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1. Introduction

Homological mirror symmetry is a story of two categories radically different in origin.

The first is a category of Lagrangians in a symplectic manifold, with morphisms defined

by intersection points, corrected by holomorphic disks. The second is a category of locally

defined modules over the holomorphic functions on a seemingly unrelated complex variety,

with morphisms corrected by considerations of homological algebra. Most articles on the

subject concern the ingenious manipulations required to identify one with the other, most

often requiring heroic calculations of at least one side of this equivalence.

Our contribution is of a different nature. We wish to explain how in many cir-

cumstances—we focus on Calabi–Yau hypersurfaces in toric varieties, though the same

methods should apply in the generality of Gross–Siebert toric degenerations—both sides

can be cut into matching elementary pieces, known to be homologically mirror, and the

total mirror symmetry glued together using foundational results in algebraic and sym-

plectic geometry. More precisely, this cutting and gluing is possible at the limiting point

where on the one hand the complex manifold degenerates into a union of toric varieties,

while on the other, the symplectic form concentrates along certain divisors, and we con-

sider the category associated with their complement. We will be entirely concerned with

homological mirror symmetry at this limit point.(1)

At this most degenerate point, the category of coherent sheaves on the union of toric

varieties—glued together along toric subvarieties—can be calculated as a colimit of the

categories of coherent sheaves on the toric components [GR].

(1) It is a tautology that matching the limit categories matches their infinitesimal deformations,

but it remains to identify the geometric meaning of these deformations in a satisfactory way—we do
not touch upon this question here.
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Mirror symmetry is well studied for toric varieties themselves. The Hori–Vafa pre-

scription is that the mirror A-model category should be associated with a function

W : (C∗)n!C whose Newton polytope is the convex hull of primitive vectors on the

1-dimensional cones of the fan of the toric variety. Different authors have taken different

views on how precisely to associate a category with this geometry, either directly in La-

grangian Floer theory [Ab1], [Ab2], or in microlocal sheaf theory [B], [FLTZ3], [T], [Ku]

(the latter being known to be calculate Fukaya categories [NZ], [N1], [GPS3]).

A true believer in mirror symmetry should expect the following facts:

(1) The mirror to the toric boundary—a generic fiber of a generic W : (C∗)n!C
whose Newton polytope is the moment polytope of the toric variety—admits a cover by

mirrors of toric varieties, glued along mirrors of toric varieties.

(2) There are geometrically defined functors between these Fukaya categories which

are mirror to the pullback and pushforward functors corresponding to the inclusion of

toric varieties in toric varieties.

(3) There is a descent result for the Fukaya category showing that it carries covers

of the sort in (1) to colimits of categories.

Establishing all of these results would show that the Fukaya category of the general

fiber of W is equivalent to the category of coherent sheaves of the corresponding toric

variety. The recent works [GPS1]–[GPS3] give the necessary general tools to define the

functors in (2) and establish the descent required in (1). In fact, these works, together

with [NS], build a bridge between Fukaya categories and microlocal sheaf theory, which we

cross in order to appeal to the microlocal sheaf calculations of the toric mirror [Ku]. Here

we will establish (1) and the ‘mirror’ assertions of (2) above, and deduce the following

result.

Theorem 1.1. Suppose we are given the following data:

• TC an algebraic torus with character and cocharacter lattices M and M∨;

• ∆∨⊂M∨ an integral polytope containing the origin;

• Σ a fan in M∨⊗R giving a star-shaped triangulation of ∆∨.

These determine a smooth toric stack TΣ with toric boundary divisor ∂TΣ.

Then, there exists a Laurent polynomial W :T∨
C!C with Newton polytope ∆∨, a

structure of Liouville manifold on a general fiber FW , and an equivalence

Coh(∂TΣ)∼=Fuk(FW )

between the dg category of coherent sheaves on the variety ∂TΣ and the wrapped Fukaya

category of the general fiber FW .

We close the introduction with some comments about how we will establish items

(1) and (2) above.
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Regarding (1): in the microlocal sheaf theoretic works beginning with [FLTZ3],

a key role is played by a certain conical Lagrangian subvariety ΛΣ⊂T ∗T∼=T∨
C . It is

straightforward to establish that the boundary of this conical subvariety indeed admits

a cover corresponding to the cover of the ∂T by toric subvarieties. What is needed is to

relate the geometry of ΛΣ to the geometry of the Laurent polynomial W . We show in §6
that the deformation equivalence class of the Liouville sector determined by W admits a

representative whose relative skeleton is precisely ΛΣ.(
2) The proof uses Mikhalkin–Viro

patchworking to reduce the study of FW to understanding pairs of pants, whose skeleta

have been calculated by Nadler.

Regarding (2): after the geometric results in the previous paragraph, existence of

the relevant functors of Fukaya categories can be deduced from [GPS1]. To calculate

them, we use [GPS3], [NS] to pass to microlocal sheaf theory, where we must now show

that the mirror symmetry established in [Ku] can be made functorial with respect to

inclusion of toric boundary divisors. We explain how to do this in §7.
In the following section, we explain in more detail the general strategy of the proof,

reviewing relevant ideas from sources mentioned above, and we give the proof of The-

orem 1.1, up to the calculations mentioned in the previous two paragraphs, which we

defer to the main body of the paper.
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2. Our approach to homological mirror symmetry

2.1. An illustration

Consider the degeneration in which a genus-1 holomorphic curve acquires a node. In the

mirror degeneration, a symplectic 2-torus acquires a puncture.

(2) The argument we present in §6 requires a certain hypothesis on Σ (see Definition 6.10). After
the present article appeared as a preprint, Peng Zhou showed that similar arguments work in general
if one replaces the inner product identification of T∨

C=TT∨ and T ∗T∨ by the Legendre transform for a

more general homogenous quadratic function [Z]. We give here our original argument, but then appeal
[Z] to establish Theorem 1.1 in the stated generality.
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Figure 1. The degeneration of a smooth genus-1 curve to a nodal curve.

Figure 2. A torus acquiring a puncture as an S1 fiber approaches infinite radius.

One way to arrive at the view that these two spaces should be mirror is the following

“T-duality” account. In general, the spaces on the two sides of mirror symmetry are

expected to be dual torus fibrations (in general, with singularities) over the same base,

the radii of the fibers on one side being inverse to the radii on the other side. In the

present example, on the complex side, we have a torus—a circle bundle over a circle.

Under the degeneration, one of the circle fibers is approaching zero radius. Thus, on

the symplectic side, we should have a circle bundle over a circle, in which one fiber is

approaching infinite radius. A circle of infinite radius is a line—or in other words, the

fiber should acquire a puncture.

In the description above, the puncture was just the removal of a point. As we draw

only the complement of this point, we are free to imagine the puncture as being larger,

as in Figure 2. In our previous description, the fiber containing the puncture was dual

to the node. We have expanded the puncture, so in this picture, one should regard the

entire horizontal region beneath the puncture as being dual to the node.

On the complex side, we have a singular complex curve; it is natural to take the

normalization. This is a smooth curve mapping to the singular curve, and in the case

at hand, the map simply identifies points. This is what is indicated in Figure 3. We

can describe the symplectic side by a similar gluing. Since the node corresponded to the

strip beneath the puncture, the mirror gluing on the A-side involves gluing the two ends

of the strip.

The category we associate with this non-compact symplectic manifold is the wrapped
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   =      Colim

Figure 3. We obtain a nodal curve by gluing smooth pieces.

=        Colim

Figure 4. The mirror to the above gluing: a punctured torus is glued together from Liouville sectors.

Fukaya category, which was originally constructed for Liouville manifolds, symplectic

manifolds with the property that (at least locally near the boundary) there is a primitive

for the symplectic form whose dual Liouville vector field is everywhere outward pointing

[AS]. In the above gluing, however, the restriction of this Liouville form to the compo-

nents does not have this property: there are boundary components where it is parallel,

rather than outward pointing. In particular, the rectangle should be viewed as the cotan-

gent bundle of an interval rather than a disk. That is, the pieces in our gluing are not

Liouville manifolds. The appropriate notion is that of Liouville sector, which we review

in the next subsection. A covariantly functorial Floer theory for these is developed in

[GPS1], [GPS2].

We turn now to the question of gluing together a global mirror symmetry from local

mirror symmetries. The functor Coh(−) taking a variety X to its dg category Coh(X) of

coherent sheaves behaves well with respect to the gluings above. Following [GR], we make

statements for the Ind-completion IndCoh(X) of the category Coh(X); statements for

Coh(X) may be recovered by taking compact objects. We write IndCoh! and IndCoh∗ for

the contravariant and covariant functors from derived stacks to dg categories which carry

a stack to its category of Ind-coherent sheaves and carry a map f :X!Y to a pullback

f ! or a pushforward f∗, respectively. The key fact [GR, IV.4.A.1.2] is that IndCoh! takes

pushout squares of affine schemes along closed embeddings to pullback squares of (stable

cocomplete) dg categories; by Zariski descent, this holds for schemes more generally. By

passing to adjoints, we see that IndCoh∗ analogously takes pushouts to pushouts.
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Fuk = Coh

Figure 5. The homological mirror symmetry conjecture for a genus-1 curve at the large

volume/complex structure limits.

Homological mirror symmetry as usually stated is an equivalence between coherent

sheaves on a given algebraic variety and the Fukaya category of its mirror. What the

pictures above suggest is that this should extend to a natural transformation between

the functor IndCoh∗, perhaps with respect to some restricted class of maps including

normalizations, and a functor IndFuk∗, covariant with respect to some class of maps

including those mirror to normalization. It suggests moreover that IndFuk∗ should take

certain diagrams—those mirror to certain pushouts of varieties— to pushouts of dg or

A∞ categories.

In fact, a covariant functor from a category of Liouville sectors to A∞ categories

has been defined in [GPS1], and shown in [GPS2] to carry diagrams like those illustrated

above to pushouts. Given these structural properties, one can establish mirror symmetry

by showing that there is an identification, respecting the relevant inclusion functors, of

the Fukaya and coherent-sheaf categories of our building blocks.

Remark 2.1. Strictly speaking, this subsection does not illustrate a special case of

the statement of Theorem 1.1, because the self-nodal curve is not the boundary of a toric

variety. However, an essentially identical argument gives the mirror symmetry between

the nodal necklace of three P1s and a thrice-punctured torus, which is a special case of

Theorem 1.1.

This subsection also does not exactly illustrate the proof we will give of Theorem 1.1;

instead, as we explain below, we will translate these ideas to the microlocal sheaf setting

using [GPS3]. In this setting, we need only cover the skeleton, as we do in Corollary 4.8.

A lift of this cover to a sectorial cover in the sense of [GPS2] would yield a proof hewing

closer to the above illustration.
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2.2. Stops, sectors, skeleta, and partially wrapped Fukaya categories.

For basics on Liouville and Weinstein manifolds, we refer to [CE], [E]. Here we review

basic notions of Liouville sectors, stops, and skeleta, and then recall from [GPS1], [GPS2]

definitions and results concerning partially wrapped Fukaya categories defined in terms

of these geometric structures.

A Liouville sector is an exact symplectic manifold-with-boundary (X, ∂X, λ) mod-

eled at infinity on the symplectization of a contact manifold-with-boundary (V, ∂V, λ),

satisfying additional constraints: ∂V should be transverse to a contact vector field, and

the characteristic foliation on ∂X should be trivializable as ∂X=R×F . Such a trivializa-

tion makes (F, λ|F ) a Liouville manifold. Note that being a Liouville sector is a property

of, rather than a structure on, an exact symplectic manifold-with-boundary.

A closed codimension-zero submanifold-with-boundary Y ⊂X is a Liouville subsec-

tor if (1) each component of ∂Y is either disjoint from or contained in ∂X, and (2)

(Y, ∂Y, λ|∂Y ) is itself a Liouville sector. One can see by inspection that the symplectic

manifolds in Figure 4 admit an exact structure making them Liouville sectors, and that

the inclusions depicted are inclusions of Liouville sectors.

Another point of view on sectors is obtained by passing to the ‘convex completion’
�X, which is a Liouville manifold in the usual sense. Up to contractible choices, the data

of the sector is equivalent to an embedding F⊂∂∞�X as a Liouville hypersurface, i.e. some

choice of contact form on ∂∞�X restricts to the Liouville form on F . The (�X,F ) form

what is termed a Liouville pair elsewhere in the literature [Av], [Sy], [E]. The advantage

of Liouville sectors over Liouville pairs is that they are better suited to discussions of

gluing, in particular because the key notion of Liouville subsector is less natural in the

setting of pairs. Basic definitions and constructions relevant to Liouville sectors are found

in [GPS1, §2].

We refer to works [AS], [GPS1], [GPS2] for a foundational treatment of partially

wrapped Fukaya categories. For our purposes here, we may largely use these works as

black boxes. The most general setting for defining partially wrapped Fukaya categories

(offered by [GPS2]) takes as input the data of a Liouville sector X and a closed subset in

the infinite boundary Λ⊂∂∞X�. (We recall that a Liouville sector has its actual boundary

∂X, and its ideal contact boundary ∂∞X; here ∂∞X� means the contact boundary minus

its intersection with the actual boundary ∂X.) With such a pair is associated a category

which we here denote Fuk(X,Λ).(3)

A stopped sector includes in another by enlarging the sector or shrinking the stop:

we say (X ′,Λ′)⊂(X,Λ) if X ′ is a Liouville subsector of X and Λ′⊃Λ∩X ′. It is shown

(3) We write Fuk for what is called Perf W in [GPS1]–[GPS3].
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in [GPS1], [GPS2] that in this case there is a functor

Fuk(X ′,Λ′)−!Fuk(X,Λ).

When X=X ′ we term this functor a “stop removal”. These satisfy the natural com-

patibilities with composition, defining a (strict!) functor from the poset of (stopped)

subsectors of (X,Λ) to A∞ categories.

With a Liouville manifold X is associated the skeleton (elsewhere termed spine or

core) cX , this being the locus of all points which do not escape to infinity under the

Liouville flow. When the Liouville flow is gradient-like and generalized Morse–Smale

(such manifolds are said to be Weinstein), the skeleton admits a Whitney stratification

by isotropic submanifolds, and the top-dimensional strata admit transverse “cocore”

Lagrangian disks. It is this consequence which is relevant for [GPS2], [GPS3],(4) and

some weaker definitions of Weinstein have been proposed which imply it; see e.g. [E].

The above results remain true when the Liouville flow is Morse–Bott, as in the cases

studied in this paper.

For a Liouville sector X, one can define the skeleton cX by the same formulation:

cX is the locus which does not escape to infinity. However, this definition is only really

sensible if the Liouville flow on X is tangent to ∂X along all of ∂X, not just near ∂∞∂X.

Note [GPS1, Lemma 2.11 and Proposition 2.28] that this can always be arranged after

deformation. Evidently, if X⊂Y is an inclusion of Liouville sectors where λX=λY |X and

the Liouville flow on X is tangent to its boundary, then cX=cY ∩X.

We offer also another perspective on the skeleton of a sector. Recall that a sector

X is equivalent to the data of a pair (�X,F⊂∂∞�X). For the pair, it is natural to define

the relative skeleton c
X,F as the locus of points �X which do not escape to ∂∞�X\cF .
Note that this is the union of cX with a R-cone on cF . This notion of relative skeleton

compares to the skeleton of a sector as follows: it is not difficult, using the techniques of

[GPS1, §2] to arrange an inclusion of sectors X⊂�X such that cX=c
X,F ∩X.

From the point of view of Fukaya categories, the significance of skeleta and relative

skeleta is in their role in organizing generation results. Indeed, the cocore disks to

a Weinstein Morse function provide Lagrangians transverse to each component of the

smooth locus of the skeleton, and with any Legendrian point of a stop there is associated

a linking disk; according to [GPS2, Theorem 1.10], these generate Fuk(X,Λ) when X is

a Weinstein manifold and Λ is mostly Legendrian.

For calculating Fukaya categories, we may always translate back and forth between

Liouville sectors and stopped Liouville manifolds, and further we may retract the stop

(4) Without any assumption beyond isotropicity of the skeleton, one can use the linking disks in
X×T ∗[0, 1] as replacements for the co-core disks of X; see [GPS2].
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to its skeleton. Indeed, per [GPS2, Corollary 2.11], we have equivalences

Fuk(X)
∼−−!Fuk(�X,F )

∼−−!Fuk(�X, cF ).

2.3. Notation for tori

Fix lattices M and M∨. For an abelian group A, we write MA :=M⊗ZA. We consider

the real tori

T=M∨
R/Z =M∨

R /M
∨ and T∨ =MR/Z =MR/M,

where M and M∨ are the lattices of characters and cocharacters for T.
We denote the corresponding complex tori by TC=M∨

C× and T∨
C=MC× , respectively.

The tangent space to a point p in the torus T∨
C is canonically identified with MR×MR,

and the complex structure on T∨
C is the standard one: Jp(x, y)=(−y, x).

Whenever we wish to do symplectic geometry on a complex torus, we use an inner

product ⟨−,−⟩ on MR to obtain an identification with the cotangent bundle:

T∨
C =TT∨ =T∨×MR

∼−−−−−−−−!
idT∨×⟨−,−⟩

T∨×M∨
R =T ∗T∨. (2.1)

We always regard the latter as an exact symplectic manifold carrying the canonical

(“p dq”) Liouville structure.

Under the identification (2.1), the complex structure J from T∨
C and the symplec-

tic structure ω from T ∗T∨ are compatible, in the sense that g(−,−)=ω(−, J−) is a

(Kähler) metric. Indeed, if we pick a basis {m1, ...,mn} for M , determining holomor-

phic coordinates z1, ..., zn on T∨
C , the metric g may be written in these coordinates as

g=
∑n

i,j=1⟨mi,mj⟩ dzi dz̄j . In particular, under the identification (2.1), complex hyper-

surfaces of T∨
C become symplectic submanifolds of T ∗T∨.

2.4. LG model

Partially wrapped Fukaya categories can be used to formulate homological mirror sym-

metry for Fano varieties. For example, the mirror to P1 should be somehow associated

with the function W (z)=z+z−1 on C∗. We interpret this to mean that we should form

a Liouville sector from C∗ by deleting the neighborhood of a fiber W−1(−∞) at infinity.

In this special case, any reasonable interpretation of the above description should result

in the sector on the left-hand side of Figure 5.

More generally, we would like to obtain a Liouville sector from a function

W : (C∗)n −!C,
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as such functions were predicted by Hori and Vafa [HV] to provide mirrors to toric

varieties. Näıvely, one could attempt to produce a sector from this data as follows:

take a half-plane H⊂C containing all the critical values (including those associated with

critical points at infinity) of W , and take W−1(H) as the sector. Strictly speaking,

however, W−1(H) is not generally conical at infinity for the restriction of the most

natural Liouville structure on (C∗)n, so some manipulation of exact structures and use

of cutoff functions would be necessary. Similar issues arise in work of Seidel, see e.g. [Se1,

§3A] and [Se2, §19B]. Instead, we use the tropical methods of [M], [Ab1] to show the

following result.

Proposition 2.2. Fix a Newton polytope ∆∨⊂M∨ and regular star subdivision T
induced by some piecewise-linear function α. Consider the function on MC∗=T∨

C :

W (z)=
∑

n∈∆∨

t−α(n)zn.

There is a real codimension-2 symplectic submanifold FΣ of T∨
C such that the fol-

lowing conditions hold :

• [Ab1] For t≫0, there is an isotopy of symplectic submanifolds between FΣ and a

general fiber FW of W ;

• There is a Liouville subdomain D⊂T∨
C , completing to T∨

C , such that ∂D∩FΣ is a

Liouville subdomain of FΣ, completing to FΣ.

Note we use (2.1) to define the exact symplectic structure on T∨
C.

As indicated, the first item is proven in [Ab1], in a form we recall in Lemma 6.6. The

second item follows from our further calculations that the skeleton of FΣ is contained in

the boundary of some subdomain D (Theorem 6.12), and moreover, along the skeleton,

FΣ is nowhere tangent to the Liouville vector field of the ambient T∨
C (Lemma 6.13).

Indeed, then we may deform slightly ∂D along the Liouville field in order to contain

some neighborhood of the skeleton of FΣ.

It is the sector associated with the particular pair (D,FΣ∩D) constructed by our

proof of this proposition that is used in this article. In particular in Theorem 1.1, when

we assert ‘there is a Liouville structure on FW ’ we mean that we pull back the Liouville

structure mentioned above under the symplectomorphism FW
∼=FΣ.

Of course, we expect that any other reasonable construction of such a pair from W

will be deformation equivalent to ours, in particular giving the same Fukaya category.

2.5. Sheaves

A prototypical example of a Liouville manifold is the cotangent bundle T ∗Q of a closed

manifold without boundary; the skeleton for the usual “p dq” form is the zero section.
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If Q had boundary, the cotangent bundle would naturally be a Liouville sector, again

with the zero section as skeleton. An open set U⊂Q determines an inclusion of Liouville

sectors T ∗U⊂T ∗Q: the stopped boundary of T ∗U is the restriction of the cotangent

bundle to the boundary of U . Lifting a cover of Q gives a cover of T ∗Q by Liouville

sectors, whose intersections are again Liouville sectors (with corners). The covariantly

functorial [GPS1] assignment U 7!Fuk(T ∗U) thus defines a precosheaf of categories on Q.

Suppose we knew this precosheaf were a cosheaf. Then we could compute its global

sections from the local data. Indeed, the Fukaya category of the cotangent bundle of a

disk is equivalent to the category of chain complexes, so the cosheaf in question would

be a locally constant cosheaf of categories. Recall that the ∞-groupoidal version of the

Seifert–van Kampen theorem asserts that the fundamental higher groupoid of a space is

the global sections of a locally constant cosheaf of spaces with stalk a point. Linearizing

this, we see that a locally constant cosheaf of A∞ categories with stalk the category of

chain complexes has global sections (a twisted version of) the category of modules over

the algebra of chains on the based loop space of Q. Thus, the Fukaya category of a

cotangent bundle is the category of modules over chains on the based loop space. This

final statement is originally a result of Abouzaid, by a different argument [Ab3].

Kontsevich’s localization conjecture [Ko] asserts the existence of a cosheaf Fuk over

the skeleton of any Weinstein manifold (e.g. the complement of an ample divisor in a

smooth projective variety), whose global sections should recover the wrapped Fukaya

category.

A variant, which gives a local-to-global principle without any mention of skeleta,

is the main result of [GPS2], which asserts that the Fukaya category satisfies descent

with respect to sectorial covers.(5) This result, together with the well-known calculation

of Fukaya categories of disks with stops at the boundary (for a very short calculation,

see [GPS2, Example 1.22]), can easily be used to make the discussion of §2.1 above

completely rigorous.

In the body of this article we will need a further elaboration of Kontsevich’s conjec-

ture, formulated by Nadler [N2] (and further elaborated in [Shen], [NS]), which identifies

Kontsevich’s conjectural cosheaf of categories on the skeleton with a certain cosheaf of a

combinatorial-topological nature which is constructed directly from the microlocal sheaf

theory of [KS]. This conjecture is established(6) in [GPS3], using the theory developed

(5) To deduce Kontsevich’s statement from [GPS2], one would want to know further that appro-
priate open covers of the skeleton lift to sectorial covers. It is expected that such a lifting is not difficult
to construct in general. In the case of relevance to this article, it is likely possible to construct such a

cover by hand, though we will not do it here, as we do not invoke this result (instead we use [GPS3]).
(6) Strictly speaking, this is established in the “stably polarized” case, which includes the examples

of interest here.
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in [GPS1], [GPS2] and the antimicrolocalization lemma of [NS].

2.6. Remark on toric stacks

To state results in their natural generality, we use the toric stacks of [BCS]. For the

purpose of understanding the new ideas in this paper, this can be entirely ignored. Very

briefly, toric stacks are smooth Deligne–Mumford stacks associated with the data of a

“smooth stacky fan” Σ, which is a simplicial fan together with a choice of integer point

along each ray. We term these chosen integer points the “stacky primitives”. The coarse

moduli space of the toric stack is the toric variety which would ordinarily correspond to

the underlying simplicial fan.

Even in the setting of reflexive polytopes, one must in general allow stacks to get

the correct category of coherent sheaves for the purposes of mirror symmetry; this is due

to the fact that toric varieties do not in general admit crepant resolutions. Of course, if

we begin with a smooth fan, no discussion of toric stacks is necessary.

The added generality provided by allowing toric stacks can be seen by the following

lemma.

Lemma 2.3. Every convex polytope containing the origin is the convex hull of the

stacky primitives of a smooth quasi-projective stacky fan.

Proof. The quasi-projectivity condition is that the triangulation induced by the fan

is regular, in the sense of being the corner locus of a piecewise-linear function α: ∆∨
!R.

Let α0 be the piecewise linear function which is 1 at the origin, and 0 at all facets of

the boundary not containing the origin. For each facet of the polytope, τ , choose some

ατ inducing a regular triangulation of τ . Then take the function α=α0+
∑

τ ετατ for

small ετ . (We thank Allen Knutson for this argument.)

2.7. Proof of Theorem 1.1

Here we give the proof of Theorem 1.1, modulo the results which are the essential math-

ematical contents of the present article.

Our mirror-symmetric setup is as follows. Let ∆∨⊂M∨
R be an integral polytope

containing the origin. Choose a regular star-shaped triangulation of ∆∨; equivalently,

choose a smooth quasi-projective stacky fan Σ⊂M∨
R whose stacky primitives lie on ∂∆∨

and have convex hull ∆∨. This determines a toric stack TΣ partially compactifying TC,

and we denote its toric boundary by ∂TΣ. (A brief review of relevant algebraic geometry

of toric varieties is included in §3.)
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Coh(∂TΣ) Coh(TΣ)

µ sh∂LΣ
(∂LΣ)

c ShLΣ
(T∨)c

Fuk(FΣ) Fuk(T ∗T∨, FΣ)

Theorem 7.13 [Ku]

[GPS3, Theorem 1.4] [GPS3, Theorem 1.1]

Figure 6. The commutative diagram organizing our proof of Theorem 1.1.

We take W :T∨
C!C a Laurent polynomial whose Newton polytope is ∆∨. (How

to choose this polynomial will be discussed further below, though generic choices are

isotopic and hence will determine the same categories.)

Finally, we will need a certain conical (singular) Lagrangian LΣ⊂T ∗T∨ introduced

in [FLTZ3] to study toric mirror symmetry. We recall its definition in §4.
The proof of Theorem 1.1 proceeds by establishing the commutative diagram in

Figure 6. Indeed, the theorem follows from the left column (whose notation we have not

yet explained in its entirety), together with the fact that FW is deformation equivalent

to a general fiber of W (per Proposition 2.2), and hence has the same Fukaya category.

The full diagram gives a functoriality result connecting mirror symmetry for the toric

variety and for its boundary. In fact, we will prove even stronger functoriality results on

our way to the theorem.

Let us now explain the diagram in detail. We have by now introduced all the

geometric players: the real torus T and its dual real torus T∨; the toric variety TΣ and

its boundary ∂TΣ; the [FLTZ3] Lagrangian LΣ and its Legendrian boundary at infinity

∂LΣ; the Laurent polynomial W :T∨
C!C, which, under a choice of isomorphism

T ∗T∨ =TT∨ =T∨
C ,

becomes W :T ∗T∨
!C; and finally FΣ, the deformation FW of a general fiber of W .

For an algebraic scheme (or stack) X, we write Coh(X) for the dg category of com-

plexes of sheaves with coherent cohomology on X, localized at quasi-isomorphisms. The

top horizontal arrow is the pushforward.

For Q a manifold and Λ⊂T ∗Q, the notation ShΛ(Q) means the category of sheaves

whose microsupport is contained in Λ. (When Λ is instead a Legendrian in S∗Q, we

use the same notation of sheaves whose microsupport at infinity is contained in Λ.)

This notion is introduced and studied in [KS]. Following more modern conventions, and

unlike in [KS], by Sh we mean the dg category of all complexes of sheaves localized at

the acyclic complexes, rather than the bounded derived category. We write Sh(−)c for

the subcategory of compact objects, i.e., the “wrapped microlocal sheaves” of [N2].
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The particular example of ShLΣ
(T∨) is the subject of [FLTZ1], [T], [Ku]. The top-

right vertical equality is the main result of [Ku],(7) building on [FLTZ1], [T]. This

equality holds for any Σ, without the hypotheses of smoothness or quasi-projectivity.

For Λ⊂T ∗Q or Λ⊂S∗Q, the notation µ shΛ denotes a certain sheaf of categories on

Λ constructed out of the microlocal sheaf theory, called the Kashiwara–Schapira stack.

We recall its properties in §7.3.1 below. For formal reasons, taking compact objects in

µ shΛ gives a cosheaf of categories µ sh(−)c. One of our main results is the following.

For Σ determining a smooth toric stack TΣ, there is an isomorphism

Coh(∂TΣ)∼=µ sh(∂LΣ)
c

(Theorem 7.13) ensuring that the top square commutes.

Remark 2.4. In fact such an isomorphism exists without the smoothness hypothesis.

We do not show this here, but briefly indicate how one can; see Remarks 7.3 and 7.14.

As the horizontal arrows in the diagram are not fully faithful, the existence of a

morphism Coh(∂T)!µ sh(∂LΣ) making the top square commute does not imply that

said morphism is an isomorphism. A separate argument is required. We then use the

fact (explained in §4.3) that ∂LΣ has a cover by mirror skeleta to the toric varieties in

∂T, together with the fact that Coh and µ sh satisfy certain local-to-global principles,

to deduce this result. To make this work, we will need to prove a functoriality result

(“restriction is mirror to microlocalization”) for the isomorphism

Coh(T)
∼−−!ShLΣ

(T∨).

This top square is where homological mirror symmetry happens: the sheaf categories

are already some kind of interpretation of the A-model (morally: in a rescaling limit under

the Liouville flow).

The bottom square compares the microlocal sheaf categories with the Fukaya cate-

gory(8) The engine for this is the work [GPS3], whose main results we summarize in the

following result.(9)

(7) When Σ is not smooth and proper, even the functor is new in [Ku]: the functor described in

[B], [FLTZ3], [T] takes values in quasi-coherent sheaves, and it is necessary to lift this functor to take
values in ind-coherent sheaves.

(8) This has a purpose aside from merely matching historical formulations: it is the Fukaya category

which one knows how to deform away from the large volume limit (by holomorphic disks passing through
a compactifying boundary divisor). However, we do not take up the study of this deformation in the
present work.

(9) To compare with what is written in [GPS3], note the canonical equivalence

Fuk(T ∗Q,Λ)op =Fuk(T ∗Q,−Λ),

also noted in Remark 1.2 of that reference.
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Theorem 2.5. ([GPS3, Theorems 1.1 and 1.4 and Corollary 7.22]) Let Q be a

real analytic manifold and Λ⊂S∗Q an isotropic subanalytic subset. Then there is an

equivalence of categories Fuk(T ∗Q,−Λ)∼=ShΛ(Q)c. If in addition −Λ is the core of a

Liouville hypersurface F which admits homological cocores, then there is a commutative

diagram

µ sh−Λ(−Λ)c Sh−Λ(Q)c

Fuk(F ) Fuk(T ∗Q,F )

where the top map is the left adjoint to microlocalization, the bottom map is the [GPS1],

[GPS2] functor associated with a Liouville pair, and the right column is related to the

aforementioned equivalence by the canonical

Fuk(T ∗Q,F )
∼−−!Fuk(T ∗Q,−Λ).

In the case at hand, our LΣ will be evidently subanalytic. The commutative diagram

asserted to exist will match the bottom square, once we establish the following:

The construction of FΣ in Proposition 2.2 may be arranged so that the

skeleton of FΣ is −∂LΣ (Theorem 6.12).

We show this by using Mikhalkin–Viro patchworking [M] to deform the hypersurface

in such a way that the calculation of the skeleton localizes to “pairs of pants,” where

in fact it has already been studied by Nadler [N2]. Our construction will show that LΣ

is the skeleton associated with a Morse–Bott Liouville flow, hence FΣ admits geometric

cocores (and thus homological cocores). More precisely, as noted in the introduction, the

argument we present requires a certain hypothesis on Σ (see Definition 6.10); there is now

a similar but more general version does not require this hypothesis [Z]; see Remark 6.16.

This completes the proof of Theorem 1.1, modulo the bolded promissory notes. □

2.8. Other related works

We end the introduction by attempting to situate our work in the landscape of homo-

logical mirror symmetry.

Our approach has been to pass as quickly as possible to microlocal sheaf theory,

and match functorial structures on both sides in order to reduce mirror symmetry to

elementary calculations. Previous works in this spirit include [FLTZ1], [Ku], [N2]; the

particular approach used in this article is close to what is suggested in [TZ]. The un-

derlying topological spaces of some of the Lagrangian skeleta we construct were studied

earlier in [RSTZ].
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Note we use the foundational work [GPS1]–[GPS3] rather than [NZ], [N1]; among

other reasons, this allows us to make statements regarding the wrapped Fukaya category.

Another strategy to approach mirror symmetry is to identify particular Lagrangians,

compute their Floer theory, and identify the resulting algebra with some endomorphism

algebra on the mirror. We view this as the approach taken to the quartic K3 in [Se3], to

toric varieties in [Ab1], [Ab2], and to hypersurfaces in projective space in [Sher1]–[Sher3].

After finding the skeleton and corresponding cover of the hypersurface, we could

perhaps have used [Ab1], [Ab2] to complete the proof of mirror symmetry for Calabi–Yau

hypersurfaces. However, this would require reworking those arguments in the wrapped

setting and establishing the appropriate functoriality with respect to inclusion of toric

divisors. In addition, the works [Ab1], [Ab2], as [FLTZ1], [FLTZ3], [T], give only a fully

faithful embedding of the coherent sheaf category into the Fukaya category; one would

need to prove generation. In any case, the form of the results in [Ku] is better adapted

to our uses here.

Finally we note that in [AAK], one finds a mirror proposal for very affine hypersur-

faces in terms of a category of singularities; it is a priori different from the category we

have found here. The reason for the difference is that the [AAK] mirrors correspond to

a maximal subdivision of ∆∨, and we have taken a decomposition centered at a single

point. One could try and compare algebraically the resulting categories. For that matter,

we have provided here many mirrors, depending on the choice of point, and it should be

interesting to understand the derived equivalences between them in algebro-geometric

terms.

The [AAK] mirrors can also be approached directly by the methods of this paper.

The main new difficulty in carrying this out is that the amoebal complements have

many bounded components, making it more difficult to find a contact-type hypersurface

containing the skeleton. It is, however, possible to use a higher-dimensional version of the

inductive argument in [PS]. That proof has two essential ingredients: a gluing result and

a way to move around the skeleton to allow further gluings. The gluing result needed is

exactly our microlocalization of the theorem of Kuwagaki. We hope to return elsewhere

to the question of its interaction with deformations of the skeleton.

3. Toric geometry

We recall here some standard notations and concepts from toric geometry; proofs, details,

and further exposition can be found, e.g., in the excellent resources [F], [CLS].

In most of this paper we will be interested in a fixed toric variety T, with dense open

torus TC whose character and cocharacter lattices are denoted by M and M∨, respec-
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tively. When we must discuss another toric variety T′, we indicate the corresponding

characters and cocharacters by M(T′) and M∨(T′), respectively. In our review here we

confine ourselves to the case of toric varieties; for toric stacks see [BCS].

3.1. Orbits and fans

A toric variety T is stratified by the finitely many orbits of the torus TC. The geometry

of this stratification determines a configuration of rational polyhedral cones (the ‘fan’)

in the cocharacter space. We briefly review this correspondence.

For any cocharacter η:Gm!TC, one can ask whether limt!0 η(t)∈T, and if so, in

which orbit it lies.

This gives a collection of regions in M∨, and for such a region σ we denote the

corresponding orbit by O(σ). Each cone σ is readily seen to be closed under addition;

in fact, each is the collection of interior integral points inside a rational polyhedral cone

σ⊂M∨
R . This collection of cones is called the fan of T. Every face of a cone in the fan

is again a cone in the fan.

A character χ∈M is by definition a map TC!Gm, but composing with the inclusion

Gm!A1 determines a function on TC. One can ask whether such a function can be

extended to a given torus orbit O(σ). Evaluating on 1-parameter subgroups η∈σ, one
needs

lim
t!0

χ(η(t))= lim
t!0

t⟨χ,η⟩

to be well defined, or in other words that ⟨χ, η⟩⩾0. In fact, this condition is also sufficient,

and moreover the ring of all functions on T extending to O(σ) is k[σ∨], where

σ∨ = {χ∈M : ⟨χ, σ⟩⩾ 0}.

In other words, if we write Tσ for the locus in T on which all the k[σ∨] are well defined,

the natural map Tσ!Spec k[σ∨] is an isomorphism.

For cones σ and τ in a fan, the following are equivalent: τ⊂σ̄ if and only if σ∨⊂τ∨

if and only if O(σ)⊂O(τ) if and only if k[σ∨]⊂k[τ∨] if and only if Tτ⊂Tσ. As sets,

Tσ =
∐
τ⊂σ̄

O(τ) and O(σ)=
∐
τ⊃σ

O(τ)

Definition 3.1. Let Σ be a fan of cones in M∨
R . We denote by TΣ the toric variety

determined as above by the fan Σ.
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3.2. Orbit closures

Let σ⊂M∨
R be a cone of the fan. The corresponding orbit O(σ) is acted on trivially by the

cocharacters in σ, hence by their span Zσ. That is, if we denote by TC/σ the complex

torus (M∨/Zσ)⊗C×, then the TC action factors through TC/σ. In fact, the resulting

action is free, and admits a canonical section inducing an identification TC/σ∼=O(σ).

Note in particular that the dimension of the orbit is the codimension of the cone in the

fan.

This identification can be extended to the structure of a toric variety on the orbit

closure O(σ). As mentioned above, as a set,

O(σ)=
∐
τ⊃σ

O(τ)

The identification of the open torus with TC/σ induces the following description of

the lattice of cocharacters:

M∨(O(σ))∼=M∨/Zσ

The fan of O(σ) is obtained from the fan Σ by taking the cones τ such that τ⊃σ̄

and projecting them along M∨
!M∨/Zσ.

The orbit closures have the relation 
Oσ∩
Oτ=
Oσ∧τ , where σ∧τ is the smallest cone

in the fan containing both σ and τ if such a cone exists, and by convention 
Oσ∧τ=∅ if

no such cone exists. That is, the association σ!
Oσ is inclusion reversing.

3.3. Fans from triangulations

Let ∆∨⊂M∨
R be an integral convex polytope containing zero. We will be interested in

stacky fans obtained from star-shaped triangulations of ∆∨.

Definition 3.2. A triangulation T of ∆∨ is a star-shaped triangulation if every sim-

plex in T which is not contained in ∂∆∨ has zero as a vertex.

Such a triangulation defines a stacky fan Σ: the stacky primitives of Σ are the 1-

dimensional cones in T , and the higher-dimensional cones in Σ are cones on the simplices

in T which are contained in ∂∆∨.

Remark 3.3. Note that not every fan Σ arises in the above fashion. The above

construction produces only those fans Σ satisfying the following property: Let ∆∨ be the

convex hull of the primitives of Σ. Then every primitive of Σ lies on ∂∆∨. A more

complete discussion of this restriction can be found in §8.



306 b. gammage and v. shende

Since the subdivision T of ∆∨ was a triangulation, the fan Σ is necessarily smooth.

But we would also like to require that Σ be quasi-projective; recall that this is equivalent

to the condition that the triangulation T be regular.

Definition 3.4. A subdivision T of ∆∨ is regular (sometimes also called coherent) if

it is obtained by projection of finite faces of the overgraph of a convex piecewise linear

function α: ∆∨∩M∨
!R.

3.4. The toric boundary

In this paper, we are interested in the boundary ∂TΣ of a toric variety Tσ, which by

definition is the union of the non-trivial orbit closures:

∂TΣ =
⋃

0 ̸=σ∈Σ


Oσ.

In fact, we need a scheme- (or stack-)theoretic version of this statement. Below we

always take both each 
Oσ and ∂TΣ with their reduced structure.

Lemma 3.5. The diagram of algebraic stacks 
Oσ and their inclusions, indexed by

the poset of non-zero cones σ in Σ, gives a presentation

lim−→
σ∈Σ\{0}


Oσ
∼= ∂TΣ (3.1)

of the toric boundary ∂TΣ as a sequence of pushouts along closed embeddings.

Proof. That the colimit in (3.1) can be understood as a sequence of pushouts along

closed embeddings is clear, as is the existence of the map lim−→σ

Oσ!∂TΣ. We must check

that this map is an equivalence. As the question is étale local, we may reduce to the

case where TΣ is an affine toric variety, so that TΣ=Spec k[τ∨], where τ is the unique

maximal cone in Σ.

The ring of functions O(∂TΣ) is the quotient of k[τ∨] by all functions which vanish

on all faces; observe that this ideal is generated by the points of the interior of τ∨. That

is, O(∂TΣ)=k[τ∨]/k[Int τ∨]. Meanwhile, the rings of functions O(
Oσ) are the further

quotients of this by all functions except for those on the facet of τ∨ corresponding to σ.

Thus we are interested in whether the map k[τ∨]/k[Int τ∨]!limη<τ∨ k[η] is an iso-

morphism, where the η are the faces of τ∨. We can study this character by character, i.e.,

separately at each integer point of ∂τ∨. What we must show is that the character-χ part

of the limit is 1-dimensional. As pointed out to us by Martin Olsson, this can be seen by

observing that the character-χ part of the limit is computing precisely the cohomology

of the normal cone to τ at the character χ—and this cone is contractible.

We will discuss the mirror to this cover in §4.3.
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4. The FLTZ skeleton

Here we recall from [FLTZ1], [FLTZ3], [FLTZ4] the conic Lagrangian LΣ⊂T ∗T∨.

4.1. Non-stacky definition and examples

With a non-stacky fan Σ, [FLTZ3] associated a conic Lagrangian

LΣ =
⋃

σ∈Σ(σ
⊥)×(−σ)⊂ (M∨

R/M
∨)×MR =T ∗T∨.

This skeleton is meant to encode the mirror geometry to the toric variety TΣ, and we

will term it the mirror skeleton of TΣ.

We draw two examples in Figures 7 and 8. The drawing convention is that the

hairs indicate conormal directions along a hypersurface; likewise the circles or angles

indicate conormals at a point. Thus, each picture depicts a conical Lagrangian, and the

corresponding FLTZ skeleton is the union of this with the zero section.

Example 4.1. (The mirror skeleton of A1.) Consider the fan in R whose sole non-

trivial cone is spanned by 1∈R. We write L1⊂T ∗S1=S1×R for the corresponding FLTZ

skeleton; it is the union of the zero section and half a cotangent fiber at the origin:

L1 = {(θ, 0) : θ∈S1}∪{(0, ξ) :−ξ ∈R⩾0}.

Example 4.2. (The mirror skeleton of An.) Consider the fan in Rn consisting of all

cones generated by subsets of e1, ..., en. One easily sees that the corresponding FLTZ

skeleton Ln⊂T ∗Tn satisfies Ln=(L1)
n.

Another useful description of it is as follows:

Ln =T ∗
(S1)n(S

1)n∪
n⋃

k=1

Ln−1×(T ∗
S1S1)k, (4.1)

where by T ∗
S1S1 we mean the zero section of T ∗S1, with the subscript k indicating that

it is to be inserted in the kth coordinate (with the k, ..., n coordinates of Ln−1 moved

forward one place).

4.2. Stacky definition and example

In [FLTZ4], a ‘stacky’ version of this construction is given. Note first that we can

understand the torus T∨ as the Pontrjagin dual of the lattice M∨ :

T∨ = M̂∨ =Hom(M∨,R/Z).
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Figure 7. The fan and FLTZ skeleton for A2.

Figure 8. The fan and FLTZ skeleton for P2.

Now let σ∈Σ be a cone, corresponding to a face Fσ of the polytope ∆∨. If Fσ has vertices

β1, ..., βk, then we denote by M∨
σ the quotient

M∨
σ =M∨/⟨β1, ..., βk⟩.

This abelian group (which may no longer be free) depends not only on the cone σ, but

also the ‘stacky’ data of the choice of primitive generators βi of the rays in σ.

Thus the group of homomorphisms Hom(M∨
σ ,R/Z), which we will denote by Gσ,

is a possibly disconnected subgroup of M̂∨=T∨. We write Γσ for the group π0(Gσ) of

components of Gσ. We use these possibly disconnected tori to define LΣ in the general

case.

Definition 4.3. The FLTZ skeleton LΣ⊂T ∗T∨ is the conic Lagrangian

LΣ =
⋃
σ∈Σ

(Gσ×(−σ)).
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Figure 9. The stacky fan and FLTZ skeleton described in Example 4.5. The “stackiness” of

this fan is due to the fact that Gσ is non-zero for each top-dimensional cone σ; on the mirror,

this is reflected by the presence of cocircles in L∞
Σ (the gray circles in the figure) above points

other than zero.

We will denote by L∞
Σ or ∂LΣ the corresponding Legendrian in T∞T∨: it is the spherical

projectivization of LΣ\T∨. When Σ is a non-stacky fan, this reduces to the above

definition.

Remark 4.4. The relative skeleton of the Liouville sector associated with the Hori–

Vafa superpotential W will be −LΣ rather than LΣ. This minus sign is a feature: it

cancels the need for taking opposite category in the sheaf-Fukaya equivalence of [GPS3].

Example 4.5. Let Σ be the complete fan of cones in R2 which has three 1-dimensional

cones σ1, σ2, and σ3, spanned by the respective vectors (−1, 3), (3,−1), and (−1,−1),

and three 2-dimensional cones, which we will denote by τij , where σi and σj are the

boundaries of τij .

The tori σ⊥
i have four points of triple intersection, and the tori σ⊥

1 , σ
⊥
2 have four

additional points of intersection. For any τij , the group Γτij of discrete translations is

equal to the group σ⊥
i ∩σ⊥

j , so that for each τij and each p∈σ⊥
i ∩σ⊥

j , there is an interval

in the cosphere fiber T∞
p T∨ connecting the Legendrian lifts of the tori σ⊥

i and σ⊥
j . See

Figure 9.

The discrete data is used in the definition of the stacky skeleton to add pieces that

will connect the Legendrian lifts of tori σ⊥ and τ⊥ in ∂LΣ over points where those tori

intersect in the base T∨.

4.3. Recursive structure

The Legendrian boundary of the FLTZ skeleton admits a structure that will be crucial

in our proof of mirror symmetry: it is a union of stabilized FLTZ skeleta for lower-

dimensional fans, glued along their own Legendrian boundaries. This is mirror to the
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fact, described above in §3.4, that the boundary of a toric variety is the union of closures

of toric orbits, which are themselves toric varieties, as are their intersections.

Let Σ be a (possibly stacky) fan as above. We have seen that each cone σ in Σ

contributes a piece Gσ×(−σ) to the FLTZ Lagrangian LΣ. Write

Lσ
Σ :=

⋃
τ⊃σ

Gτ×(−τ)⊂LΣ

for the union, over all cones τ in which σ is a face, of these pieces. Observe that we have

inclusion maps

Lτ
Σ
� � // Lσ

Σ (4.2)

for any inclusion of cones τ⊃σ.

For a cone σ, consider the quotient M∨
R/⟨σ⟩ of M∨

R by the subspace spanned by σ. In

this quotient, consider the reduced fan Σ(σ) formed by the images of cones containing σ.

For a cone τ containing σ, we write τ/σ for the image of τ in this cone. We have seen

in §3.2 that this is the fan of the closure in the toric variety TΣ of the toric orbit O(σ).

We write LΣ(σ) for the FLTZ skeleton of the fan Σ(σ), which we imagine as living in the

cotangent bundle of the possibly disconnected torus T ∗Gσ. (In other words, we take a

disjoint union of copies of the usual FLTZ Lagrangian for this fan in order to account

for the stackiness of σ.)

Example 4.6. Let Σ be the stacky fan of cones in R2=R⟨e1, e2⟩ generated by e2, 2e1,

and −e1−e2, and let σ be the ray generated by −e1−e2. Then, by choosing ē1 as a basis

vector for the quotient space R2/⟨−e1−e2⟩, the quotient fan Σ(σ) may be identified with

the stacky fan of cones in R with generators 2 and −1.

Observe that, for any inclusion of cones τ⊃σ, the quotient τ/σ is the cone of conor-

mal directions to Gτ in Gσ. Using the factorization T ∗Gσ|Gτ =T ∗Gτ×T ∗
Gτ

Gσ, we can

write the restriction to Gτ of the cotangent bundle to Gσ as

T ∗Gσ|Gτ =T ∗Gτ×τ/σ. (4.3)

Now note that the component of LΣ(σ)⊂T ∗Gσ contributed by τ —the product of the

perpendicular torus Gτ with the cone τ/σ—is a product Lagrangian in the factorization

(4.3). In other words, we have an inclusion

Gτ×τ/σ �
�
// LΣ(σ).

Moreover, any cone τ ′ containing τ will also contribute to LΣ(σ) a product Lagrangian

contained inside (4.3); putting these all together, we get an inclusion of all of LΣ(τ):

LΣ(τ)×τ/σ
� � // LΣ(σ).
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This induces an inclusion

LΣ(τ)×τ =(LΣ(τ)×τ/σ)×σ �
�
// LΣ(σ)×σ. (4.4)

In particular, we may take σ=0, and hence Σ(σ)=Σ. Then the images of the Lτ

agree with the aforementioned pieces:

Lemma 4.7. The image of the map LΣ(τ)×τ �
�
// LΣ is Lτ

Σ. Moreover, under this

identification, the inclusions (4.2) and (4.4) agree.

We can rephrase this as a statement about a cover of the Legendrian boundary ∂LΣ

of the FLTZ skeleton LΣ. Let Sσ⊂T∞T∨ denote the boundary of Gσ×σ⊂T ∗T∨.

Corollary 4.8. The Legendrian ∂LΣ has an open cover by subsets Ωσ⊂∂LΣ, anti-

indexed by the poset of non-zero cones in the fan Σ, such that Ωσ
∼=LΣ(σ)×Sσ, with the

inclusions among these as described in Lemma 4.7.

4.4. T-duality description

In the next section we will explain how LΣ is related to the symplectic geometry of the

Hori–Vafa superpotential. Here we informally describe another way to arrive at LΣ, by

studying the dual to the moment fibration of the toric variety. This subsection contains

no rigorous mathematical statements and nothing in the remainder of the article depends

upon it.

Consider the example where Σ⊂R has as cones the loci 0, [0,∞), and (−∞, 0], i.e.,

where Σ is the fan whose toric variety is the projective line P1. The momentum map

gives this space the structure of a circle fibration over an interval whose circle fibers

degenerate to zero radius at the ends. The mirror should be again a circle fibration over

an interval, this time with fibers degenerating to infinite radius on both ends. Above, we

made this precise by declaring that the mirror is the exact symplectic manifold T ∗S1,

endowed with the Liouville sectorial structure in which each end of the cylinder has some

stopped boundary. Imposing these stops results in a skeleton given by the union of the

zero section and the conormal to a point. This is precisely the skeleton LΣ associated in

[FLTZ3] with the fan Σ.

More generally, consider a toric Fano variety TΣ, compactifying a torus T, corre-
sponding to a fan Σ in M∨

R . Let TΣ!∆⊂MR be the anticanonical momentum map.

The polytope ∆ has the property that the cone over its polar dual ∆∨ is just Σ.

To find the mirror, we should take the dual torus T∨ as a fiber of the dual fibration

over the polytope ∆∨⊂M∨
R . This polytope will not be used to define another toric variety

but rather, under the principle that the T-dual of a collapsing fibration is a blowing up
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one, we use this polytope to define stopping conditions. Before, the torus spanned by

the cocharacters of σ would degenerate to radius zero along the corresponding face; now,

we want it to be impossible to go all the way around the dualized version of this torus.

Correspondingly, for each cone σ∈Σ, we introduce the stop σ⊥ over the face of ∆∨ whose

cone is σ. The result (up to a sign) is the skeleton LΣ.

Another derivation of LΣ by this sort of T-duality reasoning can found in [FLTZ3].

5. Pants

5.1. Pants

By an (n−1)-dimensional pants, we mean the complement in (C×)n−1 of a linear hyper-

surface transverse to all coordinate subspaces, or equivalently such a linear hypersurface

inside (C×)n.

Throughout our discussion of hypersurfaces in (C×)n, we will use the map

Log: (C×)n −!Rn,

(z1, ..., zn) 7−! (log |z1|, ..., log |zn|),

the moment map for the action of the compact torus (S1)n on (C×)n.

Definition 5.1. For n⩾1, the standard (n−1)-dimensional pants is

Pn−1 = {z1+...+zn−1=0}⊂ (C×)n.

The amoeba of Pn−1 is its image An−1 :=Log(Pn−1) in Rn under the Log map.

Remark 5.2. The pants Pn−1 has an obvious action of the symmetric group Σn, but

in fact this action extends to an action of the symmetric group Σn+1. This can be seen

by writing (C×)n as the dense torus in Pn, and hence embedding Pn−1 as an open subset

of the hypersurface 
Pn−1 in Pn defined by the equation


Pn−1 = {z1+...+zn+zn+1 =0}⊂Pn.

This closed hypersurface has a manifest Σn+1 action which respects the open part Pn−1.

In our original coordinates, this action is generated from the Σn action by the extra

generator

(z1, ..., zn)= [z1 : ... :−zn+1] 7−! [−zn+1 : z1 : ... : zn] =

(
−1

zn
,
z1
zn

, ...,
zn−1

zn

)
, (5.1)

and the Log map becomes equivariant for the Σn+1 action on Rn obtained by descending

the symmetry (5.1) to Rn in the evident way:

(x1, ..., xn) 7−! (−xn, x1−xn, ..., xn−1−xn).
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Let ∆∨
n−1⊂Rn be the standard n-simplex, i.e., the convex hull of the origin and

standard basis vectors {e1, ..., en}. Let Πn−1 be the union of positive-codimensional

cones in the fan generated by
{
−e1, ...,−en,

∑
i ei

}
. Then, Πn−1 is a translate of the

dual complex of ∆∨
n−1, and a deformation retract of the amoeba An−1. The relationships

between Pn−1, ∆
∨
n−1, An−1, and Πn−1 are the simplest instances of the general relation-

ship between very affine hypersurfaces and their tropicalizations, as will be recalled in

detail in §6.1.
More generally we will consider, for ℓ1, ..., ℓn≫0, the translated pants

Pℓ
n−1 = {e−ℓ1z1+...+e−ℓnzn−1=0}⊂ (C×)n, (5.2)

whose amoeba we denote by

Aℓ
n−1 :=Log(Pℓ

n−1).

This amoeba can be obtained as a translation of An−1 by the vector ℓ∈Rn, which pushes

it far into the first orthant.

Because the coefficients are all real, we have the following.

Lemma 5.3. The components of ∂Aℓ
n−1 are the images of certain components of

the real points of Pℓ
n−1. In particular, the component of ∂Aℓ

n−1 bounding the region

containing all sufficiently negative points (which corresponds to the vertex zero of the

simplex ∆∨
n−1) is the image of the real positive points of Pℓ

n−1.

Proof. That the critical points of Log|Pℓ
n−1

are precisely the real points of Pℓ
n−1

is proved in [M, Proposition 4.4]. The critical values of this map certainly include the

boundary components of the amoeba, and one can check that the “bottom-left” boundary

component contains the image of the real positive points by observing that it contains

the real positive point (eℓ1/n, ..., eℓn/n).

We will also want to consider certain other hypersurfaces which are naturally un-

ramified covers of pants, or products of these with copies of C×.

Definition 5.4. Let M∨ be a lattice equipped with a choice of lattice k-simplex

P⊂M∨
R containing zero as a vertex, and choose moreover an ordering of the vertices

of P . This data determines an injection T∨:Zk
!M∨, inducing a dual map of tori

fT :MC×!(C×)k. We write PP :=f−1
T (Pk−1) for the variety obtained from the pants

Pk−1 by pullback along the map fT , and AP :=Log(PP ) for its amoeba.

We will refer to the variety PP , which by construction is an unramified cover of the

standard pants Pk−1, as the P -pants. As in equation (5.2) above, we may also scale the

coefficients of PP by e−ℓi in order to obtain the translated P -pants Pℓ
P , whose amoeba

Aℓ
P is related to the amoeba AP by translation into the first orthant.
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Remark 5.5. In our notation PP , we suppress the additional choice of ordering of

the vertices of P : this choice does not affect the variety PP , since it changes the map

fT by a permutation of coordinates, and Pk−1 is permutation invariant. However, this

choice will be used implicitly in our labeling of the legs of PP in Definition 5.11.

We have the following relationship between amoebae.

Lemma 5.6. Let T :MR!Rk be the dual of T∨⊗R. Then, T (AT )=Ak−1.

Proof. By construction, the diagram

MC×
fT //

Log

��

(C×)k

Log

��

MR
T

// Rk

commutes, and the map fT is surjective.

Note that if P is unimodular (e.g., when T∨ is an inclusion of a coordinate subspace),

then there is an isomorphism PP
∼=Pk−1×(C×)n−k.

5.2. Tailoring

Proposition 5.7. ([M, §6.6], [Ab1, Propositions 4.2 and 4.9]) Fix ε,K∈R with

0<ε≪K. There is a Σn+1-equivariant symplectic isotopy from Pn−1 to a hypersurface

P̃n−1 with the following properties:

(1) On the region

L1 = {(z1, ..., zn)∈ P̃n−1 : log |z1|<−K},

there is an equality

L1 = {z1 ∈C× : log |z1|<−K}×P̃n−2,

and analogous equalities hold on the other n ends of P̃n−1.

(2) Let

Lε
1 = {(z1, ..., zn)∈Pn−1 : log |z1|<−K+ε},

and similarly for the other n ends of Pn−1. Then, the isotopy is constant outside of

n+1⋃
i=1

Lε
i .
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Figure 10. The spine Π1, included in the amoebae of P1 and P̃1. (In the second picture, we

have also rescaled the base of the Log map to make the situation clearer.)

Figure 11. The amoeba of P̃1 together with a red line indicating the region log |z1|=−K.

The leg L1 of P̃1 is the set of points in P̃1 which project to the area to the left of the red
dashed line.

In particular, the amoeba Ãn−1 :=Log(P̃n−1) differs from Πn−1 only in a neighbor-

hood of the singularities of the latter. (See Figure 10 for the case n=2.)

In Remark 6.7 below, we recall from [Ab1, §4] the construction of this isotopy, in

the context of an arbitrary Newton polytope.

Definition 5.8. We call the regions Li defined above the legs of the pants P̃n−1.

Definition 5.9. Following [N2], we will call the hypersurface P̃n−1 the tailored pants.

(In [M], it was called the “localized pants”.)

We analogously write P̃ℓ
n−1 and Ãℓ

n−1 for the corresponding construction applied

to the translated pants Pℓ
n−1. Likewise, in the situation of Definition 5.4, we have a

tailored P -pants P̃P :=f−1
T (P̃k−1) defined as the preimage of the tailored pants under the

map fT corresponding to a choice of k-simplex P=T∨(∆k−1), and the translated tailored

P -pants P̃ℓ
P obtained by rescaling its coefficients.
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As in the case of the P -pants PP , the tailored P -pants P̃P is an unramified cover of

the standard tailored pants P̃n−1, so that P̃P is easy to understand in terms of the tai-

loring construction we have already discussed. In particular, the analogue of Lemma 5.6

holds for the tailored P -pants.

Lemma 5.10. T (Log(P̃P ))=Ãn−1.

The P -pants P̃P also inherits from P̃n−1 an inductive structure on its legs, which

we summarize as follows:

Definition 5.11. The ith leg Li of the P -pants P̃P is the preimage, under the map

f̄T , of the ith leg of the standard pants P̃n−1. It is isomorphic to P̃Fi
, where

Fi =Conv(0, v1, ..., v̂i, ..., vk)

is the corresponding facet of P . (Note that the labeling of Li as the ith leg depends on

the ordering of vertices of P , which the space P̃P itself is insensitive to.)

5.3. Skeleta of pants

5.3.1. The skeleton of P̃ℓ
n−1

We now begin to study the Liouville flow of the translated tailored pants P̃ℓ
n−1. Through-

out this section, we make the following requirement on the translation parameter ℓ:

ℓ≫K,

where K is the parameter from the tailoring construction of Proposition 5.7. We equip

P̃ℓ
n−1 with the restriction λ of the symplectic primitive from (C∗)n. This is compatible

with the recursive structure from Proposition 5.7 (1).

Lemma 5.12. Consider the leg Li of P̃ℓ
n−1 for 1⩽i⩽n. There is an isomorphism

of Liouville manifolds Li
∼=P̃ℓî

n−2×Cyli, where Cyl⊂C× is a half-cylinder containing the

zero section. The subscript i on the second factor indicates that it is placed as the i-th

coordinate, and we write ℓî for (ℓ1, ..., ℓ̂i, ..., ℓn).

Proof. The product decomposition of each leg follows from Proposition 5.7 (1), and

the fact that the C× factor in the product contains the unit circle is ensured by the

translation by ℓ: due to the assumption ℓ≫K, this translation shifts the beginning of

each of the legs L1, ..., Ln (under the amoeba projection) into the first orthant of Rn.

For an illustration, see Figure 12, where the unit circle in each leg is indicated by a red

dot.
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Figure 12. The simplex �S+, drawn in red on the amoeba of P̃ℓ
1, with its barycenter illustrated

in green. Note that the vertices of �S+ are the closest points on their respective legs to the

origin (blue). The arrows indicate Liouville flow along �S+.

Corollary 5.13. The Liouville flow for λ on P̃ℓ
n−1 is complete; i.e., (P̃ℓ

n−1, λ) is

a Liouville manifold.

Proof. Recall that the product of Liouville manifolds is Liouville. Now, Lemma 5.12

inductively characterizes the Liouville flow in the complement of a compact set.

Remark 5.14. Because the original Pn−1 was algebraic and hence in particular a

Stein submanifold of (C×)n, and because the Liouville form on (C×)n arises from a

Kähler potential (namely |Log|2), it is also the case that the restriction of the ambient

Liouville form to Pn−1 gives a Liouville structure on Pn−1. It is presumably true that the

tailoring isotopy (recalled in Remark 6.7 below from [Ab1, §4]) is an isotopy of Liouville

manifolds, but we do not prove this here.

Recall that we write Ln for the FLTZ skeleton mirror to affine n-space, as described

in Example 4.2.

Theorem 5.15. ([N2]) Let ∂0Ãℓ
n−1⊂Ãℓ

n−1 be the component of ∂Ãℓ
n−1 which bounds

the region of Rn containing the all-negative orthant. Let C=Log−1(∂0Ãℓ
n−1)⊂(C×)n.

Then, C is a contact hypersurface, and the skeleton of P̃ℓ
n−1 is C∩(−Ln).

Proof. We proceed by induction on the dimension of the pants, the case n=1 being

trivial. Many of the ideas of the proof can be seen in the illustration of Figure 12.

Let us consider the legs of P̃ℓ
n−1. From Lemma 5.12, it is clear that any zero of the

Liouville vector field contained in the leg Li must be contained inside the zero section,

i.e., the unit circle, of its C×
i factor; in other words, any zero of the Liouville vector

field on Li must project under the Log map to the ith coordinate hyperplane in Rn. In

particular, no vanishing happens on the (n+1)-th leg of the pants, since any vanishing
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must be contained in the hyperplane given by the sum of the coordinate directions, and

the translation by ℓ ensures that this hyperplane is disjoint from the leg Ln+1.

Moreover, the preimage in P̃ℓ
n−1 of the coordinate hyperplanes in Rn is entirely

contained in the legs, and stable under the Liouville flow. By Lemma 5.12 and the

induction hypothesis, the portion of the skeleton contained in Li is

(−Ln−1×(T ∗
S1S1)i)∩C,

using the notation of equation (4.1) in Example 4.2. By comparing that equation to the

statement of this theorem, we see that our remaining task is to show there is exactly one

more component of the skeleton, and to identify it with the intersection of C with the

positive real points of P̃ℓ
n−1.

Away from the legs of the pants P̃ℓ
n−1, the map Log is a local submersion everywhere

except the real points R:=P̃ℓ
n−1∩Rn. Let z=(z1, ..., zn)∈R be a real point where the

Liouville vector field vanishes. The equation of the pants
∑

e−ℓizi=1 prevents all zi

from being negative; if zi is positive and zj is negative, then the function |Log|2, which
is gradient-like for the Liouville vector field, has a differential which pairs positively with

the direction (z1, ..., zi+ε, ..., zj−ε, ..., zn) at this point, so that the Liouville vector field

cannot vanish there. Thus z∈R+=P̃ℓ
n−1∩(R>0)

n. In order that z not lie in the legs, it

must be contained in

S+ = {z ∈R+ : Log(z)∈ (R>0)
n}.

Recall that Log restricts to a diffeomorphism R+!∂0Ãℓ
n−1 from R+ to the inner

boundary component of the tailored amoeba.

Since S+ is contained inside the real points of P̃ℓ
n−1, the Liouville form vanishes on

its tangent vectors, so it is preserved by the Liouville vector field. The Liouville flow

increases distance to 0∈Rn under the Log projection, and the embedding of Log(S+)

in Rn is concave and symmetric under exchange of coordinates. Hence the Liouville

field everywhere points along S+ toward the barycenter of S+. This barycenter gives

the sole remaining zero of the Liouville form, and it contributes its stable cell S+ to the

skeleton.

Remark 5.16. The closure 	S+ of the region S+ is an (n−1)-simplex, each facet of

which is contained in one of the legs, and whose boundary projects to the intersection of

the amoeba with the coordinate hyperplanes. The case n=2 is depicted in Figure 12.

5.3.2. Skeleta for P -pants

Let P=Conv(0, v1, ..., vk)⊂M∨
R be a simplex. In Definition 5.4, we described the P -pants

P̃P ⊂T∨
C obtained as a cover of the pants Pn−1, and in Definition 5.9 we described its
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tailored translated version P̃n−1.

After choosing an inner product onMR and hence respective symplectic and Liouville

forms ω and λ on T∨
C
∼=T ∗T∨, we can restrict these to the translated tailored P -pants P̃ℓ

P

to equip this space with the structure of a Liouville manifold. As for the standard pants,

we will be interested in computing the Lagrangian skeleton of (P̃ℓ
P , λ), closely following

the calculation in Theorem 5.15.

Let ΣP be the stacky fan whose primitives are the non-zero vertices of P . As in

the statement of Theorem 5.15, let ∂0Aℓ
P be the component of the amoeba boundary

∂Aℓ
P bounding the “lower-left” orthant of Rn. We will be interested in the contact

hypersurface CP ⊂T∨
C lying above this boundary:

CP := {z ∈T∨
C : Log(z)∈A0

P }.

As in §4, let Gσ be the possibly disconnected torus Hom(M∨
σ ,R/Z), where M∨

σ is the

quotient of M∨ by the vertices of the stacky primitives in σ. This defines a Lagrangian

LΣP
:=

⋃
σ∈ΣP

Gσ×σ⊂T ∗T∨;

using the inner product, we can treat Σ as a fan of cones in MR, and hence LΣP
as a

subset of T∨
C .

For 1⩽i⩽k, write Σi
P for the fan of cones on the k−1 vectors v1, ..., vî, ..., vk. As

was the case for the standard pants, we find it helpful to rewrite the FLTZ Lagrangian

as a union

LΣP
=(GΣP

×ΣP )

k⋃
i=1

LΣi
P

of one new piece (where we write ΣP for the big cone in the fan), living in the cotangent

fibers over the points GΣP
, and FLTZ skeleta for lower-dimensional cones of Σ.

Lemma 5.17. There is an equality

ΛP =CP ∩(−LΣP
)

between the skeleton ΛP of P̃ℓ
P and the intersection of the contact hypersurface CP with

the negative stacky FLTZ Lagrangian for ΣP .

Proof. The proof of Theorem 5.15 proceeded by induction on dimension, using the

fact that each leg Li of the standard pants was itself (the product of C× with) a pants

one dimension lower. The proof here follows the same strategy: we need to consider

here P -pants for all P (not necessarily top-dimensional), but as before we induct on the

dimension of P .
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For clarity, we spell out explicitly the base case, when P=Conv(0, v) is 1-dimensional.

In this case, the tailoring construction is unnecessary, since Pℓ
P is the hypersurface de-

fined (in coordinates z=(z1, ..., zn)) by {zv11 ... zvnn =eℓ}, whose amoeba Log(Pℓ
P ) is the

hyperplane

Aℓ
P = {v1x1+... vnxn = ℓ}⊂Rn ∼=MR.

In other words, the hypersurface Pℓ
P is a disjoint union of copies of (C×)n−1, with its

symplectic and Liouville form restricted from those of the ambient (C×)n. Hence, its

Liouville vector field is given by the gradient of the restriction of the Morse–Bott function

|Log|2. The critical locus of this function is the fiber of Pℓ
P over the point p∈Aℓ

P nearest

to 0∈MR, which is a manifold of minima for |Log|2|Pℓ
P
. As v is the normal vector to the

hyperplane Aℓ
P , the point p is the point of Ãℓ

P where it intersects the ray defined by v.

The fiber over this point is the preimage, under the covering map fT , of the corresponding

fiber of the standard pants: this is the subtorus Gv⊂T∨.

We now assume by induction that we have proven the lemma for all P ′-pants with

dim(P ′)<n, and we return to the case where P=Conv(0, v1, ... vn) is an n-simplex. From

this point the proof follows very closely the proof for the standard pants. As in that

case, we first investigate the legs L1, ..., Ln of P̃ℓ
P . Each of these is itself a P ′-pants,

for P ′=Conv(0, v1, ..., vî, ..., vn), and by induction we know that the vanishing of the

Liouville vector field on leg Li contributes to the skeleton of P̃ℓ
P the piece LΣi

P
∩CP . It

remains for us to determine the vanishing loci of the Liouville vector field on the interior

of the pants. (As for the standard pants, it is obvious that no vanishing happens on the

final leg.)

We now consider the simplex 	S+=∂0ÃP ∩ΣP , where we write ΣP for the top-

dimensional cone in the fan, and we write p∈	S+ for the point in the interior of 	S+

which is closest to zero. Let S+ denote the preimage of the interior of this simplex, which

is now a disjoint union

S+ =

d⊔
i=1

Si
+

of d=vol(P ) open simplices Si
+. Each of these simplices is preserved by the Liouville flow,

which flows each simplex to the point lying over p, on which the Liouville field vanishes.

Hence, the remaining pieces of the skeleton are the open simplices Si
+, each of which is

mapped diffeomorphically by Log onto the interior of 	S+. As 	S+ is the intersection of

∂0ÃP with the big cone in ΣP , and the fiber in P̃ℓ
P over a point in 	S+ is the discrete

group GΣ, this is the desired extra piece in LΣP
∩CP .

Finally, if there were any other vanishing of the Liouville form in the interior of the

pants, it would have to lie over a critical value of Log. These critical values are just the
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Figure 13. The stacky fan and FLTZ skeleton for A2/(Z/2×Z/2).

Figure 14. The skeleton L∆ of the pants P̃∆ associated with the simplex ∆ with vertices

(0, 0), (2, 0), and (0, 2), and its 4:1 cover of the skeleton of the standard pants.

preimage (under the cover fA) of the real points of P̃n−1, and we have already seen in

the proof of Theorem 5.15 that the Liouville vector field is non-vanishing there.

A crucial point is that the above result holds in the case of a simplex P with arbitrary

volume, obtained as a cover of the standard simplex ∆n−1. For instance, when n=2, the

P -pants P̃P may be higher genus.

Example 5.18. Let ∆⊂R2 be the simplex with vertices {(0, 0), (2, 0), (0, 2)}, so that

the corresponding stacky fan Σ is a stacky fan for the stack A2/(Z/2×Z/2). We draw

the stacky fan and FLTZ skeleton in Figure 13. The boundary ∂A2/(Z/2×Z/2) matches

the mirror skeleton pictured in Figure 14.

6. Patchworking and skeleta

Fix a complex torus T∨
C=TT∨, along with a toric partial compactification TΣ arising

from a (stacky) fan Σ⊂M∨
R . We write ∆∨ for the convex hull of the stacky primitives.

According to [HV], the mirror to TΣ is the Landau–Ginzburg model associated with
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a function WΣ:T∨
C!C whose Newton polytope is ∆∨. In addition, the expected mirror

to ∂TΣ is a general fiber FW of WΣ.

In this section we will explain howWΣ determines a Liouville sector (i.e. prove Propo-

sition 2.2) and show that the relative skeleton of this sector is the FLTZ Lagrangian LΣ.

Let us briefly outline the ideas involved. We will study the hyperplane FW through

its amoeba ([GKZ]), the projection of FW to the tangent fiber:

A :=Log(FW )⊂MR.

The cones of Σ give a triangulation of the polytope ∆∨. We choose the Laurent

polynomial WΣ so that its tropicalization ΠΣ is a spine onto which A retracts. The

complex ΠΣ is a piecewise-affine locus dual to the triangulation of ∆∨ by the cones of Σ.

By assumption, this triangulation is star-shaped (all non-boundary simplices share a

common vertex zero); the distinguished vertex corresponds to a distinuished component

of the complement of the amoeba. We denote the boundary of this region by ∂0A⊂∂A.

Mikhalkin [M] shows how to isotope the hypersurface FW to another hypersurface

FΣ whose amoeba is “close” to the spine ΠΣ. As we have recalled in §5.2 and §5.3, this
isotopy was used by Nadler [N2] to compute the skeleton of the “n-dimensional pants”,

i.e., the zero locus of the polynomial

WΣ =1+

n∑
i=1

zi.

In our more general setting, Mikhalkin’s isotopy ensures that the critical points

of Log|FΣ —and in fact the entire skeleton LΣ —lie above the distinguished boundary

component ∂0A of the amoeba. The preimage of such a boundary component is precisely

a contact type hypersurface. Finally, to each pants in the decomposition of FΣ we apply

the argument from [N2] described in the previous section to obtain the precise form of

the skeleton.

6.1. Pants decomposition of FΣ

In order to construct FΣ and produce its skeleton, we will follow [N2] in using Mikhalkin’s

theory of localized hypersurfaces, which we now recall.

6.1.1. Triangulation and dual complex

Recall that we are assuming the fan Σ is smooth and quasi-projective, or equivalently,

that the subdivision T of ∆∨ is a regular triangulation. By definition, regularity of T
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means that T is the corner locus of a convex piecewise-linear function α: ∆∨
!R. The

Legendre transform of α is the function

Lα:MR −!R,

m 7−! max
n∈∆∨

(⟨m,n⟩−α(n)).

Definition 6.1. The dual complex for the regular triangulation T is the polyhedral

complex in MR obtained as the corner locus of the Legendre transform Lα. We will

denote the dual complex for T by ΠΣ.

Example 6.2. Let e1, ..., en be a basis of M∨, and let ∆∨
std be the polytope with ver-

tices 0, e1, ..., en. Then we can define a piecewise-linear function α on ∆∨
std by declaring

α(0)=0, and α(ei)=αi for some αi∈R. The resulting dual complex Πstd is the corner

locus of the function (a1, ..., an) 7!max(0, a1−α1, ..., an−αn); in other words, it is a trans-

lation by (α1, ..., αn) of the tropical pants Πn−1 defined in §5.1. Note that the function α

is not just piecewise-linear but actually linear (and potentially even constant, if we take

αi=0 for all i: the break locus of α is necessary to induce a triangulation of ∆∨, but the

polytope ∆∨
std in this case is already triangulated.

The geometric significance of ΠΣ is the following. Recall that the amoeba of a

hypersurface in (C×)n is its image in Rn under the map

Log: (C×)n −!Rn,

(z1, ..., zn) 7−! (log(|z1|), ..., log(|zn|)).

Proposition 6.3. ([M]) Let V denote the set of vertices in the triangulation T ,

and let Ht={f t=0}, where
f t =

∑
m∈V

t−α(m)zm.

For t≫0, the complex ΠΣ ·log(t) will sit as a spine inside the amoeba of Log(Ht),

and as t!∞, the rescaled amoebae Log(Ht)/ log(t) converge (Gromov–Hausdorff ) to ΠΣ.

Proof. The basic idea is as follows. Consider a face E of the dual complex ΠΣ,

corresponding to a face E∨ of the triangulation T . Then, the portion of the amoeba

lying over the interior of E is a region where the behavior of ft is dominated by those

monomials in ft corresponding to vertices of E∨. See [M, §6] for details.

One says that the complex ΠΣ is the tropical hypersurface associated with the New-

ton polytope ∆∨ with regular triangulation T . We term t the ‘tropicalization parameter’.

Since the triangulation T of ∆∨ is star-shaped, we have the following result.
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Figure 15. A maximal subdivision of the polygon with vertices (−1, 0), (0,−1), and (1, 1),

and its (unimodular) dual complex Π.

Lemma 6.4. Let Π0
Σ be the component of MR\ΠΣ corresponding to the vertex zero

of the triangulation T , and denote its boundary by ∂0ΠΣ. The polytope Π0
Σ is a (possibly

unbounded) polytope with face poset anti-equivalent to the poset of non-zero cones in the

fan Σ.

The polytope Π0
Σ will be bounded if and only if the toric variety TΣ is proper, in

which case Π0
Σ will be the only bounded polytope in MR\Π0

Σ.

6.1.2. Tropical pants

We required the subdivision T of ∆∨ to be a triangulation, which means that all of the

faces in T are simplices. This allows us to divide up ΠΣ into pieces we understand.

Definition 6.5. The neighborhood in ΠΣ of any vertex is a tropical pants.

These pants will be our basic building blocks in the construction to follow. This has

two appealing features: the first is that the complex ΠΣ is obtained by gluing these pants

together. Second, a (k−1)-face in ΠΣ is the product of Rk with a (n−k−1)-dimensional

tropical pants. Hence, the loci along which pants involved in the description of ΠΣ are

glued are products of the form (lower-dimensional pants)×Rk.

6.1.3. Tailoring

We now recall the construction of [M] giving an isotopy from FW to some FΣ whose

amoeba is closer to the tropical hypersurface ΠΣ. In the case of the pants Pn−1, this

isotopy was described in Proposition 5.7 above.

It is straightforward to see what FΣ should be. Suppose two simplices P1 and P2

in the triangulation T share a common face F , so that their respective dual complexes

ΠP1
and ΠP2

overlap in a common subcomplex ΠF , and let U be a neighborhood of

the interior of ΠF . Then, the inductive structure of the tailored P -pants ensures that,
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Figure 16. The amoeba of the localization of the hypersurface xy+1/x+1/y=0.

above U , the pants P̃P1
and P̃P2

agree: both are equal to the tailored leg P̃F . Thus, we

may take the union of all these pants to define FΣ.

The isotopy can be glued similarly.

Lemma 6.6. ([M, §6.6], [Ab1, Propositions 4.2 and 4.9]) There is a Hamiltonian iso-

topy of symplectic hypersurfaces FW!FΣ such that for each face F in the tropical curve

ΠΣ⊂MR, corresponding to a polytope P in the triangulation T , there is a neighborhood

UP ⊂MR such that Log−1(Uv) is equal to the intersection P̃ℓ
P with a large ball in T∨

C.

Remark 6.7. The symplectic isotopy from [Ab1] is defined as follows: for t⩾0 and

0⩽s⩽1, write Ht,s={f t,s=0},

f t,s :=
∑
m

t−α(m)(1−sϕm(Log(z)))zm, (6.1)

where the sum is taken over the vertices of the triangulation T of ∆∨, and ϕm∈C∞(Rn)

is a certain function which is 1 in a neighborhood of the component of MR\ΠΣ cor-

responding to m, and 0 away from that region; as in §6.1.1, taking the tropicalization

parameter t large ensures that Log(Ht,s) contains log(t)·ΠΣ as a spine. Taking the “tai-

loring parameter” s from 0 to 1 deforms the hypersurface {
∑

m t−α(m)zm} by forcing

that, on each region of the amoeba t, any term which does not dominate the behavior

of f t,0 in that region (as described in the proof of Proposition 6.3) does not contribute

at all.

Remark 6.8. As in our definition of the standard pants, our convention in this paper

will differ from that in equation (6.1) by our choice to take the sign of the constant

coefficient of f t,s to be negative rather than positive. This ensures that the real positive

points of Ht,s lie over the boundary of the central component of the amoeba complement.
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6.2. The skeleton of FΣ

As in §5.3, by choosing an inner-product on M , we obtain an isomorphism

T∨
C =TT∨ ∼=T ∗T∨,

and we restrict the symplectic form ω, and its primitive λ from this space to FΣ. We

will use the pants decomposition of FΣ to (observe that it is a Liouville manifold and)

compute its skeleton, which we denote by ΛΣ.

However, in order to avoid performing any calculations beyond those described so

far, we must adopt a certain technical hypothesis on the fan Σ. This hypothesis was later

removed in [Z]; see Remark 6.16 for some discussion.

Definition 6.9. A polytope P⊂MR is called perfectly centered if for each non-empty

face F⊂P , the normal cone of F (transported to M∨
R by the inner product M∨

R
∼=MR)

has non-empty intersection with the relative interior of F .

As in the proof of Lemma 2.3, we write α: ∆∨
!R for a function inducing the regular

triangulation of ∆∨ defined by Σ. The complex ΠΣ depends on our choice of α.

Definition 6.10. We will say that a fan Σ is PC if there exists some α as above for

which the polytope Π0
Σ is perfectly centered.

Assume now that the fan Σ is PC.

Remark 6.11. So far, no fan is known to us not to be PC; nor, however, do we know

any compelling reason why all fans should be PC.

We will denote the amoeba of FΣ by

ÃΣ :=Log(FΣ).

Recall that we write Π0
Σ for the component ofMR\ΠΣ dual to the unique zero-dimensional

cone in Σ and ∂0ΠΣ for its boundary. Write ∂0ÃΣ for the corresponding boundary

component of the amoeba.

Recall that we write

−LΣ =
⋃

0̸=σ∈Σ

σ⊥×σ

for the (negative) FLTZ skeleton.

Theorem 6.12. The skeleton ΛΣ of FΣ can be written as the intersection

ΛΣ =(T∨×∂0ÃΣ)∩(−LΣ).
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Proof. From our hypothesis that the fan Σ is PC, we may assume that the polytope

Π0
Σ is perfectly centered, so that each non-zero cone σ in Σ intersects its dual face in

Π0
Σ, as in Figure 17. This allows us to define an open cover of FΣ as follows: for each

top-dimensional cone σ in Σ, let Vσ be a neighborhood of the cone σ, thought of as

in MR.

Let Uσ=Log−1(Vσ)∩FΣ be the lift of Vσ to an open subset of FΣ. Then, Uσ is an

open subset in a pants P̃ℓ
σ. By construction, the image of Uσ in P̃ℓ

σ contains the whole

skeleton Λσ of P̃ℓ
σ. On the other hand, every zero of λ|FΣ is contained in some Uτ , as is its

stable manifold. We conclude the skeleton ΛΣ is equal to the union of the skeleta Λτ .

Note T∨×∂0ÃΣ is transverse to the Liouville flow on T ∗T∨, hence contact. In

addition, we have the following.

Lemma 6.13. In a neighborhood of the skeleton ΛΣ, the hypersurface FΣ is nowhere

tangent to the ambient Liouville vector field of the Weinstein manifold T ∗T∨∼=T∨
C.

Proof. The pants cover of FΣ allows us to reduce to the case where FΣ=P̃ℓ
P is a

P -pants. Now we can proceed by the induction used in the proof of Lemma 5.17.

In the base case, P=Conv(0, v) is 1-dimensional, and P̃ℓ
P ={zv11 ... zvnn =eℓ} is a copy

of (C×)n−1 projecting by Log to its tropical hypersurface ΠΣ. The Liouville vector field

on T∨
C=(C×)n, under the Log projection, points directly outward from ΠΣ.

Now, suppose that P=Conv(0, v1, ..., vn) is an n-simplex. We know the result on the

legs of P̃ℓ
P by induction, so we only need to prove it in a neighborhood of the big simplex

S+ in the skeleton, which is the preimage under the cover P̃ℓ
P!P̃ℓ

n−1 of the positive real

points of P̃ℓ
n−1. But the Liouville vector field on T∨

C=(C×)n in coordinates zj=eξj+iθj

is
∑

j ξj∂ξj , so if P̃ℓ
P had any tangent vectors along S+ in the direction of the Liouville

flow, this would imply that P̃ℓ
n−1 had positive real points which do not project to the

boundary of the amoeba, which is false.

Corollary 6.14. There is a Liouville domain D⊂T∨ completing to T∨ and a

Liouville domain F⊂FΣ completing to FΣ, such that F⊂∂D and the FLTZ Lagrangian

−LΣ is a relative skeleton for the pair (D,F ).

Proof. The point is that we may deform C :=T∨×∂0ÃΣ transversely to the Liouville

flow in such a way as to cause it to contain some neighborhood UΣ⊂FΣ of ΛΣ.

Indeed, the Liouville flow gives an identification T ∗T∨\T∨∼=C×R, with C included

as C×{0}. By Lemma 6.13, for some closed manifold VΣ⊂FΣ neighborhood of ΛΣ,

the corresponding projection VΣ!C is an embedding. Its image is some codimension-1

smooth hypersurface (with boundary) of C, over which we may write VΣ as the graph of

a smooth function. Extend this function arbitrarily to all of C. The graph of the result

will be the boundary of our desired D.
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Figure 17. The fan Σ for P2 superimposed on the amoeba AΣ.

We thank John Pardon for this method of constructing Liouville pairs.

Example 6.15. Let ∆∨ be the polytope with vertices (1, 1), (0,−1), and (−1, 0), as

in Figures 15 and 16. In Figure 17, the fan Σ is drawn superimposed on the amoeba AΣ.

A neighborhood of each top-dimensional cone in Σ is a pair of pants which contributes

to L a pair of circles attached by an interval. The circles live over the points where the

rays of Σ intersect Π, and the intervals lie over the boundary of the bounded region in

the center of the amoeba.

Remark 6.16. Here we have worked under the hypothesis that our fan Σ is PC, i.e.,

that we can arrange that the polytope Π0
Σ⊂M∨

R is perfectly centered. Let us explain how

Zhou [Z] lifts this hypothesis. Recall the property that a polytope is perfectly centered

depended on a choice of inner product on MR and corresponding isomorphism MR∼=M∨
R .

Zhou [Z] considers more generally an arbitrary convex homogenous degree-2 function

φ:MR!R and corresponding Legendre transform Φφ:MR∼=M∨
R . The point is that there

always exists φ such that the analogous property of perfectly centered holds with respect

to Φφ. Then (2.1) is replaced by

T∨
C =TT∨ =MR×T∨ Φφ−−!M∨

R ×T∨ =T ∗T∨, (6.2)

and one always uses the canonical exact symplectic structure on T ∗T∨. The main result

stated in [Z] is the analogue of Theorem 6.12: namely, that the skeleton of Φφ(FΣ) with

respect to the restriction of the canonical 1-form on T ∗T∨ is

(T∨×Lφ(∂
0ÃΣ))∩(−LΣ).

As noted in [Z, Proposition 2.7], the integral curves of the Liouville vector field on T∨
C do

not depend on φ; since also the Legendre transform preserves convexity, Φφ(∂
0ÃΣ) is a

convex neighborhood of the origin, and the proofs of Lemma 6.13 and Corollary 6.14 go
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through. Finally, note that when interpreting Proposition 2.2 in this more general setup,

one should use the symplectic structures on T∨
C transported from T ∗T∨ via (6.2) rather

than (2.1).

7. Microlocalizing Bondal’s correspondence

Recall that we denote by T a torus with respective character and cocharacter lattices M

and M∨. Fix a (stacky) fan Σ⊂M∨
R and the corresponding toric partial compactification

TC⊂TΣ.

Bondal [B] described a fully faithful embedding of the category of coherent sheaves

on TΣ into the category of constructible sheaves on the real torus T∨
R :=M⊗R/Z. This

was developed further in [FLTZ1], [FLTZ4], [T]; in particular, the constructible sheaves

in question were observed to have microsupport contained in LΣ and conjectured to

generate the category of such sheaves. This conjecture was established in [Ku].

We use this equivalence to prove a similarly-flavored equivalence “at infinity”, i.e.,

an equivalence between the category of coherent sheaves on the toric boundary and the

category of wrapped microlocal sheaves away from the zero section.

Categories and conventions. We work with dg categories over a fixed ground ring k.

This theory can be set up either directly [Ke1], [Ke2], [D], or by specializing the theory

of stable (∞, 1)-categories of [L1], [L2] as in [GR, I.1.10].

The microlocal sheaf theory of [KS] was originally developed in the setting of the

bounded derived category. It is essential for our work here to work with the dg category

of unbounded complexes. It is well known to experts that it is straightforward to set up

the sheaf theory in this setting (see e.g. [N1, §2.2] or [GPS3, §4.1]) and that, with the

use of [Sp], [RS] to deal with some issues around unbounded complexes, all constructions

of [KS] may be translated to this setting.

For a manifold Q, we write Sh(Q) for the unbounded dg derived category of sheaves

of k-modules on Q. We impose no restrictions on the stalks; i.e., we write Sh for what

in [N2] is called Sh⋄ (and similarly for the later µ sh).

For a conical subset Z⊂T ∗Q, we write ShZ(Q) for the full subcategory of Sh(Q)

consisting of those sheaves with microsupport in Z. When Z is subanalytic Lagrangian,

then this subcategory is compactly generated, and we write ShZ(Q)c for the subcategory

of compact objects. This subcategory is generally larger than the category of sheaves with

perfect stalks in ShZ(Q); for instance, when Z=∅ it contains the tautological (derived)

local system with fiber C∗(ΩQ). The idea to use compact objects in the unbounded

category to model the wrapped Fukaya category stopped at Z is due to Nadler [N2]; that
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it works is now a theorem [GPS3]. The reader is referred to these articles for further

discussions of this category.

For X an algebraic variety (or stack), we write

myQCoh(X) for the dg derived category of quasi-coherent sheaves on X in the sense of

[GR]; as observed there, the bounded subcategory agrees with the usual usage of this

term. It is useful to remember that perfect complexes (bounded complexes of finitely

generated projectives) are precisely the compact objects in

myQCoh(X), which can be recovered from Perf(X) by ind-completion. Similarly, we

will write IndCoh(X) for the Ind-completion of the category Coh(X) of coherent sheaves

on X ([GR]). We can recover the category Coh(X) by passing to compact objects.

To simplify notation, we write as if Σ is an ordinary (non-stacky) fan. To arrive at

the corresponding statements in the stacky case, one need merely remember the data of a

finite abelian group Γσ for each cone in σ, and correspondingly replace the sets {A(σ)}σ∈Σ

and {B(σ)}σ∈Σ with sets {A(σ, χ)}σ∈Σ,χ∈Γσ
and {B(σ, χ)}σ∈Σ,χ∈Γσ

, where the added χ

denotes translation in T∨ and twists by a character, respectively. See [FLTZ4, §5] for
details.

7.1. Bondal’s coherent-constructible correspondence

For a cone σ⊂M∨, we write B(σ) for the structure sheaf on Spec(k[σ∨]), or its pushfor-

ward to any toric variety whose fan contains the cone σ. On the other hand, we write

A(σ) for the constructible sheaf on M⊗R/Z obtained by taking the ! -pushforward of the

dualizing (constructible) sheaf on the interior of σ∨. One then makes the following.

Basic calculation. ([B], [FLTZ1], [T]) Let TΣ be a toric variety with fan Σ, with

dense torus TC. Let σ, τ∈Σ be cones. Then, there are canonical isomorphisms

H∗Hom(A(σ), A(τ))∼= k[τ∨]∼=H∗Hom(B(σ), B(τ)) if σ⊃ τ ,

and all other Homs between such objects vanish. This is moreover compatible with the

evident composition structure.

We denote full dg subcategories generated by the A(σ) and B(σ) by

AΣ : = {A(σ) :σ ∈Σ}⊂Sh(T∨),

BΣ : = {B(σ) :σ ∈Σ}⊂QCoh(TΣ).

While the calculation above might seem to imply only the equivalence

H0(AΣ)∼=H0(BΣ)

of triangulated categories, we recall the following useful fact.
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Lemma 7.1. Let Ci be a collection of dg categories, each of which has all morphisms

concentrated in cohomological degree zero. Then, any diagram valued in the H0(Ci) lifts

canonically to a homotopy coherent diagram in the corresponding Ci.

Proof. The hypothesis on Ci implies that the natural maps

H0(C) − τ⩽0C −! C

are quasi-isomorphisms. Thus any diagram among the H0(Ci) can be lifted to a diagram

among the Ci by composing with this pair of quasi-isomorphisms.

As the category of quasi-coherent sheaves on a toric variety is generated by the

structure sheaves of the affine toric charts, the restriction to the subcategory BΣ is really

no restriction: the morphism QCoh(TΣ)!Mod-BΣ is an isomorphism.

On the other side, the objects of AΣ all satisfy the microsupport estimate

ss(A(τ))⊂
⋃
σ⊂τ

σ⊥×(−σ)⊂T∨×M∨
R =T ∗T∨.

In particular, writing

LΣ :=
⋃
σ∈Σ

σ⊥×(−σ),

we have that Aσ∈ShLΣ(T∨) for all σ∈Σ. As conjectured by [FLTZ3] and [T], and proven

by Kuwagaki [Ku], these objects generate this category.

Theorem 7.2. ([Ku]) When TΣ is a smooth orbifold, the morphism

ShLΣ
(T∨)−!Mod-AΣ

is an isomorphism.

Remark 7.3. In fact what Kuwakagi proves is that for any, not necessarily smooth,

TΣ there is an isomorphism ShLΣ
(T∨)∼=IndCoh(TΣ). The above statement follows be-

cause in the smooth case, IndCoh=QCoh, which as we mentioned above is generated

by the Bσ. We use the above formulation rather than Kuwagaki’s more general result,

because we will later make calculations with the Aσ and Bσ directly, and we restrict

ourselves to the smooth case to avoid e.g. worrying about how to lift the Bσ to IndCoh.

This causes no loss of generality, since it is anyway only in the smooth case that we

have been able to identify ∂LΣ as a relative skeleton.
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7.2. Restriction is mirror to microlocalization

Let T be a toric variety, σ be a cone of the fan Σ(T), and iσ:O(σ)!T be the inclusion

of the orbit closure corresponding to the cone σ. As the orbit closure is itself a toric

variety, one can ask what functor of constructible sheaf categories corresponds under

Bondal’s correspondence to the pullback i∗σ. We will see that the answer is a sort of

microlocalization functor.

7.2.1. Restriction to orbit closures

Recall that the orbit closure O(σ) carries the structure of a toric variety, with associated

cocharacter lattice M∨/Zσ. For τ a cone containing σ, we write τ/σ for the image of τ

in M∨/Zσ. The map τ!τ/σ gives a bijection between cones containing σ and cones in

the fan of Σ(O(σ)). We will therefore write Σ/σ :=Σ(O(σ)).

Let us recall that

Tτ =
∐
τ⊃η

O(η) and O(σ)=
∐
η⊃σ

O(η),

and therefore the intersection of the orbit closure O(σ) with the affine piece Tτ decom-

poses as

Tτ∩O(σ)=
∐

τ⊃η⊃σ

O(η)=

{
O(σ)τ/σ, if τ ⊃σ,

∅, otherwise.

For τ⊃σ, there is a natural identification (τ/σ)∨∼=τ∨∩σ⊥⊂τ∨. The corresponding

map k[(τ/σ)∨] �
�
// k[τ∨] has a uniqueM -graded left-inverse k[τ∨]!k[(τ/σ)∨], which gives

the affine inclusion O(σ)τ/σ
� � // Tτ . We conclude the following result.

Lemma 7.4. We have canonical isomorphisms

i∗σB(τ)=

{
B(τ/σ), if τ ⊃σ,

0, otherwise.

The source or target of the induced map

i∗σ:H
∗Hom(B(τ ′), B(τ))−!H∗Hom(B(τ ′/σ), B(τ/σ))

vanishes unless τ ′⊃τ⊃σ, and in this case is canonically identified with the map

k[τ∨]−! k[(τ/σ)∨].
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7.2.2. Microlocalization

Our description of the mirror to the restriction functor i∗σ will be given in terms of Sato’s

microlocalization. We now briefly review this notion; for details see [KS, Chapter 4].

Microlocalization is built from Verdier specialization, and the Fourier–Sato trans-

form. The Verdier specialization along a submanifold X⊂Y carries sheaves on Y to

conic sheaves on TXY , by pushing forward along a deformation to the normal cone.

The Fourier–Sato transformation carries conic sheaves on a bundle to conic sheaves

on its dual, by convolution with the kernel given by the constant sheaf on the locus

{(x, x∗):x∗(x)⩽0}. Sato’s microlocalization is the composition of these, and carries

sheaves on Y to conic sheaves on T ∗
XY ; we denote it by µX .

As usual, write

LΣ =
⋃
σ∈Σ

σ⊥×(−σ)⊂T ∗T∨

for the [FLTZ3] skeleton mirror to TΣ.

For the orbit closure O(σ), we denote the corresponding torus

TC(σ) :=TC/(Zσ⊗Gm),

and the corresponding skeleton LΣ/σ⊂T ∗T(σ)∨. Note the canonical identification

T(σ)∨ ∼=σ⊥.

We compute the following microlocalization.

Lemma 7.5. Let π:σ⊥×(−σ�)!σ⊥∼=T(σ)∨ be the projection. Then the morphism

mσ: Sh(T∨)−!Sh(σ⊥),

F 7−!π∗((µσ⊥F )|σ⊥×(−σ�)).

respects FLTZ skeleta, i.e. restricts to mσ: ShLΣ
(T∨)!ShLΣ/σ

(σ⊥). Moreover, there are

canonical isomorphisms

mσA(τ)=

{
A(τ/σ), if τ ⊃σ,

0, otherwise.

The source or target of the induced map

µσ:H
∗Hom(A(τ ′), A(τ))−!H∗Hom(A(τ ′/σ), A(τ/σ))

vanishes unless τ ′⊃τ⊃σ; in this case the map is canonically identified with

k[τ∨]−! k[(τ/σ)∨].
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Proof. As we will we see, the sheaves in question are constant along the fibers

of π, which are contractible. Thus, the pushforward π∗ does essentially nothing, and we

subsequently omit it from the notation.

As LΣ is the union of the microsupports of the A(σ), our argument showing that

mσA(σ)=A(σ/τ) will also show that

mσ(ShLΣ
(T∨))⊂ShLΣ/σ

(σ⊥).

One could also directly use the formula [KS, Theorem 6.4.1] showing that the micro-

support of the microlocalization is the specialization of the microsupport to the normal

bundle of the conormal bundle.

Suppose that σ ̸⊂τ . We want to show that mσ(Aτ )=0. In fact, we will show that

µσ⊥A(τ) is disjoint from σ⊥×(−σ�), and in fact disjoint from T∨×(−σ�). To do so,

recall that for any submanifold Y ⊂X and any sheaf F on X, one has the estimate

Supp(µY F )⊂T ∗
Y X∩ss(F ).

As a consequence of [FLTZ3, Proposition 5.1], we have the following inclusion of subsets

of T ∗T∨=T∨×M∨
R :

ss(A(τ))⊂
⋃
η⊂τ

η⊥×(−η)

In particular, ss(A(τ))⊂T∨×(−τ). Meanwhile, σ� is disjoint from τ , unless σ⊂τ .

Now, consider A(τ) with σ⊂τ . The specialization of A(τ) along σ⊥ can be under-

stood as follows. Choose a splitting T∨=σ⊥×T′, where T′=Hom(Zσ,R/Z). Let T′
ε be

an epsilon ball around the origin of T′. Then the Verdier specialization along σ⊥ can be

visualized as first restricting to σ⊥×T′
ε, and then rescaling the T′

ε factor to be very large,

in the limit as ε!0. In this limit, the T′
ε factor can be identified with Hom(Zσ,R).

Restricting to σ⊥×T′
ε breaks A(τ) into a direct sum of Nk pieces, where the Nk

grading counts how many times the cone has wrapped around (S1)k. Let us call the

result A′(τ).

First, we study the grading zero component, A′(τ)0. The rescaling limit carries

A′(τ)0 to (A′(τ)0)|σ⊥⊠Aε(σ), where Aε(σ) is the costandard sheaf on the dual cone to

σ inside Hom(Zσ,R). The Fourier transform (which happens only in the second factor)

of Aε(σ) returns the standard sheaf on −σ, which restricts to the constant sheaf on −σ�.

On the other hand, (A′(τ)0)|σ⊥ is readily seen to be A(τ/σ).

For the remaining components, note that since each has already wrapped around at

least once in some direction, they are invariant along the line spanned by some extremal

ray of the dual cone to σ inside Hom(Zσ,R/Z). It follows that their Fourier transform
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is supported on the face of σ annihilated by that ray; hence, the restriction of such a

component to −σ� is zero.

Finally, for the statement about Homs, let us recall from [T, Proposition 2.3] their

description. Consider the universal cover π:MR!MR/Z=T∨; as we have mentioned

A(σ):=π!k(σ∨)� . One calculates

Hom(A(τ ′), A(τ))=Hom(π!k(τ ′∨)� , π!k(τ∨)�)

=Hom(k(τ ′∨)� , π
!π!k(τ∨)�)

=
⊕
m∈M

Hom(k(τ ′∨)� ,m+k(τ∨)�).

Finally, it is easy to see that

Hom(k(τ ′∨)� ,m+k(τ∨)�)=

{
k, if τ ′ ⊃ τ and m∈ τ∨,

0, otherwise.

This is why

Hom(A(τ ′), A(τ))∼= k[τ∨].

Now the point is just that the discussion above is compatible with this calculation of

Homs by passage to the universal cover. (E.g. the Nk-grading discussed earlier is just

the appropriate part of the M grading appearing in
⊕

m∈M above.)

In words: Bondal’s correspondence intertwines the pullback i∗σ with the microlocal-

ization mσ, at least as far as AΣ and BΣ are concerned. By Theorem 7.2 (and noting

again Lemma 7.1), this can be extended to the larger categories.

Remark 7.6. In [FLTZ1], [T] a different functoriality statement is established, which

however does not apply to the case of an inclusion of a toric divisor. Their result concerns

morphisms which, on the A-side, can be described in terms of just sheaves on the base

manifold, rather than in terms of microlocalization.

7.3. Microlocal sheaves

7.3.1. The Kashiwara–Schapira stack

Let Q be a manifold. Using the tools of [KS], one can construct a sheaf of categories on

T ∗Q, the Kashiwara–Schapiraù stack, whose global sections recover the usual category

of sheaves on Q. To define it, one begins with the presheaf of categories µ shpre, whose

sections in a small ball U are the quotient category

µ shpre(U)=Sh(Q)/ ShT∗Q\U (Q).
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For a conical subset L⊂T ∗Q, there is a presheaf of full subcategories µ shpreL on objects

whose microsupport near L is contained in L.
To be precise, we regard µ shpre as a presheaf valued in the ∞-category of all ∞-

categories. We denote the corresponding sheaf by µ sh. Because the ∞-category of

∞-categories embeds in the ∞-category of spaces, from the properties of which one can

deduce that (1) sheafification preserves stalks and (2) morphisms of sheaves of categories

can be checked to be isomorphisms on stalks. Because µ shpre is in fact a presheaf of dg

categories, µ sh carries canonically the structure of a sheaf of dg categories.

Although [KS] never discusses the sheafification of µ shpre, the stalks of a bounded

version are studied in detail in [KS, Chapter 6] (the Db(X; p)). Morevoer, what are in

fact the Hom sheaves of µ sh are also discussed (under the name µhom). The sheaf µ sh

is discussed in some detail in [Gu1], [Gu2], [N2], [NS].(10)

The category Sh(Q) is complete and cocomplete; additionally it is ‘presentable’. Let

us fix some notation to discuss such properties. We write dg to mean the category whose

objects are small stable (aka pre-triangulated) dg categories, and whose morphisms are

exact functors. We write DG for the category whose objects are presentable stable dg

categories, and whose morphisms are exact functors. There are various not full subcat-

egories of DG characterized by what sort of adjoints the morphisms are. We indicate

by ∗DG the category in which all morphisms are left adjoints; by ∗∗DG the category in

which all morphisms are left adjoints of left adjoints; and so on.

Taking adjoints gives equivalences of categories switching the restrictions on adjoints;

for instance, ∗DG∼=(DG∗)op, and so on. This turns out to be very useful: as described

in [Ga], we can turn colimits into limits. Taking ind-completion and then adjoints gives

an embedding dg �
�
// ∗∗DG∼=(∗DG∗)op ; with the image being the compactly generated

categories. Thus a colimit in dg becomes a limit in ∗DG∗, which we can compute in

DG∗. Taking adjoints again and passing to compact objects gives the originally desired

colimit.

It is easy to see that µ shpre is valued in ∗DG∗, but because we sheafified in the

∞-category of ∞-categories (rather than in say DG∗, ∗DG, ∗DG∗), it does not follow

formally that µ sh has the corresponding properties; in fact we do not know whether this

is the case or not. However, L is subanalytic Lagrangian, and so the sections of µ shpreL
stabilize in a sequence of contractible open neighborhoods around any given point p∈L.

(10) The discussion in [Gu2, Chapter 10] gives many details, including an explanation of how the
results of [KS] may be translated into the assertions that Db(X; p) is the stalk of µ sh and that µ hom

is the sheaf of homs. While the official language of [Gu2] is that of triangulated categories rather than
DG categories—an unfortunate choice insofar as triangulated structures do not glue well whereas DG
categories do—the constructions of [Gu2] are all compatible with DG enhancement, and the proofs go

through unchanged once one has set up the basic sheaf theory in the DG setting. These categorical
aspects are discussed explicitly in [N2], [NS].
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From this, we can conclude that µ shL and its stalks indeed take values in ∗DG∗.

The sheaf µ sh can also be regarded as a cosheaf via the equivalence

(∗DG∗)op ∼= ∗∗DG.

Again because L is subanalytic Lagrangian, all sections are compactly generated; we may

pass to compact objects in the cosheaf to obtain a cosheaf valued in dg.

7.3.2. Microlocal restriction

We now give some lemmas about how to compute the restriction of µ sh. Let X be a

manifold and Y ⊂X a submanifold. We write T ∗
Y X⊂T ∗X for the conormal bundle to Y .

Recall from [KS, §3.7 and §4.3] the Sato microlocalization functor:

µY : Sh(X)−!Sh(T ∗
Y X)R

+

Here, the “R+” indicates the sheaves are conic, i.e., constant along the cotangent direc-

tions.

Note that, locally near T ∗
Y X, the ambient cotangent bundle T ∗X is also the cotan-

gent bundle of T ∗
Y X. Thus, it is natural to expect an expression for SS(µY F )⊂T ∗(T ∗

Y X)

in terms of SS(F )⊂T ∗X. These cannot be equal in general, since SS(µY F ) must be conic

in both the cotangent and in the cotangent-to-cotangent directions in T ∗(T ∗
Y X), whereas

SS(F )⊂T ∗X will only be conic in the T ∗X cotangent directions. This, however, is the

“only” difference.

Theorem 7.7. ([KS, Theorem 6.4.1]) SS(µY F )⊂T ∗(T ∗
Y X) is obtained by specializ-

ing SS(F ) to the normal cone to T ∗
Y X.

For the notion of specialization to the normal cone, see [KS, §4.1]. We will now draw

some consquences of this fundamental result.

Lemma 7.8. The Sato microlocalization Sh(X)!ShR
+

(T ∗
Y X) factors through the

(global sections of ) a morphism of sheaves of categories

µ sh |T∗
Y X −!ShR

+

. (7.1)

Here, the right-hand side is the (sheaf of categories of ) conic sheaves on T ∗
Y X.

Moreover, for Λ⊂T ∗X a conic closed subset, this map restricts to

µ shΛ|T∗
Y X −!ShR

+

CT∗
Y X(Λ), (7.2)

where CT∗
Y X(Λ) is the specialization of Λ to the normal bundle of T ∗YX , with that

normal bundle then identified with T ∗(T ∗
Y X).
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Proof. Because the target is a sheaf of categories, it is enough to construct a map

from µ shpre. To do this, we should show that for any Ω⊂T ∗X, the microlocalization µY

induces a functor

Sh(X)/ ShT∗X\Ω(X)−!Sh(Ω∩T ∗
Y X).

In other words, we should show that if F has no microsupport in Ω, then µY (F ) has no

support in Ω∩T ∗
Y X. This follows from Theorem 7.7, which gives the microsupport of

µY (F ), so in particular the support. The final statement characterizing the behavior of

microsupports is a direct translation of Theorem 7.7.

Remark 7.9. Under the identification of µhom with the Hom in µ sh, the above

functor acts on Hom sheaves as the natural map

µhom(F,G)|T∗
Y X −!Hom(µY F, µY G). (7.3)

We are interested conditions on Λ which ensure that (7.2) is an equivalence, and in

particular that the map (7.3) is an isomorphism. It is possible to give counterexamples

showing some condition is necessary for (7.3) to be an isomorphism [GS] (so in partic-

ular, the map (7.1) is not an isomorphism). One known sufficient condition is Λ=T ∗
Y X

(see e.g. [Gu2, Lemma 10.2.2 and Proposition 10.2.4], and [KS, Proposition 6.6.1 and

Lemma 7.5.2], and more generally around [KS, §7.5], for some precursors). This fact is

fundamental to the analysis of µ sh along a smooth conic Lagrangian.

Here we note that, more generally, it suffices if Λ is in an appropriate sense already

conic along T ∗
Y X, so the specialization to the normal cone is an innocent operation.

Lemma 7.10. Consider Λ⊂T ∗X. Suppose that, in the neighborhood of a point ξ∈
T ∗
Y X, the set Λ is contained in the union of conormals (in T ∗X) to strata in a subanalytic

(or otherwise o-minimal) stratification of Y . Then, the map (7.2)

µ shΛ |T∗
Y X −!ShR

+

CT∗
Y X(Λ)

is an isomorphism at ξ.

Proof. For morphisms of sheaves valued in the category of categories, whether a map

is an isomorphism may be checked on stalks. The stalks of µ sh are (unbounded versions

of) the categories Db(X; p) studied in [KS, Chapters 6 and 7]; as noted above the results

therein continue to hold in the unbounded case.

We may replace X by a tubular neighborhood of Y , and fix a metric so as to identify

this neighborhood with the normal bundle to Y . That is, we replace X=TY X. Note

that on sheaves conic with respect to the scaling on TY X, the given functor is just the

Fourier–Sato transform, which is an equivalence.
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Now the point is just that the hypothesis of the theorem ensures that the sheaves in

question are microlocally conic, i.e. isomorphic to a conic on TY X sheaf in a neighbor-

hood of T ∗
Y X. That is because the conormals to strata in Y remain constant under the

deformation to the normal cone to T ∗
Y X. Thus the Fourier transform is (microlocally)

an isomorphism on these sheaves.

Remark 7.11. Evidently, the criterion of Lemma 7.10 holds at every point away from

the zero section in the FLTZ skeleton, when Y is taken any subtorus. More generally,

it is automatic away from the zero section for sheaves constructible with respect to a

piecewise linear stratification, where Y is amongst the strata.

Corollary 7.12. Let Σ⊂M∨
R be a fan and LΣ be the corresponding skeleton inside

T ∗T∨
R.

Let σ∈Σ be a cone, and let π:σ⊥×(−σ�)!σ⊥ be the projection. Then, the functor

(from Lemma 7.5)

mσ: ShLΣ
(T∨)−!ShLΣ/σ

(σ⊥)

F 7−!π∗((µσ⊥F )|σ⊥×(−σ�))

factors canonically through an isomorphism

µ shLΣ
(σ⊥×(−σ�))−!ShLΣ/σ

(σ⊥).

Proof. As we have remarked, sheaves constructible with respect to a piecewise linear

stratification necessarily satisfy the hypothesis of Lemma 7.10.

7.4. At infinity

We are now ready to pass to the boundary on both sides of Bondal’s correspondence.

On the B-side, this means passing from the toric variety TΣ to the union of its toric

boundary divisors, and on the A-side, this means moving from the relative skeleton LΣ

of the LG model W :T ∗T∨
!C to the complement of the zero section: L�Σ :=LΣ\T∨.

Theorem 7.13. For TΣ smooth, there is an equivalence of categories

Coh(∂TΣ)∼=µ sh(∂LΣ)
c.

Proof. To avoid worrying about whether various colimits exist, we will work with

the cocomplete categories IndCoh and µ sh, and we will return to the above statement

at the end by passing to compact objects. This is essentially only a matter of notation.
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In [GR, Vol. II, §8.A, Theorem A.1.2], it is stated that if an affine scheme is a pushout

of affine schemes along closed embeddings, then its category of ind-coherent sheaves is

computed by the corresponding pushout of categories of ind-coherent sheaves.(11) By

descent, the same holds for stacks in general.

Per Lemma 3.5 the toric boundary ∂TΣ can indeed be presented as a sequence of

pushouts, of the orbit closures O(σ), along closed embeddings, so that we may deduce

an equivalence of categories

IndCoh(∂TΣ)∼= lim−→
σ∈Σ\{0}

IndCoh(O(σ)).

By Zariski (or étale in the stack case) descent we may trade

IndCoh(O(σ))∼=Mod-B
Σ̂(O(σ))

.

(For a detailed explanation of this isomorphism, see [Ku].)

The coherent-constructible correspondence of [B], [FLTZ3], [T] and Kuwagaki’s the-

orem [Ku], respectively, give the following two equivalences:

lim−→
σ∈Σ\{0}

Mod-B
Σ̂(O(σ))

∼= lim−→
σ∈Σ\{0}

Mod-A
Σ̂(O(σ))

∼= lim−→
σ∈Σ\{0}

ShL
Σ̂(O(σ))

(T(σ)∨).

Finally, by taking adjoints to the restriction morphisms we analyzed in Lemma 7.5 and

Corollary 7.12, we obtain the following identification:

lim−→
σ∈Σ\{0}

ShL
Σ̂(O(σ))

(T(σ)∨)= lim−→
σ∈Σ\{0}

µ shLΣ
(σ⊥×(−σ�)).

On the right, the maps are co-restriction functors of wrapped microlocal sheaves,

and this colimit is just the one associated with a cover of ∂LΣ. This completes the

proof.

Remark 7.14. The result holds without the smoothness hypothesis, as e.g. can be

seen by taking some toric resolution, applying Theorem 7.13, and then matching the

semiorthogonal decomposition of the category of the resolution on the B-side with stop

removal on the A-side. We content ourselves with the smooth case here because we

anyway have only in this case identified ∂LΣ as a Weinstein skeleton.

(11) Note that a colimit of underived schemes or stacks remains a colimit of the corresponding items

viewed as derived objects, since the inclusion of underived geometry into derived geometry is left adjoint
to truncation of derived structure.
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8. A glimpse in the mirror of birational toric geometry

Since the works [BO], [Ka], it has been understood that birational features of algebraic

geometry often have natural interpretations in the derived category of coherent sheaves.

Mirror symmetry provides an illuminating perspective on these derived equivalences,

which in algebraic geometry seem to be among a discrete set of objects. Remarkably, on

the mirror this discretization becomes unnatural, and one can continuously interpolate

between the mirrors of derived equivalent varieties. Many other features of birational

geometry (e.g., semi-orthogonal decompositions associated with blowups) also have beau-

tiful new geometric interpretations in terms of mirror geometry. For discussions in the

context of toric varieties, see [FLTZ2], [CKK], [BDF+].

Here is another result in this direction.

Corollary 8.1. Let W : (C×)n!C be a Laurent polynomial with Newton polytope

∆ and Σ1,Σ2 a pair of fans obtained as star-shaped triangulations of ∆. Then, there is

a derived equivalence Coh(TΣ1
)∼=Coh(TΣ2

).

Proof. Let L1 and L2 be the corresponding [FLTZ3] skeleta. We have shown that (a

Liouville domain completing to) the general fiber ∂Tmir ofW is isotopic both to a domain

with skeleton ∂L1, and to a domain with skeleton ∂L2. By [GPS2, Corollary 2.9], we have

an equivalence of the wrapped Fukaya categories Fuk(T ∗T∨, ∂L1)∼=Fuk(T ∗T∨, ∂L2). By

[GPS3] we may trade this for an equivalence of constructible sheaf categories, and by

[Ku] we may trade the latter for the asserted equivalence of coherent sheaf categories.

What the above argument does not yet give is a formula for the above equivalence.

In fact, there are many such derived equivalences, corresponding to monodromies (as we

vary the coefficients of f) around the discriminant locus. We will describe these in future

work.

8.1. Non-Fano mirror symmetry

It was observed in [AKO], [Ab2] that mirror symmetry for toric varieties requires mod-

ification in the case of a non-Fano variety T: the naive interpretation of the Hori–Vafa

mirror Landau–Ginzburg model for a non-Fano variety contains Coh(T) as a full subcate-

gory but can be strictly larger. One procedure to remedy this discrepancy is suggested in

[BDF+]. By contrast, [Ku] holds for all toric varieties. Here we explain this discrepancy

in an example; in future work, we plan to use the same ideas to establish the conjectures

of [BDF+].

In the body of this paper, we began with a polytope ∆∨ with star-shaped triangu-

lation, and let Σ be the fan given by this star-shaped triangulation. Any fan Σ obtained
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Figure 18. The fans Σ1, Σ2, Σ′.

Figure 19. The FLTZ boundary skeleta Λ1,Λ2,Λ′ for the fans Σ1,Σ2,Σ′.

in this way has the following property: let v1, ..., vk be (stacky) primitives for the rays

in Σ, and let ∆∨ be the convex hull of the vi. Then each vi is on the boundary of ∆∨.

This excludes fans Σ in which one of the primitives vi is too short to reach ∂∆∨. In this

case, the mirror to ∂TΣ will not be a hypersurface with Newton polytope ∆, but only

a Liouville subdomain of such a hypersurface. The simplest case of this is described in

the following example.

Example 8.2. Let Σ1 be the fan with primitive rays (−1, 2), (1, 2); Σ2 be the fan

with primitives (−1, 2), (0, 2), (1, 2); Σ′ be the fan with primitives (−1, 2), (0, 1), (1, 2);

and ∆∨ be the polytope obtained as convex hull of the primitives for any of the three

fans above. (These convex hulls obviously agree.)

Then, each of Σ1 and Σ2 is obtained as a star-shaped triangulation of ∆∨; hence,

the results of this paper show that the boundaries ∂TΣ1
and ∂TΣ2

are both mirror to a

generic hypersurface H with Newton polytope ∆∨.

We obtain two different skeleta Λ1 and Λ2 of the hypersurface H, corresponding to

the respective triangulations Σ1 and Σ2, and we know that each of these is the boundary

of a stacky FLTZ skeleton; by studying the fans Σi, we conclude that Λ1 consists of

two circles connected by four different intervals (since the two rays in Σ1 share a non-

unimodular simplex of area 4), and Λ2 consists of four circles, cyclically connected by

intervals (there being four circles since the middle ray, of length 2, is double-counted by

the stacky FLTZ procedure). Each of these is a skeleton for H, which is a quadruply-

punctured genus-1 curve.

Let Λ′ be the boundary of the [FLTZ3] skeleton for Σ′. Then, Λ′ is no longer a

skeleton for the hypersurface H, as Λ1 and Λ2 are. It resembles the skeleton Λ2, except

that the central ray, now of length 1, is no longer double-counted. This means that Λ′
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is obtained from Λ2 by deleting one of the two double-counted circles along with its two

connecting intervals. Hence, Λ′ consists of three circles, connected in a row by a pair

of intervals. It is the skeleton of a triply-punctured genus-1 curve, a subdomain of the

quadruply-punctured curve H.
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