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A multiplicity result for a non-local parametric
problem with periodic boundary conditions

Vincenzo Ambrosio, Rossella Bartolo and Giovanni Molica Bisci

Abstract. We look for bounded periodic solutions for a parametric fractional problem
involving a continuous nonlinearity with subcritical growth. By using a variant of Caffarelli and
Silvestre extension method adapted to the periodic case and variational tools we prove the existence
of at least three bounded periodic solutions when the parameter varies in an appropriate range.

1. Introduction

In the present work we deal with the existence and the multiplicity of periodic
solutions for the following nonlocal problem

(Pλ)
{

(−Δ+m2)su=λα(x)f(u) in (0, T )N
u(x+Tei)=u(x) for all x∈RN , i=1, ..., N,

where T>0, m>0, s∈(0, 1), N>2s, λ is a positive real parameter, α:RN→R is a
bounded periodic function, (ei)1≤i≤N is the canonical basis of RN and f :R→R is
a given function.

Due to their different and interesting applications joined to their challenging
features from a mathematical viewpoint, nonlinear problems involving non-local
operators have been widely studied by many authors (cf. [11], [14] and references
therein).

In this paper we focus on a periodic non-local problem, taking advantage both
of the approach firstly proposed in [9] and of recent papers [1], [2]. Namely, in [9] it
is shown how to convert the original non-local problem into a local one in one more
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dimension by means of a Dirichlet to Neumann map. On the other hand, in [1], [2]
such method has been carefully written in the periodic case. We refer the reader to
Section 2 for a detailed description of the extension periodic method. Then we use
some classical tools in critical point theory in order to find multiple solutions of the
new elliptic problem and finally go back to weak solutions of the original one. See,
for instance, the papers [3], [4], [6]–[8] and [12] for related topics.

Here the nonlocal operator (−Δ+m2)s is defined by a spectral decomposition,
by using the powers of the eigenvalues of −Δ+m2 with periodic boundary condi-
tions. Let u∈C∞

T (RN ), that is u is infinitely differentiable in R
N and T -periodic in

each variable. Then u can be written as a Fourier series:

u(x)=
∑
k∈ZN

bk
eıωk·x
√
TN

(x∈R
N )

where
ω := 2π

T
and bk := 1√

TN

∫
(0,T )N

u(x)e−ıωk·x dx (k∈Z
N )

are the Fourier coefficients of u.
Hence, the operator (−Δ+m2)s is given by

(−Δ+m2)s u :=
∑
k∈ZN

bk(ω2|k|2+m2)s eıωk·x
√
TN

.

Moreover, if u:=
∑

k∈ZN bk
eıωk·x
√
TN

and v :=
∑

k∈ZN dk
eıωk·x
√
TN

, we have that the quad-
ratic form

Q(u, v) :=
∑
k∈ZN

(ω2|k|2+m2)sbkd̄k

can be extended by density on the Hilbert space

H
s
T :=

{
u=

∑
k∈ZN

bk
eıωk·x
√
TN

∈L2(0, T )N :
∑
k∈ZN

(ω2|k|2+m2)s |bk|2 <+∞
}

endowed with the norm

|u|Hs
T

:=
(∑

k∈ZN

(ω2|k|2+m2)s|bk|2
)1/2

.

From a physical point of view, when s=1/2, the operator (−Δ+m2) 1
2 corre-

sponds to the Hamiltonian of a free relativistic particle of mass m (cf. [13]). On
the other hand, (−Δ+m2)s−m2s plays an important role in Stochastic Processes
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Theory, because it is an infinitesimal generator of a Lévy process {Xm
t }t≥0 called

the relativistic 2s-stable process; for more details we refer to [10] and [18].
We are able to find a bounded interval of positive parameters λ for which the

corresponding problem (Pλ) admits at least three L∞-bounded weak solutions in
an appropriate Sobolev space. Once we have written problem (Pλ) as a local one
using the notion of harmonic extension and the Dirichlet-to-Neumann map in the
periodic setting (cf. Section 2), we study the existence of critical points of the energy
functional associated to the problem (cf. (2.6)). Namely, a local minimum result
for smooth functionals (cf. [17] and, here, Theorem 2.6) and a classic minimization
argument give us the existence of two (distinct) critical points, therefore by [15,
Theorem 4] it follows the existence of a third one. Finally, the traces of such
solutions give us back three solutions to (Pλ) which are also bounded.

For the reader’s convenience, we list some notations at the end of this section.
Our main result can be stated as follows.

Theorem 1.1. Let α:RN→R be a T -periodic and L∞-map satisfying

(1.1) α0 := essinf
x∈(0,T )N

α(x)> 0.

Let f :R→R be a continuous function such that

there exist two positive constants a1, a2 and q∈[1, 2∗s) such that

(1.2) |f(t)| ≤ a1+a2|t|q−1 for all t∈R,

and the potential F (t):=
∫ t
0 f(r) dr satisfies the sign-condition

(1.3) inf
t∈[0,+∞)

F (t)≥ 0.

Moreover, we assume that the following algebraic inequality holds

(1.4) F (�)
�2 >

m2s

2

(
a1

β1

γ
+a2β2γ

q−2
)

for some �, γ>0 satisfying

(1.5) �>

√
2
ˇs

γ

msTN/2 ,

where

(1.6) β1 :=
ˇs

√
2c1|α|L∞(0,T )N

α0
, β2 :=

ˇs2
q
2 cqq|α|L∞(0,T )N

qα0

and c1, cq are as in (2.2) below.
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In addition, we suppose that there exist M>0 and δ∈(0, 2) such that

(1.7) F (t)≤M(1+|t|δ) for all t∈R.

Then, taking μ1, μ2 respectively as in (3.10) and (3.3), for each λ∈(μ1, μ2),
problem (Pλ) has at least three weak solutions uλ

1 , u
λ
2 , u

λ
3∈L∞(0, T )N∩Hs

T .

This paper is organized as follows: in Section 2 we recall some preliminaries
about fractional periodic Sobolev spaces and we recall the extension method, besides
some well known critical point theorems. Then in Section 3 we prove our main
result.

Notations
• (X, ‖·‖X) denotes a Banach space, (X ′, ‖·‖X′) its topological dual;
• |·|Lr(0,T )N the usual norm in the Lebesgue space Lr(0, T )N , 1≤r≤+∞;
• 2∗s := 2N

N−2s the critical exponent for Sobolev embeddings;
• if Ω is a domain of R

N , L2(Ω×R+, y
1−2s) is the space of all measurable

functions v on Ω×R+ such that∫ ∫
Ω×R+

y1−2s v2 dx dy <+∞;

• H1
m(Ω×R+, y

1−2s) is the space of all v such that v,∇v∈L2(Ω×R+, y
1−2s)

with square norm ∫ ∫
Ω×R+

y1−2s(|∇v|2+m2v2) dx dy;

• ˇs :=21−2s Γ(1−s)
Γ(s) .

2. Preliminaries and functional setting

As announced in Section 1 we realize the operator (−Δ+m2)s with periodic
boundary condition as a Dirichlet to Neumann map.

Firstly we recall some preliminary results which will be used throughout the pa-
per. Starting from papers [1], [2], we collect basic notions about fractional periodic
Sobolev spaces.

Let us denote by

R
N+1
+ := {(x, y)∈R

N+1 :x∈R
N , y > 0}

the upper half-space in R
N+1; moreover we define the half-cylinder in R

N+1
+ , ST :=

(0, T )N×(0,∞), its basis ∂0ST :=(0, T )N×{0} and its lateral boundary ∂LST :=
∂(0, T )N×[0,+∞).
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Let C∞
T (RN ) be the space of functions u∈C∞(RN ) such that u is T -periodic in

each variable, that is

u(x+Tei)=u(x) for all x∈R
N , i=1, ..., N.

As recalled in Section 1, the fractional Sobolev space H
s
T is defined as the

closure of C∞
T (RN ) with respect to the norm

|u|Hs
T

:=
√∑

k∈ZN

(ω2|k|2+m2)s |bk|2,

where bk := 1√
TN

∫
(0,T )N u(x)e−ıωk·x dx are the Fourier coefficients of u. Further-

more, we define the functional space X
s
T as the completion of

C∞
T (RN+1

+ ) :=
{
v ∈C∞(RN+1

+ ) : v(x+Tei, y)= v(x, y)

for every (x, y)∈R
N+1
+ , i=1, ..., N

}
under the H1(ST , y

1−2s)-norm

‖v‖Xs
T

:=

√∫∫
ST

y1−2s(|∇v|2+m2v2) dx dy .

Now, we state a result related to the existence of a trace operator between the
spaces X

s
T and H

s
T (cf. [1, Theorem 3] for the proof).

Theorem 2.1. There exists a surjective linear operator Tr:Xs
T→H

s
T such that

(i) Tr(v)=v|∂0ST
for all v∈C∞

T (RN+1
+ )∩Xs

T .

(ii) Tr is bounded and

(2.1)
√
ˇs|Tr(v)|Hs

T
≤‖v‖Xs

T
for all v ∈X

s
T .

In particular, the inequality in (2.1) is an equality for some v∈Xs
T if and only

if v weakly solves the equation

−div(y1−2s∇v)+m2y1−2sv=0 in ST .

The following crucial embedding results have been proved in [1, Theorem 4].

Theorem 2.2. Let N>2s. Then Tr(Xs
T ) is continuously embedded in

Lq(0, T )N for all 1≤q≤2∗s, that is there exists cq>0 such that

(2.2) |Tr(v)|Lq(0,T )N ≤ cq‖v‖Xs
T

for all v ∈X
s
T .

Moreover, Tr(Xs
T ) is compactly embedded in Lq(0, T )N for any 1≤q<2∗s.
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Theorems 2.1 and 2.2 allow us to introduce the notion of extension for a func-
tion u∈Hs

T .

Theorem 2.3. Let u∈Hs
T . Then, there exists a unique v∈Xs

T such that⎧⎨⎩
−div(y1−2s∇v)+m2y1−2sv=0 in ST

v|{xi=0}=v|{xi=T} on ∂LST

v(·, 0)=u on ∂0ST

and

− lim
y→0+

y1−2s ∂v

∂y
(x, y)=ˇs(−Δ+m2)su(x) in H

−s
T ,

where the boundary condition on ∂0ST is in the sense of trace, H−s
T is the dual space

of Hs
T and the notation v|{xi=0}=v|{xi=T} on ∂LST means

v(x1, ..., xi−1, 0, xi+1, ..., xN , y)= v(x1, ..., xi−1, T, xi+1, ..., xN , y)

for all i∈{1, ..., N}, y≥0. We say that v∈Xs
T is the extension of u∈Hs

T .

In particular, if u=
∑

k∈ZN bk
eıωk·x
√
TN

, then v is given by

v(x, y)=
∑
k∈ZN

bkθk(y)
eıωk·x
√
TN

,

where θk(y):=θ(
√

ω2|k|2+m2y) and θ(y)∈H1(R+, y
1−2s) solves the following ODE{

θ
′′ + 1−2s

y θ
′−θ=0 in R+

θ(0)=1, θ(+∞)=0.

Let us observe that

(2.3) θ(y)= 2
Γ(s)

(y
2

)s
Ks(y),

where Ks denotes the modified Bessel function of the second kind with order s.

Moreover, v satisfies the properties

(i) v is smooth for y>0 and T -periodic in x;

(ii) ‖v‖Xs
T
≤‖z‖Xs

T
for any z∈Xs

T such that Tr(z)=u;

(iii) ‖v‖Xs
T
=√

ˇs|u|Hs
T
.
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By using the extension method in periodic setting, the study of (Pλ) is then
equivalent to study the solutions v∈Xs

T of the following problem

(2.4)

⎧⎪⎨⎪⎩
−div(y1−2s∇v)+m2y1−2sv=0 in ST

v|{xi=0}=v|{xi=T} on ∂LST

∂1−2s
ν v=ˇsλα(x)f(v) on ∂0ST

where
∂1−2s
ν v :=− lim

y→0+
y1−2s ∂v

∂y
(x, y)

is the conormal exterior derivative of v.
More precisely, we can reformulate the nonlocal problem (Pλ) with periodic

boundary conditions in a local way according to the following definitions.

Definition 2.4. Fixing λ>0, we say that v∈Xs
T is a weak solution to (2.4) if

(2.5)
∫∫

ST

y1−2s(∇v∇ϕ+m2vϕ) dx dy=ˇsλ

∫
∂0ST

α(x)Tr(v)Tr(ϕ) dx

for every ϕ∈Xs
T .

We can also give the notion of weak solution to problem (2.4) as follows.

Definition 2.5. Fixing λ>0, we say that u∈Hs
T is a weak solution to (Pλ) if

u=Tr(v) and v∈Xs
T is a weak solution to (2.4) according to Definition 2.4.

Therefore, in order to find weak solutions to (2.4), we introduce the energy
functional Eλ :Xs

T→R defined by

(2.6) Eλ(v) := 1
2

∫∫
ST

y1−2s(|∇v|2+m2v2) dx dy−ˇsλ

∫
∂0ST

α(x)F (Tr(v)) dx,

for every v∈Xs
T .

By (1.2), it is straightforward to prove that Eλ is well-defined and of class C1

in X
s
T . In Section 3 we prove the existence of weak solutions to (2.4) by suitable

variational methods.
Firstly, we recall the following abstract theorem due to Ricceri (cf. [17]), re-

stated here in a more convenient form.

Theorem 2.6. Let X be a reflexive real Banach space and Φ,Ψ:X→R be two

Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially

weakly lower semicontinuous and coercive. Furthermore, assume that Ψ is sequen-

tially weakly upper semicontinuous. Setting for every r>infX Φ

ϕ(r) := inf
w∈Φ−1((−∞,r))

(
supz∈Φ−1((−∞,r)) Ψ(z)

)
−Ψ(w)

r−Φ(w) ,
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then for each r>infX Φ and λ∈(0, 1/ϕ(r)), the restriction of

Fλ :=Φ−λΨ

to Φ−1((−∞, r)) admits a global minimum, which is a critical point (local minimum)
of Fλ in X.

Moreover, applying the following classical theorem by P. Pucci and J. Serrin
(cf. [15, Theorem 4] and [16, Theorem 3.10]), we will deduce the existence of a
further critical point. Before stating the result, we recall the well known definition
of the Palais-Smale condition: a C1-functional F :X→R satisfies the Palais-Smale
condition if for all c∈R

every sequence (vn)n⊂X such that

F(vn)−→ c and ‖F ′(vn)‖X′ −→ 0 as n−→+∞

admits a convergent subsequence in X.

Theorem 2.7. Let F :X→R be a C1 functional satisfying the Palais-Smale

condition. If F has a pair of local minima or maxima, then F admits a third

critical point.

3. Proof of Theorem 1.1

Let us introduce the following functionals Φ,Ψ:Xs
T→R by

Φ(v) := 1
2‖v‖

2
X

s
T
, Ψ(v) :=ˇs

∫
∂0ST

α(x)F (Tr(v)) dx for all v ∈X
s
T .

From now on, we assume that (1.2) holds. It is easy to deduce that Φ is a
coercive, continuously Gâteaux-differentiable and sequentially weakly lower semi-
continuous functional. On the other hand, Ψ is well-defined, continuously Gâteaux-
differentiable and also weakly continuous in X

s
T by virtue of (1.2).

By standard arguments the differentials of Φ and Ψ are given by

(3.1) Φ′(v)(ϕ)=
∫∫

ST

y1−2s(∇v∇ϕ+m2vϕ) dx dy

and

(3.2) Ψ′(v)(ϕ)=ˇs

∫
∂0ST

α(x)f(Tr(v))Tr(ϕ) dx

for every ϕ∈Xs
T .

Next we establish a precise interval of values of the parameter λ for which the
functional Eλ defined in (2.6) admits at least three critical points.
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Theorem 3.1. Let α0 as in (1.1) and β1, β2 as in (1.6). Then, for every γ>0
and every λ<μ2, where

(3.3) μ2 := γ

α0(a1β1+a2β2γq−1) ,

there exists a local minimum vλ1 ∈Φ−1((−∞, γ2)) of functional Eλ in X
s
T .

Proof. Firstly, we estimate

ϕ(γ2) := inf
w∈Φ−1((−∞,γ2))

(
supz∈Φ−1((−∞,γ2)) Ψ(z)

)
−Ψ(w)

γ2−Φ(w) .

Let us consider the function

(3.4) χ(r) :=
supz∈Φ−1((−∞,r]) Ψ(z)

r
,

with r∈(0,+∞).
Setting F (t)=

∫ t
0 f(r) dr, by (1.2) we get that

(3.5) F (t)≤ a1|t|+
a2

q
|t|q for all t∈ R.

Then, (2.2) and (3.5) imply that, for all z∈Xs
T , we have that

Ψ(z) =ˇs

∫
∂0ST

α(x)F (Tr(z)) dx

≤
(
ˇsa1|Tr(z)|L1(0,T )N +ˇs

a2

q
|Tr(z)|q

Lq(0,T )N

)
|α|L∞(0,T )N

≤
(
ˇsa1c1‖z‖Xs

T
+ˇs

a2

q
cqq‖z‖qXs

T

)
|α|L∞(0,T )N

which yields

sup
z∈Φ−1((−∞,r])

Ψ(z)≤ˇs

√
2ra1c1|α|L∞(0,T )N +ˇs

(2r)q/2a2c
q
q

q
|α|L∞(0,T )N .(3.6)

Taking into account (3.4) and (3.6), we obtain that for any r>0 it holds

χ(r)≤ˇs

√
2
r
a1c1|α|L∞(0,T )N +ˇs

2q/2a2c
q
q

q
rq/2−1|α|L∞(0,T )N .

Hence, using (3.3) and (3.10), we conclude that

χ(γ2)=
supz∈Φ−1((−∞,γ2]) Ψ(z)

γ2
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≤ˇs

√
2a1c1

γ
|α|L∞(0,T )N +ˇs

2q/2a2c
q
q

q
γq−2|α|L∞(0,T )N

=α0

(
a1

β1

γ
+a2β2γ

q−2
)

= 1
μ2

.

Since 0∈Φ−1((−∞, γ2)) and Φ(0)=Ψ(0)=0, we infer that

ϕ(γ2)≤χ(γ2).

Therefore, by Theorem 2.6, we deduce that for any λ∈(0, μ2)⊆(0, 1/ϕ(γ2)),
there exists vλ1 ∈Φ−1((−∞, γ2)) such that

E ′
λ(vλ1 )=Φ′(vλ1 )−λΨ′(vλ1 )= 0.

Moreover, vλ1 is a global minimum of the restriction of Eλ to Φ−1((−∞, γ2)). �

Now, we introduce suitable test functions in X
s
T . Let us set for �>0 such that

F (�)>0:

(3.7) w�(x, y) := θ(my)� for all (x, y)∈ST ,

where θ is as in (2.3). Clearly w�∈Xs
T and by using the fact that∫ +∞

0
y1−2s(|θ′(my)|2+m2|θ(my)|2) dy=m2s

ˇs

we deduce

‖w�‖2
X

s
T

=
∫∫

ST

y1−2s(|∇w�|2+m2w�2) dx dy

=TN

∫ +∞

0
y1−2s(|θ′(my)|2+m2|θ(my)|2) dy

=ˇsm
2s�2TN(3.8)

Next, we prove the following useful result.

Proposition 3.2. Let α0 as in (1.1), and �>0 such that F (�)>0. Further,

let w� be as in (3.7) and γ>0. Then, the following inequality holds

(3.9) Φ(w�)>γ2.

Moreover, setting

(3.10) μ1 := m2s

2α0

�2

F (�) ,
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if μ1<μ2 and λ∈(μ1, μ2), we have

(3.11) Φ(w�)−λΨ(w�)<γ2−λ sup
w∈Φ−1((−∞,γ2])

Ψ(w).

Proof. By (1.5) and (3.8) it follows that

Φ(w�)= 1
2‖w

ρ‖2
X

s
T

= 1
2ˇsm

2s�2TN >γ2,

that is (3.9) is true. By (1.1), since Tr(w�)=� and (1.4) implies that F (�)>0, we
get

(3.12)
∫
∂0ST

α(x)F (Tr(w�)) dx≥α0T
NF (�).

Then, (3.8), (3.12) and (3.10), yield

Ψ(w�)
Φ(w�

τ )
≥ 2α0

m2s
F (�)
�2 = 1

μ1
,

which together with λ∈(μ1, μ2) gives

χ(γ2)≤ 1
μ2

<
1
λ
<

1
μ1

≤ Ψ(w�)
Φ(w�) .

As a consequence

Ψ(w�)−supw∈Φ−1((−∞,γ2]) Ψ(w)
Φ(w�)−γ2 ≥

Ψ(w�)−γ2 Ψ(w�)
Φ(w�)

Φ(w�)−γ2

= Ψ(w�)
Φ(w�)

≥ 1
μ1

>
1
λ

that is (3.11) holds. �

Now we define the following truncated functionals on X
s
T

E(γ)
λ (v) :=

{
γ2−λΨ(v) if v∈Φ−1((−∞, γ2])
Eλ(v) if v /∈Φ−1((−∞, γ2]).

Fixed λ>0, it is easy to see that E(γ)
λ is sequentially weakly lower semicontinuous.

If E(γ)
λ is also coercive on the Hilbert space X

s
T , then it admits a global minimum

vλ2 ∈Xs
T , that is:

(3.13) E(γ)
λ (vλ2 )≤E(γ)

λ (v) for all v ∈X
s
T .
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Theorem 3.3. Let λ∈(μ1, μ2) and assume that (1.7) holds. Then

vλ2 /∈Φ−1((−∞, γ2])

and E ′
λ(vλ2 )=0, that is vλ2 ∈Xs

T is a critical point of Eλ.

Proof. Let us assume by contradiction that

vλ2 ∈Φ−1((−∞, γ2]).

By (3.13) and the definition of E(γ)
λ , we infer that

γ2−λΨ(vλ2 )≤Eλ(w�).

On the other hand, in view of Proposition 3.2, we know that

Eλ(w�)<γ2−λΨ(vλ2 ),

so we get a contradiction. �

In previous result we have shown that for λ∈(μ1, μ2) the support of vλ2 is not
contained in the ball B(0,

√
2λ).

We end this section giving the proof of our main result.

Proof of Theorem 1.1. By using (1.4), (3.10) and (3.3) it follows that μ1<μ2.
Now, let us take λ∈(μ1, μ2). By applying Theorems 3.1 and 3.3, we obtain the
existence of two solutions vλ1 and vλ2 to (2.4). Since vλ1 and vλ2 are local minima,
we can obtain the existence of a third solution to (2.4) via Theorem 2.7, provided
that Eλ satisfies the Palais-Smale condition. Let us consider for a c∈R a sequence
(vn)n⊂X

s
T such that

Eλ(vn)−→ c and ‖E ′
λ(vn)‖Xs

T
′ −→ 0 as n−→+∞,

‖E ′
λ(vn)‖Xs

T
′ := sup

{∣∣〈 E ′
λ(vn), ϕ〉

∣∣ : ϕ∈X
s
T and ‖ϕ‖Xs

T
=1
}
.

Recall that assumption (1.7) is satisfied by a δ∈(0, 2), hence by using the
Hölder’s inequality we have that∫

∂0ST

|Tr(v)|δ dx≤ |∂0ST |
2−δ
2 |Tr(v)|δL2(0,T )N for all v ∈X

s
T ;

this and (2.2) imply that

(3.14)
∫
∂0ST

|Tr(v)(x)|δ dx≤ cδ2|∂0ST |
2−δ
2 ‖v‖δ

X
s
T

for all v ∈X
s
T .
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Now, by (1.7) and (3.14) we obtain that

Eλ(v)≥ 1
2‖v‖

2
X

s
T
−ˇsλMcδ2|α|L∞(0,T )N |∂0ST |

2−δ
2 ‖v‖δ

X
s
T
−ˇsλM |α|L∞(0,T )N |∂0ST |

on X
s
T .

As a consequence, Eλ is bounded from below and coercive; plainly the coercivity
implies the boundedness of (vn)n in X

s
T .

Since X
s
T is reflexive, we can extract a subsequence, still denoted by (vn)n,

such that vn⇀v∞ in X
s
T for some v∞, that is, for any ϕ∈Xs

T it holds

lim
n→+∞

∫∫
ST

y1−2s(∇vn∇ϕ+m2vnϕ) dx dy=
∫∫

ST

y1−2s(∇v∞∇ϕ+m2v∞ϕ) dx dy.

(3.15)

Our aim to verify that indeed (vn)n strongly converges to v∞ as n→+∞.
Observe that by (3.1) and (3.2) it results that

〈Φ′(vn), vn−v∞〉= 〈E ′
λ(vn), vn−v∞〉+ˇsλ

∫
∂0ST

α(x)f(Tr(vn))Tr(vn−v∞) dx.

By using ‖E ′
λ(vn)‖Xs

T
′→0 and the fact that the sequence (vn−v∞)n is bounded

in X
s
T , we infer that

lim
n→+∞

〈E ′
λ(vn), vn−v∞〉=0.(3.16)

On the other hand by (1.2) and Hölder inequality we have that∫
∂0ST

α(x)|f(Tr(vn))||Tr(vn−v∞)| dx

≤ a1 |α|L∞(0,T )N

∫
∂0ST

|Tr(vn−v∞)| dx

+a2 |α|L∞(0,T )N

∫
∂0ST

|Tr(vn)|q−1|Tr(vn−v∞)| dx

≤ a1 |α|L∞(0,T )N |Tr(vn−v∞)|L1(0,T )N

+a2 |α|L∞(0,T )N |Tr(vn)|q−1
Lq(0,T )N |Tr(vn−v∞)|Lq(0,T )N .

By Theorem 2.2 it follows that

lim
n→+∞

∫
∂0ST

α(x)|f(Tr(vn))||Tr(vn−v∞)| dx−→ 0,(3.17)

therefore by (3.17) and (3.16) we deduce that
lim

n→+∞
〈Φ′(vn), vn−v∞〉=0,
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that is

lim
n→+∞

∫∫
ST

y1−2s(|∇vn|2+m2v2
n) dx dy−

∫∫
ST

y1−2s(∇vn∇v∞+m2vnv∞) dx dy=0.

(3.18)

Hence, (3.15) and (3.18), yield

lim
n→+∞

∫∫
ST

y1−2s(|∇vn|2+m2v2
n) dx dy=

∫∫
ST

y1−2s(|∇v∞|2+m2v2
∞) dx dy.

Then, being X
s
T a Hilbert space, we get that

‖vn−v∞‖2
X

s
T

= ‖vn‖2
X

s
T
+‖v∞‖2

X
s
T
−2〈vn, v∞〉Xs

T
−→ 0 as n−→+∞,

that is vn→v∞ strongly in X
s
T . Finally, by (1.2) and the boundedness of α∈

L∞(0, T )N , by adapting [2, Theorem 9] we infer that uλ
i :=Tr(vλi )∈L∞(0, T )N for

i∈{1, 2, 3}.
Nevertheless, for further references, we prefer to give proof of this regularity in

all details in next lemma. �

Lemma 3.4. Let v∈Xs
T be a weak solution to (2.4). Then Tr(v)∈L∞(0, T )N .

Proof. Since v is a weak solution to (2.4), equality (2.5) holds. Let us define
w:=vv2β

K ∈Xs
T , where vK :=min{|v|,K}, K>1 and β≥0.

Pick ϕ=w in (2.5), so we get∫∫
ST

y1−2sv2β
K (|∇v|2+m2v2) dx dy+

∫∫
DK

2βy1−2sv2β
K |∇v|2 dx dy

=ˇsλ

∫
∂0ST

α(x)f(x,Tr(v))Tr(v)Tr(vK)2β dx,(3.19)

where DK :={(x, y)∈ST :|v(x, y)|≤K}.
Then, by (3.19) and Theorem 2.1 we deduce that

c−2
2∗
s
|Tr(v)Tr(vK)β |2

L2∗s (0,T )N

(3.20)

≤‖vvβK‖2
X

s
T

=
∫∫

ST

y1−2s
(
|∇(vvβK)|2+m2v2v2β

K

)
dx dy

=
∫∫

ST

y1−2sv2β
K

(
|∇v|2+m2v2) dx dy+

∫∫
DK

2β
(
1+ β

2

)
y1−2sv2β

K |∇v|2 dx dy

≤Cβ

[∫∫
ST

y1−2sv2β
K

(
|∇v|2+m2v2) dx dy+

∫∫
DK

2βy1−2sv2β
K |∇v|2 dx dy

]
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= C̃β

∫
∂0ST

α(x)f(x,Tr(v))Tr(v)Tr(vK)2β dx

where
C̃β :=ˇsλ

(
1+ β

2

)
.

By assumptions (1.1) and (1.2) we infer that

α(x)f(x,Tr(v))Tr(v)Tr(vK)2β

≤ |α|L∞(0,T )N
[
h(x)(1+|Tr(v)|)2Tr(vK)2β

]
on ∂0ST ,(3.21)

where
h(x) := |f(x,Tr(v))|

1+|Tr(v)| ≤C(1+|Tr(v)|q−2)∈L
N
2s (0, T )N ,

for some C>0. Taking into account (3.20) and (3.21) we have that

|Tr(v)Tr(vK)β |2
L2∗s (0,T )N ≤ c22∗

s
C̃β |α|L∞(0,T )N

∫
∂0ST

[
h(x)(1+|Tr(v)|)2Tr(vK)2β

]
dx.

(3.22)

Assume that |Tr(v)|β+1∈L2(0, T )N for some β≥0. Fix R>0 and let A1={h≤
R} and A2={h>R}. Then∫

∂0ST

h|Tr(v)|2|Tr(vK)|2β dx

≤R||Tr(v)|β+1|2L2(0,T )N +ε(R)
(∫

∂0ST

|Tr(v)Tr(vK)β |2∗
s dx

)2/2∗
s

(3.23)

where ε(R):=
(∫

A2
hN/2s dx

)2s
N →0 as R→∞.

In similar way, we can deal with the term
∫
∂0ST

h(x)|Tr(vK)|2β dx. Therefore,
in view of (3.22) and (3.23), and choosing R sufficiently large, we can see that

(3.24) |Tr(v)Tr(vK)β |2
L2∗s (0,T )N ≤C(1+R),

for some C>0 independent of K.
Taking the limit as K→∞, we obtain |Tr(v)|β+1∈L2∗

s (0, T )N . This conclusion
followed simply from assuming |Tr(v)|β+1∈L2(0, T )N .

Hence, by iterating β0=0 and βi+1=(βi−1+1) N
N−2s if i≥1 in (3.24), we can

infer that Tr(v)∈Lq(0, T )N for all q∈[2,+∞). Since Tr(v) is a weak solution to
(Pλ), we deduce that (−Δ+m2)sTr(v)∈Lp(0, T )N for any p<+∞, and by using
the embeddings for Bessel spaces [5], we deduce that Tr(v)∈C0,α([0, T ]N ), for some
α∈(0, 1). �
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In conclusion, we present a direct application of the main result of this work.

Example 3.5. Let α:RN→R be the T -periodic function defined as

α(x)=N+1+
N∑
i=1

sin
(

2π
T

xi

)
.

We note that α is a continuous positive function such that α0 :=min[0,T ]N α(x)=1,
that is α verifies (1.1). Now, take q∈(2, 2∗s), δ∈[1, 2) and define

ν :=max
{

1,
√

2
ˇs

1
msTN/2 ,

[
m2s

2 (β1+β2)
] 1

q−2

q
1

q−2

}
.

Let � be a positive constant such that �>ν and consider the continuous and positive
function f :R→R defined as follows:

f(t) :=
{

1+|t|q−1 if t≤�

1+�q−δtδ−1 if t>�.

It is clear that |f(t)|≤(1+|t|q−1) for every t∈R, and then (1.2) is fulfilled. Moreover,
for every t∈R, one has

F (t)≤
(
�+ �q

δ

)
(1+|t|δ).

Hence, hypothesis (1.7) is satisfied. On the other hand, condition (1.3) trivially
holds and, since �>ν, one has

F (�)
�2 =

∫ �
0 f(τ) dτ

�2 = �q−2

q
+ 1
�
>

νq−2

q
>

m2s

2 (β1+β2) ,

and �>
√

2
ˇs

1
msTN/2 , i.e. conditions (1.4) and (1.5) are verified taking γ=1.

Therefore, all the assumptions of Theorem 1.1 are satisfied, hence, for every

λ∈
(
m2s

2
�2

F (�) ,
1

β1+β2

)
,

the following problem{
(−Δ+m2)su=λα(x)f(u) in (0, T )N
u(x+Tei)=u(x) for all x∈RN , i=1, ..., N,

admits at least three weak solutions in L∞(0, T )N∩Hs
T .
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