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On the existence of Auslander-Reiten
n-exangles in n-exangulated categories

Jian He, Jiangsheng Hu, Dongdong Zhang and Panyue Zhou

Abstract. Let C be an n-exangulated category. In this note, we show that if C is locally
finite, then C has Auslander-Reiten n-exangles. This unifies and extends results of Xiao–Zhu, Zhu–
Zhuang, Zhou and Xie–Lu–Wang for triangulated, extriangulated, (n+2)-angulated and n-abelian
categories, respectively.

1. Introduction

The notion of extriangulated categories was introduced by Nakaoka–Palu in
[19], which can be viewed as a simultaneous generalization of exact categories and
triangulated categories. The data of such a category is a triplet (C ,E, s), where
C is an additive category, E:C op×C →Ab is an additive bifunctor and s assigns
to each δ∈E(C,A) a class of 3-term sequences with end terms A and C such that
certain axioms hold. However, there are some other examples of extriangulated
categories which are neither exact nor triangulated. In particular, Nakaoka and
Palu [19, Remark 2.18] proved extension closed subcategories of extriangulated cat-
egories are extriangulated categories. For example, let A be an artin algebra and
K [−1,0](projA) the category of complexes of finitely generated projective A-modules
concentrated in degrees −1 and 0, with morphisms considered up to homotopy.
Then K [−1,0](projA) is an extension closed subcategory of the bounded homotopy

Panyue Zhou is corresponding author. Jian He was supported by the National Natural
Science Foundation of China (Grant No. 12171230). Jiangsheng Hu was supported by the NSF of
China (Grant Nos. 12171206 and 12126424), the Natural Science Foundation of Jiangsu Province
(Grant No. BK20211358) and Jiangsu 333 Project.

Key words and phrases: n-exangulated categories, Auslander-Reiten n-exangles, locally finite,
extriangulated categories, triangulated categories, n-abelian categories.

2010 Mathematics Subject Classification: 18G80, 18E10, 18G50.



366 Jian He, Jiangsheng Hu, Dongdong Zhang and Panyue Zhou

category Kb(projA) which is not exact and triangulated, see [12, Example 6.2]. This
construction gives extriangulated categories which are not exact and triangulated.
Recently, Herschend–Liu–Nakaoka [7] introduced the notion of n-exangulated cat-
egories for any positive integer n. It is not only a higher dimensional analogue
of extriangulated categories, but also gives a common generalization of n-exact
categories in the sense of Jasso [15] and (n+2)-angulated in the sense of Geiss–
Keller–Oppermann [5]. However, there are some other examples of n-exangulated
categories which are neither n-exact nor (n+2)-angulated, see [7]–[9], [18].

Auslander-Reiten theory was introduced by Auslander and Reiten in [1], [2].
Since its introduction, Auslander-Reiten theory has become a fundamental tool for
studying the representation theory of Artin algebras. Later it has been generalized
to the situation of exact categories [14], triangulated categories [6], [20] and their
subcategories [3], [16] and some certain additive categories [16], [17], [21] by many
authors. Iyama, Nakaoka and Palu [12] developed Auslander–Reiten theory for ex-
triangulated categories. This unifies Auslander–Reiten theories in exact categories
and triangulated categories independently. Xiao and Zhu [23], [24] showed that if
a triangulated category C is locally finite, then C has Auslander-Reiten triangles.
Recently, Zhu and Zhuang [27] proved that if an extriangulated category C is lo-
cally finite, then C has Auslander-Reiten E-triangles. Later, Zhou [26] extended
Xiao-Zhu’s result into (n+2)-angulated categories. Namely, Zhou proved that if an
(n+2)-angulated category C is locally finite, then C has Auslander-Reiten (n+2)-
angles. Subsequently, Xie-Lu-Wang [22] proved a similar result to Zhou. More
precisely, they showed that if an n-abelian category C is locally finite, then C has
n-Auslander-Reiten sequences. Based on this idea, we have a natural question of
whether the results of Zhou [26] and Xie-Lu-Wang [22] can be unified under the
framework of n-exangulated categories or whether the result of Zhu-Zhuang [27]
has a higher counterpart. In this article, we give an affirmative answer.

Our main result is the following.

Theorem 1.1. (See Theorem 3.12 for details)Let C be a locally finite n-ex-

angulated category. If X∈ind(C ) is a non-projective object, then there exists an

Auslander-Reiten n-exangle ending at X, and if Y ∈ind(C ) is a non-injective object,

then there exists an Auslander-Reiten n-exangle starting at Y . In this case, we say

that C has Auslander-Reiten n-exangles.

This article is organized as follows: In Section 2, we recall the definition of
n-exangulated category and review some results. In Section 3, we show our main
result.
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2. Preliminaries

In this section, we briefly review basic concepts and results concerning n-ex-
angulated categories.

Let C be an additive category and E : C op×C →Ab (Ab is the category of
abelian groups) an additive bifunctor. For any pair of objects A,C∈C , an element
δ∈E(C,A) is called an E-extension or simply an extension. We also write such δ

as AδC when we indicate A and C. The zero element A0C=0∈E(C,A) is called
the split E-extension. For any pair of E-extensions AδC and A′δ′C′ , let δ⊕δ′∈
E(C⊕C ′, A⊕A′) be the element corresponding to (δ, 0, 0, δ′) through the natural
isomorphism E(C⊕C ′, A⊕A′)�E(C,A)⊕E(C,A′)⊕E(C ′, A)⊕E(C ′, A′).

For any a∈C (A,A′) and c∈C (C ′, C), E(C, a)(δ)∈E(C,A′) and E(c, A)(δ)∈
E(C ′, A) are simply denoted by a∗δ and c∗δ, respectively.

Let AδC and A′δ′C′ be any pair of E-extensions. A morphism (a, c) : δ→δ′ of
extensions is a pair of morphisms a∈C (A,A′) and c∈C (C,C ′) in C , satisfying the
equality a∗δ=c∗δ′.

Let C be an additive category as before, and let n be any positive integer.

Definition 2.1. ([7, Definition 2.7]) Let CC be the category of complexes in C .
As its full subcategory, define Cn+2

C to be the category of complexes in C whose
components are zero in the degrees outside of {0, 1, ..., n+1}. Namely, an object in
Cn+2

C is a complex X
˝
={Xi, d

X
i } of the form

X0
dX
0−−→X1

dX
1−−→ ...

dX
n−1−−−→Xn

dX
n−−→Xn+1.

We write a morphism f
˝
: X

˝
→Y

˝
simply f

˝
=(f0, f1, ..., fn+1), only indicating the

terms of degrees 0, ..., n+1.

Definition 2.2. ([7, Definition 2.11]) By Yoneda lemma, any extension δ∈
E(C,A) induces natural transformations

δ� : C (−, C)=⇒E(−, A) and δ� : C (A,−)=⇒E(C,−).

For any X∈C , these (δ�)X and δ�X are given as follows.
(1) (δ�)X : C (X,C)→E(X,A) : f �→f∗δ.
(2) δ�X : C (A,X)→E(C,X) : g �→g∗δ.

We simply denote (δ�)X(f) and δ�X(g) by δ�(f) and δ�(g), respectively.

Definition 2.3. ([7, Definition 2.9]) Let C ,E, n be as before. Define a category
AE:=AEn+2

(C ,E) as follows.
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(1) An object in AEn+2
(C ,E) is a pair 〈X

˝
, δ〉 of X

˝
∈Cn+2

C and δ∈E(Xn+1, X0)
satisfying

(dX0 )∗δ=0 and (dXn )∗δ=0.

We call such a pair an E-attached complex of length n+2. We also denote it by

X0
dX
0−−→X1

dX
1−−→ ...

dX
n−2−−−→Xn−1

dX
n−1−−−→Xn

dX
n−−→Xn+1

δ��� .

(2) For such pairs 〈X
˝
, δ〉 and 〈Y

˝
, ρ〉, a morphism f

˝
: 〈X

˝
, δ〉→〈Y

˝
, ρ〉 is defined

to be a morphism f
˝
∈Cn+2

C (X
˝
, Y

˝
) satisfying (f0)∗δ=(fn+1)∗ρ.

We use the same composition and the identities as in Cn+2
C .

Definition 2.4. ([7, Definition 2.13]) An n-exangle is a pair 〈X
˝
, δ〉 of X

˝
∈Cn+2

C

and δ∈E(Xn+1, X0) which satisfies the following conditions.
(1) The following sequence of functors C op→Ab is exact.

C (−, X0)
C (−, dX

0 )−−−−−−→ ...
C (−, dX

n )−−−−−−→C (−, Xn+1)
δ�−−→E(−, X0)

(2) The following sequence of functors C →Ab is exact.

C (Xn+1,−) C (dX
n , −)−−−−−−→ ...

C (dX
0 , −)−−−−−−→C (X0,−) δ�−−→E(Xn+1,−)

In particular any n-exangle is an object in AE. A morphism of n-exangles simply
means a morphism in AE. Thus n-exangles form a full subcategory of AE.

Definition 2.5. ([7, Definition 2.22]) Let s be a correspondence which associates
a homotopic equivalence class s(δ)=[AX˝C ] to each extension δ=AδC . Such s is
called a realization of E if it satisfies the following condition for any s(δ)=[X

˝
] and

any s(ρ)=[Y
˝
].

(R0) For any morphism of extensions (a, c) : δ→ρ, there exists a morphism
f
˝
∈Cn+2

C (X
˝
, Y

˝
) of the form f

˝
=(a, f1, ..., fn, c). Such f

˝
is called a lift of (a, c).

In such a case, we simply say that “X
˝
realizes δ” whenever they satisfy s(δ)=[X

˝
].

Moreover, a realization s of E is said to be exact if it satisfies the following
conditions.

(R1) For any s(δ)=[X
˝
], the pair 〈X

˝
, δ〉 is an n-exangle.

(R2) For any A∈C , the zero element A00=0∈E(0, A) satisfies

s(A00)= [A idA−→A−→ 0−→ ...−→ 0−→ 0].

Dually, s(00A)=[0→0→...→0→A
idA−→A] holds for any A∈C .

Note that the above condition (R1) does not depend on representatives of the class
[X

˝
].
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Definition 2.6. ([7, Definition 2.23]) Let s be an exact realization of E.
(1) An n-exangle 〈X

˝
, δ〉 is called an s-distinguished n-exangle if it satisfies

s(δ)=[X
˝
]. We often simply say distinguished n-exangle when s is clear from the

context.
(2) An object X

˝
∈Cn+2

C is called an s-conflation or simply a conflation if it
realizes some extension δ∈E(Xn+1, X0).

(3) A morphism f in C is called an s-inflation or simply an inflation if it admits
some conflation X

˝
∈Cn+2

C satisfying dX0 =f .
(4) A morphism g in C is called an s-deflation or simply a deflation if it admits

some conflation X
˝
∈Cn+2

C satisfying dXn =g.

Definition 2.7. ([7, Definition 2.27]) For a morphism f
˝
∈Cn+2

C (X
˝
, Y

˝
) satisfy-

ing f0=idA for some A=X0=Y0, its mapping cone Mf
˝

∈Cn+2
C is defined to be the

complex

X1
d
Mf
0−−−→X2⊕Y1

d
Mf
1−−−→X3⊕Y2

d
Mf
2−−−→ ...

d
Mf
n−1−−−→Xn+1⊕Yn

d
Mf
n−−−→Yn+1

where d
Mf

0 =
[
−dX1
f1

]
, dMf

i =
[
−dXi+1 0
fi+1 dYi

]
(1≤i≤n−1), dMf

n =
[
fn+1 dYn

]
.

The mapping cocone is defined dually, for morphisms h
˝

in Cn+2
C satisfying

hn+1=id.

Definition 2.8. ([7, Definition 2.32]) An n-exangulated category is a triplet (C ,

E, s) of additive category C , additive bifunctor E : C op×C →Ab, and its exact re-
alization s, satisfying the following conditions.

(EA1) Let A
f−→B

g−→C be any sequence of morphisms in C . If both f and g

are inflations, then so is g¨f . Dually, if f and g are deflations, then so is g¨f .
(EA2) For ρ∈E(D,A) and c∈C (C,D), let A〈X˝

, c∗ρ〉C and A〈Y˝
, ρ〉D be dis-

tinguished n-exangles. Then (idA, c) has a good lift f
˝
, in the sense that its mapping

cone gives a distinguished n-exangle 〈Mf
˝

, (dX0 )∗ρ〉.
(EA2op) Dual of (EA2).

Note that the case n=1, a triplet (C ,E, s) is a 1-exangulated category if and only
if it is an extriangulated category, see [7, Proposition 4.3].

Example 2.9. From [7, Proposition 4.34] and [7, Proposition 4.5], we know
that n-exact categories and (n+2)-angulated categories are n-exangulated cate-
gories. There are some other examples of n-exangulated categories which are neither
n-exact nor (n+2)-angulated, see [7]–[9], [18].

The following are some very useful lemmas and they will be needed later on.
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Lemma 2.10. Let 〈X
˝
, δ〉 and 〈Y

˝
, ρ〉 be distinguished n-exangles. Suppose that

we are given a commutative square

Xn

dX
n ��

�c

��

Xn+1

d

��

Yn
dY
n

�� Yn+1

in C . Then there is a morphism f
˝
: 〈X

˝
, δ〉→〈Y

˝
, ρ〉 which satisfies fn=c and fn+1=

d.

Proof. This proof is the dual of [7, Proposition 3.6], and we omit it. �

Lemma 2.11. ([7, Claim 2.15]) Let C be an n-exangulated category, and

(1) A0
α0−−→A1

α1−−→A2
α2−−→...

αn−2−−−→An−1
αn−1−−−→An

αn−−→An+1
θ���

be a distinguished n-exangle in C . Then the following statements are equivalent:

(1) α0 is a section (also known as a split monomorphism);

(2) αn is a retraction (also known as a split epimorphism);

(3) θ=0.
If a distinguished n-exangle (1) satisfies one of the above equivalent conditions, it

is called split.

Definition 2.12. ([25, Definition 3.14 ] and [18, Definition 3.2]) Let (C ,E, s) be
an n-exangulated category. An object P∈C is called projective if, for any distin-
guished n-exangle

A0
α0−−→A1

α1−−→A2
α2−−→ ...

αn−2−−−→An−1
αn−1−−−→An

αn−−→An+1
δ���

and any morphism c in C (P,An+1), there exists a morphism b∈C (P,An) satisfying
αn¨b=c. We denote the full subcategory of projective objects in C by P. The
concept of injective objects is defined dually. The full subcategory of injective
objects in C is denoted by I.

Lemma 2.13. ([18, Lemma 3.4]) Let (C ,E, s) be an n-exangulated category.

Then the following statements are equivalent for an object P∈C .

(1) E(P,A)=0 for any A∈C .

(2) P is projective.

(3) Any distinguished n-exangle A0
α0−−→A1

α1−−→A2
α2−−→...

αn−2−−−→An−1
αn−1−−−→An

αn−−→
P

δ��� splits.
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We denote by radC the Jacobson radical of C . Namely, radC is an ideal of
C such that radC (A,A) coincides with the Jacobson radical of the endomorphism
ring End(A) for any A∈C .

Definition 2.14. ([10, Definition 3.3]) When n≥2, a distinguished n-exangle in
C of the form

A
˝
: A0

α0−−→A1
α1−−→A2

α2−−→ ...
αn−2−−−→An−1

αn−1−−−→An
αn−−→An+1 ���

is minimal if α1, α2, ..., αn−1 are in radC .

The following lemma shows that E-extension in an equivalence class can be
chosen in a minimal way in a Krull-Schmidt n-exangulated category.

Lemma 2.15. ([10, Lemma 3.4]) Let C be a Krull-Schmidt n-exangulated cat-

egory, A0, An+1∈C . Then for every equivalence class associated with E-extension

δ=A0δAn+1 , there exists a representation

A
˝
: A0

α0−−→A1
α1−−→A2

α2−−→ ...
αn−2−−−→An−1

αn−1−−−→An
αn−−→An+1 ���

such that α1, α2, ..., αn−1 are in radC . Moreover, A
˝
is a direct summand of every

other equivalent E-extension.

Remark 2.16. Let C be a Krull-Schmidt n-exangulated category. By the Krull-
Schmidt property of C , every minimal distinguished n-exangle in each equivalence
class is unique up to isomorphism.

3. Locally finite n-exangulated categories

The result of this section generalizes the work of Sections 3 in [22] and [26],
but the proof is not too far from their case.

In this section, let k be a field. We always assume that C is a k-linear Hom-finite
Krull-Schmidt n-exangulated category. We denote by ind(C ) the set of isomorphism
classes of indecomposable objects in C .

Assume that C is an additive category. Recall that a morphism αn :An→An+1
in C is right almost split if it is not a split epimorphism and each f :Y →An+1
in C which is not a split epimorphism factors through αn. Dually, a morphism
α0 :A0→A1 in C is left almost split if it is not a split monomorphism and each
g :A0→Z in C which is not a split monomorphism factors through α0. Next, we
introduce the notion of Auslander-Reiten n-exangle in an n-exangulated category.
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Definition 3.1. Let C be an n-exangulated category. A distinguished n-exangle

A0
α0−−→A1

α1−−→A2
α2−−→ ...

αn−2−−−→An−1
αn−1−−−→An

αn−−→An+1
δ���

in C is called an Auslander-Reiten n-exangle if α0 is left almost split, αn is right
almost split and when n≥2, α1, α2, ..., αn−1 are in radC .

Remark 3.2. (1) If C is an n-abelian category, then Definition 3.1 coincides
with the definition of n-Auslander-Reiten sequence of n-abelian category (cf. [11],
[22]), which is first introduced by Iyama in [11, Definition 3.1].

(2) If C is an (n+2)-angulated category, then Definition 3.1 coincides with
the definition of Auslander-Reiten (n+2)-angle of (n+2)-angulated category (cf.
[4], [26]). It is worth noting that the original definition is introduced by Iyama
and Yoshino in [13, Definition 3.8], but this allowed the endterms to be non-
indecomposable objects, while the modified definition by Fedele restricts to inde-
composable endterms in [4, Definition 5.1].

Lemma 3.3. Let C be an n-exangulated category and

A
˝
: A0

α0−−→A1
α1−−→A2

α2−−→ ...
αn−2−−−→An−1

αn−1−−−→An
αn−−→An+1

δ���

be a distinguished n-exangle in C . Then the following statements are equivalent:

(1) A
˝
is an Auslander-Reiten n-exangle;

(2) End(A0) is local, if n≥2, α1, ..., αn−1 are in radC and αn is right almost

split;

(3) End(An+1) is local, if n≥2, α1, α2, ..., αn−1 are in radC and α0 is left almost

split.

Proof. The proof given in [4, Lemma 5.3] can be adapted to the context of
n-exangulated categories, we omit it. �

For any X∈ind(C ), we denote by SuppHomC (X,−) the subcategory of C gen-
erated by objects Y in ind(C ) with HomC (X,Y ) �=0. Similarly, SuppHomC (−, X)
denotes the subcategory generated by objects Y in ind(C ) with HomC (Y,X) �=0.
If Supp HomC (X,−) (Supp HomC (−, X), respectively) contains only finitely many
indecomposables, we say that |SuppHomC (X,−)|<∞ (|SuppHomC (−, X)|<∞, re-
spectively).

Based on the definition of locally finite (n+2)-angulated categories and lo-
cally finite n-abelian categories, [22], [26], we define the notion of locally finite
n-exangulated categories.

Definition 3.4. An n-exangulated category C is called locally finite if
|SuppHomC (X,−)|<∞ and |Supp HomC (−, X)|<∞, for any object X∈ind(C ).
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Definition 3.5. Let C be an n-exangulated category and Xn+1, Y0∈ind(C ). We
define a set of distinguished n-exangles as follows:

S(Xn+1) :=
{
X

˝
:X0

α0−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ���

∣∣∣∣∣
X

˝
is a non-split distinguished n-exangle

with X0∈ind(C ), and when
n≥2, α1, α2, ..., αn−1 in radC .

}

Dually, we can define a set of distinguished n-exangles as follows:

T (Y0) :=
{
Y
˝
:Y0

β0−−→ ...
βn−1−−−→Yn

βn−−→Yn+1
η���

∣∣∣∣∣
Y
˝
is a non-split distinguished n-exangle

with Yn+1∈ind(C ), and when
n≥2, β1, β2, ..., βn−1 in radC .

}

Lemma 3.6. Let (C ,E, s) be an n-exangulated category.

(1) If Xn+1∈ind(C ) is a non-projective object, then S(Xn+1) is non-empty.

(2) If Y0∈ind(C ) is a non-injective object, then T (Y0) is non-empty.

Proof. We only show that (1), dually one can prove (2).
Since Xn+1∈ind(C ) is a non-projective, there is an object X0∈C , such that

E(Xn+1, X0) �=0 by Lemma 2.13. That is to say, there exists a non-split distin-
guished n-exangle:

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ��� .

Since C is a Krull-Schmidt category, we decompose X0 into a direct sum of in-

decomposable objects X0=
d⊕

i=1
Ai. Without loss of generality, we can assume that

X0=U⊕V where U and V are indecomposable. Since E(Xn+1, X0)�E(Xn+1, U⊕
V )�E(Xn+1, U)⊕E(Xn+1, V ). We claim that at least one of the following two
distinguished n-exangles is non-split

U
γ0−−→C1

γ1−−→C2
γ2−−→ ...

γn−1−−−→Cn
γn−−→Xn+1

η���

V
β0−−→D1

β1−−→D2
β2−−→ ...

βn−1−−−→Dn
βn−−→Xn+1

η
′

���,

where η :=[ 1, 0 ]∗ δ and η′ :=[ 0, 1 ]∗ δ. Otherwise, δ=η⊕η′=0∈E(Xn+1, X0). This is
a contradiction since δ is non-split.

We can take a distinguished n-exangle as we want by Lemma 2.15. This com-
pletes the proof. �
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Remark 3.7. Let

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ���

be a non-split distinguished n-exangle and X0=U⊕V , where U and V are inde-
composable. From the proof of Lemma 3.6, we see that at least one of the following
two distinguished n-exangles is non-split

U
γ0−−→C1

γ1−−→C2
γ2−−→ ...

γn−1−−−→Cn
γn−−→Xn+1

η���

V
β0−−→D1

β1−−→D2
β2−−→ ...

βn−1−−−→Dn
βn−−→Xn+1

η
′

���,

where η :=[ 1, 0 ]∗ δ and η′ :=[ 0, 1 ]∗ δ.

Definition 3.8. Let C be an n-exangulated category, and

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ���

U
˝
:U0

β0−−→U1
β1−−→U2

β2−−→ ...
βn−1−−−→Un

βn−−→Xn+1
δ
′

���

be two distinguished n-exangles in S(Xn+1). We say that X
˝
>U

˝
if there exists a

morphism of distinguished n-exangles as follows:

X0
α0 ��

ϕ0

��
�
�
� X1

α1 ��

ϕ1

��
�
�
� X2

α2 ��

ϕ2

��
�
�
� ··· �� Xn

αn ��

ϕn

��
�
�
� Xn+1

δ �����

U0
β0 �� U1

β1 �� U2
β2 �� ··· �� Un

βn �� Xn+1
δ
′

�����

We say that X
˝
∼U

˝
if ϕ0 is an isomorphism.

Dually, let

Y
˝
:Y0

α0−−→Y1
α1−−→Y2

α2−−→ ...
αn−1−−−→Yn

αn−−→Yn+1
η���

V
˝
:Y0

β0−−→V1
β1−−→V2

β2−−→ ...
βn−1−−−→Vn

βn−−→Vn+1
η
′

���

be two distinguished n-exangles in T (Y0). We say that Y
˝
>V

˝
if there exists a

morphism of distinguished n-exangles as follows:

Y0
α0 ��

ϕ0

Y1
α1 ��

ϕ1

��
�
�
� Y2

α2 ��

ϕ2

��
�
�
� ··· �� Yn

αn ��

ϕn

��
�
�
� Yn+1

ϕn+1

��
�
�
�

η
�����

Y0
β0 �� V1

β1 �� V2
β2 �� ··· �� Vn

βn �� Vn+1
η
′

�����

We say that Y
˝
∼V

˝
if ϕn+1 is an isomorphism.
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Lemma 3.9. Let Y,Z∈C , X∈ind(C ). If f :Y →X and g :Z→X are not split

epimorphisms, then [f, g]:Y ⊕Z→X is also not split epimorphism.

Proof. If not, there exists a morphism [ st ] : X→Y ⊕Z such that [f, g] [ st ]=1X
and then fs+gt=1X . Since X is an indecomposable object, we have that End(X)
is local which implies that either fs or gt is an isomorphism. Thus either f or g is
a split epimorphism, a contradiction. �

In the following, we will consider a direct ordered set, namely, a partially
ordered set with every pair of elements has a lower bound.

Lemma 3.10. S(Xn+1) is a direct ordered set with the relation defined in

Definition 3.8, and T (Y0) is a direct ordered set with the relation defined in Defini-

tion 3.8.

Proof. We just prove the first statement, the second statement proves similarly.
Assume that

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ���

and

U
˝
:U0

β0−−→U1
β1−−→U2

β2−−→ ...
βn−1−−−→Un

βn−−→Xn+1
δ
′

���

belong to S(Xn+1).
Firstly, the axioms of reflexivity and transitivity are clear. Secondly, we show

that if X
˝
>U

˝
and U

˝
>X

˝
, then X

˝
∼U

˝
.

Since X
˝
>U

˝
and U

˝
>X

˝
, we have the following two commutative diagrams

X0
α0 ��

ϕ0

��
�
�
� X1

α1 ��

ϕ1

��
�
�
� X2

α2 ��

ϕ2

��
�
�
� ··· �� Xn

αn ��

ϕn

��
�
�
� Xn+1

δ �����

U0
β0 �� U1

β1 �� U2
β2 �� ··· �� Un

βn �� Xn+1
δ
′

�����

U0
β0 ��

ψ0

��
�
�
� U1

β1 ��

ψ1

��
�
�
� U2

β2 ��

ψ2

��
�
�
� ··· �� Un

βn ��

ψn

��
�
�
� Xn+1

δ
′

�����

X0
α0 �� X1

α1 �� X2
α2 �� ··· �� Xn

αn �� Xn+1
δ �����

We claim that ψ0ϕ0 is an isomorphism. Since X0 is an indecomposable, we have
that End(X0) is local implies that ψ0ϕ0 is nilpotent or is an isomorphism. If ψ0ϕ0
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is nilpotent, there exists a positive integer m such that (ψ0ϕ0)m=0. We write
ωi=ψiϕi, i=1, 2, ···, n. Thus we have the following commutative diagram

X0
α0 ��

(ψ0ϕ0)m

��
�
�
� X1

α1 ��

ωm
1

��
�
�
� X2

α2 ��

ωm
2

��
�
�
� ··· �� Xn

αn ��

ωm
n

��
�
�
� Xn+1

δ �����

X0
α0 �� X1

α1 �� X2
α2 �� ··· �� Xn

αn �� Xn+1
δ �����

Then δ=(ψ0ϕ0)m∗ δ=0. This is a contradiction by Lemma 2.11 since X
˝
is non-split.

Hence ψ0ϕ0 is an isomorphism. By a similar argument we obtain that ϕ0ψ0 is an
isomorphism. This shows that ϕ0 is isomorphism. So X

˝
∼U

˝
.

Finally, we show that if X
˝
, U

˝
∈S(Xn+1), then there exists C

˝
∈S(Xn+1) such

that X
˝
>C

˝
and U

˝
>C

˝
.

For the morphism βn : Un→Xn+1, by (EA2), we can observe that (idX0 , βn) has
a good lift f

˝
=(idX0 , ψ1, ..., ψn, βn), that is, there exists the following commutative

diagram of distinguished n-exangles

X0
γ0 �� Z1

γ1 ��

ψ1

��
�
�
� Z2

γ2 ��

ψ2

��
�
�
� ··· �� Zn

γn ��

ψn

��
�
�
� Un

βn

��

β∗
nδ �����

X0
α0 �� X1

α1 �� X2
α2 �� ··· �� Xn

αn �� Xn+1
δ �����

such that M
˝
: Z1−−→M1−−→M2−−→...−−→Mn−1−−→Un⊕Xn

[ βn, αn ]−−−−−→Xn+1
(γ0)∗δ��� is a

distinguished n-exangle in C , where Mi=Zi+1⊕Xi (i=1, 2, ..., n−1). Since Xn+1∈
ind(C ), βn and αn are not split epimorphisms, we have that [βn, αn] is also not split
epimorphism by Lemma 3.9. That is, M

˝
is non-split.

Without loss of generality, we can assume that Z1=U⊕V where U and V

are indecomposable. For the morphism p1=[1, 0] : U⊕V →U , by (EA2op), we can
observe that (p1, idXn+1) has a good lift g

˝
=(p1, ϕ1, ..., ϕn, idXn+1), that is, there

exists the following commutative diagram of distinguished n-exangles

U⊕V
[u, v]

��

p1

��

M1 ��

ϕ1

��
�
�
� M2 ��

��
�
�
� ··· �� Mn−1 ��

��
�
�
�

Un⊕Xn
��

��
�
�
� Xn+1 �����

U
δ0 �� L1 �� L2 �� ··· �� Ln−1 �� Ln

�� Xn+1 ����� .
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Similarly, for the morphism p2=[0, 1] : U⊕V →V , there exists the following com-
mutative diagram of distinguished n-exangles

U⊕V
[u, v]

��

p2

��

M1 ��

m1

��
�
�
� M2 ��

��
�
�
� ··· �� Mn−1 ��

��
�
�
�

Un⊕Xn
��

��
�
�
� Xn+1 �����

V
η0 �� N1 �� N2 �� ··· �� Nn−1 �� Nn

�� Xn+1 ����� .

By Remark 3.7, we conclude that at least one of the following two distinguished
n-exangles is non-split

U
δ0 �� L1 �� L2 �� ... �� Ln−1 �� Ln

�� Xn+1 �����

V
η0 �� N1 �� N2 �� ··· �� Nn−1 �� Nn

�� Xn+1 ����� .

Without loss of generality, we assume that

U
δ0 �� L1 �� L2 �� ... �� Ln−1 �� Ln

�� Xn+1 �����

is non-split. By Lemma 2.15, there is a non-split distinguished n-exangle

C
˝
: U λ0 �� C1

λ1 �� C2
λ2 �� ...

λn−2
�� Cn−1

λn−1
�� Cn

λn �� Xn+1 �����

with λ1, λ2, ..., λn−1 in radC . By (R0) and Lemma 2.10, we have the following
commutative diagram

X0
α0 ��

��
�
�
� X1

α1 ��

��
�
�
� X2

α2 ��

��
�
�
� ···

αn−2
�� Xn−1

αn−1
��

��
�
�
�

Xn
αn ��

[
0
1

]

��

Xn+1 �����

U⊕V
[u, v]

��

p1

��

M1 ��

ϕ1

��

M2 ��

��

··· �� Mn−1 ��

��

Un⊕Xn

[βn,αn]
��

��

Xn+1 �����

U
δ0 �� L1 ��

��
�
�
� L2 ��

��
�
�
� ··· �� Ln−1 ��

��
�
�
�

Ln
��

��
�
�
� Xn+1 �����

U
λ0 �� C1

λ1 �� C2
λ2 �� ...

λn−2
�� Cn−1

λn−1
�� Cn

λn �� Xn+1 �����

of distinguished n-exangles. This shows that X
˝
>C

˝
.
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By (R0) and Lemma 2.10, we have the following commutative diagram

U0
β0 ��

��
�
�
� U1

β1 ��

��
�
�
� U2

β2 ��

��
�
�
� ···

βn−2
�� Un−1

βn−1
��

��
�
�
�

Un
βn ��

[
1
0

]

��

Xn+1 �����

U⊕V
[u, v]

��

p1

��

M1 ��

ϕ1

��

M2 ��

��

··· �� Mn−1 ��

��

Un⊕Xn
[βn,αn]

��

��

Xn+1 �����

U
δ0 �� L1 ��

��
�
�
� L2 ��

��
�
�
� ··· �� Ln−1 ��

��
�
�
�

Ln
��

��
�
�
� Xn+1 �����

U
λ0 �� C1

λ1 �� C2
λ2 �� ...

λn−2
�� Cn−1

λn−1
�� Cn

λn �� Xn+1 �����

of distinguished n-exangles. This shows that U
˝
>C

˝
. �

Lemma 3.11. Let C be a locally finite n-exangulated category.

(1) If Xn+1∈ind(C ) is a non-projective object, then S(Xn+1) has a minimal

element.

(2) If Y0∈ind(C ) is a non-injective object, then T (Y0) has a minimal element.

Proof. We just prove the first statement, the second statement proves similarly.
Since Xn+1∈ind(C ) is a non-projective, there exists an object X0∈C , such that

E(Xn+1, X0) �=0 by Lemma 2.13. That is to say, there is a non-split distinguished
n-exangle:

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ��� .

Since C is a Krull-Schmidt category, we decompose Xn into a direct sum of inde-
composable objects Xn=

r⊕
k=1

Bk. Thus X
˝
can be written as

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→

r⊕
k=1

Bk
[b1,b2,...,br ]−−−−−−−→Xn+1 ���

where bk∈radC (Bk, Xn+1), k=1, 2, ..., r.
Since C is locally finite, there are only finitely many objects Xi∈ind(C ), i=

1, 2, ...,m such that HomC (Xi, Xn+1) �=0. We assume that λij , 1≤j≤qi form a

basis of the k-vector space radC (Bk, Xn+1). Put M :=(
r⊕

k=1
Bk)⊕(

m⊕
i=1

(Xi)⊕qi), we

consider the morphism

γ := [b1, b2, ..., br, λ11, ..., λij , ..., λmqm ]∈ radC (M,Xn+1)
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which is not split epimorphism. By (EA2), we deduce that there is a distinguished
n-exangle in C as follows:

M
˝
: B−−→M1 −−→M2 −−→ ...−−→Mn−1 −−→M

γ−−→Xn+1 ��� .

Thus M
˝
is non-split since γ is not split epimorphism. Without loss of generality, we

can assume that B=U⊕V where U and V are indecomposable. For the morphism
p1=[1, 0] : U⊕V →U , by (EA2op), we can observe that (p1, idXn+1) has a good lift
g
˝
=(p1, ϕ1, ..., ϕn, idXn+1), that is, there exists the following commutative diagram

of distinguished n-exangles

U⊕V
[u, v]

��

p1

��

M1 ��

ϕ1

��
�
�
� M2 ��

��
�
�
� ··· �� Mn−1 ��

��
�
�
�

M
γ

��

��
�
�
� Xn+1 �����

U
θ0 �� L1 �� L2 �� ··· �� Ln−1 �� Ln

�� Xn+1 ����� .

Similarly, for the morphism p2=[0, 1] : U⊕V →V , there exists the following
commutative diagram of distinguished n-exangles

U⊕V
[u, v]

��

p2

��

M1 ��

m1

��
�
�
� M2 ��

��
�
�
� ··· �� Mn−1 ��

��
�
�
�

M
γ

��

��
�
�
� Xn+1 �����

V
η0 �� N1 �� N2 �� ··· �� Nn−1 �� Nn

�� Xn+1 ����� .

By Remark 3.7, we conclude that at least one of the following two distinguished
n-exangles is non-split

U
θ0 �� L1 �� L2 �� ... �� Ln−1 �� Ln

�� Xn+1 �����

V
η0 �� N1 �� N2 �� ··· �� Nn−1 �� Nn

�� Xn+1 ����� .

Without loss of generality, we assume that

U
θ0 �� L1 �� L2 �� ... �� Ln−1 �� Ln

�� Xn+1 �����

is non-split. By Lemma 2.15, we can find a non-split distinguished n-exangle

C
˝
: U ω0 �� C1

ω1 �� C2
ω2 �� ...

ωn−2
�� Cn−1

ωn−1
�� Cn

ωn �� Xn+1 �����
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with ω1, ω2, ..., ωn−1 in radC . Then C
˝
∈S(Xn+1). By (R0), we have the following

commutative diagram

U⊕V
[u, v]

��

p1

��

M1 ��

ϕ1

��

M2 ��

��

··· �� Mn−1 ��

��

M
γ

��

��

Xn+1 �����

U
θ0 �� L1 ��

��
�
�
� L2 ��

��
�
�
� ··· �� Ln−1 ��

��
�
�
�

Ln
��

��
�
�
� Xn+1 �����

U
ω0 �� C1

ω1 �� C2
ω2 �� ...

ωn−2
�� Cn−1

ωn−1
�� Cn

ωn �� Xn+1 �����

of distinguished n-exangles. Any D
˝
∈S(Xn+1) can be written as

D
˝
: D−−→D1−−→D2−−→...−−→Dn−1−−→

p⊕
i=1

Hi
d=[d1,d2,...,dp]−−−−−−−−−→Xn+1���

with Hi∈ind(C ), di∈radC (Hi, Xn+1), i=1, 2, ..., p. Since D
˝
∈S(Xn+1) is non-split,

d is not split epimorphism implies that d∈radC (
p⊕

i=1
Hi, Xn+1). By the definitions of

λij and γ, there exists a morphism ρ :
p⊕

i=1
Hi→M such that d=γρ. By Lemma 2.10,

we have the following commutative diagram

D ��

��
�
�
�
� D1 ��

��
�
�
�
� D2 ��

��
�
�
�
� ... �� Dn−1 ��

��
�
�
�
�

p⊕
i=1

Hi
d ��

ρ

��

Xn+1 �����

B �� M1 �� M2 �� ... �� Mn−1 �� M
γ

�� Xn+1 �����

of distinguished n-exangles, where B=U⊕V . Thus we get the following commuta-
tive diagram

D ��

��
�
�
�
� D1 ��

��
�
�
�
� D2 ��

��
�
�
�
� ... �� Dn−1 ��

��
�
�
�
�

p⊕
i=1

Hi
d ��

��

Xn+1 �����

U
ω0 �� C1

ω1 �� C2
ω2 �� ...

ωn−2
�� Cn−1

ωn−1
�� Cn

ωn �� Xn+1 �����

of distinguished n-exangles. This shows that C
˝
is a minimal element in S(X). �

We are now ready to state and prove our main result.
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Theorem 3.12. Let C be a locally finite n-exangulated category. If Xn+1∈
ind(C ) is a non-projective object, then there exists an Auslander-Reiten n-exangle

ending at Xn+1, and if Y0∈ind(C ) is a non-injective object, then there exists an

Auslander-Reiten n-exangle starting at Y0. In this case, we say that C has Aus-

lander-Reiten n-exangles.

Proof. Since Xn+1∈ind(C ) is a non-projective object, by Lemma 3.6 we know
that the set S(Xn+1) is non-empty. Thus by Lemma 3.11, there is a distinguished
n-exangle

X
˝
:X0

α0−−→X1
α1−−→X2

α2−−→ ...
αn−1−−−→Xn

αn−−→Xn+1
δ���

where α1, α2, ..., αn−1∈radC and X0∈ind(C ), such that X
˝
is a minimal element in

S(Xn+1). Then End(X0) is local.
We want to prove that X

˝
is an Auslander-Reiten n-exangle, by Lemma 3.3, it

is enough to show that αn is right almost split.
Assume that g : Mn+1→Xn+1 is not a split epimorphism, we claim that g

factors through αn. By (EA2), we can observe that (idX0 , g) has a good lift g
˝
=

(idX0 , ϕ1, ..., ϕn, g), that is, there exists the following commutative diagram of dis-
tinguished n-exangles

X0
γ0 �� B1

γ1 ��

ϕ1

��
�
�
� B2

γ2 ��

ϕ2

��
�
�
� ··· �� Bn

γn ��

ϕn

��
�
�
� Mn+1

g

��

g∗δ
�����

X0
α0 �� X1

α1 �� X2
α2 �� ··· �� Xn

αn �� Xn+1
δ �����

such that

N
˝
: B1 −−→N1 −−→N2 −−→ ...−−→Nn−1 −−→Mn+1⊕Xn

[ g, αn ]−−−−−→Xn+1
(γ0)∗δ���

is a distinguished n-exangle in C , where Ni=Bi+1⊕Xi, i=1, 2, ..., n−1. Since
Xn+1∈ind(C ), g and αn are not split epimorphisms, we have that [g, αn] is also not
split epimorphism by Lemma 3.9. That is, N

˝
is non-split.

Without loss of generality, we can assume that B1=U⊕V where U and V

are indecomposable. For the morphism p1=[1, 0] : U⊕V →U , by (EA2op), we can
observe that (p1, idXn+1) has a good lift h

˝
=(p1, φ1, ..., φn, idXn+1), that is, there

exists the following commutative diagram of distinguished n-exangles

U⊕V
[u, v]

��

p1

��

N1 ��

φ1

��
�
�
� N2 ��

��
�
�
� ··· �� Nn−1 ��

��
�
�
�

Mn+1⊕Xn
��

��
�
�
�

Xn+1 �����

U
δ0 �� L1 �� L2 �� ··· �� Ln−1 �� Ln

�� Xn+1 ����� .
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Similarly, for the morphism p2=[0, 1] : U⊕V →V , there exists the following
commutative diagram of distinguished n-exangles

U⊕V
[u, v]

��

p2

��

N1 ��

q1

��
�
�
� N2 ��

��
�
�
� ··· �� Nn−1 ��

��
�
�
�

Mn+1⊕Xn
��

��
�
�
�

Xn+1 �����

V
η0 �� Q1 �� Q2 �� ··· �� Qn−1 �� Qn

�� Xn+1 ����� .

By Remark 3.7, we conclude that at least one of the following two distinguished
n-exangles is non-split

U
δ0 �� L1 �� L2 �� ··· �� Ln−1 �� Ln

�� Xn+1 �����

V
η0 �� Q1 �� Q2 �� ··· �� Qn−1 �� Qn

�� Xn+1 ����� .

Without loss of generality, we assume that

U
δ0 �� L1 �� L2 �� ··· �� Ln−1 �� Ln

�� Xn+1 �����

is non-split. By Lemma 2.15, we can find a non-split distinguished n-exangle

C
˝
: U λ0 �� C1

λ1 �� C2
λ2 �� ...

λn−2
�� Cn−1

λn−1
�� Cn

λn �� Xn+1 �����

with λ1, λ2, ..., λn−1 in radC . By (R0) and Lemma 2.10, we have the following
commutative diagram

X0
α0 ��

��
�
�
� X1

α1 ��

��
�
�
� X2

α2 ��

��
�
�
� ···

αn−2
�� Xn−1

αn−1
��

��
�
�
�

Xn
αn ��

[
0
1

]

��

Xn+1 �����

U⊕V
[u, v]

��

p1

��

N1 ��

φ1

��

N2 ��

��

··· �� Nn−1 ��

��

Mn+1⊕Xn
[g,αn]

��

��

Xn+1 �����

U
δ0 �� L1 ��

��
�
�
� L2 ��

��
�
�
� ··· �� Ln−1 ��

��
�
�
�

Ln
��

��
�
�
� Xn+1 �����

U
λ0 �� C1

λ1 �� C2
λ2 �� ...

λn−2
�� Cn−1

λn−1
�� Cn

λn �� Xn+1 �����

of distinguished n-exangles. We obtain that X
˝
>C

˝
implies that X

˝
∼C

˝
since X

˝

is the minimal element in S(Xn+1). Thus there exists the following commutative
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diagram

U
λ0 ��

��

C1
λ1 ��

��

C2
λ2 ��

��

···
λn−2

�� Cn−1
λn−1

��

��

Cn
λn ��

��

Xn+1 �����

X0
α0 �� X1

α1 �� X2
α2 �� ···

αn−2
�� Xn−1

αn−1
�� Xn

αn �� Xn+1 �����

of distinguished n-exangles. Hence we get the following commutative diagram

U⊕V
[u, v]

��

��

N1 ��

��

N2 ��

��

··· �� Nn−1 ��

��

Mn+1⊕Xn
[g,αn]

��

[a,b]
��

Xn+1 �����

X0
α0 �� X1

α1 �� X2
α2 �� ···

αn−2
�� Xn−1

αn−1
�� Xn

αn �� Xn+1 �����

of distinguished n-exangles. It follows that g=αna. This shows that αn is right
almost split.

Similarly, we can show that if Y0∈ind(C ) is a non-injective object, then there
exists an Auslander-Reiten n-exangle starting at Y0. Thus C has Auslander-Reiten
n-exangles. �

By applying Theorem 3.12 to (n+2)-angulated categories, we have the follow-
ing.

Corollary 3.13. ([26, Theorem 1.1]) Let C be a locally finite (n+2)-angulated
category. Then C has Auslander-Reiten (n+2)-angles.

By applying Theorem 3.12 to n-abelian categories, we have the following.

Corollary 3.14. ([22, Theorem 1.1]) Let C be a locally finite n-abelian cate-

gory. Then C has n-Auslander-Reiten sequences.

By applying Theorem 3.12 to n-exact categories, we have the following.

Corollary 3.15. Let C be a locally finite n-exact category. Then C has

n-Auslander-Reiten sequences.

Remark 3.16. As a special case of Theorem 3.12 when n=1, that is, if C is a
locally finite extriangulated category, then C has Auslander-Reiten E-triangles, see
[27, Theorem 3.12].

Remark 3.17. If C is a locally finite triangulated category, then C has Aus-
lander-Reiten triangles, see [23, Proposition 1.3] and [24, Lemma 1.4.3].
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