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Periodic flows with global sections

Khadija Ben Rejeb

Abstract. Let G={ht | t∈R} be a continuous flow on a connected n-manifold M . The
flow G is said to be strongly reversible by an involution τ if h−t=τhtτ for all t∈R, and it is said
to be periodic if hs = identity for some s∈R∗. A closed subset K of M is called a global section
for G if every orbit G(x) intersects K in exactly one point. In this paper, we study how the two
properties “strongly reversible” and “has a global section” are related. In particular, we show that
if G is periodic and strongly reversible by a reflection, then G has a global section.

1. Introduction

Let X be a metric space, and let G be a group of homeomorphisms of X. For
x∈X, the orbit of x under G is

G(x)= {g(x) | g ∈G}; and

the isotropy subgroup at x is defined by

Gx = {g ∈G | g(x)=x}.

For every subset A⊆X, we denote by A/G the space of orbits of points of A;

A/G= {G(x) | x∈A}.

The interior of A is denoted by int(A), and its closure is denoted by A.
Throughout this paper, an n-manifold means a topological manifold of di-

mension n (that is, a Hausdorff space with a countable basis of open sets, each
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homeomorphic to R
n). A map τ :X−→X is called involution if τ is a homeomor-

phism satisfying τ2=id. The group G is called strongly reversible if there exists an
involution τ of X satisfying

g−1 = τgτ, for all g ∈G.

An orbit G(x) is called symmetric (with respect to τ) if it is a τ -invariant subset,
that is, if τ(G(x))=G(x).

Reversibility has received a lot of interest in recent years, it plays a role in
dynamics and it is related to some problems in physics. A lot of interesting results
have been obtained in many works such as [4], [7], [8], [10], [13] and [18].

A subset K⊂X is called a global section (or global cross-section) for G if the
following hold:

1. K is closed.
2. Every orbit G(x) intersects K in exactly one point.
A local section (or local cross-section) at a point p∈X is a closed subset Kp⊂X

satisfying the following conditions.
1. Distinct points of Kp lie in distinct orbits.
2. Gp=Gq for each q∈Kp.
3. G(Kp) is a neighborhood of p.
The concept of sections is a fundamental problem in the theory of dynami-

cal systems. A natural question for cross-sections is existence. Given a group G

of homeomorphisms, when G has local or global section? Which necessary and
sufficient conditions for the existence of a cross-section?

The existence of a section through a given point shows that local parallelizabil-
ity of the system is fulfilled. This gives a very good tool for solving many problems
as it is possible to describe very precisely the behaviour of a system in a neigh-
borhood of any nonstationary point. There are many works on local and global
cross-sections, a brief selection is [1], [6], [9], [14], [15], [16], [17] and [19].

A group G={ht | t∈R} of homeomorphisms of X is called continuous flow if

φ: R×X −→ X

(t, x) �−→ ht(x)

is a continuous map satisfying:
φ(0, x)=x, and
φ(t, φ(t′, x))=φ(t+t′, x) for all x∈X, t, t′∈R.

For t=0, h0=id is the identity map of X. The flow G is called periodic if hs=id

for some s∈R∗
+. A point x∈X is called periodic if ht(x)=x for some t∈R∗

+, and it
is called stationary if ht(x)=x for all t∈R.
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The existence of local sections was first proved in 1939 by M. Bebutov for flows
(Whitney-Bebutov’s Theorem [2]).

In this paper, we would like to make comparison between “has a global section”
and “strongly reversible”. In particular, we study how the two notions are related
for periodic flows on connected n-manifolds.

The flow G is called parallelizable if there exists a subset K of X such that
the restriction

φ|R×K : R×K −→ X

(t, x) �−→ ht(x)
is a homeomorphism. It is easy to show that if G is parallelizable, then the following
hold.

1. G has a global section (the subset K).
2. G has no periodic point.

So, every periodic flow is nonparallelizable. One can ask: Under which conditions
periodic flows have global sections?

Let G be a compact abelian Lie group of homeomorphisms of an n-manifold
M such that Gx={id} for every x∈M . Although it is well known that such a
group G has local cross-sections everywhere on M (see [16] p. 221), the existence
of a global cross-section for G is not guaranteed; a simple example is the flow
G={ht :(z1, z2) �−→(z1e

it, z2e
it) | t∈R} on C×C\{(0, 0)} which is a periodic flow

with no global section (Hopf fibration). However, we show the following result.

Theorem 1.1. Let G be a nontrivial periodic flow on a connected n-manifold

M. Then there exists a finite set of open G-invariant subsets {V1, V2, ..., Vk} of M

such that the union V =∪k
i=1 Vi is dense in M, and for every i, the following hold.

1. G|Vi
has a global section.

2. G|Vi
is strongly reversible.

If f is a homeomorphism of X, we denote by Fix(f) the fixed point set of f ;

Fix(f)= {x∈X | f(x)=x}.

Definition 1.2. Let M be a connected n-manifold, a map R:M−→M is a
reflection if the following hold.

1. R is an involution,
2. Fix(R) is an (n−1)-submanifold of M ,
3. M \Fix(R) has two connected components.

When a cross-section exists it need not be locally (n−1)-Euclidean (see Exam-
ple 1.6). Let G be a nontrivial periodic flow on a connected n-manifold, in Theorem
1.3 we establish a necessary and sufficient condition for the existence of a global
section which is an (n−1)-manifold.
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Theorem 1.3. Let G be a nontrivial periodic flow on a connected n-manifold

M. Then the following are equivalent:

1. G has a global section K which is an (n−1)-manifold.

2. G is strongly reversible by an involution τ such that Fix(τ)\F has two con-

nected components A and B and each of A∪F and B∪F is a closed (n-1)-manifold.

In the following theorem, we prove that for periodic flows on connected n-mani-
folds, “strongly reversible by a reflection” implies “have global section”.

Theorem 1.4. Let G be a nontrivial periodic flow on a connected n-manifold

M. If G is strongly reversible by a reflection R, then G has a global section.

Remark 1.5. 1) From Theorem 1.4, we can see that the flow

G= {ht : (z1, z2) �−→ (z1e
it, z2e

it) | t∈R}

on C×C is an example of a periodic flow that cannot be strongly reversible by a
reflection since G has no global section. However G is strongly reversible by the
involution τ :(z1, z2) �−→(z1, z2)); where Fix(τ)∼=C.

2) For n≥4, a periodic flow on R
n which is strongly reversible by a reflection

R need not have a global section which is a manifold (Example 1.6).

Example 1.6. Let B be the Bing’s dog bone space. It is well known that B

is not a manifold, and that B×R is homeomorphic to R
4. We define a flow G on

B×R
2 by

ht : (b, x) �−→ (b, xeit).

Clearly, G is a periodic flow on B×R
2 which is homeomorphic to R

5. Moreover,
G is strongly reversible by R:(b, x1, x2) �−→(b,−x1, x2) which is a reflection with
Fix(R)=B×R∼=R

4. The fixed point set Fix(G)=B×{0} divides Fix(R) into two
connected components B×R

∗
+ and B×R

∗
−, and B×R+ is a global section for G,

however, B×R+ is not a manifold.

In studying periodic flows on connected manifolds, we will need the following
theorem.

Theorem 1.7. ([5], Theorem 9.5, p. 157) If G is a compact Lie group act-

ing effectively on a connected n-manifold M, then the set MG={x∈M | g(x)=
x for all g∈G} is nowhere dense.

The paper is organized as follows. In Section 2, we study compact groups
with global sections, and we investigate their properties. In Section 3, we consider
the particular case of periodic flows on connected n-manifolds; where we begin by
proving some general results of such flows and we prove Theorem 1.1. In Subsec-
tion 3.1, we study periodic flows with global sections, and in Subsection 3.2, we
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study periodic flows which are strongly reversible, then, we prove Theorem 1.3 in
Subsection 3.3. Subsection 3.4 is about Theorem 1.4.

2. Compact groups with global sections

Let G be a compact abelian group of homeomorphisms of a metric space M . In
the following proposition we give a necessary condition for the existence of a global
section for G.

Proposition 2.1. Let G be a compact abelian group of homeomorphisms of

a metric space M. If G has a global section K then G is strongly reversible by an

involution τ .

Proof. Since K is a global section for G, for every x∈M , the orbit G(x) in-
tersects K in exactly one point, it follows that M⊂G(K). Conversely, clearly
G(K)⊂M . Then M=G(K). Define a map τ on M as follows:

τ : G(K) −→ G(K)
g(x) �−→ g−1(x)

We will show that τ is an involution and G is strongly reversible by τ . The map τ is
well defined because if g(x)=g′(x′) in G(K) then x=x′ since K is a global section,
so g(x)=g′(x) which implies that g−1(x)=g′−1(x).

For showing the continuity of τ let (yn)n=(gn(xn))n be a sequence in G(K)
converging to y=g(x)∈G(K). Let B={yn, n≥0}∪{y}. By compactness of G and
B, G(B) is compact. Let (g−1

nk
(xnk

))k be a subsequence of (g−1
n (xn)), converging

to some point b. Let gnϕ(k) be a subsequence of (gnk
)k converging to some ele-

ment g0∈G. It follows that xnϕ(k) converges to g0(b)∈K since K is closed and
gnϕ(k)(xnϕ(k))−→g0(g0(b))=g(x), which implies that g0(b)=x since K is a global
section, and so g−1

0 (x)=g−1(x)=b. It follows that (g−1
n (xn))n converges to g−1(x).

It is easy to see that τ2=id, then τ is bijective and τ−1=τ is continuous. So
τ is a homeomorphism. Thus τ is an involution.

Now, we show that for every f∈G, τfτ=f−1. Let y=g(x)∈G(K), then
τfτ(y)=τfτ(g(x))=τf(g−1(x))=f−1(y) since G is abelian. We conclude that G is
strongly reversible by τ . �

Example 2.2. The converse implication in the above Proposition is not true;
that is, a strongly reversible compact abelian group need not have global section.
Consider for example the action of the circle group G on C×C given in Remark
1.5.(1);

G= {ht : (z1, z2) �−→ (z1e
it, z2e

it) | t∈R}.
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So, clearly G is a compact abelian group and is strongly reversible by τ :(z1, z2) �−→
(z1, z2), however G has no global section.

Proposition 2.3. Let G be a compact group of homeomorphisms of a metric

space M having a global section K. If Gx={id} for every x∈M , then G×K is

homeomorphic to M.

Proof. Since K is a global section, M=G(K). Consider the map φ defined by

φ: G×K −→ G(K)
(g, x) �−→ g(x)

We will show that φ is a homeomorphism. It is easy to see that φ is well defined
and continuous. Injectivity of φ follows from the fact that K is a global section and
Gx={id} for every x∈M . To show that φ−1 is continuous, let gn(xn)−→g(x) in
G(K). Since G is compact, let (gnk

)k be a subsequence of (gn) converging to g0∈G.
Then xnk

−→g−1
0 (g(x))=x0∈K since K is closed. Which implies that g(x)=g0(x0),

so x=x0 and g=g0 since Gx={id}. We deduce that gn−→g and xn−→x. Thus
φ−1 is continuous, and φ is a homeomorphism. �

In the following Lemma, we show that if a group G of homeomorphisms of a
metric space M has a global section K, then K is homeomorphic to the orbit space
M/G.

Lemma 2.4. Let G be a group of homeomorphisms of a metric space M. If G

has a global section K, then the following hold.

1. The restriction of the orbit map π :M−→M/G to K given by

π|K : K −→ K/G=M/G

x �−→ G(x)

is a homeomorphism.

2. If M is connected, then K is connected.

Proof. (1) It is easy to see that the orbit map

π: M −→ M/G

x �−→ G(x)

is continuous and open. Since K is a global section, then K/G={G(x) | x∈K}=
M/G and the restriction

π|K : K −→ M/G

x �−→ G(x)
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is a bijection. Moreover, π|K is continuous since π is. For showing the continuity of
(π|K)−1, let F be a closed subset of K, we will show that π(F ) is closed in M/G.
Since K is closed in M , then F is closed in M , then π(F ) is closed in M/G. We
conclude that π|K is a homeomorphism.

(2) Assume that K is not connected, then there exist two open subsets V1 and
V2 in K such that V1∩V2=∅ and K=V1∪V2 which implies that

M =G(K)=G(V1)∪G(V2). (∗)

Since V1 is open in K, then by Item 1, π|K(V1)=π(V1) is open in M/G and
since π is continuous, then π−1(π(V1))=G(V1) is open in M , in the same way, G(V2)
is open in M . Moreover, G(V1)∩G(V2)=∅ since V1∩V2=∅ and V1, V2⊂K, where
K is a global section. So, equality (∗) contradicts the fact that M is connected.
Thus K is connected. �

In the following Proposition, we show that if G is a compact Lie group of
homeomorphisms of an n-manifold M such that Gx={id} for every x, then M is
covered by a finite set of G-invariant open subsets such that the restriction of G to
each of them has a global section.

Proposition 2.5. Let G be a compact Lie group of homeomorphisms of an

n-manifold M such that for every x∈M , Gx={id}. Then there exists a finite set

{U1, U2, ..., Uk} of subsets of M such that for every 1≤i≤k, Ui is contained in a

local cross-section Ki, G(Ui) is open in M, and

M =G(U1)∪...∪G(Uk).

Proof. By Lemma 2.4.(1), the orbit map π :M−→M/G is a homeomorphism on
local cross-sections. From the Proof of Theorem 4.2 of [15], there exists a collection
F={Ai}i of closed subsets Ai of M/G satisfying the following conditions:

1. M/G=∪i int(Ai).
2. There exists a finite collection {L1, L2, ..., Lk} of closed subsets Li of M/G

such that:
a) for every 1≤i≤k, there exists a subcollection Fi={Aij}j of F which is a

covering of Li; Li=∪j Aij ;
b) for every 1≤i≤k, Li=π(Ki); where Ki is a closed local section in M , and
c) ∪k

i=1 Fi=F .
By (1) and (2).(c), we have M/G=∪k

i=1 (∪j int(Aij )). For every 1≤i≤k, U ′
i=

∪j int(Aij )⊂Li is open in M/G, then π−1(U ′
i) is open in M , by (2).(b), U ′

i=
π(Ui); where Ui⊂Ki, then π−1(U ′

i)=G(Ui) is open in M , and M=π−1(M/G)=
∪k
i=1 π−1(U ′

i)=G(U1)∪....∪G(Uk). �



46 Khadija Ben Rejeb

3. Periodic flows on connected manifolds

Let G be a continuous flow on a metric space X. A point x∈X is said to be
stationary if

ht(x)=x, for all t∈R,

and it is said to be periodic if

ht(x)=x, for some t> 0.

If x∈X is periodic, but nonstationary, then there is T>0 such that T is the smallest
positive real satisfying hT (x)=x (see Theorem 2.12 of [6]). This real T is called
the period of x, and for every real t>0 satisfying ht(x)=x, there is an integer n≥1
such that t=nT . The flow G is called periodic of period s>0 if hs=id and for every
0<t<s, ht �=id.

Proposition 3.1. Let G be a continuous flow on a metric space X. Then the

following hold.

1. Given any ε>0, the set Aε={x∈X | ht(x)=x for some 0<t≤ε} is closed.

2. For x∈X, the following are equivalent.

a) x is stationary.

b) There is a sequence (xn)n in X and a sequence (tn) in R
∗
+ such that

htn(xn)=xn for every n, tn−→0, and xn−→x.

Proof. 1) See Theorem 2.14 of [6].
2) (a)=⇒(b) Assume that x is stationary, then for every integer n>0, h 1

n
(x)=x.

Then tn= 1
n−→0, and xn=x−→x.

(b)=⇒(a) Assume (b) is true. Let ε>0. Since tn−→0, there exists an integer
n0>0 such that for every n≥n0, tn≤ε, then xn∈Aε for every n≥n0, and since Aε

is closed by Item 1, then x∈Aε; that is, htε(x)=x for some 0<tε≤ε. Then x is
periodic. Assume that x is nonstationary, then x is with period T �=0 and tε=kεT

for some kε∈N∗. Then T= tε
kε
≤tε≤ε, when ε−→0, we obtain T=0; a contradiction,

so x is stationary. �

In the remainder of this section, we take G={ht | t∈R} to be a nontrivial
continuous flow on M which is periodic with period s∈R∗

+. We shall make use of
the following notations:

F = {x∈M | x is stationary};
L= {x∈M | x is with period 0<t<s};

H = {x∈M | x is with period s}.
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It is easy to see that M=L∪H∪F . We denote by N=L∪H=M \F the set of
nonstationary points of M . Clearly the set F is closed as intersection of closed sets
(see Section 1 for the definition of a stationary point).

Lemma 3.2. Let G be a periodic flow of period s on a metric space M. Then

the subset H is open.

Proof. For showing that H is open, we will show that L∪F is closed. Let
(xn)n be a sequence in L∪F such that xn−→x. We show that x∈L∪F . For every
xn∈L∪F , there exists 0<tn<s such that htn(xn)=xn. Since (tn)⊂[0, s] compact,
then we can assume that tn−→t0∈[0, s]. If t0=0, then x∈F by Proposition 3.1.(2).
If t0=s, then (s−tn)−→0 and hs−tn(xn)=xn for every integer n since hs=id. So
x∈F by Proposition 3.1.(2). If 0<t0<s, then ht0(x)=x, and either x∈F or x is
with period 0<T<s, thus x∈L. We conclude that L∪F is closed. �

Lemma 3.3. Let G be a periodic flow of period s on a metric space M. Then

for every subset V ⊂L, the following hold.

1. For every x0∈V , there exists ε>0 such that every point x in B(x0, ε)∩V is

with period Tx≥T0; where T0 is the period of x0.

2. There exists a nonempty open subset U in V on which all points have the

same period.

Proof. (1) Assume that statement (1) is not true, then there exists x0∈V such
that for every ε>0, there exists xε∈B(x0, ε)∩V such that Tε<T0; where Tε is the
period of xε. Then for every n∈N∗, there exists xn∈B(x0,

1
n )∩V such that Tn<T0;

where Tn is the period of xn. We know that (Tn) has a convergent subsequence,
we may assume that (Tn) converges. But (Tn)⊂{ s

k | k∈N∗} since G is with pe-
riod s, then when n−→+∞, either Tn−→0 or Tn−→ s

k0
. If Tn−→0, since xn−→x0

and hTn(xn)=xn for every n, then by Proposition 3.1.(2), x0 is stationary which
is a contradiction since x0∈V ⊂L. Then Tn−→ s

k0
. So there exists a positive inte-

ger n0 such that for all n≥n0, Tn= s
k0

. When n−→+∞, we obtain h s
k0

(x0)=x0,
which implies that s

k0
=pT0 for some p∈N∗ but s

k0
≤T0, then p=1 and s

k0
=T0 which

contradicts the fact that Tn<T0 for all n. We conclude that (1) is true.
(2) Let x0∈V . By Item 1 there exists ε>0 such that every point x in B(x0, ε)∩

V is with period Tx≥T0. Let T0= s
k0

and let Tx= s
kx

≥ s
k0

. Then kx≤k0, so {Tx | x∈
B(x0, ε)∩V }⊂{ s

k | 2≤k≤k0}. It follows that B(x0, ε)∩V =∪k0
k=2 Ak; where Ak=

{x∈B(x0, ε)∩V | x is with period s
k}, we have Ai∩Aj=∅ for all i �=j in {2, ..., k0}.

Since B(x0, ε)∩V is open in V , then for some 2≤k≤k0, int(Ak) �=∅; where int(Ak)
is the interior of Ak in V . Thus U=int(Ak) is a nonempty open subset in V on
which all points have the same period s

k . �
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Proposition 3.4. Let G be a nontrivial periodic flow of period s on a connected

n-manifold M. Then the following hold.

1. G is a compact connected Lie group of dimension 1, and N=M \F is con-

nected.

2. The subset H is open and everywhere dense in M.

Proof. (1) If F=∅, then clearly N=M is connected. Now, assume that F �=∅.
We will show that N=M \F is connected. Suppose that M \F is nonconnected,
then there exist two open subsets U1 and U2 such that U1∩U2=∅ and M \F=
U1∪U2. Since G is connected, then for every t∈R, ht(U1)=U1 and ht(U2)=U2. Let
G′={h′

t | t∈R} be the flow on M defined by

h′
t(x)=

{
ht(x), if x∈U1.

x, if x∈F∪U2.

Clearly G′ is a compact Lie group since G is, and since G′=id on U2, then G′=
{id} on M by Theorem 1.7, so G={id} on U1, and hence G={id} on M , which
contradicts the fact that G is nontrivial. Thus M \F is connected.

(2) Assume that int(L∪F ) �=∅. Let V =int(L∪F )\F . Then V is open in M .
We will show that V �=∅. Assume that V =∅, then ∅ �=int(L∪F )=F∩int(L∪F )⊂
F and G={id} on int(L∪F ), since G is a compact Lie group by Item 1, then by
Theorem 1.7 G is trivial, which is absurd. Then V �=∅. By Lemma 3.3.(2), there
exists a nonempty open subset U of V on which all points have the same period
T= s

k , (k≥2). Then hT =id on U . But hT is periodic of period k, then by Theorem
1.7, hT =id everywhere on M , which is impossible since T<s. We conclude that
int(L∪F )=∅, equivalently, H=M . Moreover, H is open by Lemma 3.2. �

Proof of Theorem 1.1. By Proposition 3.4.(1), G is a compact Lie group. Since
H is an open (Lemma 3.2), G-invariant subset of M , then the restriction G|H is a
compact Lie group. For every x∈H, Gx={id}, then by Proposition 2.5, there exists
a finite set {U1, ...., Uk} of subsets of H such that for every i, Ui is contained in a
local cross-section Ki in H, G(Ui) is open in H and H=

⋃k
i=1 G(Ui). By Proposition

3.4.(2), H=M . For every i, we will show that the subset Ui is closed in G(Ui). Let
(xn) be a sequence in Ui converging to some point x in G(Ui), we must show that
x∈Ui. We have x=ht(x0) for some real t and some x0∈Ui, on the other hand
Ui⊂Ki and since Ki is closed, x∈Ki∩G(Ui). Therefore, x and x0 are in Ki and are
in the same orbit, so by the definition of a local section, x=x0∈Ui. Now, we can
easily see that Ui is a global section for G|G(Ui), and G|G(Ui) is strongly reversible
by Proposition 2.1. �
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3.1. Periodic flows with global sections

Let G be a periodic flow of period s on a connected n-manifold M having a
global section K. Recall that G is compact (Proposition 3.4). In this subsection, we
like to prove some properties of G. We begin by showing, in the following Lemma,
that G is strongly reversible, and that the fixed point set of h s

2
coincides with the

set F of stationary points of G.

Lemma 3.5. Let G be a periodic flow of period s on a connected n-manifold

M. If G has a global section K, then the following hold.

1. K∩H=K.

2. G is strongly reversible by the involution

τ : G(K)=M −→ G(K)
ht(x) �−→ h−t(x).

and Fix(τ)=K∪{hT
2
(x) | x∈K\F and x is with period T}.

3. Fix(h s
2
)=F .

Proof. (1) Since M=H by Proposition 3.4.(2), and M=G(K), then M=
G(K)∩H=G(K∩H) since H is G-invariant. By compactness of G, we obtain

M =G(K∩H). (∗)

Since K is closed, K∩H⊂K. Assume that K �=K∩H, then there exists y∈K such
that y /∈K∩H. By (∗), y=ht(x) for some x∈K∩H⊂K, then y=x (since K is a
global section); which is a contradiction. Thus K=K∩H.

(2) The flow G is strongly reversible by the involution τ (see Proof of Proposi-
tion 2.1). It is easy to see that if F �=∅ then F⊂K since M=G(K). Let y=ht(x)∈
G(K) such that τ(y)=y, then h−t(x)=ht(x), equivalently, h2t(x)=x. Then either
x=y∈F or 2t=nT for some n∈N∗; where T is the period of x, equivalently, t=nT

2 .
If n=2p is even, then t=pT , so y=hpT (x)=x∈K. If n=2p+1 is odd, then t=pT+ T

2
and y=hT

2
(x). Thus Fix(τ)⊂K∪{hT

2
(x) | x∈K\F and x is with period T}. The

converse inclusion, is easy to see. So Fix(τ)=A∪B∪F ; where K=A∪F and
B={hT

2
(x) | x∈A and x is with period T}.

(3) Let y∈Fix(h s
2
). Since M=G(K), then y=ht(x) for some x∈K, and

h s
2
(x)=x. Assume that x /∈F ; that is, x∈K\F . Since A=K\F is open in K,

then Vx=A∩h s
2
(A) is a nonempty open subset in K containing x and satisfy-

ing h s
2
(Vx)=Vx. It follows by Lemma 2.4.(1) that G(Vx) is open in M . Since

H=M , then G(Vx)∩H �=∅, which implies that Vx∩H �=∅ since H is G-invariant.
Let z∈(Vx∩H)⊂Vx⊂A, then z is with period s and h s

2
(z)∈B∩Vx⊂B∩A; which is

impossible since A∩B=∅. Therefore x∈F , and Fix(h s
2
)⊂F . The converse inclu-

sion is clear, thus Fix(h s
2
)=F . �
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In the following proposition “dim” means the topological dimension. The topo-
logical dimension of a topological space E is defined inductively as follows: the
empty set is assigned dimension −1, and E is said to be n-dimensional at a point
p if n is the least number for which there are arbitrarily small neighborhoods of
p whose boundaries in M all have dimension <n. The space E has topological
dimension n if its dimension at all of its points is ≤n but is equal to n at one point
at least.

Proposition 3.6. Let G be a nontrivial periodic flow of period s on a connected

n-manifold M. If G has a global section K, then G is strongly reversible by the

involution
τ : G(K) −→ G(K)

ht(x) �−→ h−t(x).

satisfying the following properties

1. F divides Fix(τ) into two connected components K\F and h s
2
(K\F ).

2. dimK=(n−1)=dimFix(τ).

Proof. (1) The subset M \F is connected by Proposition 3.4.(1), then by
Lemma 2.4.(2), K\F is connected. By Lemma 3.5, Fix(τ)=A∪B∪F ; where A=
K\F , and B={hT

2
(x) | x∈K\F and x is with period T}. Since G is with period

s, then h s
2
(Fix(τ))=Fix(τ)=h s

2
(A)∪h s

2
(B)∪F . We will show that A∩h s

2
(A)=∅.

If not, there exists y∈A∩h s
2
(A), then y=h s

2
(x) for some x∈A, then y=x since

A⊂K, and h s
2
(x)=x. Since Fix(h s

2
)=F by Lemma 3.5.(3), then x∈F , which is a

contradiction. So, A∩h s
2
(A)=∅. It follows that h s

2
(A)⊂B. Since A={hT

2
(x) | x∈

B and x is with period T} and h s
2
(B)={hT

2
(h s

2
(x)) | x∈A and x is with period T},

then h s
2
(B)⊂A. Therefore h s

2
(A)=B, equivalently h s

2
(B)=A. Since B=(Fix(τ))\

K is open in Fix(τ), then B is open in (A∪B). Which implies that A is closed in
(A∪B) since A∩B=∅. Since h s

2
:A∪B−→A∪B is a homeomorphism, then each

of A and B=h s
2
(A) is open and closed in A∪B. Moreover, each of A and B is

connected since A is connected. Thus Fix(τ)\F=A∪B has two connected compo-
nents A and B; that is, F divides Fix(τ) into two connected components A=K\F
and B=h s

2
(A).

(2) Since H is G-invariant, then H=G(K∩H) and K∩H is a global section
for the restriction G|H . Moreover, Gx={id}, for every x∈K∩H, then the map

φ: G×(K∩H) −→ H

(ht, x) �−→ ht(x) (∗)

is a homeomorphism by Proposition 2.3. Since H is open in M , then dimH=
n=dim(G×(K∩H))≤dimG+dim(K∩H). On the other hand, since G is com-
pact, it is well known that dim(G×(K∩H))>max{dimG, dim(K∩H)} (see [11]).
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Since dimG=1 by Proposition 3.4.(1), then dim(K∩H)<n≤1+dim(K∩H). So,
dim(K∩H)=(n−1)≤dimK. If dimK=n, then K contains a nonempty open sub-
set U of M . Therefore, U∩H is open in M and dim(U∩H)=n≤(n−1), which
is absurd. Thus dimK=(n−1). Since K⊂Fix(τ), then (n−1)≤dimFix(τ). If
dimFix(τ)=n then Fix(τ) will contain a nonempty open subset of M , and we
will obtain τ=id by Theorem 1.7, which is absurd since G is nontrivial. Hence,
dimFix(τ)=(n−1). �

3.2. Strongly reversible periodic flows

Let G be a nontrivial periodic flow of period s on a connected n-manifold M ,
and assume that G is strongly reversible by an involution τ such that Fix(τ) is
an (n−1)-manifold. In the following Proposition we prove an important property
of G that will be used in the rest of the paper saying that every orbit G(x) in N

intersects Fix(τ) in exactly two points y and hT
2
(y); where T is the period of x.

Proposition 3.7. Let G be a nontrivial periodic flow of period s on a connected

n-manifold M. If G is strongly reversible by an involution τ such that Fix(τ) is an

(n-1)-manifold, then

1. N∩Fix(τ) �=∅.

2. For every x∈N , G(x) is symmetric and intersects Fix(τ) in exactly two

points y and hT
2
(y); where T is the period of x.

3. M=G(Fix(τ)).

Proof. (1) If N∩Fix(τ)=∅ then Fix(τ)⊂F and G|Fix(τ)=id. By compactness
of G, we can find a G-invariant open subset U of M such that (Fix(τ)∩U) divides
U into two connected components U1 and U2. Since G is connected, each of U1
and U2 is G-invariant, then we can extend the restriction G|U1 by the identity
on U2∪(Fix(τ)∩U). The extension group is a compact Lie group that coincides
with the identity on a nonempty open subset, then by Theorem 1.7 it must be
trivial. So, G|U1 ={id}. It follows that G is trivial, which is a contradiction. Thus
N∩Fix(τ) �=∅.

(2) By Proposition 3.4.(1), N is connected. So, by Item 1 and ([3], Theorem
1.2.(2)) every orbit G(x) is symmetric, in particular, we have τ(x)=ht(x) for some
real t, and by reversibility of G we obtain h t

2
(x)=τ(h t

2
(x)). So, G(x)∩Fix(τ) �=∅.

Let a∈G(x)∩Fix(τ), and assume that b is another point in G(x)∩Fix(τ), then
b=ht(a) for some real t. Let T denote the period of a, then 2t=nT for some
integer n. The precedent equality implies that b=hnT

2
(a). Then either a=b or

b=hT
2
(a). We conclude that G(x)∩Fix(τ)={a, hT

2
(a)}.
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(3) By Item (2), N⊂G(Fix(τ)). By Proposition 3.4.(2), H=M . Since H⊂
N⊂M , then N=M . We will show that F⊂Fix(τ). Let x∈F , then there exists
a sequence (xn)⊂N such that xn−→x. For every integer n, xn=htn(x′

n) for some
htn∈G, x′

n∈Fix(τ). By compactness of G, we can assume that htn−→ht∈G, then
x′
n−→h−t(x). Now, τ(xn)=τ(htn(x′

n))=h−tn(x′
n)−→h−t(h−t(x))=x since x∈F ,

on the other hand, τ(xn)−→τ(x), so, τ(x)=x. We deduce that F⊂Fix(τ) and so
M=G(Fix(τ)). �

Lemma 3.8. Let G be a nontrivial periodic flow of period s on a connected

n-manifold M, which is strongly reversible by an involution τ such that Fix(τ) is

an (n-1)-manifold. Assume that there exist three subsets A, B, and C of Fix(τ)
satisfying the following conditions:

1. C is closed in Fix(τ) and C⊂Fix(h s
2
).

2. A∩B=A∩C=B∩C=∅.

3. A �=∅, and A is open and closed in Fix(τ)\C,

4. B �=∅, and Fix(τ)=A∪B∪C.

Then h s
2
(A) �=A.

Proof. By Proposition 3.7.(3), M=G(Fix(τ)). We will show that h s
2
(A) �=A by

contradiction. Assume that h s
2
(A)=A. Since A is closed in Fix(τ)\C, then A∪C

is closed in Fix(τ). Which implies that G(A∪C) is closed in M . By conditions (2)
and (3), G(B∪C) is also closed in M . Now, we define a map f on M as follows:

f : M −→ M

y �−→
{
h s

2
(y), if y∈G(A∪C);

y, if y∈G(B∪C).

We will show that f is a homeomorphism. It suffices to show that if y∈G(A∪
C)∩G(B∪C), then h s

2
(y)=y. If y∈G(A)∩G(B), then y=ht(x)=ht′(x′) for some

x∈A, x′∈B, and 0≤t, t′<T , where T is the period of y. Since G(x)∩Fix(τ)=
{x, hT

2
(x)} and A∩B=∅, then x′=hT

2
(x). On the other hand, h s

2
(x)∈Fix(τ)∩

G(x), then either h s
2
(x)=x or h s

2
(x)=hT

2
(x)∈B. Since h s

2
(A)=A, then h s

2
(x)=

x, which implies that h s
2
(y)=y. Now, if y∈G(B)∩G(C) or y∈G(A)∩G(C), or

y∈G(C), then y=ht(x) for some x∈C. Since C⊂Fix(h s
2
), then h s

2
(y)=y. We

conclude that f is a homeomorphism. Moreover, f2=id. and f=id on G(B∪C).
Since A∪C is closed in Fix(τ), then A∪C is closed in M , and since the map
π :M−→M/G is continuous and open, then π(A∪C) is closed in M/G. Which
implies that π(Fix(τ))\π(A∪C)=π(B) is open in M/G, and so π−1(π(B))=G(B)
is open in M . In the same way, G(A) is open in M . Since B �=∅, then G(B)
is a nonempty open subset on which f=id, then by Theorem 1.7, f=id. Which
implies that h s

2
=id on G(A∪C) which contains a nonempty open subset of M , then
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h s
2
=id on M , which contradicts the fact that G is of period s. We conclude that

h s
2
(A) �=A. �

Lemma 3.9. Let G be a nontrivial periodic flow of period s on a connected

n-manifold M, which is strongly reversible by an involution τ such that Fix(τ)
is an (n-1)-manifold. Assume that there exists a closed subset C in Fix(τ) such

that C⊂Fix(h s
2
) and Fix(τ)\C is nonconnected, then C divides Fix(τ) into two

connected components A and h s
2
(A), and M=G(A∪C).

Proof. Let A be a connected component in Fix(τ)\C. Since h s
2
(Fix(τ))=

Fix(τ), then h s
2
(A) is a connected component in Fix(τ)\C. Since Fix(τ)\C is

nonconnected, then B=Fix(τ)\(A∪C) �=∅ and Fix(τ)=A∪B∪C; where A, B,
and C satisfy the conditions of Lemma 3.8, then by Lemma 3.8, h s

2
(A) �=A. Let A′=

A∪h s
2
(A). Assume that Fix(τ) �=A′∪C. Then B′=Fix(τ)\(A′∪C) is a nonempty

subset in Fix(τ) and Fix(τ)=A′∪B′∪C; where A′, B′, and C satisfy the condi-
tions of Lemma 3.8, then h s

2
(A′) �=A′; which is a contradiction since h s

2
(A′)=A′.

Therefore Fix(τ)=A∪h s
2
(A)∪C; that is, C divides Fix(τ) into two connected com-

ponents A and h s
2
(A). Moreover, we have M=G(A∪C) since M=G(Fix(τ)). �

3.3. An equivalent condition to the existence of a global section

Using strong reversibility, we give an equivalent condition to the existence of a
global section which is an (n−1)-manifold by proving Theorem 1.3.

Proof of Theorem 1.3. The implication (1)=⇒(2) follows from Proposition 3.6.
(2)=⇒(1). Clearly, A is open in A∪F , then A is an (n−1)-manifold, in

the same way B is an (n−1)-manifold, then A∪B is an (n−1)-manifold. By
Proposition 3.4.(1), M \F is a connected open submanifold of M and G|M\F is
strongly reversible by the involution τ|M\F . Since Fix(τ|M\F )=Fix(τ)\F=A∪B
is an (n−1)-manifold and is nonconnected, then G|M\F satisfy the conditions of
Lemma 3.9 with C=∅, therefore by Lemma 3.9, B=h s

2
(A) and by Proposition 3.7,

M=G(Fix(τ))=G(A∪F ). It remains to show that every orbit intersects (A∪F ) in
exactly one point.

Assume that there exists y∈M \F such that G(y) intersects A in two points
a and b. Since B=h s

2
(A), we will have a, b and h s

2
(a) three distinct points in

G(y)∩Fix(τ) which contradicts the fact that every orbit G(y) in M \F intersects
Fix(τ) in exactly two points (Proposition 3.7.(2)). Therefore A∪F is a global
section for G. �
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3.4. Periodic flows that are strongly reversible by reflections have global
sections

Let G be a periodic flow on a connected n-manifold which is strongly reversible
by a reflection. In this subsection, we will show that G has a global section by
proving Theorem 1.4. We begin by proving two important properties of G in the
following theorem.

Theorem 3.10. Let G be a nontrivial periodic flow of period s on a connected

n-manifold M. If G is strongly reversible by a reflection R, then the following hold.

1. Fix(h s
2
)=F .

2. F divides Fix(R) into two connected components A and h s
2
(A).

Proof. (1) By Definition 1.2, Fix(R) divides M into two connected components
E and E′; that is, M \Fix(R)=E∪E′; where each of E and E′ is connected, open,
and closed in M \Fix(R) and M is the disjoint union M=E∪E′∪Fix(R). For every
integer k≥2, we have h−s

2k
(M)=M=h−s

2k
(E)∪h−s

2k
(E′)∪h−s

2k
(Fix(R)). It follows

that Fix(R)=Wk∪W ′
k∪Lk; where

Wk =h−s

2k
(E)∩Fix(R), W ′

k =h−s

2k
(E′)∩Fix(R), Lk =h−s

2k
(Fix(R))∩Fix(R).

Since G is of period s, h s
2
(Fix(R))=Fix(R).

We will show that Lk⊂Fix(h s
2
). Let x∈Lk. Then R(x)=x and R(h s

2k
(x))=

h s

2k
(x) which implies that

h s

2k−1
(x)=x. (∗)

Then h s
2
(x)=(h s

2k−1
)2k−2(x)=x.

Now, we will show that h s
2
(E)=E′. If not, assume that h s

2
(E)=E. For k=2,

we have

Fix(R)= (h−s
4

(E)∩Fix(R))∪(h−s
4

(E′)∩Fix(R))∪(h−s
4

(Fix(R))∩Fix(R)).

Since G is strongly reversible by R, and G is nontrivial, then R(E)=E′, so h−s
4

(E)=
h s

4
(E)=Rh−s

4
(E′). Then R(W ′

2)=W2. It follows that each of W2 and W ′
2 is

nonempty; otherwise, Fix(R)=L2⊂Fix(h s
2
), and by Theorem 1.7 we will obtain

h s
2
=id, which is absurd since G is of period s. Moreover, W2 is open and closed in

Fix(R)\L2 since h−s
4

(E) is open and closed in M \h−s
4

(Fix(R)). So, W2, W ′
2, and

L2 satisfy the conditions of Lemma 3.8, thus h s
2
(W2) �=W2. On the other hand, the

hypothesis h s
2
(E)=E implies that h s

2
(W2)=W2, which is a contradiction. Therefore

h s
2
(E)=E′, and h s

2
(Wk)=W ′

k

Now, we will show that Fix(h s
2
)=F . First, we show that for every k≥2,

Lk =Fix(h s

2k−1
)∩Fix(R)=Fix(h s

2
)∩Fix(R). (∗∗)
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Let y∈Lk=h−s

2k
(Fix(R))∩Fix(R), then y∈Fix(h s

2k−1
)∩Fix(R) (by equality (∗)).

Therefore Lk⊂Fix(h s

2k−1
)∩Fix(R)⊂Fix(h s

2
)∩Fix(R). Conversely, let y∈

Fix(h s
2
)∩Fix(R). If y /∈Lk, then y∈Fix(R)\Lk=Wk∪W ′

k. If y∈Wk, then h s
2
(y)∈

W ′
k, but h s

2
(y)=y∈Wk∩W ′

k=∅, which is impossible, in the same way y /∈W ′
k. Thus

y∈Lk and Fix(h s
2
)∩Fix(R)⊂Lk. We deduce that (∗∗) is true.

Let y∈Fix(h s
2
)∩Fix(R), then h s

2k−1
(y)=y for all k≥2. Since s

2k−1 −→0 when
k−→+∞, then by Proposition 3.1.(2), y is stationary. Hence, Fix(h s

2
)∩Fix(R)⊂

F . Conversely, it is easy to see that F⊂Fix(h s
2
)∩Fix(R). Therefore, Fix(h s

2
)∩

Fix(R)=F . Since Fix(h s
2
)=G(Fix(R)∩Fix(h s

2
)), then Fix(h s

2
)=F .

(2) By (∗∗), Lk=F for every k≥2. Then for k=2, Fix(R)=W2∪W ′
2∪F ; where

W ′
2=h s

2
(W2), and each of W2 and W ′

2 is open and closed in Fix(R)\F . Moreover,
W2 �=∅; because if not, Fix(R)=F and G will be trivial, which is a contradiction.
Then Fix(R)\F is nonconnected; otherwise Fix(R)\F=W2=W ′

2, which is absurd
since W2∩W ′

2=∅. By Lemma 3.9, F divides Fix(R) into two connected components
A and h s

2
(A); where A=W2. �

Proof of Theorem 1.4. By Theorem 3.10, Fix(R)=A∪h s
2
(A)∪F ; where A is

open in Fix(R)\F . Then h s
2
(A) is open in Fix(R), and (A∪F ) is closed in Fix(R).

Moreover, M=G(A∪F ). It remains to show that every orbit intersects (A∪F ) in
exactly one point. If not, assume that there exists y∈M \F such that there exist
a �=b∈G(y)∩A, then h s

2
(a)∈G(y)∩h s

2
(A) and h s

2
(a) �=a, h s

2
(a) �=b since A∩h s

2
(A)=

∅; which is impossible since every orbit intersects Fix(R) in exactly two points
(Proposition 3.7). We conclude that (A∪F ) is a global section for G. �

We end the paper by an example of a nonperiodic flow which is strongly re-
versible by a reflection but has no global section.

Example 3.11. Let G={ht : t∈R} be the flow on the real line R defined by

ht(x)=
{

2tx, if x≥0.
2−tx, if x≤0.

Then, one can easily see that G is strongly reversible by the reflection s:x �−→−x,
moreover it is nonperiodic and with no global section.
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