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Interface asymptotics of Partial Bergman
kernels around a critical level

Steve Zelditch and Peng Zhou

Abstract. In a recent series of articles, the authors have studied the transition behavior of
partial Bergman kernels Πk,[E1,E2](z, w) and the associated DOS (density of states) Πk,[E1,E2](z)
across the interface C between the allowed and forbidden regions. Partial Bergman kernels are
Toeplitz Hamiltonians quantizing Morse functions H :M→R on a Kähler manifold. The allowed
region is H−1([E1, E2]) and the interface C is its boundary. In prior articles it was assumed that the
endpoints Ej were regular values of H. This article completes the series by giving parallel results
when an endpoint is a critical value of H. In place of the Erf scaling asymptotics in a k−

1
2 tube

around C for regular interfaces, one obtains δ-asymptotics in k−
1
4 -tubes around singular points

of a critical interface. In k−
1
2 tubes, the transition law is given by the osculating metaplectic

propagator.

1. Introduction

This note is a continuation of our analysis in [ZZ19b] of the pointwise asymp-
totics of partial Bergman kernel densities Πk,I(z) around interfaces between al-
lowed and forbidden regions. Let (L, h)→(M,ω, J) be a polarized Kähler manifold,
ω=−i∂∂̄ log h, and let H0(M,Lk) denote the space of holomorphic sections of the
k-th power of the positive Hermitian line bundle L. Let H :M→R be a smooth
function with Morse critical point, called the Hamiltonian function. The Berezin-
Toeplitz quantization of H is an operator acting on H0(M,Lk):

(1) Ĥk :=Πk ¨ (H+ i

k
∇ξH ) ¨Πk :H0(M,Lk)−→H0(M,Lk).

where Πk=Πhk :L2(M,Lk)→H0(M,Lk) is the orthogonal projection, H acts by
multiplication and ∇ξH is the Chern covariant derivative along the Hamiltonian
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flow ξH .(1) We denote the eigenvalues (repeated with multiplicity) of Ĥk by

(2) μk,1 ≤μk,2 ≤ ...≤μk,Nk
,

where Nk=dimH0(M,Lk), and the corresponding orthonormal eigensections in
H0(M,Lk) by sk,j .

Given the spectral interval I⊂R we define the partial Bergman kernels to be
the orthogonal projections,

(3) Πk,I :H0(M,Lk)−→Hk,I ,

onto the spectral subspace,

(4) Hk,I := span{sk,j :μk,j ∈ I}

Its (Schwartz) kernel is defined by

(5) Πk,I(z, w)=
∑

μk,j∈I

sk,j(z)sk,j(w).

and the metric contraction of (5) on the diagonal with respect to hk is the partial
density of states,

Πk,I(z)=
∑

μk,j∈I

‖sk,j,α(z)‖2.

We denote by Πk(z, w) and Πk(z) the (full) Bergman kernel and density function.
Here and throughout the article, we use the notation K(z) for the metric contraction
of the diagonal values K(z, z) of a kernel.

We define the classical allowed region A and forbidden region F as open subsets

A := Int(H−1(I)), F =Int(M\A),

and the interface as
C = ∂A= ∂F .

In [ZZ19b] it is proved that

Πk,I(z)
Πk(z)

=
{

1 if z∈A
0 if z∈F

mod O(k−∞),

(1) We note that as far as leading term in the asymptotic expansion is concerned, we may
replace ̂Hk by T=Πk ¨H ¨Πk, which has the same principal symbol as ̂Hk. See [ZZ19b] Remark
4.4.
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and moreover if the interface C is a smooth hypersurface (with possibly several
components), then the scaled density decay profile of Πk,I(z)

Πk(z) in a tube of radius 1√
k

around C has the shape of the Gaussian error function Erf(x)=PX∼N(0,1)(X<x):

(6) Πk,I(z)
Πk(z)

∣∣∣∣
z=expz0 (tν/

√
k)

=Erf(2
√
πt)+O(k−1/2)

where z0∈C, ν is the unit normal vector to C at z0 pointing towards allowed region,
and exp is the exponential map with respect to the Kähler metric.

To be precise, let {H=E} be a regular level of H and let z∈{H=E}. Let F t

denote the gradient flow ∇H for time t.(2) Then, for any Schwartz class function
f∈S(R), ∑

j

f(
√
k(μk,j−E))‖sk,j(F β/

√
k(z))‖2

h

�
(

k

2π

)m ∫ ∞

−∞
f(x)e−

(
x

|∇H|(z)|−β|∇H(z)|
)2 dx√

π|∇H(z)| .(7)

Thus, in the scaling limit, Erf smoothly interpolates between the value 1 on the
allowed region A[E1,E2] and the value 0 on the forbidden region M\A[E1,E2].

Henceforth, to simplify notation, we use Kähler local coordinates u centered
at z0 to write points in the k−ε tube around C by

z = z0+k−εu := expz0(k
−εu), u∈Tz0C

The abuse of notation in dropping the higher order terms of the normal exponential
map is harmless since we are working so close to C. At regular points z0 we may
use the exponential map along Nz0C but we also want to consider critical points.
More generally we write z0+u for the point with Kähler normal coordinate u. In
these coordinates,

ω(z0+u)= i
m∑
j=1

duj∧dūj+O(|u|).

We also choose a local frame eL of L near z, such that the corresponding ϕ=
− log h(eL, eL) is given by

ϕ(z0+u)= |u|2+O(|u|3).

See [ZZ19b] for more on such adapted frames and Heisenberg coordinates.

(2) We use gradient flow of H in (7) and the exponential map in (6). They give the same
leading term since the difference between Fβ/

√
k(z) and exp(β|∇H|(z)/

√
k)(z) is of higher order

in the O(k−1/2) expansion.
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Clearly, the formula (7) breaks down at critical points and near such points on
critical levels. Our main goal in this paper is to generalize the interface asymptotics
to the case when the Hamiltonian is a Morse function and the interface C={H=E}
is a critical level, so that C contains a non-degenerate critical point zc of H. To
allow for non-standard scaling asymptotics, we study the smoothed partial Bergman
density near the critical value E=H(zc),

Πk,E,f,δ(z) :=
∑
j

‖sk,j(z)‖2 ·f(kδ(μk,j−E))

where f∈S(R) with Fourier transform f̂∈C∞
c (R), and 0≤δ≤1. This is the smooth

analog of summing over eigenvalues within [E−k−δ, E+k−δ].
The behavior of the scaled density of states is encoded in the following mea-

sures,

(8)

⎧⎪⎪⎨⎪⎪⎩
dμz

k(x)=
∑

j ‖sk,j(z)‖2 δμk,j
(x),

dμz,δ
k (x)=

∑
j ‖sk,j(z)‖2 δkδ(μk,j−H(z))(x),

dμ
(z,u,ε),δ
k (x)=

∑
j ‖sk,j(z+k−εu)‖2 δkδ(μk,j−H(z))(x).

For each measure μ we denote by dμ̂ the normalized probability measure

dμ̂(x)=μ(R)−1dμ(x).

For all z∈M , we have the following weak limit, reminiscent of the law of large
numbers;

μ̂z
k(x)⇀δH(z)(x).

For z∈M with dH(z) 
=0, (7) shows that

μ̂
z,1/2
k (x)⇀e

− x2
|dH(z)|2

dx√
π|dH(z)| .

1.1. Main results

The first main result is the generalization of (6) to the critical point case. We
use the following setup: Let zc be a non-degenerate Morse critical point of H, then
for small enough u∈Cm, we denote the Taylor expansion components by

H(zc+u)=E+H2(u)+O(|u|3).

where
E =H(zc), H2(u)= 1

2HesszcH(u, u).
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Theorem 1.1. For any f∈S(R) with f̂∈C∞
c (R), we have

Πk,E,f,1/2(zc+k−1/4u) :=
∑
j

‖sk,j(zc+k−1/4u)‖2 ·f(k1/2(μk,j−E))

=
(

k

2π

)m

f(H2(u))+Of (km−1/4).

More over, the normalized rescaled pointwise spectral measure

dμ̂
(zc,u,1/4),1/2
k (x) :=

∑
j ‖sk,j(zc+k−1/4u)‖2 δk1/2(μk,j−E)(x)∑

j ‖sk,j(zc+k−1/4u)‖2

converges weakly

μ̂
(zc,u,1/4),1/2
k (x)⇀δH2(u)(x).

We notice that the scaling width has changed from k−
1
2 to k−1/4 due to the

critical point. The fact that we obtained a ‘delta function’ in the limit is less
surprising since it is simply a degenerate Gaussian. The techniques of this article
allow for the generalization to Bott-Morse Hamiltonians with non-degenerate critical
manifolds; since it is rather routine, we restrict to Morse functions to simplify the
exposition.

The difference in scalings raises the question of what happens if we scale by
k−

1
2 around a critical point. The result is stated in terms of the metaplectic repre-

sentation on the osculating Bargmann-Fock space at zc. These notions are reviewed
in Section 3. The key points are summarized in the statement of:

Theorem 1.2. Let 1�T>0 be small enough, such that there is no non-con-

stant periodic orbit with periods less than T . Then for any f∈S(R) with f̂∈
C∞

c ((−T, T )), we have

Πk,E,f,1(zc+k−1/2u)=
(

k

2π

)m ∫
R

f̂(t)U(t, u) dt2π +O(km−1/2)

where U(t, u) is the metaplectic quantization of the Hamiltonian flow of H2(u) de-

fined as

U(t, u)= (detP )−1/2 exp(ū(P−1−1)u+u¸QP−1u/2−ūP−1Qū/2).

Here P=P (t), Q=Q(t) are complex m×m matrices such that if u(t)=exp(tξH2)u,
then (

u(t)
ū(t)

)
=
(
P (t) Q(t)
¸Q(t) ¸P (t)

)(
u

ū

)
.
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Remark 1.3. Unlike the universal Erf decay profile in the 1/
√
k-tube around the

smooth part of C, we cannot give the decay profile of Πk,I(z) near the critical point
zc. The reason is that there are eigensections that highly peak near zc and with
eigenvalues clustering around H(zc). Hence it even matters whether we use [E1, E2]
or (E1, E2). See the following case where the Hamiltonian action is holomorphic,
where the peak section at zc is an eigensection, and all other eigensections vanishes
at zc.

The next result pertains to Hamiltonians generating holomorphic R actions, as
studied in [RS], [ZZ19a]. The Hamiltonian flow always extends to a holomorphic C

action.
Proposition 1.4. Assume H generate a holomorphic Hamiltonian R action.

The pointwise spectral measure dμzc
k (x) is always a delta-function

μzc
k = δH(zc)(x), ∀k=1, 2...

Equivalently, for any spectral interval I,

lim
k→∞

Πk,I(zc)=
{

1 E∈I
0 E /∈I

.

The above result follows immediately from:
Proposition 1.5. Let zc be a Morse critical point of H, E=H(zc). Then
(1) The L2-normalized peak section sk,zc(z)=C(zc)Πk(z, zc) is an eigensection

of Ĥk with eigenvalue H(zc). And all other eigensections orthogonal to sk,zc van-

ishes at zc.

(2) If sk,j∈H0(M,Lk) is an eigensection of Ĥk with eigenvalue μk,j<E, then

sk,j vanishes on W+(zc).
(3) If sk,j∈H0(M,Lk) is an eigensection of Ĥk with eigenvalue μk,j>E, then

sk,j vanishes on W−(zc).
In the above statement, W±(zc) refers to the stable (resp. unstable) manifold

for critical point zc and flow ∇H. See Section 6 for more details and a proof.
In particular, this shows the concentration of eigensection near zc. Depending

on whether the spectral inteval I includes boundary point H(zc) or not, the partial
Bergman density will differ by a large Gaussian bump of height ∼km.

1.2. Sketch of proof

As in [ZZ19b], [ZZ18] the proofs involve rescaling parametrices for the propa-
gator

(9) Uk(t)= exp itkĤk
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of the Hamiltonian (1). The parametrix construction is reviewed in Section 2. We
begin by observing that for all z∈M , the time-scaled propagator has pointwise
scaling asymptotics with the k−

1
2 scaling:

Proposition 1.6. ([ZZ19b] Proposition 5.3) If z∈M , then for any τ∈R,

Ûk(t/
√
k, ẑ, ẑ)=

(
k

2π

)m

eit
√
kH(z)e−t2

‖dH(z)‖2
4 (1+O(|t|3k−1/2)),

where the constant in the error term is uniform as t varies over compact subset

of R.

The condition dH(z) 
=0 in the original statement in [ZZ19b] is never used in
the proof, hence both statement and proof carry over to the critical point case. We
therefore omit the proof of this Proposition.

We also give asymptotics for the trace of the scaled propagator Uk(t/
√
k). It

is based on stationary phase asymptotics and therefore also reflects the structure
of the critical points.

Theorem 1.7. If t 
=0, the trace of the scaled propagator Uk(t/
√
k)=ei

√
ktĤk

admits the following asymptotic expansion

∫
z∈M

Uk(t/
√
k, z)dVolM (z)=

(
k

2π

)m

( t
√
k

4π )−m

·
∑

zc∈crit(H)

eit
√
kH(zc)e(iπ/4)sgn(Hesszc (H))√

|det(Hesszc(H))|

·(1+O(|t|3k−1/2))

where sgn(Hesszc(H)) is the signature of the Hessian, i.e. the number of its positive

eigenvalues minus the number of its negative eigenvalues.

To avoid duplication of the background sections in [ZZ19b], [ZZ18], we refer to
those papers for discussions of osculating Bargmann-Fock spaces, for the Boutet-
de-Monvel-Sjostrand parametrix for the Bergman kernel, and the corresponding
parametrix for the propagator. This requires background on lifting Hamiltonian
flows to contact flows on the unit frame bundle of L∗ and its quantization as the
Toeplitz operator (1). All the necessary background for this article is contained in
the early sections of [ZZ19b], [ZZ18].
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1.3. Related results

Some results on the distribution of eigenvalues around critical levels of Schrö-
dinger operators on Riemannian manifolds may be found in [BPU95], [Cam04],
[Cam04b], [Cam08]. As far as we saw, the articles do not study the spectral pro-
jections kernels pointwise in that setting. Most relevant to the present articles are
results of Deleporte on ground states of Toeplitz Hamiltonians around minimum
points, both non-degenerate [D16a] and Morse-Bott degenerate manifolds of min-
ima [D16b]. The authors plan to extend the results of the present article to the
case of Morse-Bott minima in a subsequent article.

2. Toeplitz quantization of Hamiltonian flows

In this section we briefly review the construction of a Toeplitz parametrix for
the propagator Uk(t) of the quantum Hamiltonian (1). For a detailed presentation
we refer to [ZZ19b], [ZZ18], and for a more general background on Toeplitz operator
we refer to [BG], [MeSj].

Let (M,ω,L, h) be a polarized Kähler manifold, and π :X→M the unit circle
bundle in the dual bundle (L∗, h∗). X is a contact manifold, equipped with the
Chern connection contact one-form α, whose associated Reeb flow R is the rotation
∂θ in the fiber direction of X. Any Hamiltonian vector field ξH on M generated by
a smooth function H :M→R can be lifted to a contact Hamiltonian vector field ξ̂H
on X, which generates a contact flow ĝt. The following Proposition expresses the
lift of (9) to H(X)=

⊕
k≥0 Hk(X).

Proposition 2.1. There exists a semi-classical symbol σk(t) so that the uni-

tary group (9) has the form

(10) Ûk(t)= Π̂k(ĝ−t)∗σk(t)Π̂k

modulo smooth kernels of order k−∞.

It follows from Proposition 2.1 and from the Boutet de Monvel–Sjöstand pa-
rametrix construction for the Szegö kernel that Ûk(t, x, x) admits an oscillatory
integral representation of the form,

Ûk(t, x, x)�
∫
X

∫ ∞

0

∫ ∞

0

∫
S1

∫
S1

eσ1ψ̂(rθ1x,ĝ
ty)+σ2ψ̂(rθ2y,x)−ikθ1−ikθ2

×Skdθ1dθ2dσ1dσ2dy(11)

where Sk is a semi-classical symbol, and the asymptotic symbol � means that the
difference of the two sides is rapidly decaying in k. The phase function ψ is that
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of the Szegö kernel, i.e. is the (almost)-analytic extension of the defining function
of the strictly pseudo-convex domain D∗

h⊂L∗ and is closely related to the analytic
extension of the Kähler potential φ(z, z̄) to the off-diagonal.

We use the notation ŵ=(w, θw) for points such that π(ŵ)=w, and ĝtŵ=
(w(t), θw(t)) for |w|<ε, |gtw|<ε. The Taylor expansion of the phase function ψ̂

around the diagonal has the form

ψ̂(0, ĝtŵ)+ψ̂(ŵ, 0)= i(θw(0)−θw(t))−|w(0)|2/2−|w(t)|2/2+O(|w|3+|w(t)|3),
(12)

If we scale the variables by

w=u/
√
k, t= τ/

√
k,

(12) becomes

k−1/2[iH(0)τ ]+k−1[i12H1(u)τ−|u|2/2−|u+ξH1τ |2/2]+O(k−3/2(|u|3+|τ |3)).

We will be scaling with other powers of k but the general expansion is similar.
We refer to [ZZ19b], [ZZ18] for detailed discussions of this parametrix and

references to the literature.

3. Model case: Bargman-Fock space

We now discuss the linear (Bargmann-Fock) model in detail, since it is used to
reduce nonlinear settings to the linear one.

Let M=Cm with coordinate zi=xi+
√
−1yi, L→M be the trivial line bundle.

We fix a trivialization and identify L∼=Cm×C. We use Kähler form(3)

ω= i
∑
i

dzi∧dz̄i =2
∑
i

dxi∧dyi

and Kähler potential
ϕ(z)= |z|2 :=

∑
i

|zi|2.

The Bargmann-Fock space of degree k on Cm is defined by

Hk = {f(z)e−k|z|2/2 | f(z) holomorphic function on Cm,∫
Cm

|f(z)|2e−k|z|2dVolCm(z)<∞}.

(3) We warn the reader that the normalization of ω may differ by factor of 2 or π from other
references. In particular, our metric g on R2m is twice the Euclidean metric.
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The volume form on Cm is dVolCm =ωm/m!.
The circle bundle π :X→M can be trivialized as X∼=Cm×S1. The contact

form on X is
α= dθ+(i/2)

∑
j

(zjdz̄j−z̄jdzj).

and the Reeb flow is R=∂θ. If s(z) is a holomorphic function (section of Lk) on
Cm, then its CR-holomorphic lift to X is

ŝ(z, θ)= ek(iθ− 1
2 |z|

2)s(z).

Indeed, the horizontal lift of ∂z̄j is ∂h
z̄j =∂z̄j− i

2zj∂θ, and ∂h
z̄j ŝ(z, θ)=0. The volume

form on X is dVolX=(dθ/2π)∧ωm/m!.
More invariantly, let (V, ω) be a real 2m dimensional symplectic vector space.

Let J :V →V be a ω compatible linear complex structure, that is g(v, w):=ω(v, Jw)
is a positive-definite bilinear form and ω(v, w)=ω(Jv, Jw). There exists a canonical
identification of V ∼=Cm up to U(m) action, identifying ω and J . We denote the BF
space for (V, ω, J) by Hk,J .

3.1. Linear Hamiltonian function and Heisenberg representation

A linear Hamiltonian function H on Cm has the form,

(13) H(x, y)=Re(α·z̄)= 1
2(αz̄+ᾱz),

for some 0 
=α∈Cm. Then the contact vector field generated by H is

ξ̂H =
∑
j

(−i/2)(αj∂zj−ᾱj∂z̄j )−
1
2H∂θ.

The contact lifted Hamiltonian flow ĝt(ẑ)=exp(tξ̂H) is then

(14) ĝt(ẑ)= (z+αt

2i , θ−
t

4(αz̄+ᾱz)), ẑ =(z, θ).

Proposition 3.1. ([ZZ19b], Proposition 5.1) The kernel for the propagator

Ûk(t)=Π̂ke
iktĤkΠ̂k, is then given by

(15) Ûk(t, ẑ, ŵ)= Π̂k(ĝ−tẑ, ŵ)=
(

k

2π

)m

ekψ̂(ĝ−tẑ,ŵ).

where the function ψ̂(ẑ, ŵ) is given by

ψ̂(ẑ, ŵ)= i(θz−θw)+zẇ−|z|2/2−|w|2/2, ẑ =(z, θz), ŵ=(w, θw).
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In particular, if ẑ=ŵ, we have

(16) Ûk(t, ẑ, ẑ)=
(

k

2π

)m

eikH(z)te−kt2
‖dH(z)‖2

4 ,

where ‖dH(z)‖2=|α|2/2.

3.2. Quadratic Hamiltonian function and metaplectic representation

Identify Cm with R2m. The space Sp(m,R) consists of linear transformation
S :R2m→R2m, such that S∗ω=ω. In coordinates, we write(

x′

y′

)
=S

(
x

y

)
=
(
A B

C D

)(
x

y

)
.

In complex coordinates zi=xi+iyi, we have then(
z′

z̄′

)
=
(
P Q
¸Q ¸P

)(
z

z̄

)
=:A

(
z

z̄

)
,

where

(17)
(
P Q
¸Q ¸P

)
=W−1

(
A B

C D

)
W, W = 1√

2

(
I I

−iI iI

)
.

The choice of normalization of W is such that W−1=W ∗. Thus,

P = 1
2(A+D+i(C−B)).

We say such A∈Spc(m,R)⊂M(2n,C). The following identities are often useful.

Proposition 3.2. ([F89] Proposition 4.17) Let A=
(
P Q
¸Q ¸P

)
∈Spc, then

(1)
(
P Q
¸Q ¸P

)−1

=
(

P ∗ −Qt

−Q∗ P t

)
=KA∗K, where K=

(
I 0
0 −I

)
.

(2) PP ∗−QQ∗=I and PQt=QP t.

(3) P ∗P−Qt¸Q=I and P t¸Q=Q∗P .

The (double cover) of Sp(m,R) acts on the (downstairs) BF space Hk via

kernel: given M=
(
P Q
¸Q ¸P

)
∈Spc, we have

Kk,M (z, w)=
(

k

2π

)m

(detP )−1/2 exp
{
k
(
z¸QP−1z/2+ẇP−1z−ẇP−1Qẇ/2

)}
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where the ambiguity of the sign the square root (detP )−1/2 is determined by the
lift to the double cover. When A=Id, then Kk,A(z, ẇ)=Πk(z, ẇ).

The associated density of states is thus given by the metric contraction,

Kk,M (z)=
(

k

2π

)m

(detP )−1/2 exp
{
k
(
z¸QP−1z/2+z̄P−1z−z̄P−1Qz̄/2

)
−k|z|2

}
.

Another useful expression for Kk,M in the spirit of Proposition 2.1 is the fol-
lowing:

Proposition 3.3. ([ZZ18] Proposition 2.4) Let A:Cm→Cm be a linear sym-

plectic map, A=
(
P Q
¸Q ¸P

)
, and let Â:X→X be the contact lift that fixes the fiber

over 0, then

K̂k,A(ẑ, ŵ)= (detP ∗)1/2
∫
X

Π̂k(ẑ, Âû)Π̂k(û, ŵ)dVolX(û)

Remark 3.4. The point of the above proposition is that, the symbol σk(t) in
(10) is given by (detP ∗)1/2.

Consider quadratic Hamiltonian H :R2m=Cm→R,

H =
∑
i,j

(1/2)aijzizj+(1/2)āij z̄iz̄j+bijziz̄j

where aij=aji∈C and bij=b̄ji∈C. Then the Hamiltonian vector field with respect
to ω=i

∑
j dzjdz̄j is

ξH =
∑
i,j

(aijzj+bij z̄j)(i∂z̄i)+(aij z̄i+bijzi)(−i∂zj ).

Hence, if ξH generates the flow P (t), Q(t), then

d

dt

(
P (t) Q(t)
¸Q(t) ¸P (t)

)
=
(
−ib̄ −iā

ia ib

)(
P (t) Q(t)
¸Q(t) ¸P (t)

)
.

In particular, since P (0)=Id,Q(0)=0, we have

Ṗ (0)=−ib̄, Q̇(0)=−iā.

Remark 3.5. ξH preserves the holomorphic structure, if and only if aij=0. Thus
Q(t)=0, P (t)=e−itb̄∈U(m), and P (t)−1=P (−t)=P (t)∗=eitb̄.
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4. Smoothed partial Bergman density with spectrum width k−1/2:
proof of Theorem 1.1

To prove Theorem 1.1 we first consider smoothed sums over eigenvalues in a
k−1/2 neighborhood of an energy. We first state a lemma about localization of sum.

Lemma 4.1. For any 1�ε>0 and any z∈M , we can find R>1 large enough,

such that

lim inf
k→∞

∑
j 1[−1,1](

√
k(μk,j−H(z))/R)‖sk,j(z)‖2∑

j ‖sk,j(z)‖2 > 1−ε.

Proof. Let χ:R→[0, 1] be a smooth function, such that χ(x)=1 and χ(x)=
0 for |x|>1. Furthermore, we may require its Fourier transform χ̂(t)≥0, e.g.
choose χ(x)=(η�η)(x) for some η∈C∞

c (R). Since 1[−1,1](
√
k(μk,j−H(z))/R)≥

χ(
√
k(μk,j−H(z))/R), hence it suffices to prove for any ε>0, one can find R>0

large enough that

lim inf
k→∞

∑
j χ(

√
k(μk,j−H(z))/R)‖sk,j(z)‖2∑

j ‖sk,j(z)‖2 > 1−ε.

or

lim
R→∞

lim inf
k→∞

∫
R

χ̂R(t)Vk(t/
√
k, z) dt2π =1, where Vk(t, z) := e−iktH(z)Uk(t, z)

Uk(0, z)
,

where χR(x):=χ(x/R), and its Fourier transformation is χ̂R(t)=Rχ̂(Rt).
First, we note that χ̂R(t)≥0 and

∫
χ̂R(t) dt

2π =χR(0)=1. Since χ̂(t) is a Schwartz
function, for any positive integer N , we have constant CN , such that for |t|>1,
|χ̂(t)|<CN |t|−N . Hence, for any smooth bounded function f(t), we have

lim
R→∞

χ̂R(t)f(t) dt2π = f(0).

Next, we claim that |Vk(t, z)|≤1=Vk(0, z) for all t∈R. Indeed, let Ez
k∈

H0(M,Lk) be an L2 normalized peak section (or coherent state) at z, i.e. the L2

normalization of the section z→Πhk(·, z). Then the L2-normalized section eitkĤkEz
k

satisfies ∣∣∣∣∣ (eitkĤkEz
k)(z)

Ez
k(z)

∣∣∣∣∣= ‖(eitkĤkEz
k)(z)‖

‖Ez
k(z)‖ ≤ 1.

Hence we have

|Vk(t, z)|=
∣∣∣∣∣ 〈eitkĤkEz

k , E
z
k〉

〈Ez
k , E

z
k〉

∣∣∣∣∣≤ ‖(eitkĤkEz
k)(z)‖

‖Ez
k(z)‖ ≤ 1.
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If we choose cut-off function η(t), that η(t)=1 for |t|<1 and η(t)=0 for |t|>2.
Then for any T>1, we have∫

χR(t)η(t/T )Vk(t/
√
t, z) dt

2π =
∫

χR(t)η(t/T )e−t2‖dH(z)‖2/4 dt

2π +O(k−1/2)

and for each integer N≥1, we have constant cN independent of R, T , that∫
χR(t)(1−η(t/T ))|Vk(t/

√
t, z)| dt2π ≤

∫
|t|>T

χ̂R(t) dt

2π =
∫
|t|>RT

χ̂(t) dt

2π
= cN |RT |1−N .

Hence

1≥ lim inf
k→∞

∫
R

χ̂R(t)Vk(t/
√
k, z) dt

2π ≥
∫

χR(t)η(t/T )e−t2‖dH(z)‖2/4 dt

2π−cN (RT )1−N

Taking limit R→∞, we get

1≥ lim
R→∞

lim inf
k→∞

∫
R

χ̂R(t)Vk(t/
√
k, z) dt

2π ≥ η(0)= 1.

This finishes the proof of the Lemma. �

4.1. Proof of Theorem 1.1

Proof. We consider Fourier transform of f in the definition of Πk,E,f,1/2(zc+
k−1/4u). Write zc+k−1/4u=z. Using the parametrix (11) for the propagator (9),
and Taylor expanding the phase as in (12),

Πk,E,f,1/2(z) =
∑
j

‖sk,j(z)‖2 ·
∫
R

eitk
1/2(μk,j−E)f̂(t) dt

=
∫
R

eitk
1/2(−E)f̂(t)Uk(t/

√
k, z) dt

=
(

k

2π

)m ∫
R

f̂(t)eitk
1/2(H(z)−H(zc))e−t2

‖dH(z)‖
4 (1+O(|t|3k−1/2)) dt

=
(

k

2π

)m ∫
R

f̂(t)eit(HesszcH)(u,u)/2[1+O(|t|3k−1/2)+O(|t|2k−1/4)] dt

=
(

k

2π

)m

f((HesszcH)(u, u)/2)+Of (km−1/4).

where in the last step, we use the fast decay of f̂(t) to bound the error term that
grows as power law in |t|.
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To show the weak convergence, suffice to test again all continuous bounded
function f∈Cb(R). It is not hard to see that this sequence of measures
{μ̂(zc,u,1/4),1/2

k }k is tight, hence it suffices to test against only compactly supported
continuous functions f∈Cc(R). Finally, since dμ̂k all has unit mass, suffice to test
against f∈C∞

c (R).
Now we show this sequence of measures {μ̂(zc,u,1/4),1/2

k }k is tight. Suffice to
show for any ε>0, exists R>0, such that(

k

2π

)−m ∑
|μk,j−H(z)|>k−1/2R

‖sk,j(z)‖2 <ε.

This follows from Lemma 4.1. �

Remark 4.2. The proof of Theorem 1.1 is similar to the proof of (7) in [ZZ19b].
The only change is that the linear term vanishes and one has a quadratic term
instead. This accounts for the different scaling.

5. Smoothed partial Bergman density with spectrum width k−1: proof
of Theorem 1.2

Recall that zc∈M is a non-generate critical point of H and E=H−1(zc). For
simplicity of notation, we may assume zc is the only critical point on H−1(E).

Assume that for each T>0, there are finitely many closed Hamiltonian orbit
with primitive period less than T . In particular, there exists 1�T>0, such that
there is no closed Hamiltonian orbit with primitive period less than T except for
constant orbit at critical points.

For z0∈H−1(E), we consider the following partial Bergman density

Πk,E,f,1(z0+k−1/2u) :=
∑
j

‖sk,j(z)‖2 ·f(k(μk,j−E))

where we used Kähler normal coordinate to identify a neighborhood of z0 with
Tz0M

z0+k−1/2u := expz0(k
−1/2u), u∈Tz0M,

and we choose test function f that

f ∈S(R) with f̂(t)∈C∞
c (−T, T ).

Proposition 5.1. If z0 is not a critical point of H, then

Πk,E,f,1(z0+k−1/2u)=
(

k

2π

)m−1/2 √
2f̂(0)

2π‖dH(z0)‖
e−|〈dH(z0),u〉|2/‖dH(z0)‖2

+O(km−1)
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Proof. A similar case is considered in [ZZ19b] Theorem 3; we repeat the proof
here for completeness.

Πk,E,f,1(z0+k−1/2u)

=
∫ T

−T

f̂(t)e−itkEUk(t, z0+k−1/2u) dt

2π

=
(

k

2π

)m ∫ T

−T

f̂(t)eitk(H(z0+k−1/2u)−H(z0))e−kt2‖dH(z0+k−1/2u)‖2/4 dt

2π
×(1+O(k−1/2))

=
(

k

2π

)m ∫ T
√
k

−T
√
k

f̂(τ/
√
k)eiτ〈dH(z0),u〉e−τ2‖dH(z0)‖2/4 dτ

2π
√
k

(1+O(k−1/2))

=
(

k

2π

)m−1/2
f̂(0)

√
2

2π‖dH(z0)‖
e−|〈dH(z0),u〉|2/‖dH(z0)‖2

+O(km−1) �

5.1. Proof of Theorem 1.2

We now complete the proof of Theorem 1.2.

Proof. We first use the Fourier transform to write,

(18) Πk,E,f,1(zc+k−1/2u)=
∫ T

−T

f̂(t)e−itkEUk(t, zc+k−1/2u) dt

2π .

Next, we make a linear (Bargmann-Fock) approximation of Uk(t, zc+k−1/2u) for
t∈(−T, T ).(4)

We lift the propagator to the unit frame bundle, where as in Section 2,

(19) Uk(t, z)= Ûk(t, ẑ, ẑ)=
∫
X

Π̂k(ẑ, ĝtŵ)Π̂k(ŵ, ẑ)ηk(t, ẑ, ŵ)dŵ+Rk(t, z).

First, we may cut-off the integral of w, such that w and gtw are within k−1/2+ε

neighborhood of z. This will introduce O(k−∞) error term. Next, we set z=
zc+k−1/2u where u is in a compact set K⊂Cm, and use Kähler normal coordinate
at zc. We write

w= zc+k−1/2v, v ∈B(k−ε).
Then, the Bergman kernel can be approximated as

Π̂k(ŵ, ẑ)Π̂k(ẑ, ĝtŵ)=
(

k

2π

)2m
ekψ(ŵ,ẑ)+kψ(ẑ,ŵ(t))(1+O(k−1/2))

(4) We warn the reader that, even though there is no periodic orbit for ξH within time
t∈(−T, T ), there might be periodic orbit for the linearized flow on TzcM .
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where we write ĝtŵ=:ŵ(t), and as in (12),

ψ(ŵ, ẑ)= i(θw−θz)+k−1(vū− 1
2 |u|

2− 1
2 |v|

2)+O((|v|3+|u|3)k−3/2)

and

ψ(ẑ, ŵ(t))= i(θz−θw(t))+k−1(uv̄(t)− 1
2 |u|

2− 1
2 |v(t)|

2)+O((|v(t)|3+|u|3)k−3/2).

We Taylor expand the remainder in the exponent, and get

Π̂k(ŵ, ẑ)Πk(ẑ, ĝtŵ)

=
(

k

2π

)2m

eikt(θw−θw(t))eψBF (u,v(t))+ψBF (v,u)(1+O((|v(t)|3+|v|3+|u|3)k−1/2))

We claim that the evolution of ŵ(t)=(w(t), θw(t)) can be computed using the
osculating Bargmann-Fock approximation zc with

HBF (zc+u) :=H(zc)+H2(u)

and
ωBF (zc+u) :=ω(zc), ϕBF (zc+u)= |u|2.

The non-obvious part is about the term eikt(θw−θw(t)) where we refer to ([ZZ18],
Proposition 3.5) for more detail.

Hence, we reduce the evolution of w=zc+k−1/2v to evolution of v in the
Bargmann-Fock approximation, where the orbit is denoted as v̂BF (t)=(vBF (t),
θBF
v (t)). Note that the factor of k in the phase is cancelled by (k−1/2v)2 from

the quadratic expansion.

Π̂k(ŵ, ẑ)Πk(ẑ, ĝtŵ)

=
(

k

2π

)2m

eiktE+it(θv−θBF
v (t))eψBF (u,v(t))+ψBF (v,u)(1+T |v|3O(k−1/2))

Now, we may plug back in (19), and do the dv integral. The integral can be
computed in purely the Bargmann-Fock model, using Proposition 3.3.

Uk(t, z)=
(

k

2π

)m

eitkEU(t, u)(1+O(k−1/2)).

Finally, we plug back in to (18) and finish the proof of Theorem 1.2. �
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6. Holomorphic Hamiltonian action: proof of Proposition 1.5

We recall the setup in from [ZZ19a]. Let (L, h)→(M,ω, J) be a holomor-
phic Hermitian line bundle, such that ω=−i∂∂̄ log h. Let H :M→R be a smooth
Hamiltonian, such that ξH preserves the complex structure J . The Berezin-Toeplitz
quantization reduces to the Kostant quantization

Ĥk := ik−1∇ξH +H :H0(M,Lk)−→H0(M,Lk).

And the unitary operator Uk(t)=Πke
iĤkΠk simplifies as

Uk(t) := eiktĤk :H0(M,Lk)−→H0(M,Lk).

Example 6.1. Let (L, h)→(M,ω) be a smooth projective toric variety with
positive equivariant line bundle L, and let T=(S1)m be the compact torus acting
on M and L. Let μ:M→Rn be the moment map, with P=μ(M), such that lattice
points kP∩Zn is the weights in the weight decomposition of T on H0(M,Lk). Let
x1, ..., xn be coordinates on Rn, then a non-zero linear function l=

∑
i aixi defines

Hamiltonian function on M

H = l ¨μ :M −→R.

And critical points (submanifolds) of H on M are intersection of toric boundary
divisors on which H is constant, or faces of P where l is constant. If the coefficients
ai are generic, then only vertices of P are fixed point. If there exists c 
=0, such that
ai=cni, ni∈Z for all i, then ξH integrate to a holomorphic S1-action.

If ξH acts holomorphically, then we have a holomorphic R-action, which extends
to a holomorphic C-action with the other generator ∇H=JξH .(5) If zc is a critical
point, we denote the stable / unstable manifolds by

W±(zc)= {z ∈M : lim
t→∞

exp(∓t∇H)z = zc}.

Thus H|W−(zc)≤H(zc)≤H|W+(zc).
Let eL be a local non-vanishing section of L, invariant under the R action, i.e.,

Ĥ1(eL)=0. Define ϕ by ‖eL(z)‖2=e−ϕ. We recall the following easy lemma.

Lemma 6.2. ([ZZ19a], Lemma 2.2)

∇H(ϕ(z))= 2H(z)

(5) Our convention for sign is that g(X,Y )=ω(X, JY ), dH(Y )=ω(ξH , Y )=g(∇H,Y ).
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Proof.

0 = ĤeL = i∇ξHeL+HeL = i〈A, ξH〉eL+HeL = i〈−∂ϕ, ξH〉eL+HeL

where A is the Chern connection one-form with respect to the trivialization eL.
Since eL is non-vanishing, we have

H = i〈ξH , ∂ϕ〉= 〈ξH ,
i

2(∂−∂̄)ϕ〉= 1
2 〈ξH , dcϕ〉= 1

2 〈∇H, dϕ〉. �

Lemma 6.3. ([GS], Eq. (5.5))

∇H(‖sk,j(z)‖2)=−2k(H(z)−μk,j)‖sk,j(z)‖2

Proof. Let sk,j=fk,jeL, then

Ĥk(sk,j) = (i/k)∇ξH (fk,jeL)+H(fk,jeL)= (i/k)ξH(fk,j)eL+fk,jĤk(eL)
= (i/k)ξH(fk,j)eL

Hence, μk,jfk,jeL=(i/k)ξH(fk,j)eL, we have ξH(fk,j)=−ikμk,jfk,j , hence

〈∇H, dfk,j〉= 〈JξH , ∂fk,j〉= i〈ξH , ∂fk,j〉= kμk,jfk,j .

Since ∇H is a real vector field, we can take complex conjugation to get

〈∇H, dfk,j〉= kμk,jfk,j .

Now, we can finish the proof by apply previous lemma and above results to
‖sk,j(z)‖2=e−kϕ|fk,j(z)|2. �

6.1. Proof of Proposition 1.5

Proof. (1) Let sk,zc(z):=Πk(z, zc) be the peak section at zc, and ŝk,zc be the
CR holomorphic function on the circle bundle X of L∗. Since the lifted contact flow
ξ̂H=ξhH−H∂θ on X preserves the fiber over zc and acts by rotation, and

̂
eiktĤksk =exp(−tξ̂H)∗(ŝk)

hence
eiktĤksk,zc(zc)= eiktH(zc)sk,zc(zc).

Since the peak section is unique up to scaling, we have

eiktĤk−iktH(zc)sk,zc(z)= sk,zc(z),∀t∈R, z ∈M.
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This shows Ĥksk,zc =H(zc)sk,zc . If any other L2 normalized section sk orthogonal
to sk,zc does not vanish on zc, then we can find another L2 normalized section

s̃k,zc = sk,zc cos(θ)+e−i arg(sk(zc)/sk,zc (zc))sk sin(θ), tan(θ)= |sk(zc)|/|sk,zc(zc)|

with higher peak
√

|sk(zc)|2+|sk,zc(zc)|2>|sk,zc(zc)| at zc.
We prove (2), and (3) is similar. Suppose v∈W+(zc), and v(t)=exp(−t∇H)(v),

then from Lemma 6.3, we have

d

dt
‖sk,j(v(t))‖2 =2(H(v(t))−μk,j)‖sk,j(v(t))‖2.

Since H(v(t))−μk,j>H(zc)−μk,j=:C>0, we get

‖sk,j(v)≤ e−2Ct‖sk,j(v(t))‖2,

for all t>0. Taking limit t→+∞ gives the result. This completes the proof of
Proposition 1.5. �

7. Trace asymptotics: proof of Theorem 1.7

In this section, we prove Theorem 1.7. We start from Proposition 1.6 and
integrate over M to get

Tr Ûk(
t√
k

) =
∫
X

Ûk(
t√
k
, x, x)dV (x)

=
(

k

2π

)m ∫
M

eit
√
kH(z)e−t2

‖dH(z)‖2
4 dVolM (z) (1+O(|t|3k−1/2))(20)

Applying stationary phase in the large parameter
√
k gives,∫

z∈M

Uk(t/
√
k, z)dVolM (z)

=
(

k

2π

)m

( t
√
k

4π )−m
∑

zc∈crit(H)

eit
√
kH(zc)e(iπ/4)sgn(Hesszc (H))√

|det(Hesszc(H))|
(1+O(|t|3k−1/2))

Here we use that dimR M=2m and that e−t2
‖dH(z)‖2

4 =1 on the critical set.

Remark 7.1. The asymptotics are non-uniform around t=0 since the phase
vanishes at t=0 and thus has a larger critical point set.
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