ DV g
σ (iσ)

⋂
DV g

σ ((i+ 1)σ).

Now we construct vertical smooth curves Vi connecting wi and wi+1

contained in DV g
σ ((i + 1)σ). We claim that the length of these curves

can be bounded by 3δ. To prove it we join wi and wi+1 by using the
straight segment Li : [0, 1] → B, Li(0) = wi and Li(1) = wi+1. If L
cuts Z+

(i+1)σ = S then LS = L
⋂
S = L[b1, c1]

⋃ · · ·⋃L[bl, cl]. Then,
we change each L[bk, ck] by a curve through the border of Z+

t joining
L(bl) and L(cl). Obviously the new curve has length less than 2δ plus
the total length of the border of Z+

t , but now recall that along the
proof we have bounded this last quantity by δ. Therefore perturbing
a little the curve to make it smooth we can assure that its length is
less than 3δ. We parametrize the vertical curves Vi by the arc length,
i.e., Vi : [0, length(Vi)] → DV g

σ ((i + 1)σ) and |dVi
dt | = 1. Moreover, if

we construct a curve only lying on V g
σ ((i + 1)σ) we can assure that its

curvature is less than c′(σ)−1, where c′ > 0 is a fixed constant. We will
choose the curves Vi with this additional property. We have found a
continuous curve T = H0

⋃
V0

⋃
H1 · · · joining V g

σ (0) with V g
σ (1). By

the property (4.21) T is contained in Uf
σ/2. We are going to perturb T

to bound the derivatives.
We select a smooth function β : [0, 1] → [0, 1] verifying:

β(x) =




0, x ∈ [0, 1/4],
0 < β(x) < 1, 1/4 < x < 3/4,
1, x ∈ [3/4, 1].

We compute |β|C2 = cb. We denote βi(x) = β(x) · length(Vi), which has
norm |βi|C2 < 3cbδ. Finally we define

w((i+ 1)σ + ε) = Vi

(
βi

(
1
σ

(
ε+

σ

2

)))
, |ε| ≤ σ/2.
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The application w is smooth and we obtain that |dw
dt | < 3cbδ/σ =

cδ/σ. Also |d2w
dt2

| < c′ 1
σ2 , because of the bounds in the curvature of the

curves Vi.
Finally we observe that |Vi(s) − wi(s)| < σ

2 , then it implies that
w(s) is σ/2 transverse to 0. We can find an integer p′ such that σ′ =
δ(log(δ−1))−p′ < σ/2 and so the proof is finished. q.e.d.

Remarks. 1. If we change the bounds in the derivatives in s di-
rection by |∂fs/∂s| < c0 and |∂∇fs/∂s| < c0 we obtain |∂iw(s)/∂si| <
c0Φ(δ) (i = 1, 2). We only have to change the application as f̂(s, x) =
f(s/c0, x) which verifies the hypothesis (except by the length of the
segment). Then we apply Lemma 11 to this function. The result
is reparametrized and is a solution of the problem with the expected
bounds.
2. An important observation is in order here. It is not possible in
general to obtain a similar result for families of sections and reproduce
Auroux’s results on isotopy in the contact setting. The main obstruction
to this is that the techniques used in proving the parametrized controlled
transversality theorem, Lemma 11, do not work for biparametric families
of functions as the following elementary example shows. Take the family
of functions fw = w, w ∈ B2(1) ⊂ C. To get transversality in this family
we have to avoid the zero value what is imposible because it would imply
that a cell retracts to its border.

Now we translate the result on transversality to the manifold setting,
for this we need to define a concept to control the different asymptotic
behaviour of the derivatives in the direction of the Reeb vector field and
the directions in the contact distribution D.

Definition 9. A sequence of asymptotically contact-holomorphic
sections sk of the bundles E ⊗ L⊗k has mixed C2 bounds (cD, cR) at a
point x if it verifies the following bounds:

|sk(x)| < cD, |∇Dsk(x)| < cD, |∇Rsk(x)| < cR,

|∂sk(x)| < cRk
−1/2, |∇D∇Dsk(x)| < cD,

|∇R∇sk(x)| < cR, |∇∂sk(x)| < cRk
−1/2.

The sequence has global mixed C2 bounds (cD, cR) if it has these mixed
bounds at every point.

An important property is that given two asymptotically contact-
holomorphic sequences sk and s′k with mixed C2 bounds (cD, cR) and
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(c′D, c
′
R) respectively then sk+s′k has mixed C2 bounds (cD+c′D, cR+c′R).

We can now prove the following lemma:

Lemma 13. Let C be a contact manifold and tk a sequence of
asymptotically contact-holomorphic sections of bundles E ⊗ L⊗k which
is η-transverse to 0. Also take a sequence of asymptotically contact-
holomorphic sections sk of L⊗k with mixed C2 bounds (cD, cR). Then
given x ∈Wk = Z(tk) and δ > 0 there exists a sequence of sections τk,x

of L⊗k and σ = δ(log(δ−1))−p (for some integer p > 0) verifying that:

1. τk,x has mixed C2 bounds

(cuδP (dk(x, y)) exp(−λdk(x, y)2), cucR
δ

σ
P (dk(x, y) exp(−λdk(x, y)2))

at any point y.

2. (sk +τk,x)|Wk
is σ-transverse in Bgk

(x, ĉ)
⋂
Wk for k large enough,

where λ and p are universal constants, P is a universal polynomial,
ĉ and cu are constants independent of k, x and δ.

We admit also the case Wk = C, i.e., there is no sequence tk.

Proof. We take a localized asymptotically contact-holomorphic sec-
tion σk,x as defined in Lemma 7. So in the ball Bgk

(x, c), σk,x has norm
greater than cs and we can define in that ball the representative func-
tion fk,x(y) = sk(y)/σk,x(y). We obtain that fk,x has global mixed C2

bounds (cucD, cucR).
We must notice that cu is a universal constant associated to σk,x that

exists thanks to the bounding of the derivates of sk and to the inferior
bound cs of σk,x. Notice also that even if we have not defined previously
the concept of global mixed C2 bounds for sequences of functions, the
definition is obvious.

Using an approximately holomorphic k1/2-Darboux trivialization chart
ψk of Wk provided by Proposition 1 we define a sequence of asympto-
tically contact-holomorphic functions f̂k,x on the ball of radius 2 in
R

2r+1. Using the universal constants provided by Proposition 1 we can
assure that f̂k,x has global mixed C2 bounds (c′cD, c′cR), where c′ is
a universal constant, for k large enough. Now we restrict f̂k,x to the
set B2r(1) × [−1, 1]. The sequence of functions f̂k,x in this set verify
the hypothesis of Theorem 6, so we can obtain a sequence of func-
tions wk : [−1, 1] → B such that f̂k,x(t, z) + wk(t) is η-transverse for
the distribution generated by θW

k for k large enough. We know that
|wk|C2 < c′′cR δ

σ and |wk| < δ (c′′ universal).
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Now we consider an approximately holomorphic chart

ϕ : Bgk
(x, dk1/2) → R

2n+1

at x, using Lemma 9, for the contact manifold (C, θ). The constant d is
universal as it is shown in Lemma 9. The ball B̂ is mapped by ψ−1

k into
the ball Bgk

(x, dk−1/2). Then we have, making the usual identifications,
a function wk defined on ϕ(ψ−1

k (B(0, 1) × [−1, 1])). By the bounds in
the derivatives of ψ−1

k obtained in Proposition 1 we know that |wk|C2 <
cucR

δ
σ and |wk|C0 = cuδ, where cu is independent of k and x. Also,

by Proposition 1, we know that Bgk
(x, ĉ)

⋂
Wk ⊂ ψ−1

k (B2(n−r)+1(1)) ⊂
ψ−1

k (B2(n−r)(1)× [−1, 1]). Therefore we have obtained transversality for
a radius ĉ > 0 independent of k and x. To finish we will extend the
definition of wk to all R

2n+1.
First, notice that in the case Wk = ∅, the Darboux chart ϕ is only

an extension of the Darboux chart ψk where we have obtained transver-
sality, so we can extend wk directly by making it constant along the
horizontal hyperplanes Dh, and giving it the value wk(−1) for t < −1
and wk(1) for t > 1.

Now consider the case Wk �= ∅. The basic idea will be similar as
before, but now notice that the horizontal distributions of the two triv-
ializations do not coincide, thus it is not possible to simply extend the
functions wk as we did for the empty case. We can however do it mod-
ifying slighty the function wk as explained in what follows.

The important point to consider here is that the angle1 between Dh

and TWk at the origin is bounded below in a universal way thanks to
the η-transversality of Wk. Moreover, the angle between Dh and TWk

at the points y of Wk is bounded below by a universal constant αu > 0,
because of the universal bounds in the first and second derivatives of tk
which guarantees us not only the triviality but also the C1 proximity
of Wk

⋂
B(x, c) with the tangent space of Wk at x (perhaps shrinking

c slightly in a universal way).
Now we denote by γ the integral curve defined by the Reeb vector

field of Wk passing through the origin of the Darboux chart, and then
we extend wk by making it constant along the horizontal hiperplanes
cutting γ. We denote by ŵk the extension of wk defined in this way. Now
notice that the horizontal integrable distributions Dh in B(0, dk1/2) ⊂
R

2n+1 and D̂h in B(0, 2) ⊂ R
2r+1 are within O(k−1/2) of the contact

1The angle between an hyperplane and a subspace is defined as the complementary
of the angle between the normal vector to the hyperplane and the subspace.
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distribution D. Thus in B2r(0, 1) × [−1, 1] we obtain that

|wk − ŵk|C2 = O(k−1/2).

Hence, the function f̂k,x+ŵk will be σ′-transverse where σ′ = δ(log δ−1)−p′

with p′ a universal constant greater than p, for k large enough.
Finally it is possible to check that the extension of wk verify the

following bounds in the derivatives:

|wk|C2 < cwcRΦ(δ),(4.23)

where cw is independent of k and x. Now we must extend wk to the
whole R

2n+1. The extension can be done simply by taking

wk(z, t) =
{
wk(z,−1), t ≤ −1.
wk(z, 1), t ≥ 1.

We also know by Theorem 6 that all the derivatives of wk are zero at
the border, so the performed extension is C∞. Also (4.23) is kept for
the extended function.

Finally we define hk = f̂k +wk and τk,x = wkσk,x. τk,x is well defined
globally because σk,x(y) = 0 if dk(x, y) > k1/4. We have to check that
τk,x has the mixed C2 bounds required in the statement of the lemma.
The following bounds are trivial:

|τk,x(y)| < CuδP (dk(x, y)) exp(−λdk(x, y)),
|∇Rτk,x(y)| < cucRΦ(δ)P (dk(x, y)) exp(−λdk(x, y)).

|∇R∇τk,x(y)| < cucRΦ(δ)P (dk(x, y)) exp(−λdk(x, y)),

Now we compute the covariant derivative in the D directions of τk,x.
We have:

∇Dτk,x = dDwk · sk,x + wk∇Dsk,x.(4.24)

We denote by Dh the horizontal distribution in R
2n+1, and also we

will call Dh to the pull-back of Dh by the application ψk which is a
distribution defined on Bgk

(x, c). We can check that the maximum angle
between D and Dh can be bounded by cuk

−1/2dk(x, y)(cu universal).
And so we obtain that:

|dDwk(x)| ≤ |dDh
wk(x)| + k−1/2dk(x, y)|dwk(x)|

≤ 0 + k−1/2dk(x, y)c′′cRΦ(δ).
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For k large enough we can suppose that:

|dDwk(y)| k→∞→ 0, dk(x, y) < ck1/4,

where ck1/4 is the radius of the support of the section sk,x in the
Lemma 6, and so of the restricted section σk,x defined in Lemma 7
(c universal). Thus dDwk · σk,x(y) = 0, if dk(x, y) > ck1/4. Then we
have that dDwk · σk,x < ε for all ε > 0 if we take a large enough k, so
we can take it out from the expression (4.24). Now we can bound it:

|∇Dτk,x| < δcuP (dk(x, y)) exp(−λdk(x, y)),

as we wanted. To take into account the effect of the first summand we
only have to change cu. To bound ∇D∇Dτk,x we expand as a product
again:

∇D∇Dτk,x = ∇DdDwksk,x + 2dwk∇Dsk,x + wk∇D∇Dsk,x.

The first two terms can be bounded by an arbitrary small ε > 0 following
the same ideas that in the precedent case. The third verifies the required
bounds by a simple computation.

Let us go to the ∂ bounds. We can write:

|∂Dwk(y)| ≤ |∂Dh
wk(y)| + |(∂D − ∂Dh

)wk| ≤ cucRΦ(δ)k−1/2dk(x, y).

The bound is obtained recalling that Dh and D are at distance
cuk

−1/2dk(x, y). So we finally write:

|∂Dτk,x(y)| ≤ |∂Dwk(y)||σk,x(y)| + |wk(y)||∂Dσk,x(y)|
≤ cucRΦ(δ)k−1/2dk(x, y)P (dk(x, y)) exp(−λdk(x, y))

+δcuk−1/2P (dk(x, y)) exp(−λdk(x, y))(4.25)
≤ k−1/2cucRΦ(δ)P ′(dk(x, y)) exp(−λdk(x, y)).

The last inequality is based on the asumption Φ(δ) > δ, which is ob-
tained if δ is small enough (it will be the usual case), and P ′(t) is an
universal polynomial greater than P (t) and t · P (t).

Finally we have to bound ∇∂τk,x, and this is made using the same
ideas of the former case. So the proof is ended. q.e.d.
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4.3 The globalization process

The third ingredient in the proof of Theorem 5 relies on a globalization
process invented by Donaldson and refined by Auroux [4, 2]. However
we have to generalize the process to adapt it to the situation where we
have no uniform control in all the directions.

We will need a technical result which will simplify the proof of The-
orem 5:

Proposition 2. Let tk be an asymptotically contact-holomorphic
sequence of sections of the bundle E⊗L⊗k which is η-transverse to 0 on
an open subset U ⊂ C. If sk is an asymptotically contact-holomorphic
sequence of sections of L⊗k over U verifying that restricted to Z(tk)

⋂
U =

Wk
⋂
U is η′-transverse to 0, we obtain that there exists a constant

η′′ > 0 depending only on η, η′ and bounds on sk and tk such that
tk ⊕sk ∈ Γ(U, (E

⊕
C)⊗L⊗k) is η′′-transverse to 0 over U−

k , where U−
k

is the set of points of U with distance to the border greater than k1/6 in
g1 metric.

Proof. We proceed following step by step [2] Section 3.6. First we
compute an inverse for the points x ∈ U

⋂
Wk such that |sk| < η′. We

know that ∇tk is surjective and vanishes in all the directions defined
by TWk. On the other hand sk has a tangencial component with norm
greater than η′. It implies the surjectivity of tk ⊕ sk. We construct a
right inverse to check its norm.

We choose v ∈ TxWk with norm |v| < (η′)−1 such that ∇sk(v) = v̂
has norm equal 1. Also we select (v̂1, . . . , v̂r) an ortonormal basis in
E ⊗ L⊗k

|x . And because of the η-transversality of tk there exists a right
inverse R of tk such that R(v̂i) = vi and |vi| < η − 1. We have that
∇sk(vi) = λiv̂. The constants λi are bounded by a universal constant c
thanks to the asymptotic holomorphicity of sk. Then we can define R′

a right inverse for ∇(tk ⊕ sk) in the following way:

R′(v̂) = v,

R′(v̂i) = vi − λiv,

which obviously has norm bounded by a universal constant γ−1.
Suppose now that tk and sk have norm smaller than a certain α at

a point x. We will shrink α along the proof. The first bound will be
α < η, then we obtain that tk is η-transverse to 0 at the point. Even
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more the gradient flow of |tk| brings x to a zero y ∈Wk and because of
the η-transversality dk(x, y) < η−1 ·α. For k large enough this distance
will be smaller than k1/6 and y ∈ U

⋂
Wk if x ∈ U−

k . By asymptotic
contact-holomorphicity |∇sk| < c, then |sk(y)| < |sk(x)| + cη−1α. So
we choose α verifying α < η′/2 and cη−1α < η′/2. Therefore we obtain
|sk(y)| < η′. And then tk ⊕ sk is γ-transverse at y, but we know that
|∇∇tk⊕sk| < c′, then |∇tk⊕sk(x)| > |∇tk⊕sk(y)|−c′α. Again, we can
shrink α to obtain certain η′′-transversality to 0 with η′′ > 0. q.e.d.

We now show how to derive Theorem 5 from Lemma 13 and Propo-
sition 2. The proof is a generalization of the Donaldson’s argument [4]
which takes into account the different behaviour along the Reeb vector
field and the contact distribution directions.

Proof of Theorem 5. We set a Darboux covering {Ui } of (C, θ)
such that E ⊗ L⊗k trivializes on Ui, i.e., we choose contractible neigh-
borhoods. The problem reduces to get certain η-transversality on each
Ui perturbing a family sk of asymptotically contact-holomorphic sec-
tions. Because if we obtain η1-transversality in U1 by a perturbation,
afterwards we can perturb sk by a perturbation with mixed C2 bounds
(η1/2, c2R) to achieve η′2-transversality in U2 and then it implies that sk

is min{ η′2, η1/2 } = η2-transverse to 0 in U1
⋃
U2. So iterating the pro-

cess we get σk a family of sections contact-holomorphic and ηr-tranverse
to 0 in C.

So we restrict ourselves to one of these Ui and then E ⊗ L⊗k = C
r.

Remark that it is an hermitian vector bundle with connection ∇E ⊗ I+
I ⊗∇

L⊗k , so for k large enough the contribution of the connection of E
in the D directions will be worthless.

We are going to perturb a section sk = (s1k, . . . , s
r
k) adding a section

τ j
k to achieve certain η-transversality on Ui. For this we define W j

k =
{x ∈ C | s1k(x) = s2k(x) = · · · = sj

k(x) = 0 }, and W 0
k = Ui. To

obtain the transversality we proceed by perturbing in r steps. In each
step we will prove that sj

k can be perturbed to be ηj-transverse to 0
when restricted to W j−1

k

⋂
Ui. This implies the η-transversality of sk

on (Ui)−k by Proposition 2. We make sure that the perturbation can be
chosen with mixed C2 bounds (ηi−1

2r , c
ij
R), cijR arbitrary but independent

of k. It assures that the total perturbation τ j
k has mixed C2 bounds

(ηi−1/2,
∑

j c
ij
R) which are the required bounds to globalize the process.

Now we fix our atention to prove the following result which finishes
the proof:
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Proposition 3. Given an asymptotically contact-holomorphic se-
quence tk of sections of vector bundles E ⊗ L⊗k η-transverse to 0 on
an open subset U with zero set Wk, let sk be an asymptotically contact-
holomorphic sequence of sections of L⊗k with global mixed C2-bounds
(cD, cR). Then given δ > 0, there exists an asymptotically contact-
holomorphic sequence of sections τk of L⊗k verifying:

1. sk + τk restricted to Wk is η′-transverse to 0.

2. τk has global mixed C2 bounds (δ, c′R), where c′R is independent
of k.

Obviously if we prove Proposition 3, then the proof of Theorem 5 is
complete. q.e.d.

Proof of Proposition 3. The key idea is a small generalization of
Donaldson’s argument to control the interference between local pertur-
bations. We will take a finite set of points S =

⋃
m Sm of U

⋂
Wk

verifying:

• All the points of Sm are at distance greater than a fixed ∆ (to be
chosen later).

• The number of subsets Sm is of the order of O(∆2n+1).

• The balls B(xp, c), xp ∈ S form an open covering of U
⋂
Wk. c is

the universal constant obtained in Lemma 13.

That such set will exist can be easily seen by considering a covering
like in [4], §2, pages 680-681, with a distance 2∆ between balls. Then we
select only those that cut Wk and we take a point in the corresponding
intersection as a center of a new collection of balls of radius c. These
new balls obviously cover Wk and the distance between points on the
same set Sm is clearly greater than ∆.

We are going to get transversality all over the balls centered at points
of Sm at a time using Lemma 13 perturbing δ/2 in C0 norm. Taking
into account the exponential decay of the mixed C2 bounds obtained in
the perturbation, we can assure that at a point x ∈ Sm the rest of the
perturbations due to Sm has mixed C2 bounds

(K(δ exp(−λD2)),K(
δ

σ
exp(−λD2))),
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K universal constant, in the ball B(x, c). Hence choosing D large
enough (but independent of k) we can assure that the perturbed section
is ηm = σ/2-transverse 0 in Em =

⋃
x∈Sm

B(x, c)
⋂
Wk.

We have only to iterate the process assuring that the perturbation
in the set Em+1 has to have global mixed C2 bounds (ηm/2, cm+1

R ) not
to destroy the achieved transversality in Sm. The important point now
is that this condition on D, that assures noninterference among the
elements of Sm+1, can be written as:

ηm+1 > cηm exp(−λD2),(4.26)

where c is a universal constant. It has to be so because δ has to be a
sligthly smaller than ηm. Equation (4.26) has to be verified in all the
steps of the process. Recalling the formula for σ obtained in Lemma 13
we write:

exp(λD2) > K0(log(η−1
m ))p

K0 is a universal constant. Now recall that the number of subsets Sm

is of order O(D2n+1). So the process has N = O(D2n+1) iterations. We
have to study the sequence ηm. In Lemma 24 in [4] is proved that it
satisfies log(η−1

m )p = O(m log(m)). Therefore we obtain (log η−1
N )p =

O(D2NP (logD2N )p) which can be bounded by exp(λD2) for D large
enough.

To conclude the proof we recall that in Lemma 13 the section sk

need to have well defined global mixed C2 bounds. For this we have
to make sure that the numbers cmR can be bounded independently of
k. This will assure also the asymptotic contact-holomorphicity of the
resultant sequence. But this is the case because c1R is a function of δ,
the cR bound of sk, and some universal constants. In general cm+1

R is a
function of cmR , δm and some universal constants. So if D is independent
of k we can assure the universal bounding of cmR for all m. The proof is
ended. q.e.d.

Remark. In general it is not possible to perturb uniformly a
one-parameter family of asymptotically contact-holomorphic sections to
make them transverse to 0. An immediate consequence of this nega-
tive observation is that the families of contact submanifolds constructed
using this method could fall in different isotopy classes.
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4.4 Equivariant Donaldson-Auroux theory for free dis-
crete group actions

In order to apply Donaldson-Auroux theory to the nonexact contact
case, we will need to lift the problem to a contact manifold with a Z2

anticontact action, namely its exact covering. The contact submanifolds
obtained by a direct application of Donaldson-Auroux theory as in Sec-
tion 4 are not Z2-invariant in general, and they will project to a manifold
with singularities (of codimension 4r generically). Thus we shall need
to adapt the construction of contact sections to a Z2 setting. We shall
do that in two steps, first, we shall find an equivariant construction
for free finite group actions acting by exact contactomorphisms. An
exact contactomorphism is an application φ : (C, θ) → (C, θ) verify-
ing that φ∗θ = θ. Notice that the condition of preserving the contact
structure is weaker than this because the application must verify only
that φ∗D = D. Second, we will refine the construction of asymptotic
J-holomorphic sections to solve the required case, because in our case
the Z2 action is not exact contact. In fact, the condition we have is
a∗θ = −θ, where a is the nonidentity element of Z2. This kind of Z2-
action will be called anticontact.

Exact contactomorphic actions.

Let G be a finite group acting freely and by exact contactomorphisms
on the compact exact contact manifold (C, θ). If we denote by g the
elements of the group, this means that g∗θ = θ for all g ∈ G. The
action induces a symplectic action (in fact, hamiltonian) on the sym-
plectization. It is known that a hamiltonian action on a symplectic
manifold M induces a natural bundle action of G on the line bundle
L⊗k → M when k is large enough, see [16]. So we conclude that G
acts on L⊗k → SD(C) when k is large enough. We also assume that
E is G-invariant, i.e., there exists a bundle action of G on it. So, the
pull-back π∗E to the symplectization is acted by G. Thus the group G
acts symplectically in π∗E ⊗ L⊗k when k is large enough. Interpreting
C as a submanifold of SD(C) by means of the graph of θ, we obtain
that G acts in the restriction of π∗E ⊗ L⊗k to C. But this restricted
bundle is E ⊗ L⊗k. Therefore for k large enough G acts on the family
of bundles we need.

It is a standard fact the existence of G-invariant complex structures
on D compatible with dθ, for any compact group acting on D. We
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choose one of these compatible almost complex G-invariant J ’s. So
we can reproduce all Donaldson-Auroux preliminar construction in a
G-invariant setting, arriving to the construction of an asymptotically
contact-holomorphic sequence of sections sk. Summarizing, Subsec-
tion 4.1 can be carried out in a G-invariant setting (in fact for G a
compact Lie group).

Now, consider Subsections 4.2 and 4.3 for a finite group G acting
on C. The important point is to prove Proposition 3 for G-invariant
sequences. We are going to follow the proof making changes whenever
necessary. Notice that we can choose a G-invariant set of points S =⋃
Sm on C, moreover we need to assure that Sm is G-invariant. In fact,

starting with any set S which verifies the three conditions required in
Proposition 3, we will construct SG as SG =

⋃
g∈G g · S. Also, (SG)m =⋃

g∈G g · Sm. The action is free, C is compact and G is finite so there
exists mG > 0 such that:

d(x, gx) > mG, ∀x ∈ C, g �= e.(4.27)

Suppose that the radius of each Sm is less than mG/3. This can be done
simply by subdividing each Sm into a number of subsets (this number
is independent of k). Therefore, for k large enough, the set SG verifies
the three properties needed to globalize. Recall that the difficult point
is to assure that the gk distance between 2 points in (SG)m is greater
than D.

Finally, we are going to obtain transversality in aG-invariant asymp-
totically J-holomorphic sequence sk, preserving the G-invariance. The
idea is to use the normal argument, but in all the points { gpi }g∈G at a
time. We apply the local transversality result to a point p ∈ (SG)m, and
we search a complex section τk,p which obtains a certain η-transversality
in a neighborhood of p of gk-radius ĉ.

Up to now all the objects in the construction are G-invariant, except
τk,p. Recall from (4.27) that:

lim
k→∞

dk(g1p, g2p) = ∞, g1 �= g2,

and so for k large enough the supports of (g1)∗τk,p and (g2)∗τk,p are
disjoint. This implies that τG

k,p = Σg∈Gg∗τk,p, which is obviously G-
invariant, obtains η-transversality in

⋃
g∈GBgk

(gp, c).
So, after adding τG

k,p, the new section is again G-invariant. Now we
follow step by step the proof of Proposition 3 to obtain a G-invariant
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asymptoticallycontact-holomorphic sections with certain η > 0 transver-
sality.

Thus, we have proved:

Proposition 4. Let G be a finite group acting freely and by exact
contactomorphisms on an exact contact manifold (C, θ). Suppose also
that G acts on a complex vector bundle E. Then there exists a G-
invariant sequence of asymptotically J-holomomorphic sections of the
vector bundle E ⊗ L⊗k transverse to zero.

Remark. Following step by step the precedent discussion we can
adapt the results to the case of symplectic manifolds acted symplecti-
cally and freely by a finite group. We refer the reader to Donaldson’s
article [4] for details of the standard construction, the reader can check
that the adaptation is direct.

Anticontactomorphic Z2-actions

The precedent computation solves the problem of finding G-invariant
sections in a contact manifold acted by a free action of a finite group.
But we know that it is almost the situation in the nonexact contact
case. We have shown in Section 2.5 that choosing a bundle metric, η, in
SD(C) we construct a double covering Ĉ of C selecting the vectors v such
that η(v, v) = 1 in the fibres. The Z2 action given by the application
a(α) = −α is anticontactomorphic and free. Then we are going to
obtain Z2-invariant contact submanifolds. The projection to C of these
submanifolds will produce smooth contact submanifolds on C which are
Poincaré dual of the top Chern class of E. To do it we fix a contact
form θ on Ĉ. One can impose that a∗θ = −θ with a suitable choice of θ.
This implies that a∗dθ = −dθ. Moreover we can fix an almost complex
structure satisfying that a∗J = −J . This implies that a∗gk = gk. Now,
the problem is that L⊗k is not Z2-invariant. In fact, the aplication a
lifts to a bundle morphism ã : L → L defined by the identity in the
fibres, recall that L = Ĉ × R. Moreover ã preserves the connection in
the bundles, because,

∇L = d+ iθ.

a∗∇L = d− iθ.

∇
L

= d− iθ.

Finally check that if sk is an asymptotically contact-holomorphic se-
quence of sections sk defined on the bundles E⊗L⊗k, being E equivari-
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ant, then we have that a∗sk is an asymptotically contact-holomorphic
sequence of sections on the bundles E⊗L⊗k with respect to the contact
form −θ and the almost-complex structure −J . So, with the canonical
identification L � L, we claim that a∗sk is an asymptotically holomor-
phic sequence of sections on the bundles E ⊗ L⊗k with respect to the
contact form θ and the almost complex structure J . To check it we only
need to observe that we are permuting the sign in the almost complex
structure in the bundle and in the manifold, so the Cauchy-Riemman
condition does not change. At this point we can repeat all the proof
given for exact contactomorphic actions, because all the ideas apply.
We arrive in this way to the following result.

Corollary 1. Let C be a (possibly nonexact) contact manifold. Let
E a rank r complex vector bundle over C. Then, there exists a sequence
of submanifolds Wk of codimension 2r, such that, for k large enough,
they are contact submanifolds of C and they are Poincaré dual of the
top Chern class of E.

5. The topology of contact submanifolds

In this section we give the topological characterization of the con-
structed submanifolds. The important point is that Lefschetz hyper-
plane theorem works in the contact case.

5.1 Lefschetz theorem for contact submanifolds

Following Donaldson-Auroux techniques [2] we are going to general-
ize the classical Lefschetz hyperplane theorem to the contact category.
Thus, the idea is to adapt the symplectic argument. For the exact
case, we start with any asymptotically contact-holomorphic sequence
η-transverse to zero of sections sk of the bundles E ⊗ L⊗k → C. We
define on C −Wk, the smooth real function

ϕk = log |sk|2.(5.27)

In the nonexact case we pass to the double covering Ĉ and there
we construct ϕ̂k as in Equation (5.27). But it is clear that ϕ̂k is Z2-
invariant, so we can quotient and define a function ϕk on C. Along the
proof we make the computations only for the function ϕk defined on the
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exact case. But, it is an easy exercise to check that these computations
work in the nonexact case.

The proof of the isomorphisms and surjections between the homo-
topy and homology groups of C and Wk for k large enough enunciated
in Theorem 1, is equivalent to assure that all the critical points of ϕk

have index greater than n− r.
First we claim that any critical point x of ϕk verifies |sk(x)| ≥ η.

This is a simple observation because of the η-transversality of the se-
quence sk. In fact, if this were not the case, then ∇sk(x) will be surjec-
tive, and so there exists a vector v ∈ TxM such that ∇vsk(x) = sk(x).
But,

dϕk =
1

|sk|2 (〈∇sk, sk〉 + 〈sk,∇sk〉),

hence 〈∇vsk, sk〉 > 0 and then d(ϕk)v(x) > 0. Therefore x is not a
critical point.

We decompose now dϕk(x) ∈ T ∗
xC as in Equation (2.6):

dϕk = ∂ϕk + ∂ϕk + d⊥ϕk.

Then we have:

∂ϕk =
1

|sk|2 (〈∂sk, sk〉 + 〈sk, ∂sk〉).(5.28)

On the other hand, it is clear that at a critical point x of ϕk, we
have

∂ϕk(x) = ∂ϕk(x) = d⊥ϕk(x) = 0.

Because of Equation (5.28) we obtain easily the following bounds in a
small neighborhood of the critical point x,

|〈∂sk, sk〉| < c|sk|, |〈sk, ∂sk〉| < c|sk|,(5.29)

where c is independent of k.
Differenciating again Equation (5.28) and restricting ourselves to the

critical point x we obtain:

∂∂ϕk =
1

|sk|2 (〈∂∂sk, sk〉 − 〈∂sk, ∂sk〉 + 〈∂sk, ∂sk〉 + 〈sk, ∂∂sk〉).
(5.30)
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Recall that ∂∂ + ∂∂ = R1,1, where R1,1 is the (1, 1) component of
the curvature of the connection ∇ of the bundle E ⊗ L⊗k restricted to
D, which is equal to −ikω ⊗ I +R1,1

E because of Equation (2.4), where
R1,1

E denotes the (1, 1) component of the curvature of the connection
∇E of E restricted to D. Then we can write (5.30) as follows:

∂∂ϕk = − ikω +
1

|sk|2 (〈R1,1
E sk, sk〉 − 〈∂∂sk, sk〉

+ 〈sk, ∂∂sk〉 − 〈∂sk, ∂sk〉 + 〈∂sk, ∂sk〉).
(5.31)

For simplicity in what follows we will use the norms defined in the
metric g1 and the equivalent bounds for the asymptotic holomorphic
sequences, as given in [2]. Now we need to restrict our attention to a
subspace where the first term in the r.h.s. of Equation (5.31) expression
dominates the second for k large enough. A sufficient condition for
this is to ensure that |∂sk| = O(1) because, thanks to the asymptotic
contact-holomorphicity of the sequence sk, the second term in the r.h.s.
of eq. (5.31) will be of the order O(k1/2) compared to the order O(k)
of the first term.

We define the following complex subspace of Dx:

Hx = {v ∈ Dx, | ∂vsk(x) = λsk(x) for some λ ∈ C},

it is clear that if v �= 0 is in H we have:

|∂sk(v)| =
|〈∂sk(v), sk〉|

|sk| < C
|sk||v|
|sk| = C|v|.

and the last inequality is based in the bound given by Equation (5.29).
Then we see that |∂sk|H | = O(1) and consequently:

∂∂ϕk = −ikω +O(k1/2),

on H.
Moreover we must notice that −2i∂∂ϕk(u, Ju) = Hϕk

(u)+Hϕk
(Ju),

where Hϕk
is the Hessian of ϕk restricted to D. Obviously for k large

this number is negative because, ω(·, J ·) is a metric.
Finally, let us suppose that the index of the critical point x were

less than n − r + 1, then there will exist a subspace P ⊂ Dx of real
dimension at least n+r such that Hϕk

is nonnegative on it, and P
⋂
JP
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will have dimension at least 2r. On the other hand the subspace H has
dimension at least 2n− 2r+ 2 because of the linearity of ∂sk on D and
the η-transversality of sk. Hence, the intersection H

⋂
(P

⋂
JP ) will

be nonvoid which is a contradiction. Then an standard Morse theory
argument gives us the isomorphisms and surjections required.

Remark. Notice that in the previous proof it is absolutely es-
sential the bound below for |sk| at critical points, and this is a direct
consequence of the η-transversality of the sequence of asymptotically
contact-holomorphic sections sk.

5.2 The Chern polynomial of contact submanifolds

We can compute the Chern polynomial, c(D
⋂
TWk) = c(DWk

), of the
hyperplane bundle distribution DWk

of the contact submanifold Wk in
terms of the Chern polynomial of the total bundle E ⊗ L⊗k and the
Chern polynomial of the contact distribution D restricted to Wk. For
this we recall that Wk is always transverse to D, then we have that

D|Wk
∼= DWk

⊕ ν(Wk)

where ν(Wk) denotes the normal bundle D/DWk
. We can identify the

normal bundle ν(Wk) with a complex subbundle of D by choosing a
compatible metric such that the Reeb vector field R on C will be or-
thogonal to D and DWk

a complex subspace. Then the symplectic
orthogonal D⊥

Wk
is complex too.

Now, we have:

i∗c(D) = i∗c(E ⊗ L⊗k) · c(DWk
)

and, finally, we obtain the formula:

c(DWk
) = i∗

(
c(E ⊗ L⊗k)−1 · c(D)

)
.
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[4] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differ-
ential Geom. 44 (1996) 666–705.

[5] , Lefschetz fibrations in symplectic geometry, Doc. Math. Extra Vol. ICM
98, II, 309-314 (1998).

[6] Y. Eliashberg, Contact 3-manifolds twenty years since Martinet’s work, Ann. Inst.
Fourier (Grenoble) 42 (1992) 165–192.

[7] Y. Eliashberg, H. Hofer & D. Salamon, Lagrangian intersections in contact geom-
etry. Geom. Funct. Anal. 5 (1995) 244–269.

[8] , Invariants in contact topology, ICM 98, Berlin, 1998.

[9] M. Gromov, Partial differential relations, Springer, Berlin, 1986.

[10] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the
Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515–563.

[11] D. McDuff & D. Salamon. Introduction to symplectic topology, Oxford Mathe-
matical Monographs, 1994.

[12] J. Martinet, Formes de contact sur les variétés de dimension 3. Lect. Notes
Math. 209 (1971) 142–163.
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