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1. Introduction and main result

We consider systems of N bosons in the 3-dimensional box A= [f%, %]d with periodic
boundary conditions. In the Gross—Pitaevskii regime, the Hamilton operator has the
form
N N
Hy =Y~y +Y N°V(N(x;—z;)) (1.1)
j=1 i<j

and acts on the Hilbert space L2(A"), the subspace of L?(A™) consisting of functions that

are symmetric with respect to permutations of the N particles. We require V € L3(R3)

to be non-negative, radial, compactly supported and to have scattering length ag.
Recall that the scattering length of the interaction potential is defined through the

zero-energy scattering equation
(-A+iV(z))f(z)=0 (1.2)

with the boundary condition f(z)—1, as |x|—oc. For |z| large enough (outside the

support of V'), we have
ao

fle)=1-—

= (1.3)

for an appropriate constant ag, which is known as the scattering length of V. Equivalently,

ag can be recovered by

8mag = / Vix)f(x)de. (1.4)
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By scaling, we obtain from (1.2) that
[—A+3N?V(Nz)] f(Nz)=0,

and therefore that the scattering length of N2V (Nz) is given by ag/N.
It follows from the works of Lieb—Yngvason [24], of Lieb—Yngvason—Seiringer [21]
and, more recently, of Nam-Rougerie-Seiringer [25], that the ground state energy of the

Hamilton operator (1.1) is given, to leading order in N, by
EN :47TC10N+0(N). (15)

In [19], Lieb and Seiringer also showed that the ground state of (1.1) exhibits complete
Bose-Einstein condensation. In other words, if ’y](\}) denotes the 1-particle reduced density
associated with a normalized ground state wave function ¢y € L2(A"), then it was shown
in [19] that

v§ = o) (o] (1.6)

as N —o00, where ¢g(z)=1 for all z€A is the l-particle zero-momentum mode. This
convergence was then extended by Lieb—Seiringer [20] and, with different techniques, by
Nam-Rougerie—-Seiringer [25], to sequences of approximate ground states, ie. states whose
energy satisfies (1.5) (more precisely, the results of [21], [19], [20], [25] were not restricted
to bosons moving in a box A=]0,1]* with periodic boundary conditions; they applied
instead to systems trapped by an external confining potential). The interpretation of
(1.6) is straightforward: all particles in the system, up to a fraction that vanishes in the
limit of large N, occupy the same 1-particle state ¢q. It is, however, important to observe
that (1.6) does not mean that the factorized wave function QD?N is a good approximation

for the ground state of (1.1). In fact, a simple computation shows that
(o™, Hyog ™) = 3(N=1)V(0), (1.7)

which is always much larger than (1.5), with an error of order N (as follows from (1.4),
because f<1 on the support of V, due to (1.3), to the subharmonicity of f and to the
maximum principle; see, for example, the proof of [14, Lemma D.1]). In contrast to
go?N , the ground state of (1.1) is characterized by a correlation structure, varying on the
length scale N~!, which is responsible for lowering the energy to (1.5).

We recently improved (1.5) and (1.6) in [4], where we showed that

Ey =4rnagN+0(1) (1.8)

and that the 1-particle reduced density ’yj(\}) associated with the ground state of (1.1) is

such that
1— {90, 7y 0) SCN (1.9)
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for a constant C'>0 (we previously obtained these results in [2], for sufficiently small
interaction potentials). Equation (1.8) determines the ground state energy up to an
error of order 1, independent of N. As for equation (1.9), it shows that the number of
excitations of the Bose-Einstein condensate remains bounded, uniformly in N. Although
(1.8) and (1.9) substantially improve previous results, these bounds are still not enough
to resolve low-lying excited eigenvalues of (1.1), which play a fundamental role in the
understanding of the low-temperature physics of Bose gases.

In this paper, we go beyond (1.8), computing the ground state energy and the low-
lying excitation spectrum of (1.1), up to errors vanishing in the limit N —o0. This is the

content of our main theorem.

THEOREM 1.1. Let V € L3(R3) be non-negative, spherically symmetric and compactly
supported. Then, in the limit N—o0, the ground state energy En of the Hamilton
operator Hy defined in (1.1) is given by

En =4n(N—1)ag+epa?

1 8 9 .
-3 Z <p2+87ra0—\/m_<722§)>+0(]\7—1/4). (1.10)

PEAL

Here we introduced the notation A* =27Z3\{0}, and we defined

: cos(|p|)
ea=2- lim > 2 (1.11)
pEZ\{0}
[p1ls|p2l;|p3|<M

where, in particular, the limit exists. Moreover, the spectrum of Hy— En below a thresh-

old ¢ consists of eigenvalues given, in the limit N — o0, by

S npy/ Pl 16magp? + O(N~4(14¢%). (1.12)

pEAT

Here, n,€N for all pe A%, and ny,#0 for finitely many pe A% only.

+9

Remark. The term epa3 in (1.10) arises as a correction to the scattering length ag
(defined in (1.2), through an equation on R3), due to the finiteness of the box A. For
small interaction potential, we can define a finite-volume scattering length ay through

the convergent Born series

sray—P(O)+3 C 3 Wpl/zv)(’ﬁ?«pi—piﬂ)/zv))?(m)

p% i=1 pl2+1 N
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In this case, one can check that

lim 47(N—1)[ap—ay] =epa.
N—o0

Observe that, if we replace the potential V by a rescaled interaction Vg(z)=R™2?V (z/R)
with scattering length ap=aoR then, for large R (increasing R makes the effective den-
sity larger), the order-1 contributions to the ground state energy scale as exa?R? and,

respectively, as

1 8 R 2
—— Z <p2+87ra0R—\/|p|4+167ra0Rp2—(ﬂ;;)>

2
pe2nZ3\{0}

R 8map)?
=5 Z <p2+87ra0\/|p|4+167ra0p2(p20)>

pe(2r/VR)Z3\{0}

R°/? 5 (8mag)? 1.13
~ W /RB <p2+877a0 |p|4+167'ra0p27 pQ> dp ( )
_ ATR5/2(16mag)®/?

- 15(27)3

128 3/2 s /o
15f°R '

In particular, letting R— oo (independently of N), it follows that the finite-volume cor-

=A4magy-

rection becomes subleading, compared with (1.13).

Theorem 1.1 gives precise information on the low-lying eigenvalues of (1.1). Our
approach, combined with standard arguments, also gives information on the correspond-
ing eigenvectors. In (6.6) and (6.7) we provide a norm approximation of eigenvectors
associated with the low-energy spectrum of (1.1) (we postpone the precise statement of
this result, because it requires additional notation that will be introduced in the next
sections). As an application, we can compute the condensate depletion, i.e. the expected
number of excitations of the condensate, in the ground state ¥y of (1.1); if 'yj(\}) denotes

the 1-particle reduced density associated with ¢y, we find

2 4+8rag—+/pt+16mwagp? _
1— (0,7 %0) Z P 0 VP P LONTEY. (114)
peA* 24/ p*+16magp?

The proof of (1.14), which is based on the approximation (6.7) of the ground state vector

and on some additional bounds from §7, is deferred to Appendix A.
Multiplying lengths by N, it is easy to check that the Gross—Pitaevskii regime consid-
ered in this paper is equivalent (up to a trivial rescaling) to an extended gas of N particles
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moving in a box with volume Vol=N?3 and interacting through a fixed potential V with
scattering length ay of order 1, independent of N. In this sense, the Gross—Pitaevskii
regime describes an ultradilute gas of N particles, with density o=N/Vol=N~2 con-
verging to zero, as N—oo. It is interesting to compare the Gross—Pitaevskii regime
with the thermodynamic limit, where a Bose gas of N particles interacting through a
fixed potential with scattering length ag is confined in a box with volume Vol so that
N,Vol—oo while the density =N/ Vol is kept fixed. At low-density, we expect the
ground state energy F(N, Vol), divided by the number N of particles, to converge, in the
thermodynamic limit, towards the famous Lee-Huang—Yang formula

E(N, Vol)

1m
N,Vol—oo N
o=N/ Vol

128
tmgno (141 ond) 4ol (es) ) ), (1)

where the error is of lower order in the density o, as ¢o—0 (the order of the limit is
important: first, we let N, Vol—oo keeping p=N/ Vol fixed, and only afterwards we
focus on small p). With (1.13), we see that the second-order correction in the Lee-
Huang—Yang formula emerges from (1.10) as soon as the effective density is larger than
in the Gross—Pitaevskii regime.

To date, there is no mathematically rigorous proof of (1.15). There are, however,
some partial results. In [11], Dyson gave an upper bound to the ground state energy
matching the leading contribution 4mwoag in (1.15) (for particles interacting through a
hard-sphere potential). About forty years later, Lieb and Yngvason showed in [24] the
corresponding lower bound, establishing the validity of the leading term on the right-hand
side of (1.15) (for general repulsive potentials). Yau and Yin proved in [33] an upper
bound for the ground state energy per particle in the thermodynamic limit coinciding
with (1.15) up to second order. They reached this goal by modifying a previous trial state
constructed in [13] by Erdés—Schlein—Yau, reproducing the Lee-Huang—Yang prediction
up to errors that are subleading for small potentials. Recently, Brietzke—Fournais—Solovej
established in [8] a lower bound for the ground state energy per particle valid up to
corrections of the same size as the second term in the Lee-Huang—Yang formula (1.15).

Equation (1.15) can be compared with our result (1.10) for the ground state energy
in the Gross—Pitaevskii regime where, as explained above, p=N~2 (and where the energy
has to be multiplied by an additional factor N? to make up for rescaling lengths). To
leading order, the two formulas give the same result. The second-order corrections do not
agree. It should be observed, however, that if in (1.10) we replaced sums over discrete
momenta p€A* by integrals over continuous variables peR3, we would obtain exactly
(1.15). Theorem 1.1 establishes therefore the analogue of the Lee-Huang—Yang formula
for the ground state energy in the Gross—Pitaevskii regime.
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The properties of low-energy states in dilute Bose gases have already been studied
in the pioneering work of Bogoliubov; see [5]. Bogoliubov rewrote the Hamilton oper-
ator (1.1) in momentum space, using the formalism of second quantization. Since he
expected low-energy states to exhibit Bose-Einstein condensation, he replaced all cre-
ation and annihilation operators associated with the zero-momentum mode ¢ by factors
of N'/2. The resulting Hamiltonian contains constant terms (describing the interaction
among particles in the condensate), terms that are quadratic in creation and annihilation
operators associated with modes with momentum p£0 (describing the kinetic energy of
the excitations as well as the interaction between excitations and the condensate) and
terms that are cubic and quartic (describing interactions among excitations). Neglecting
all cubic and quartic contributions, Bogoliubov obtained a quadratic Hamiltonian that
he could diagonalize explicitly. At the end, he recognised (famously, with the help of
Landau) that certain expressions appearing in his formulas were just the first and second
Born approximations of the scattering length and he replaced them by ag. This procedure
led him essentially to the Lee-Huang—Yang formula (1.15) and to expressions similar to
(1.12) and to (1.14) (but with continuous momenta p€R?, since he considered the ther-
modynamic limit rather than the Gross—Pitaevskii regime) for the excitation spectrum

and the condensate depletion of the dilute Bose gas.

Let us stress the fact that replacing first and second Born approximations with the
full scattering length, we produce an error to the ground state energy that is comparable
with the leading term in (1.15). In the Gross—Pitaevskii regime, we already discussed
this issue; the difference between (1.7) and (1.5) (where the first Born approximation
V(0) is replaced by 87ap) is of order N, i.e. of the same order as the full ground state
energy. The reason why Bogoliubov nevertheless ended up with correct results is that
his final replacement compensated exactly for all terms (cubic and quartic in creation

and annihilation operators) that he neglected in his analysis.

Mathematically, the validity of Bogoliubov’s approach in 3-dimensional Bose gases
has been first established by Lieb and Solovej for the computation of the ground state
energy of bosonic jellium in [22] and of the 2-component charged Bose gas in [23] (upper
bounds were later given by Solovej in [32]). Extending the ideas of [22], [23], Giuliani and
Seiringer established in [15] the validity of the Lee-Huang—Yang formula (1.15) for Bose
gases interacting through potentials scaling with the density to approach a simultaneous
weak coupling and high density limit. This result has been recently improved by Brietzke
and Solovej in [7] to include a certain class of weak coupling and low density limits.

In the regimes considered in [22], [23], [15] and [7], the difference between first and
second Born approximation and the full scattering length is small and it only gives negli-
gible contributions to the energy; this is crucial to make Bogoliubov’s approach rigorous.
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An ambitious long-term project consisting in proving Bose-Einstein condensation and
the validity of Bogoliubov theory for dilute Bose gases in the thermodynamic limit by
means of renormalization group analysis is currently being pursued by Balaban—Feldman-—
Knorrer—Trubowitz; see [1] for recent progress.

In the last years, rigorous versions of Bogoliubov’s approach have been used to es-
tablish ground state energy and excitation spectrum for mean-field models describing
systems of N trapped bosons interacting weakly through a potential whose range is com-
parable with the size of the trap. The first results in this direction have been obtained
by Seiringer in [31] for the translation invariant case (where particles are confined in a
box with volume one and periodic boundary conditions are imposed). In [16], Grech and
Seiringer extended this result to mean-field systems confined by non-homogeneous exter-
nal potentials. In this paper, they also conjectured the form of the excitation spectrum
in the Gross—Pitaevskii regime (the expression in [16, Conjecture 1] coincides with (1.12)
in the translation-invariant case). Lewin, Nam, Serfaty and Solovej obtained in [18] an
alternative derivation of the low-energy spectrum of mean-field bosons (the techniques of
this paper play a central role in our analysis). A different approach, valid in a combined
mean-field and infinite volume limit, was proposed by Derezinski and Napiorkowski in
[10]. Furthermore, in [28], [29] and [30], Pizzo obtained an expansion of the ground
state energy and of the ground state function, for a mean field Hamiltonian, imposing
an ultraviolet cutoff.

Recently, these results have been extended in [3] to systems of N bosons in the box

A= [—%, %}Xg, described by the Hamilton operator

N N
V4
HYy =) }Axﬁﬁ > NPV (NP (;—x;)) (1.16)
j=1 i<j

for B€(0;1), a sufficiently small coupling constant >0 and a short range potential
V' >0. Hamilton operators of the form (1.16) interpolate between the mean-field regime
associated with f=0 and the Gross-Pitaevskii Hamiltonian (1.1) corresponding to S=1.

In [3], the dispersion law of the excitations has the form

ep(p) =/ Ip|*+25V (0)p?, (1.17)

independently of 8€(0;1), because the difference between the scattering length of the
interaction in (1.16) and its first Born approximation sV (0) is of order N#~! and vanishes
in the limit N —oc0. Moreover, a simple computation shows that, in the regime described
by the Hamilton operator (1.16), replacing first and second Born approximations with the
scattering length produces an error in the ground state energy of order N2°~!. Hence,
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while Bogoliubov’s approximation can be rigorously justified in the mean field limit =0
(as done in [31], [16], [18], [10]), for 8>3 it certainly fails, complicating the analysis of
[3].

Our goal here is to extend the results of [3] to the physically more interesting and
mathematically more challenging Gross—Pitaevskii regime, where f=1. The fact that
the dispersion relation of the excitations changes from (1.17) to e(p)=+/|p|*+16maop?
in (1.12) is a first hint to the fact that the step from 0<S8<1 to S=1 is quite delicate;
as we will explain below, it requires completely new ideas and it makes the analysis
substantially more involved.

Tt is worth noticing that the expression (1.12) for the excitation spectrum of (1.1) has
important consequences from the point of view of physics. It shows that the dispersion
of bosons described by (1.1) is linear for small momenta, in sharp contrast with the
quadratic dispersion of free particles. This observation was used by Bogoliubov in [5] to
explain the emergence of superfluidity, via the so-called Landau criterion [17].

Let us now briefly sketch the main ideas in the proof of Theorem 1.1. We start with
the observation, due to Lewin, Nam, Serfaty and Solovej in [18], that every N-particle

wave function ¢y € L2(AN) can be decomposed uniquely as

N

n N-—n

¢N:§ a() 93089( )7
n=0

where a(")GLﬁ_(A)‘X’S" for all n=1,...,N, L% (A) is the orthogonal complement of the
condensate wave function ¢, and where ®, denotes the symmetric tensor product. Recall
that the symmetric tensor product of ¢ € L2(A)®* and v, € L?(A)®* is defined by

Ve @se (1, 00y Thgp) = NCTICED] Z Vr(To(1)s o To(k) ) V(T (ki 1)y s To(kte))-

0E€ES K4y

This remark allows us to define a unitary map
Un: L2(AN) — FSN @LQ (1.18)

through Uty ={a®,a®, ... oM}, Here FSV is a truncated Fock space, constructed
on the orthogonal complement of ¢y in L#(A). The map Uy factors out the condensate
and allows us to focus on its orthogonal excitations.

With the map Uy, we can construct the excitation Hamiltonian Ly =UnHnU}:
]-"fN—ﬂ-" SN As we will discuss in 83, conjugation with Uy is reminiscent of the Bogoli-

ubov approximation described above; it produces constant contributions and also terms
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*
p

associated with momenta pe A* =277Z3\{0}. In contrast with what Bogoliubov did and

that are quadratic, cubic and quartic in creation and annihilation operators @} and a,
in contrast with what was done in [18] in the mean-field regime, here we cannot neglect
cubic and quartic terms resulting from conjugation with Uy; they are large and they
have to be taken into account to obtain a rigorous proof of Theorem 1.1.

The reason why, in the Gross—Pitaevskii regime, cubic and quartic terms are still
important is that conjugation with Uy factors out products of the condensate wave
function ¢g, while it does not affect correlations. Hence, the correlation structure that,
as discussed around (1.7), carries an energy of order N and characterizes all low-energy
states 1y € L2(AY) is left in the corresponding excitation vector Un1x E]—"fN. To extract
the large contributions to the energy that are still hidden in cubic and quartic terms,
we have to conjugate the excitation Hamiltonian £y with a unitary map generating the
correct correlation structure. To reach this goal, we will introduce so-called generalized

Bogoliubov transformations having the form

T:eXp(; > np(b;b*p—bpbp)>, (1.19)
pGAi

where, for peAY, by and b, are modified creation and annihilation operators acting on
]-'fN by creating and, respectively, annihilating a particle with momentum p while pre-
serving the total number of particles N (by removing or adding a particle in the conden-
sate). The normalization of the operators b, and by, is chosen so that, on states exhibiting
Bose—Einstein condensation, their action is close to that of the standard creation and
annihilation operators. Hence, although the action of T" on creation and annihilation
operators is not explicit, we will show that

T"b,T = cosh(ny,)b,+sinh(n, )b, +d,, (1.20)

T*0;T = cosh(n )b +sinh (17, )b_, +d; '
for remainder operators d, that are small on states with few excitations.

Using the generalized Bogoliubov transformation 7', we can define a new, renor-

malized, excitation Hamiltonian QN:T*ENT:T*UNHNU]’(,T:]-"fN—>]-'fN. With the
appropriate choice of the coefficients 7, (related with a modification of the solution of

the zero-energy scattering equation (1.2)), we find that
Oy =En+HN+AN, (1.21)
where Hy=K+Vy is the Hamiltonian Hy restricted on the excitation space ]-'fN, with
* 1 - * *
K= Z p’aja, and Vy = N Z V(r)ay ,.a50q4rap,
PEAL P,qENT

reA*
r#—p,—q
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indicating the kinetic and, respectively, the potential energy operators, while Ay is an

error term with the property that, for every §>0 there exists C'>0 with(!)
AN <IHN+C(NL+1), (1.22)

where N, is the number of particles operator on ffN (it measures the number of exci-
tations).

It is important to notice that, before conjugation with T, the original excitation
Hamiltonian £y cannot be decomposed as in (1.21) and (1.22). In fact, Ly gives the
wrong vacuum expectation § N 17(0) (to leading order in N) and, furthermore, it contains

a pairing term of the form (see (3.3) and (3.4) for the precise expression for L)

> ‘7(%) (0502, +bpb—p), (1.23)

pEAL

which cannot be bounded uniformly in N, neither by the number of particles opera-
tor (as |V (- /N)||~=N3/2) nor by the kinetic energy operator (as ||V (-/N)||g-1~N/2).
Conjugation with T is the crucial step that allows us to decrease the vacuum expec-
tation to 4magN (to leading order), to get rid of the dangerous term (1.23) and to
prove (1.21) and (1.22). Let us quickly explain the mechanism. Writing T=e?, with
B=1 ZpGAjr np(byb*,—byb_p), we observe that

gn :T*[,NT:e_BﬂNeB 2£N+[£N,B]+%[[£N7B],B]—I—... .

The commutator [Ly, B] contains the contributions [, B] and [Vn, B]. Up to small

errors, we find

I, B~ > p*np(bpb* , +bpb_p) (1.24)
pu’:'AfF
and )
- q E RS
Vv, Bl= s > V(N)nﬁ,,[bpb,ﬁbpb,p]. (1.25)
P,gEA]

In fact, the commutator [V, B] is approximately quartic in creation and annihilation
operators. Rearranging it in normal order, however, we obtain the quadratic contribution
(1.25) (the remaining, normally ordered, quartic term is negligible). With the appropriate
choice of the coefficients 7,, we can combine the (large) terms in (1.23)—(1.25), so that

(1) For a self-adjoint operator A and a positive operator B, the notation £A< B means that

—(¥, BY) < (v, AY) < (¥, BY)

for all ¥ in the domain of B.
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their sum can be estimated as in (1.22). At the same time, the second commutator
[[Lw, B], B] produces new constant terms that, again with the correct choice of 77, change
the vacuum expectation to its correct value 4wagN.

While (1.21) and (1.22) are enough to show Bose-Einstein condensation with optimal
rate for sufficiently small potentials (because the constant C' on the right-hand side of
(1.22) can be chosen proportionally to the size of the interaction), in general it is not.
So, a crucial ingredient in our proof of Theorem 1.1 is the additional estimate

Gn—En>cN,-C (1.26)

which follows from the analysis in [4], and also makes use of the result (1.6) from [19] and
[25]. Equation (1.26) controls the number of excitations in terms of the excess energy
Gn—En. Combined with (1.21), it also allows us to control the energy of the excitations,
showing that

Gn—FEn>cHn—C (1.27)

for appropriate constants C,c¢>0. In fact, combining (1.27) with a bound similar to
(1.21) for commutators of Gy with A\, we can go one step further and show that, if
Yy EL2(AYN) is such that Yyy=x(Hy—En<()¥n (ie. if ¢y belongs to a low-energy
spectral subspace of Hy), the corresponding excitation vector {ny=T*Unn satisfies

the strong a-priori bound
(€, [(HN+1) (Ve +1)+ (N2 +1)%)6n) <C(1+C) (1.28)

uniformly in N.
Armed with this estimate, we can have a second look at the renormalized excitation
Hamiltonian Gy, and we can prove that several terms contributing to Gy are negligible

on low-energy states. We find that
Gn =Cgy+Qgy +CNn+HN+Egy, (1.29)

where Cg, is a constant, Qg, is quadratic in (generalized) creation and annihilation

operators, C is the cubic term

1 S(P N\ g .
CN:W Z V(N)[bp+qb7p(chosh(nq)+b7qsmh(nq))—i—h.c.] (1.30)
P,gEANT
q#—p

and &g, is an error term that can be estimated by

+&y SONTV2(Hy+1)(N,+1)+ (N, +1)%] (1.31)
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and thus, by (1.28), is negligible on low-energy states.

The presence, in (1.29), of the cubic term Cy and of the quartic interaction Vy
(hidden in Hy) is one of the main new challenges, compared with our analysis in [3],
where we determined the ground state energy and the low-energy excitation spectrum
for the Hamiltonian (1.16), for 0<8<1 (and for sufficiently small interaction potentials).
For <1, these terms were small (on low-energy states) and they could be included in
the error &g, . For f=1, this is no longer the case; it is easy to find normalized &y effN
satisfying (1.28), and with ({n,CnEn) and (En, VNEn) of order 1 (not vanishing in the
limit N —00).

It is important to notice that cubic and quartic terms do not improve with different
choices of the coefficients 7,. This is related with the observation, going back to the
work of Erdés-Schlein-Yau in [13], and more recently to the papers [26] and [27] of
Napiorkowski—-Reuvers—Solovej that quasi-free states can only approximate the ground
state energy of a dilute Bose gas in the Gross—Pitaevskii regime, up to errors of order
1 (to be more precise, [13], [26] and [27] study the ground state energy of an extended
dilute Bose gas in the thermodynamic limit, but it is clear how to translate those results
to the Gross—Pitaevskii regime).

To extract the missing energy from the cubic and quartic terms in (1.29), we are going
to conjugate the excitation Hamiltonian Gy with a unitary operator of the form S=e?,
where A is an antisymmetric operator, cubic in (generalized) creation and annihilation
operators. Observe that a similar idea, formulated however with a different language and
in a different setting, was used by Yau—Yin in [33] to find an upper bound to the ground
state energy of a dilute Bose gas in the thermodynamic limit matching the Lee-Huang—
Yang prediction up to second order.

With S, we define yet another (cubically renormalized) excitation Hamiltonian
In=5"GNS =S T UyHyUTS: FSN — FSN,
With the appropriate choice of A, we show that
IN=Cgy+Qgy+VN+E7y, (1.32)

where Cz, and Q, are new constant and quadratic terms, while €7, is an error term,
satisfying an estimate similar to (1.31), and thus negligible on low-energy states. The
important difference with respect to (1.29) is that now, on the right-hand side of (1.32),
there is no cubic term! The quartic interaction term Vyy is still there, but this is a positive
operator, and therefore it can be ignored, at least for proving lower bounds.

Let us quickly explain the mechanism we use to eliminate the cubic term Cy. Ex-

panding to second order, we find

InN=5"GnS=eGnet ~Gn+[Gn, Al +1[[Gn, A], A +.... (1.33)
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From the canonical commutation relations (ignoring the fact that A is cubic in gener-
alized, rather than standard, field operators), we conclude that [K, A] and [Vy, A] are
cubic and quintic in creation and annihilation operators, respectively. Some of the terms
contributing to [V, A] are not in normal order, i.e. they contain creation operators ly-
ing to the right of annihilation operators. When we rearrange creation and annihilation
operators to restore normal order, we generate an additional cubic contribution. There
are therefore two cubic contributions arising from the first commutator [Gy, A] on the
right-hand side of (1.33). We choose A so that these two terms renormalize the cubic
operator (3.31) in Gy, making it small on low-energy states. While the generalized Bo-
goliubov transformation 7" used in the definition of Gy described scattering processes
involving two excitations with momenta p and —p and two particles in the condensate
(i.e. two particles with zero momentum), we find that the appropriate choice of the cubic
operator A corresponds to processes involving two excitations with large momenta p and
—p—+v, an excitation with small momentum v and a particle in the condensate. It turns
out that, with this choice of A, the only other terms generated through conjugation with
S=e* that give a non-negligible contribution to Jx are [Cy, A] and the second commu-
tator [[Hn, A], A]. These two terms produce constant and quadratic contributions that
transform Cg, and Qg, in (1.29) into Cz, and Q, on the right-hand side of (1.32)
(in fact, Q7, also absorbs the kinetic energy operator that was excluded from Qg, ).
Conjugating Jy with a last generalized Bogoliubov transformation R to diagonalize

the quadratic operator Q 7, , we obtain a final excitation Hamiltonian
My =R*InR=R*S*T*UnHNULTSR: FS~ — FV,
which can be written as

o 1 2 (8mag)?
MN:47T(N7].)G0+€AGO*§ Z (p +87rao\/|p4+167ra0p2)

2p?
p€A+

+ Z VIp[*+16maop?ana, + VN +Emy,

pEAL

(1.34)

with an error term £,4, which satisfies
£y SONTYH(HN+1) W41+ (N +1)%),

and is therefore negligible on low-energy states. With (1.34), Theorem 1.1 follows com-
paring the eigenvalues of M with those of its quadratic part, by means of the min-max
principle. To prove lower bounds, we can ignore the quartic interaction Vy. To prove
upper bounds, on the other hand, it is enough to control the values of Vxy on low-energy
eigenspaces of the quadratic operator; they turn out to be negligible.
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The plan of the paper is as follows. In §2, we briefly review the formalism of second
quantization. In particular, we define and study the properties of generalized Bogoliubov
transformations that play a very important role in our analysis. In §3 we introduce the
excitation Hamiltonian £y, the renormalized excitation Hamiltonian Gy and the exci-
tation Hamiltonian [Jn with renormalized cubic term, and we study their properties.
In particular, Proposition 3.2 provides important bounds on Gy, while Proposition 3.3
gives a precise description of Jy. In §4, we prove estimates for the excitation vectors
associated with low-energy many-body wave functions. §5 is devoted to the diagonaliza-
tion of the quadratic part of Jy and §6 applies the min-max principle to conclude the
proof of Theorem 1.1. Finally, §7 and §8 contain the proofs of Propositions 3.2 and 3.3,
respectively.

Acknowledgements. B.S. gratefully acknowledges support from the NCCR SwissMAP
and from the Swiss National Foundation of Science through the SNF Grant “Effective
equations from quantum dynamics” and the SNF Grant “Dynamical and energetic prop-

erties of Bose—Einstein condensates”.

2. Fock space

The bosonic Fock space over L%(A) is defined as

F=EP LA = L*n)"

n>=0 n=0

where L2(A"™) is the subspace of L?(A™) consisting of wave functions that are symmetric

with respect to permutations. The vacuum vector in F will be indicated by
Q={1,0,...} e F.

For g€ L*(A), the creation operator a*(g) and the annihilation operator a(g) are
defined by

. 1 _
(a’ (g)\I/)(”)(xl’,xn):ﬁZg(xJ)\D(" 1)(*%'13"'axj717xj+l7'“7xn)7
=1
(@) )" (21, 2) =V [ )W (0,1, )
A

Observe that a*(g) is the adjoint of a(g), and that the canonical commutation relations

[a(g), a*(R)] = (g, h) and [a(g),a(h)]=[a"(g),a" ()] =0
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hold true for all g, he L2(A) ({g, h) is the inner product on L?(A)).
Due to translation invariance of our system, it will be convenient to work in the
—ip-xT

momentum space A*=27Z3. For peA*, we consider the plane wave p,(z)=e in

L?(A). We define the operators

a;za*(gop) and  ap=a(pp)

creating and, respectively, annihilating a particle with momentum p.
For some parts of our analysis, we will switch to position space (where it is easier
to use the positivity of the potential V(z)). To this end, we introduce operator valued

distributions d, and & defined by
a(f) :/f(x)dw dx and a*(f)= / f(z)al dx.
On F, we introduce the number of particles operator A" defined by (N )™ =n @ (™),

Notice that
N= Z a;ap:/d;dz dz.
pEA*
It is useful to notice that creation and annihilation operators are bounded by the square

root of the number of particles operator, i.e.
la(f)CI < [FININY2] and [l (f) e[ < [ FIINV+1)20) (2.1)

for all feL?(A).

Recall that g denotes the zero-momentum mode in L%(A), defined by oo (x)=1 for
all ze A. We define L? (A) to be the orthogonal complement of the 1-dimensional space
spanned by ¢q in L?(A). The Fock space over L2 (A) will be denoted by

Fi= @Li(A)®Sn~

n=0

*

P
peA*:=2rZ3\{0}. On F,, the number of particles operator will be denoted by

N, = Z apap.

pEAi

This Hilbert space is generated by creation and annihilation operators o) and a,, with

For NeN, we also define the truncated Fock space

N
FEN =@ I
n=0
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On ]-'fN, we introduce modified creation and annihilation operators. For feL? (A), we

set
N-N,

o) = () ana () =at(ny N

We have b(f),b*(f): FSN — FSN. The interpretation of these fields becomes clear if we
conjugate them with the unitary map Uy defined in (1.18). We find

Ut (DS u3 = (1)) T =0

which means that b*(f) excites a particle from the condensate into its orthogonal comple-

~—

)

ment and, similarly, that b, annihilates an excitation back into the condensate. Compared
with the standard fields ¢* and a, the modified operators b* and b have an important
advantage; they create (or annihilate) excitations but, at the same time, they preserve
the total number of particles. As a consequence, again in contrast with the standard
fields a* and a, the modified operators b* and b leave the truncated Fock space ffN
invariant.

It is also convenient to define modified creation and annihilation operators in momen-
tum space and operator valued modified creation and annihilation operators in position

space, putting

N-N. . . [ NN
by, = N Ta, and b, =a, N e (2.2)
for all pe A%, and
. N-N, N-N,

- Ix _ o~k
» and bl =a,

N
for all z€A.

Modified creation and annihilation operators satisfy the commutation relations

[bp, by] = <1]\;>5p7qNaqapa

[bzan]:[ » b*]:O

joR

(2.3)

and, in position space,

Furthermore,
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It follows that [b,, N\]=b, and [b*, N\]=—b%, and, in momentum space, [b,, N;]=b, and
(b, Ny]=—by. With (2.1), we obtain

N+1—J\/’+)1/2§

¥ <IN 2],

el < 1] HN&“(

VANV
(et < v +na (B ) e

\ <IN, +1)2¢]

for all feL? (A) and fEffN. Since V. <N on }"fN, b(f),b*(f) are bounded operators
with [[o(f)I], [|6* () < (N +1)2| f]].
Next, we introduce generalized Bogoliubov transformations and we discuss their

properties. For n€f?(A*) with n_,=n, for all peA*, we define
1

Bp=3 3 (b, —pbyby), (2.4)
pEAT
and we consider .
63<n>_exp<2 S (bib* pﬁ,,b,,b_,,)). (2.5)

pEAY
We refer to unitary operators of the form (2.5) as generalized Bogoliubov transformations,
in analogy with the standard Bogoliubov transformations

P —exp (5 3 (e, ) ). (26)

pEAi
defined by means of the standard creation and annihilation operators. In this paper, we
will work with (2.5), rather than (2.6), because the generalized Bogoliubov transforma-
tions, in contrast with the standard transformations, leave the truncated Fock space ffN
invariant. The price we will have to pay is the fact that, while the action of standard

Bogoliubov transformation on creation and annihilation operators is explicitly given by

e~ B g, eBM = cosh(n,)a,+sinh(y,)a* (2.7)

p

there is no such formula describing the action of generalized Bogoliubov transformations.
An important part of our analysis is therefore devoted to the control of the action of (2.5).
A first important observation in this direction is the following lemma, whose proof can

be found in [6, Lemma 3.1] (a similar result has been previously established in [31]).

LEMMA 2.1. For every neN there exists a constant C'>0 such that, on ]:fN,
e~ B (N++1)neB(n) < CeCHnH(J\/++1)n (2.8)

for all nel?(A*).
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Unfortunately, controlling the change of the number of particles operator is not

enough for our purposes. To obtain more precise information we expand, for any pe A%,
Y4
e—B(n)bpeB(n) — bp—i—/ ds Ie—sB(n)bpesB(n)
0 S
1
—b,~ [ dse BB, b,JesP
0
1 S1
= b, ~[B(n).by)+ / s / dss =P [B(y), [B(n), bylJe™ 5.
0 0

Iterating m times, we find

m—1 ad(n) (b )
e~ By B — Z(_l)n B(T’Z') P
n=1 '

1 S1 Sm—1

where we recursively defined

(2.9)

adly) (A)=A and adly) (A)=[B(n),ad} " (A)].

We are going to expand the nested commutators adg()n)(bp) and adgl(n)(b;). To this

end, we need to introduce some additional notation. We follow here [6], [2] and [3]. For

f1, s fn€la(AY), 4= (81, ..., 8n),b=(bo, -...Dn—1) €{ -, %}, we set

H(2 (fla' ’fn)

bl ﬁZ bg ﬁn 1 ﬁn 2 10)

J— b0 77. 1
- Z baoplaﬂlplaalpzaﬁzpzaazpa g ipp_1%an_1pn ,6’npn l I ff pf
D1, Pn EA*

where, for £=0,1, ..., n, we define ay=1 if by=x, ay=—1if by=-, By=1if fy="- and B,=—1
if gy=+. In (2.10), we require that, for everyj 1,..,n—1, we have either f;=- and
bj=x or fj=x+ and bj=- (so that the product aﬁ e Zf[p“l always preserves the number
of particles, for all ¢=1,...,n—1). With this assumption, we find that the operator
Hé,?b)(fl, woty fn) maps ]-'fN into itself. If, for some £=1,...,n, by_1=- and fy==x (i.e. if the
product aif,;llpe agfem for /=2,...,n, or the product b@oplaﬁﬁlp for /=1, is not normally

ordered) we require additionally that f,€¢*(A*). In position space, the same operator

can be written as

H(Q)(fh' ~7fn):/bb0 ”labzaé’;‘; 0% "'égﬁf_ﬁdi’fli’gﬁ, er(ﬂ*ye)diﬂedyz- (2.11)
=1
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An operator of the form (2.10), (2.11) with all the properties listed above, will be called
a II®)-operator of order n.

For g, fi, ..., fn€La(A%), f=(t1, ..., fn) E{-, ¥}, b=(bg, ..., b ) E{-, x}" 1, we also de-
fine the operator

H(l)(flv . 7fnag)

n

— b() ﬂl bl ﬁ2 bz un—l bn—l H

- : : bo‘l)apl B1p1 aalp2 aﬂ2p2 aa2p3 o aﬂ"71p"71aa7l_1pn Bnpn pf
D1y, Pn €EA* =1

(2.12)

where oy and Sy are defined as above. Also here, we impose the condition that, for all
£=1,...,n, either f,=- and by=x, or =% and by=-. This implies that H( )(fl,. )
maps ffN back into .7-'<N Additionally, we assume that f,€f!(A*) if bg,l—- and ff,=x
for some ¢=1,...,n (i.e. if the pair al,’w lma%’em is not normally ordered). In position

space, the same operator can be written as

n

1 5
Hé’b)(fl,...,fn; g)= /b';f1 gllazgaﬁyi i"; a?]; llai':l 14 ﬁ" H (xe—ye) dxy dyp.

(2.13)

An operator of the form (2.12), (2.13) will be called a TI™"-operator of order n. Operators
of the form b(f), b*(f), for a f€£2(A*), will be called II(V)-operators of order zero.

The next lemma gives a detailed analysis of the nested commutators ad% () )(b ) and

ad];()n)(b;) for n€N; the proof can be found in [2, Lemma 2.5] (it is a translation to

momentum space of [6, Lemma 3.2]).

LEMMA 2.2. Let nel?(A%) be such that n,=n_, for all pel*(A*). To simplify the
notation, assume also 1 to be real-valued (as it will be in applications). Let B(n) be
defined as in (2.4), neN and peA*. Then, the nested commutator adgl()n)(bp) can be
written as the sum of exactly 2"n! terms, with the following properties.

(i) Possibly up to a sign, each term has the form

ArAs o Ay NTFIED (7 P m5pa) (2.14)
for some i,k,s€EN, ji, ..., i eN\{0}, 1€ {-, *}*, be{- *}**! and ac{+£1} chosen so that
a=1if bpy=- and a=—1 if b=x (recall here that @,(x)=e~P*). In (2.14), each oper-
ator Ny: FSN o FSN w=1,...,i, is either a factor of the type (N—N)/N, a factor of

the type (N+1—N,)/N, or an operator of the form

N hHé?)b/( ’ ’rIZ2a ceny 77Zh) (215)
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for some h,z1,...,zn €N\{0}, #,bc{- x}".
(ii) If a term of the form (2.14) contains meN factors of the type (N—N,)/N
r (N=(N,—=1))/N and jEN factors of the form (2.15) with I -operators of order
h1,...,h; EN\{0}, then we have

m+(h1+1)+...4+(hj+1)+(k+1) =n+1.

(iii) If a term of the form (2.14) contains (considering all A-operators and the TI™)-
operator) the arguments n't,...,n'™ and the factor n, for some m,s€EN, and iy, ...,im €
N\ {0}, then

it...+tm+s=n

(iv) There is exactly one term of the form (2.14) with k=0 and such that all A-
operators are factors of the type (N—N,)/N or (N+1—-N,)/N. It is given by

N—N+ n/2 N—l—].—./\ﬁr n/2 -
N N e

if n is even, and by

n gk
Pb_P

B N—N+ (n+1)/2 N+1—N+ (n—1)/2
N N

if n is odd.
(v) If the I -operator in (2.14) is of order k€N\{0}, it has either the form

k
bi Ji
Z baom H aB pi Qaipiy *Pknp ‘11’1_[77 i
i=1
or the form
bo by 2r+1 *
Z Do H A, p, O pi i Worlp H”

P15---3Pk

for some reN, ji, ..., jreN\{0}. If it is of order k=0, then it is either given by 12 by,

2r+1 b*

or by n, * p» for some reN.

(vi) For every non-normally ordered term of the form

D ety D Mbaag, D myagby oY mbeb,

geEN* LIS qeEA* S

appearing either in the A-operators or in the I -operator in (2.14), we have i>2.
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With Lemma 2.2, it follows from (2.9) that, if ||| is sufficiently small, then

e—B(n)b eB(n) _i (_1)n ad(n) (b )
p - n' B(n) b/

0 (2.16)
eBoer =y 1 (= 1) a2 (07),
n=0

where the series converge absolutely (the proof is a translation to momentum space of
[6, Lemma 3.3]).

In our analysis, we will use the fact that, on states with N <N, the action of the
generalized Bogoliubov transformation (2.5) can be approximated by the action of the
standard Bogoliubov transformation (2.6), which is explicitly given by (2.7) (from the
definition (2.2), we expect that b,~~a, and by ~ay, on states with Ny <N). To make this
statement more precise we define, under the assumption that ||7|| is small enough, the

remainder operators

m m * 1 * m 1
dg= Z m( d(_B) n)(b )=y b(ﬁxm o) and dj= Z %(ad—B(n)(b )=y buo‘yr’z ),
m =0 m=0

(2.17)
where geAY, (B, am)=(-,+1) if m is even and (#,,, o, ) =(*, —1) if m is odd. It follows
then from (2.16) that

e BB = by +o b7 +d, and e BWpreBM) =q bt tob_ +di,  (2.18)

where we introduced the notation y,=cosh(n,) and o,=sinh(r,). It will also be useful to
introduce remainder operators in position space. For €A, we define the operator valued
distributions d, and d* through

e BpeP) —p(3,)+b*(5,)+de and e BDpE B = p*(5,)+b(5,)+dE,

where 7, (5) =3+ cosh(1)e @9 and &, (y) =3, . sinh ()t @),
The next lemma confirms the intuition that remainder operators are small, on states
with A, < N. This lemma is the result that will be used in the rest of the paper (in

particular in §7) to control the action of generalized Bogoliubov transformations.

LEMMA 2.3. Let nef?*(A%), n€Z. Let the remainder operators be defined as in
(2.17). Then, if ||n|| is small enough, there exists C>0 such that

C .
IO+ 1)/ 2] < (IO 1) 92 [y (A 1) 4272,
(2.19)

C
I+l < I +1) 7%
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for all pe A% and, in position space, such that
V4128l < S (I 2¢] g (A +1) 2]
1N +1)" 2y, d, €] < %(lléz(f\ﬁﬂ)(”“)/z&ll+(1+|T7(96*y)|)H(N++1)(”+2)/2§||
+ay (N A+ 1) 2 4| aga, (N +1) " H272¢))
(N +1)"2d,dy €| < %(H(N++1)("+G)/2€||+|77(x*y)|H(N++1)("+4)/2€||

s (W +1) "2 4 lay (N +1) 0+ 2|
ldady (N +1) 092

(2.20)
for all x,y€A, in the sense of distributions.

Proof. To prove the first bound in (2.19), we notice that, from (2.17) and from the
triangle inequality (for simplicity, we focus on n=0, powers of A can be easily commuted

through the operators d,),

g€l < 37 1 (o) et el (2.21)

m>0

From Lemma 2.2, we can bound the norm H(ad(_"g(n)(bq) ?b&fnp)§|| by the sum of one

term of the form

(m+(1-am)/2)/2 (m—(1—am)/2)/2
N-N, N+1-N, 1)t (2.22)
N N T]p anng :
and of exactly 2™m!—1 terms of the form
1AL A, NTRIIE) (7?50 g, )€ (2.23)
1434y #.b e n vnp gpaelp ) .

where i1, k1, 01 €N, j1, ..., jk, EN\ {0}, and each A,-operator is either a factor (N —N,)/N
a factor (N4+1—N,)/N, or a TI®-operator of the form

NI (7 ™), (2.24)

with h, z1, ..., 2, €N\{0}. Furthermore, since we are considering the term (2.22) sepa-
rately, each term of the form (2.23) must have either k1 >0, or it must contain at least
one A-operator having the form (2.24). Since (2.22) vanishes for m=0, it is easy to bound

]\[7'/\/+ (m+(1—am)/2)/2 N+17N+ (m—(1—am)/2)/2 -
e 5 L ¢

SO™ "IN g |V +1)2 2] .
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On the other hand, distinguishing the cases ¢;=0 and ¢, >0, we can bound

HAl AilNiklng}b)(ﬁjl, ...777jk1;77£1(pa€1p)§‘|
<C™ ™ N T (I [V +1)%72€| [y (N +1)E).

Inserting the last two bounds in (2.21) and summing over m under the assumption that
|ln]] is small enough, we arrive at the first estimate in (2.19). The second estimate in (2.19)
can be proven similarly (notice that, when dealing with that estimate, contributions of
the form (2.23) with £, =0, can only be bounded by [|b% (N +1)&[| < [|(NVy+1)3/2¢][). Also
the bounds in (2.20) can be shown analogously, using [3, Lemma 7.2]. O

3. Excitation Hamiltonians

Recall the definition (1.18) of the unitary operator Uy: L2(AN)— FSV | first introduced
n [18]. In terms of creation and annihilation operators, Uy is given by

N alpo) V"
Uy w:@uf\wowm@”%

n=0

YN

for all Yy €L2(AYN) (on the right-hand side we identify the function ¢y € L2(AY) with
{0,...,0,%n,0,... }€F). The map U;{,:}"fN%Lf(AN) is given, on the other hand, by

(N)} Z \/N n)

It is instructive to compute the action of Uy on products of a creation and an

Uz {0 o™

annihilation operator (products of the form aya, can be thought of as operators mapping
L2(AYN) to itself). For any p,qeA* =27Z3\ {0}, we find (see [18]) that
UNCLSCL()U;\} = N—N+,
UnayaoUy = ap/N =N,
UnagayUy =/ N—=N.ap,

* * %
UnayaUyn =a,aq.

(3.1)

Writing (1.1) in momentum space and using the formalism of second quantization, we

find
i T * *
Z praya,+ Z V(N)ap+raqapaq+r, (3.2)
peA* p q,rEA*
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where

Vik)= | V(z)e ™" da
R3

is the Fourier transform of V, defined for all k€R3. With (3.1), we can compute the
excitation Hamiltonian Lxy=UnxHnUj: ]-'fN—ﬂ:fN. We obtain

Ly=L0+LP 4+ +c, (33)
with
o N-1 V(0)
ggv):WV(O)(N—NQ—i—W/\ﬂ(N Ny),
2 % S P * 1 *
(9= 3 e 5 0(2) i )
pEA] PEAL
1 > p * 7%
oL
pEAi
1 (3.4)
3 S( D * * *
ACEV)ZiN Z V(N)(bp+qa7paq+aqa7pbp+Q)
pqEAi
p+q7#0
(4)_ 1 ST * *
Ly =3N5 > V(ﬁ)amr%%aﬁr'
P,gEAY
reA*
r#—p,—q

Conjugation with Uy extracts, from the original quartic interaction, some constant
and quadratic contributions, collected in ﬁg\?) and Eﬁ). In the Gross—Pitevskii regime,
however, this is not enough; there are still important (order-N) contributions to the
ground state energy and to the energy of low-lying excitations that are hidden in the
cubic and quartic terms. In other words, in contrast with the mean-field regime, here we
cannot expect ES\?;) and ﬁ%‘) to be small. To extract the relevant contributions from LE\?;)
and ,Cgs), we are going to conjugate Ly with a generalized Bogoliubov transformation of
the form (2.5).

To choose the function € ¢? (A%) entering the generalized Bogoliubov transformation

(2.5), we consider the ground state solution of the Neumann problem
[—A+3V]fe=Acfe (3-5)

on the ball |z|<N¢ (we omit the N-dependence in the notation for f; and for As; notice
that Ay scales as N~3), with the normalization fy(x)=1 if |[x|=N/{. It is also useful
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to define we=1—f,; (so that we(x)=0 if |z|>N¥¢). By scaling, we observe that f;(N.)

satisfies the equation
(~A+IN?V(Nz)) fo(Nz)= N2\ fo(Nz)

on the ball |z|<f. We choose 0<{< 3, so that the ball of radius ¢ is contained in the box

A=[-1, %}3 We then extend f¢(N.) to A, by choosing fy(Nz)=1 for all |z|>¢. Then,

(~A+5N?V(Na)) fo(Nx) = N> fo(Nx)xe(z) (3.6)
where xy is the characteristic function of the ball of radius ¢. It follows that the functions

x> fe(Nz) and also z—wy(Nx)=1—f;(Nz) can be extended as periodic functions on

the torus A. The Fourier coefficients of the function z+—we(Nx) are given by

—ip- 1 _rp
DT £
/Awg(Nx)e dac—N3wg<N),

where

we(p) :/ wy(z)e P da
R3

is the Fourier transform of the (compactly supported) function wy. The Fourier coeffi-

cients of x— fy(Nz) are then given by
; —ip-x 1 S p
fen(p) 5:/Afz(N$)€ i dz:t;p,o*ﬁwe(ﬁ) (3.7)

for all pe A*. From (3.6), we derive

N2 =S (P—q\ ; P
—p2@z(§)+2qEZA:*V(qu)fe,N(q)=N5Aeq§*>?e(p—Q)fe,N(q)~ (3:8)

In the next lemma we collect some important properties of wy and fp. The proof of

the lemma can be found in Appendix B.

LEMMA 3.1. Let VeL3(R3) be non-negative, compactly supported and spherically
symmetric. Fix >0 and let f, denote the solution of (3.5).

(i) We have
3ag 9 a a2
MM=———|1+=-—+0O0 —— . 3.9
‘ (zN)S( st ((ezv)2 (3:9)
(ii) We have 0< fo, we<1, and there exists a constant C >0 such that

3 ag Ca}
- 220 )«
V(z)fe(x)dx—8magy <1—|—2 7 ) ’ e

(3.10)

R3
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Jor all £€(0,3), NeN.
(iii) There exists a constant C>0 such that

wg(x)gi and  |Vwe(z)| < —— (3.11)

|z|+1
for all z€R3, (e (0, %) and N €N large enough. Moreover,
L/ (2) do— 2rag| < £ (3.12)
V02 ngg z) dz — =mdg .

for all £€(0,L) and NEN large enough.
2
(iv) There exists a constant C>0 such that

(2]«

for all peAy, L€ (O, %) and N €N large enough.
We define n: A*—R through

np=—$@e(%). (3.13)

From (3.8), we find that these coefficients satisfy the relation

() T (e Y gt 10
geN* qEN*

or equivalently, expressing also the right-hand side through the coefficients 7,

aner%f/(%)jL% > V(z%)nﬁN%@(p)JrN?Ae > Relp—q)mg. (3.15)
gEA* qeEA*

With Lemma 3.1, we can bound
C

el < = (3.16)
I)‘ pg

for all pe A* =277Z3\{0}. Equation (3.16) implies that n€/¢?(A*), with norm bounded
uniformly in N. In fact, denoting by 57€ L(A) the function with Fourier coefficients 7,

and using the first bound in (3.11), we even find

lwe(Na)|2 da = / de<Cl, (37)

[nll? =1172l1* = [|Nwe (N -) | =N2/ —
|| <L |z

| <L

which implies that ||7|| can be made arbitrarily small, by choosing £€ (0, 3) small enough
(this remark will allow us to use the expansions (2.16) and the bounds in Lemma 2.3).
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Notice that 7j(z) has a singularity of the form |z|~! at 2=0, regularized only on the scale
N1 In particular, from (3.11), we obtain that

7]l <CN (3.18)
and that
IVil3= "> p’lmpl* <CN. (3.19)
pEAY

We will mostly use the coefficients 7, with p#0. Sometimes, however, it will also
be useful to have an estimate for 7y (because the equation (3.15) involves 7p). From
Lemma 3.1 (iii), we find that

70| < N2 / wy(x) de < CE2.
-

By (2.18), it will also be useful to have bounds for the quantities o, =sinh(n,) and

~qg=cosh(n,), and, in position space, for

G(x)=Y_ sinh(ng)e” and F(x)= Y  cosh(n,)e'"" =3d(z)+7(x),
qeEA* qEN*

with #(z)=3_ - (cosh(ng) —1) €' In momentum space, we find the pointwise bounds
l0gl <Clal ™2, log=nq <Clal™%, gl <C, =1 <Clgl™" (3.20)
for all ge A% . In position space, we obtain from (3.18) the estimates

15ll2<C, 6]l <CN, |

55700 SCN. (3.21)

With nef?(A*), we construct the generalized Bogoliubov transformation e? ()
ffN%]:fN, defined as in (2.5). Furthermore, we define a new, renormalized, excitation
Hamiltonian Gy: ]-'fN%]:fN by setting

Gn=e B LyeB0) =By HyUzeP™: FSN o FSN. (3.22)

In the next proposition, we collect some important properties of the renormalized

excitation Hamiltonian Gy. Here and in the following, we will use the notation

* 1 > r * *
K= Z p’aja, and Vy= N Z V(ﬁ)%ﬂ«%“ﬁr% (3.23)
pEAL p,qEAY
reA*
T#=P,—q

for the kinetic and potential energy operators, restricted on ]-'fN. Furthermore, we will
write Hy=K+Vn.
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PROPOSITION 3.2. Let VeL3(R3) be non-negative, compactly supported and spher-
ically symmetric. Let Gn be defined as in (3.22), with KG(O, %) small enough. Let En
be the ground state energy of the Hamilton operator (3.2).

(a) We have

Gn—En=HNn+AN, (3.24)

where the error term AN is such that, for every §>0, there exists C'>0 with
AN <IHN+CO(NL+1). (3.25)
Furthermore, for every k€N, there exists C >0 such that
j:ad (QN) :tad (AN) N, N AN ]S C(HN+D). (3.26)

(b) For peA%l, we use the notation, already introduced in (2.18), o,=sinhn, and
Yp=coshn,. Let

Cgy = N 0+ Y (PPo2+V (%) (@p+02))

PEATL
tay 2 V(R )emn g ¥ (0 (V(5)n)m) o)
P,gENL pEA*
OB
geEN PEATL

For every peAY, let

(P 2 o (P4
(I)p:2p201§+v(ﬁ)(7p+0p)2+ﬁ%op Z V(T)nq

ach (3.28)
~(yptop) Z V()
qEA*
and
2 (P 2 2, 2y 1 (P4
L O S s O
) . ! (3.29)
257 2 V()
geEA*
Using ®, and I',, we construct the operator
* 1 * 7% * 7%
=D Ybpbptg Y Tp(0br,+bybe,). (3.30)

PEAL PEAL
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Moreover, we define

1 17 p * * *
Cn = Z V(i)(bp+qb—p(7qbq+aqb—q)+h~c-)- (3.31)
N N
P,qENT
q#—p
Then, we have
In=Cgy+Qgy +HN+CNn+Egy (3.32)

with an error term Eg, satisfying, on ]-'fN, the bound

C
+E, < i (HN+NZ+1) (N, +1). (3.33)

For the Hamilton operator (1.16) with parameter S€(0; 1), a result similar to Propo-
sition 3.2 has been recently established in Theorem 3.2 of [3]. The main difference between
Proposition 3.2 and previous results for <1 is the emergence, in (3.32), of a cubic and a
quartic term in the generalized creation and annihilation operators (the quartic term Vy
is included in the Hamiltonian H ). As explained in the introduction, for f<1, the cu-
bic and the quartic parts of G were negligible and could be absorbed in the error &g, .
In the Gross—Pitaevskii regime, on the other hand, this is not possible. It is easy to
find normalized £€F£" with bounded expectation of (N, +1)(Hx+N2+1) such that
(&,CnE) and (€, Vn¢&) are of order 1 and do not tend to zero, as N —o0.

To extract the important contributions that are still hidden in the cubic and in the
quartic terms on the right-hand side of (3.32), we conjugate the renormalized excitation
Hamiltonian Gy with a unitary operator obtained by exponentiating a cubic expression
in creation and annihilation operators.

More precisely, we define the skew-symmetric operator A: ffN—>]-"fN by

1
A= —— (bl b b bt b by —hc) = Ag+ A, —h.c., 3.34
\/Nrezp: 77 ( + ’Y + ) Y ( )
H
vEPL

where P ={peA* :[p|<N'/2} corresponds to low momenta and Py =A*\ Py, to high mo-
menta (by definition, r+v#0). The coefficients 7, are defined in (3.13); they are the same
as those used in the definition of the generalized Bogoliubov transformation exp(B(n))

appearing in Gy. We then define the cubically renormalized excitation Hamiltonian
IN = efAefB(")UNHNUEBB(n)BA =e AGyet: ]'—fN — ffN~ (3.35)

In the next proposition, we collect important properties of Jy.
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PROPOSITION 3.3. Let Ve L3(R3) be non-negative, compactly supported and spher-
ically symmetric. Let Jn be defined as in (3.35). For peAY, we use again the notation

+9

op=sinh(n,) and y,=cosh(n,), and we recall the notation fg,N from (3.7). Let
N—-14

o =570 5 (3 (o (7))

1 ~/P—q 1 99, 1 (57
toy X V(e g 5 (o (V(5) ) m )
p,qEAT pEA*

(3.36)

Moreover, for every pe A’ we define
Fy: =p2(0§+7§)+ (V(N) *ff,N)p(%"‘Up)Qv

ooy () i) v o7

N
With the coefficients F,, and G,, we construct the operator

* 1 k7 %k
Qrvi= Y (prpbp+2(;p(bpbp+bpbp)>

pEAY,

quadratic in the b,b*-fields. Then, we have
IN=Cgy+Qgy+VN+E7y
for an error term €z, satisfying, on ]-'fN,
L7y SON"VH(Hy+ )N, +1)+(N+1)°). (3.38)

The proof of Proposition 3.2 is deferred to §7. Proposition 3.3 will then be proved
in §8. In the next three sections, on the other hand, we show how to use these two

propositions to complete the proof of Theorem 1.1.

4. Bounds on excitations vectors

To make use of the bounds (3.33) and (3.38), we need to prove that excitation vectors
associated with many-body wave functions ¥y €L2(AY) with small excitation energy,
defined either as e Uy ) (if we want to apply (3.33)) or as eAeBMUy ¥y (if we want
to apply (3.38)) have finite expectations of the operator (Hx+1)(N,+1)+(N,+1)3.
This is the goal of this section.

B(

We start with estimates on the excitation vector &y =ePMUy ¥y, that are relevant

to bound errors arising before conjugation with the cubic exponential exp(A).
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PROPOSITION 4.1. Let Ve L3(R3) be non-negative, compactly supported and spher-
ically symmetric. Let En be the ground state energy of the Hamiltonian Hy defined in
(3.2) (or, equivalently, in (1.1)). Let ¥y €L2(AN) with ||vn||=1 belong to the spectral
subspace of Hy with energies below En+(C, for some (>0, i.e.

YN =1(—oo,Ex+¢] (HN)UN. (4.1)

Let fN:e_B(”)UNwN be the renormalized excitation vector associated with n. Then,
for any keN, there exists a constant C'>0 such that

En, N+ DF(Hy+1)EN) SCA+CF. (4.2)

Remark. As shown in [4], the bound (§n, N, &n)<C(¢+1) which follows from (4.2)
taking k=0 (because Ny <CH ), immediately implies that normalized many-body wave
functions vy € L2(AY) satisfying (4.1) exhibit complete Bose-Einstein condensation in
the zero-momentum mode g with optimal rate. In other words, it implies that the

1-particle reduced density 'y](\}):tr27.,_7N|wN><@ZJN| associated with vy is such that

(1)

1—(0, 7N %KM.

X (4.3)

Proof. Let Q¢=ran 1(_oo;py+¢(Gn). We claim that, for every k€N, there exists a
constant Dy >0 with

(Eny N+ )R (Hy+1)EN)
sup 5
EnEQA{0} Enl

< Dp(14¢)%F (4.4)

for all (>0. Clearly, (4.4) implies (4.2) for even k. In fact, by interpolation, it implies
(4.2) for arbitrary k€N (we thank the anonymous referee for this remark, which allows
us to simplify this proof). We prove (4.4) by induction over k€N. Let us first consider
k=0. To show (4.4) with k=0 we combine (3.24) and (3.25) with the results of [4]. In
[4], we consider the excitation Hamiltonian QN,g:e_B("H) UNHNU;,eB("H), renormalized
through a generalized Bogoliubov transformation with coefficients ng (p)=n,x(|p|=£~%)
for all pe A%, where 7, is defined as in (3.13) (and ¢ is, as in (3.5), the radius of the ball
on which we solve the Neumann problem used to define 7). Using [4, Proposition 6.1]
and the observation Ey <4mwagN+C (which follows from (3.24) and (3.25), taking the
vacuum expectation), we conclude that, for each >3 and £¢€ (07 %) small enough, there

exist constants ¢, C>0 with
One= En+ N —C.
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Using Lemma 2.1 (and the fact that |ng||<||n||<C, uniformly in N), we can translate
this bound to an analogous estimate for the excitation Hamiltonian Gy defined in (3.22).
We obtain

Gy =e BBt g o= B BM) 5 prut e N —C

with new constants ¢, C>0. Combining the last equation with (3.24) and (3.25), we also
find constants ¢, C'>0 such that

GNn—EnZcHN-C (4.5)
for all N large enough. Thus, for any {x €Q¢, we have

(&N, (HN+1)En) SCEn, (Gn—EN)En)+CIEN]I? < CA+O)|IEnN ]

which implies (4.4), for k=0.

Let us now consider the induction step. We assume that (4.4) holds true for a k€N
and we show it for k replaced by k+1. We use the shorthand notation G\ =Gy —En.
Let {y€Qc¢. From (4.5), we find

(En, WL+ D)2 (A +1)En) = (En, (N +DF (Hy +1) (W +1)F ey)
<C{En, (Na A1) (G +C) N+ 1) )

=C{En, (N 4122 (G +CO)én) (4.6)
+C(En, (NoAD) Gy, W+ D))

=1+1I.
For any {n€Q¢, we can bound the first term by

1< CEn, N+ P2EN 2G4+ 0)en, (N +1)RT2 (G +C)en) 2

<Cln, N+ (Hy +1)en) /2
< ((Gn+C)en, N +1) 2 (Hy +1) (G +C)én) 2

' s (N A1) (H 4+ 1)E
<Cllnll G +Chexl sup NN (o)
EnEQc\{0} 1351

)

<CO+0O)|En|P sup (Exy We+ 1) (Hy +1)€n)
ENEQ: En]|?
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where we used he fact that (G +C)én €Qe with ||[(Gy +C)En|| < (C+C)||€n]| for all En e
Q¢. By interpolation, we conclude from the induction assumption that

1< Henlp sup (oMot DGy DEN)
47 vea Ex2
+C(1+¢)? sup <£N’(N++1)~2k(HN+1)£N>
Exe E
<Ll snp Nt IO+ DEN)
A avea: FE

(4.7)

+OD(14¢) 2 len]?

for every {n €Q¢. To bound the second term on the right-hand side of (4.6), we use the

identity (which can be proven by induction over k)

/ k1 S (k1 () (o kt1—j
Ghs WD) ==>" i adyy, (Gn) (V2+1)

Jj=1

to write

k+1 k—l—l 4 ‘
H:—Z( j ><£N7(N++1>’c+1ad§@(gjv) (N +1)FH Ty,

=1

From (3.26) in Proposition 3.2 we know that A;:=(Hy+1)"1/2 adl(j\)h (Gh) (Hn+1)71/2

is a self-adjoint operator on ffN, with norm bounded uniformly in N. Hence, we obtain
1] < Crl|(Hn + 1) 2N+ )R en || (M +1) (Ve + 1) e |

for a constant Cj depending on k (but not on N). With the induction assumption we

conclude that
[0} < 5 (s (Ve + )52 (i +1)n) +CRDR (140 flgw |1 (4.8)
Inserting (4.7) and the last bound in (4.6), we obtain
(En, W+ 12 (A +1)En) < Diga (14022 € |2

for all {x €Q¢ and for an appropriate constant D1 (one can take Dy.1=2(C+C%)Dy,
if C and C}, are as on the right-hand side of (4.7) and (4.8)). We conclude that

sup (€N, (N1 2 (Hy+1)En)

< Dpy1 (14)*F 2,
Eve@nio) e +1(1+¢)

This completes the proof of (4.4). O
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Next, we control the growth of powers of N, and of the product
(NMi+1)(Hn+1)

under conjugation with the operator exp(A). These bounds are needed to apply Propo-

sition 3.3. First, we focus on the growth of powers of the number of particles operator.

PROPOSITION 4.2. Suppose that A is defined as in (3.34). For any k€N, there exists
C>0 such that, on ]-'fN, we have the operator inequality

e AN DA COW, + )R
Proof. Let éeF£N and define p¢: R—R by
pe(s) = (& e AN+ 1)ke ).
Then we have, using the decomposition A=A, +A,—h.c. from (3.34),
Dape(s) =2Re(€, e AN +1)F, A,]e€) +2 Re(g, e AN, +1)F, A, Je*A¢).
We start by controlling the commutator with A,. We find

<£7€75A[(N++1)k7A0']68A£>
L ST ot b b b [N ) (V1) et ).

re€Pg,vePr

El

With the mean value theorem, we find a function 6: N— (0;3) such that

Since by =(N;+1)b, and BN =(N, —1)bs, we obtain, using the Cauchy-Schwarz
inequality and the boundedness of 6,

(€, e A N4, Agles26)]

c
< — oo [NV +1)73/4HE=1/2y p p o esA
\/NZWH (V5 +1) + ¢l

repP,
ver; X [N 1)/ 4t (B D/2gsdg
C . _ (4.9)
< o N, 1)3/4+(k=1)/2 sAg )2
\/NHnlle [2 [[(NVs+1) &l
C A k
< es 7-/\[ +1 +1/265A

<C(e*de, (VA1) e
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for a constant C'>0 depending on k. Similarly, the commutator with A is bounded by
(€, eV +D)F, Ay Jes 26|

C
S 37 Il Vet 1) TV ED2h b oo
\/N rePy

vePy X [N+ DY HED2p esdg) (4.10)
C
il N+ 1)3/4+(k=1)/2 s Ag) 12
\/Nllnll 2[|(Mi+1) ¢l
<OlE e AW, +1)Fee).
This proves that
Dsipe(s) < Cope(s)

so that, by Gronwall’s lemma, we find a constant C' (depending on k) with
(& e AW D)Fele) = Ol (Ve +1)%). D

To control the growth of the product (Hy+1)(N, +1) with respect to conjugation
by e, we will use the following lemma.

LEMMA 4.3. Let VEL3(R®) be non-negative, compactly supported and spherically
symmetric. Let A and Hy be defined as in (3 34) and, respectively, after (3.23). Then,

My, A Z@ +hec., (4.11)
where
@029514@82)__7 S v( )b:Hb’ir(%bv—&—mb’iv)
rGPH
vePr,
CH @(1) @(2) Z Nebl b 10 by + (02 +70) o, b" ]
\/7TEPH
vePr

2 17 U * * * *
O4 @ +@( N3/2 Z Z V(N)nrbr+v+ub7ra’qa’q+u(7vbv +Uvb7u)
rePy gqeEAY
ve Py, wEA*
u#—q,—r—uv

63:6 +@(2 N3/2 Z Z ( ) r+vbtr+uaza¢I+u(’y@bU+0vbiv)
re€ Py qEA*

vEPL yeA*
uFE—q,r

94:9( 6(2 N3/2 Z Z V( ) r+v -r

r€Py qEAY
VEPL yeA*
uFE—q,r

X (—vva;aq+ub,u+v +vaiv+ua,’;aq+u)



254 C. BOCCATO, C. BRENNECKE, S. CENATIEMPO AND B. SCHLEIN

and
_ oM, @ 1 S(P—r " "
95_95 +®5 _N3/2 Z Z V(T)n p+vb7p(’7vbv+0'vb7u)
pEPr rePy,
vEPL,
1 2 *
0 =0 1o — N3/2 3 V( ) by b, (oby+0ub™ )
pE Py
veEPr,
(1) S(P—T * * *
0, =06 +of N3/2 DY V( N) VB b (Tuby o)
r€Py pEPL:pF#—v
vEPL
05 =0 o) —aN2VNA, > Re(r) biy b (Ybutoub® )
rePy
vEPL
0y =0 +0 =2NVNA, 3= 3 Re(r—q)ngbly,b* (robs+oubt ).
reéPy qeA*
vEPL
We have
1(€1,096,) | S C((61, (M +Ns+1)2)E0) +(Eay (Hn + (N +1)%)Es)) (4.12)

for a constant C>0, all &,&eFSY, i=1,2 and all j=0,1,...,9, and
(0 +h.c) SCN VAN AD(K+1)+ (N, +1)%) (4.13)

for i=1,2 and all j=1,...,9 (but not for j=0).

Proof. We use the formulas

[apaq, by] =dgrb, and [apag,br]=—0pb, (4.14)

p

to compute

Z Z 77rp pr+vbpbtr('7vb +o,b" )+6 —r r+vb;(7vbv+0vbiv)

\/7p€A* rePy
vePy Yol pbs b byt T b b bE) +hic,
272 rbr 07 (Yoby + 0,07 )+ 01+ hec. . 4.15
r€Py
vEPL,
Writing

* * % * *
Ut Og Oqtulp = Oy, QplyOg = Op,q Uy oy Optou 5 (4.16)
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using (4.14) to commute the right-hand side of (4.16) with by, b* ., b, and, respectively,
with b*

* »» and normal ordering the operators appearing to the left of the factor

A/vbv +Uvbtv

leads to

4
1 o[ u * * *
Vv A=< > V(N>nrbr+v+ub_r_u(%bv+aub_v)+z ©;+h.c.. (4.17)
rePy j=2

vePr
u€A*
UFE—r,—r—2

The first term on the right-hand side of the last equation can be further decomposed as

1 i7 U * * *
W Z V(N)nT'bT+v+ub—r—u(ryva+0Ub—1))
rePy

vePL
ucA*
UFE—T,—T—V

1 (PN, .
:W Z Z V(T)nrbp+vbfp(’7vbv+0vb,v)
T‘GPHpEAi

VEPL pt_y

:ﬁ > 2 W%)nrbzﬂb’ip(%bﬁavb’iv) (4.18)

r€Py pEPH
vE P,

+# Z Z ‘7(%)nT'b;-l-vbip(’vav"'O'vb*_v)

rEPy pEPL
vEPL p#£—v
7

:ﬁ > 2 ‘7(]Zvi)ﬂrbzﬂb*_p(%bu+ovb*_v)+zej.

pEPy reA* j=5
vePr

The first term on the right-hand side of (4.18) can be combined with the first term on
the right-hand side of (4.15); with the relation (3.15), we obtain

1
ﬁ Z 2T2n7»b:+vbir(7vbv +O-’Ubiv)

r€ Py
veEPr,
1 S(P—T * * *
TNz > 2 V(T)ﬂrbpﬂbfp(%bﬁ%bw)=@0+@8+99-
pEPy reA*
vE P,

Combining (4.15), (4.17) and (4.18) with the last equation, we obtain the decomposition
(4.11). Now, we prove the bounds (4.12) and (4.13). First of all, using (3.16), we observe
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that
2
(€1, 0V < —= 37 [l Ir] o] IIb—rbréa | Ibotel
\/NTGPH
vePr,

SONT(R+1) PN+ D)6 (K+1) 26| .

The term 652) can be estimated similarly as

2 _
(€, 0 &) < —= 3~ Inel lowl [v] Ir+0] [brbrwbo (N +1) 72 | [V + 1)
\/NTEPH
vePr,

1/2
<0N1/2< 7 el ouf? W) IC+D)Y26 | [NV +1)&||

rePy
vEPL

SCNTV2(K+1)24 | (W + 1.
This implies, on the one hand, that
(€1, (617 +65)&)| < C((6r, (K+1)6) + (€2, (K+1)éa))
and, on the other hand, taking &1 =&, that
£ +0P +h.c) <ONVHK+1)(N,+1).

Next, we consider the quintic terms ©2, O3 and 4. Switching to position space, we
find

(€1,00)¢) = / dz dy N2V (N (2 —y)) (€1, 050" (.o )ty b (jir, o) Ea)- (4.19)

Here 7y (2)=nu(z—1x), with 7y being the function with Fourier coefficients ny (p)=
NpX(PE Py ). Moreover, we set u=~ and #;=-, if i=1, and y=0 and #;==x, if =2, with
%1 and &y, defined similarly as 77y (but in this case, with the characteristic function
of the set Pr). From (4.19), and using that, by definition of the sets Py and Pr,
el SCN Y4 |y lla<SCN3/4, |lop|l2<lo]|2 <C, we obtain that

(61,056)] < C/dz dy N?V (N (z—y))laqay &l [[ay (Ve +1)E ||
< C8(&, Vn&)+C5 N~ HEa, (N +1)°8)

for all §>0 and for i=1,2. Choosing =1 and §=N~'/2, we obtain (4.12) and, respec-
tively, (4.13), with =2 and ¢=1,2. The bounds (4.12) and (4.13), for j=3,4, can be
proven analogously.
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As for the terms 05, ©g and ©7, we can proceed as follows:

1 ~S/D—T
06 <7 2 (V{5 )| 1bpub—péal ot

pEPH
r,vEPL

1 1/2
S N3/2( Z |77r|p2|b—pbp+v§1||2)

PEPH
rvEPL

V((p—7)
(x
pEPy p
rvE Py,

IC+1) 2N+ 1) 26 (Ve +1) 2,

N)I2 0y 1/2
P 2)

1
< [
vN
which immediately implies (4.12) and (4.13), for j=5 and i=1. The contribution 9532)

can be bounded analogously, replacing ||b,&s|| by |0, (N +1)/2&]|. The term @g) can
be bounded similarly. As for 951) (a similar bound holds for 652)), we find

l(€1,08) &)] N3/2< Z ’V( )‘ 0. |p° ||bpbp+v512)1/2

p’UEPL
V((p—r)/N)| In.| 2\
<( Y ; [buoll
re Py p
p,vEPL

SN+ DY2 N A D)2 Va4 1) Y26

Finally, let us consider the terms ©g and ©g. Since ||X¢||2<C (for a constant C

depending only on ¢), we have

(€1,00V&)] Z IRe(r)] [1br4ob—ra ] Buéa]

rEPH
veEPL

< %nwﬁl)sln IV +1)Y26),

which implies (4.12) and (4.13) for j=8 and ¢=1. The bounds for j=8 and i=2 follow as
usual replacing ||b,&2|| by |o,|||(Ny4+1)1/2&;|, and using the boundedness of ||o||2. Also

the estimates for =9 can be proven analogously, since also

[IXexnllz = lIxerill2 <llll2 = lIn]l2

is finite, uniformly in N.
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To conclude the proof of the lemma, we still have to show that @((f) satisfies (4.12),
for i=1,2. To this end, we observe that

(&1, 08V6)] < Z V()| Ibrsub—réal b6
UEPL
1/2 5 9 1/2
1 V(r/N
<c( 3 T2br+ub_r§12) (N > |(T/2)||bvﬁzll2>
r€ Py rePy
vEPL vePL
<K+ N A28 || (N +1) 26|
and that a similar estimate holds for @(2). Here, we used the fact that
TEPH TEA*
uniformly in N. O

With the bounds on the commutator [#x, A] established in Lemma 4.3, we can now
control the growth of (Hy+1)(N,+1) under the action of the e”.

PROPOSITION 4.4. Let Ve L3(R3) be non-negative, compactly supported and spher-
ically symmetric. Let A and Hy be defined as in (3.34) and, respectively, after (3.23).
Then, there exists a constant C>0 such that, for all s€[0,1], we have on ]:fN the

operator inequality

e AN+ (Hy+1)e*A <CN+1) (Hn+1)+C (N, +1)%.
Proof. For a fixed £ FEN | we define p¢: R—R through
pels) = (& e AN+ (Hy+1)e*4E).
Then, we have
Dope(s) = (€, e AN +1) (Hn +1), Ale™e)

= (& e AN D M, Al + (& e AN Al(Hn+1)eE) (4.20)
= P +P,.

We start by analysing P;. From Lemma 4.3, we have
2

ZZ N++1) () SA§>

=0 i=1

9
:ZZ N +1)1/2@ (N++1+€ij)1/268’4§>

]: =1

M)
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for appropriate £;;€{£1, £2, £3}. With (4.12) and Proposition 4.2, we conclude that

[Py < CE e AN+ 1) (Hn+1)e* ) +C (€, e (N, +1)3eA¢)

(4.21)
SO e N D) (Hy+1)e A6 + (€, (N +1)°%€).
Next, we analyze P5. From (4.9) and (4.10), we have

|Po| SOLE, N A+1)E) +[(e* ¢, N, AlH e €)|. (4.22)

With

V., A] L > me(Boubl b, b7 bl b by thic) =34, 4+ Ay +he
y = = P90y 0y 4,00y vYpr4pY—r €)= o )
! \/NTEPH i i k

vePL

we write

N, AlHN = 3AU’HN—|—AA//HN—|-3A3HN+A:HN
=(BAsHN+hc)+ (A Hy +he)+[AL, Hy]+3[A], Hi] (4.23)
=: Py +P22+[Af/, HN}-F?)[A:, 'HN]

Here, we introduced the normally ordered operators

P21 = P211+P212 and P22 = P221 +P2227

Poiy:= Z p NrOvy 7«+Ub* b* ap—|—h.c.,
pEA*
re Py
veEPL
(4.24)

Pyo1:= Z p M Yob 7”+U - pap U+\F Z 02 N Yo H_Ub_rbUnLh.c.,
pEA* rePy
rePy vEPL
veEPL,
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and, switching to position space,

Pyp:= 2N3/2 Z Z < )Tirduerrvb*_rb*_v 40 0y Qg Fhic.

rePy p,q,uEA*
VEPL yzt—p,—q

1
-2 / da dy dz N*/2V (N (z—y))Bibyiia” (m,2)a* (51,)aity +hc.,
A3

Poop = N3/2 Z Z ( )nT’yverrvbir gy, g Op g +ubo
r€PH p,q, ueA*

VEPL yt_p —

N3/2 Z Z ( )nrvvbT+vbfT( gy Opbotu+0” 0y 1ub_p ) +hc.
rePy puEA
vEPL, ut—p,—v

1
:W Z N Ywb r+'u b, Vnby
re Py
vePL,

+/ da dy dz N*?V (N (z—y))qL(x—2)b5b" (g2 )@} auby +h.c., (4.25)
A3

where, as we did in (4.19) in the proof of Lemma 4.3, we introduced the notation 7y and
41, to indicate functions on A, with Fourier coefficients given by nxg and, respectively,
by Yxr, with xg and xr being characteristic functions of high (|p|>N'/2) and low
(|p| < N'/?) momenta. Since, with the notation introduced in Lemma 4.3 after (4.11),

9 9
J:O

Jj=0

it follows from (4.12) that

("¢, [AL, Hn e )| < Cle* ¢, (Hn+ (N +1)?)e*¢) (426)
Hy '

| <
(e 4e, [A7, Hn]e )| < Clet e, (Hy + (Vi +1)%)e4e).

Finally, we estimate the expectations of the operators (4.24) and (4.25). The term
P51y defined in (4.24) is bounded by

1/2
5 S 1 - S
(e, Pore Aa>|<ﬁ( 5 Plbridrbsa(Net1) e
p,r,vEAi‘F

1/2
Y olllay N++1>esA§||2) (4.27)

p,rvEAY

Cle* ¢, (NL+1)(K+1)e 1),
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because ||n]|2 and ||o||2 are finite, uniformly in N. Similarly (using v?<2(r+v)%+2r?),
we find
|(e34€, Pag1e°4€)| < C (e3¢, (N +1)(K+1)esA¢). (4.28)

The expectation of the operator Pz in (4.25) can be bounded using its expression in

position space by

|<65A€7sze“‘§>‘
< [ dody = NV (N (@)l asoye 6] o (01,0
A3

SONTVHeMAE, (N +1)Vnets), (4.29)

where we used the estimates ||7g, o <CN~1/* and 5L 2]|l2<C. As for the operator Paao
in (4.25), the expectation of the first term is controlled by

1 o S
‘Nl/g S (et b b, VnbyetAe)
repP
UEFi

C
<% 2 I Parnase et ST el VY aue el
rvEAY rvEAY
C

< " dedy Yy N*V(N(z—y))|ayarasi,e €|

(4.30)

r,vEAYL

+c/ drdy 3 N2V (N(@—y))aviaiyeie]?
A2

vEAY

<CO(& e (N +1)(Vn +1)e*E),

while the expectation of the second term is bounded in position space by

/ dmdydzN3/2V<N<x—y>m(x—z)<e5"‘£,sz*mH,z)a;aszesA@‘
AS

1/2
< ( / da dy dz N*?V (N (x—y))|liiu,- |3 ayaz(N++1>”2esA£||2)
A3
1/2 (4.31)
. ( da dy dz N2V (N (2 —y) iz (o —2)? ||awaye“5||2)
AB
SONTHALl2 [1m 1206, e AN +1)3eAE) 2 (g, e Vet AE)/2
SC(E e A Vnet ) +C(E, (N +1)2%€),
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because [|¥.[2<CN3/* and |[ijy,.|l2=]7iu |2 <CN~Y* for all z€A. From (4.30) and
(4.31), we obtain that

(e°4E, Panpe® ™€) < C{e* ¢, (Hn+1)(Ny+1)e*2¢). (4.32)
Combining (4.22) with (4.23)-(4.29) and (4.32), we conclude that
|Po| SC(E, e AN+ 1) (Hn +1)e6) +O (€, (N +1)%¢).
Applying (4.21) and the last bound on the right-hand side of (4.20), we arrive at

Ospe(s) < Cope(s)+C(E, (N4 +1)°€)

for some constant C'>0, independent of £ effN. By Gronwall’s lemma, we conclude

that there exists another constant C'>0 such that, for all s€(0, 1],
(e 2¢, (N +1) (M +1)e*2€) = pe(s)
<Cpe(0)+C(€, (V. +1)%¢)
=C(&, (M + 1) (Hn +1)6) +C (€, (Vo +1)%).
This concludes the proof of the proposition. O

We summarize the results of this section in the following corollary, which is a simple

consequence of Propositions 4.1, 4.2 and 4.4.

COROLLARY 4.5. Let VE€L3(R?) be non-negative, compactly supported and spher-
ically symmetric. Let Ex be the ground state energy of Hpy, defined in (1.1). Let
YN EL2(AN) with |[1n||=1 belong to the spectral subspace of Hy with energies below
En+C, for some (>0, i.e.

YN =1 (—oo,Ex+c](HN)UN.

Let Ey=e~ e " BMUNYN be the cubically renormalized excitation vector associated with
Yn. Then, there exists a constant C'>0 such that

(EN [N+ (HN+1D)+ Ve +1)%En) < C(1+¢P).

5. Diagonalization of the quadratic Hamiltonian

From Proposition 3.3 we can decompose the cubically renormalized excitation Hamilton-
ian Jn defined in (3.35) as

jN:CJN+QJN+VN+SJN7 (51)
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with the constant C 7, given in (3.36), the quadratic part

* 1 * 7%k
Qrv= Y, (F,,bpbp+QGp(bpb_p+bpb_p)) (5.2)

pPEAL

with the coefficients F}, and G), as in (3.37) and the error term £, satisfying
+E7, SCN™V AN+ (N +1)?) (N +1)

as an operator inequality on ]-'fN.
Our goal in this section is to diagonalize the quadratic operator Q 7, . To reach this

goal, we first need to establish some bounds for the coeflicients F}, and G, in (5.2).

LEMMA 5.1. Let VEL3(R®) be non-negative, compactly supported and spherically
symmetric. Let F, and G, be defined as in (3.37). Then there exists a constant C>0
such that

2 C
() 5 SFH<CO+), () Gl< 5 Gil) Gyl <F,
for all peAy.

Proof. We first show the lower bound in (i). For peA* with |p|<N'/? we use

V(< )sfon)@)—(V (= )*fen)(0) <E|P|~
(7 () e ) 0= (7 (7 ) o) O] <

Since 'yg +02>1, we have

P

v

F,>p*+ (?(N) *fw) (0)(yp+0p)2~CN 2> p?ON T2 B

for all pe A% such that |p| <N'/2if N is large enough. On the other side, for [p|>N'/2 the
inequality is clear, being |(17(~/N)*f4,N)p|<C. The upper bound F,<C(1+p?) follows
easily from the definition, from the boundness of (‘7( /N fo, ~)p and from the fact that
lopl, 7p<C for all peA%.

The proof of part (ii) makes use of the relation (3.15) for the coefficients 7,. For

any peAl we have

Gp:2p2np+l7<%)+% > V(]%)nﬁép, (5.3)
qeN*

where |C~¥p|§0p72 for all p€ A*. Here we used the fact that |n,|<Cp~2, which implies

|Up7p_77p|<c|p|76 and |(0p+7p)2_1|<0|p|72-
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With the relation (3.15), we obtain

Gp=2N*\Re(p)+2N?X > Re(p—q)1q+ G- (5.4)
qeA*

From Lemma 3.1 (i), we have N3\,<C. A simple computation shows that

~ i 4 (sin(¢
Xe(p) :/ el dr = ( (Clp)) —Ecos(€|p|)>, (5.5)
|| <L |p| Ip|
which, in particular, implies that |X,(p)|<C|p|=2. Similarly, we find
N2\, Z Xe(p—q)n :7N3/\g/ o(x)we(Nz)e P® dx:st)\g/ wy(Nz)e P2 da.
qeEN* |z]<e

Switching to spherical coordinates and integrating by parts, we find (abusing slightly the
notation by writing wy(Nr) to indicate wy(Nz) for |z|=r),

£ T
/ we(Nz)e P® do =2 / dr r*wy(Nr) / df sin g e~?IpIrcosd
|z <l 0 0

¢
:% ; dr rwg(€r) sin(|p|r)

4 d
" |2/ drd (rwe(Nr)) cos(|p|r).

4T
= hm rwe(NT
P A e
With (3.11) and using again the bound N3)\,<C, we conclude that there is a constant
C'>0 such that

‘Nm S Selp—an| <Clpl (5.6)

qeEN*

for all peA%.

Finally, we show (iii). To this end, we notice that
F,—Gp=p*(vp—0,)* >0, (5.7)

because «y,#0, for all p€A%. Furthermore, arguing as we did in the proof of part (i) to
show that F},> ; p?, we find that

Pyt Gy = () (04 (V (55 ) #fen ) > (vap)?p; (5.8)

for all peA%. Since vy,#—0,, we conclude that F,+G,>0 for all peA%; (5.7) and (5.8)
give |G,| < F), for all pe A%, as claimed. a
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Lemma 5.1 shows that, |G,|/F, <1 for all pe A%. Hence, we can introduce coefficients

Tp €R such that
Gp

tanh(27,) = “F (5.9)
for all pe A}. Equivalently,
1. 1-G,/F,
= log — 2P,
T %146, /F,

Using these coefficients, we define the generalized Bogoliubov transformation
eB). ffN — }'fN

by
1 * *
B(1):= 3 E 7p (b2 ,b,—b_pby).

pEA

We are going to conjugate the excitation Hamiltonian Jy defined in (5.1) with eZ(") to
diagonalize its quadratic component Q 7, . In the next lemma we show that, up to small
errors, the other terms in Jy are left unchanged by this transformation. Here, we use
the fact that, from Lemma 5.1, |7,|<C|p|~* for some constant C>0 and all p€ A*.

LEMMA 5.2. Let VeL3(R?) be non-negative, compactly supported and spherically
symmetric. Let T, be defined as in (5.9), with F, and G, as in (3.37), and Vny and Hy
be as defined in (3.23). Then, there exists a constant C>0 such that

e PN, +1)(Hn+1)ePD <O, +1) (Hn+1) (5.10)
and
£ (e PIYN PN V) SCN T2 (U +1) (N +1). (5.11)

Proof. The proof of (5.10) is similar to the one of [3, Lemma 5.4]; the only difference
is the fact that, here, the potential energy Vy scales differently with N. We review
therefore the main steps of the proof, focusing on terms involving Vy.

We are going to apply Gronwall’s lemma. For £ E]:fN and s€R, we compute
05(&, e P HN+1) N +1)ePg) = —(€, e PO [B(r), (Hy+1) (N, +1)][e*P7¢).

By the product rule, we have

[B(7), (Hn+1)(N+1)]

5.12
=(Hn+1)[B(1),Ni]+[B(1), CJ(N:+1)+[B(7), VN (N +1). (512
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The first term on the right-hand side of (5.12) can be written as
<§,efsB(‘r) (HN+1)[B(T)7N+]6SB(T)§>
= Y nd? & e D ata, (byb_p+bib" e P )

P,gEAT

+ > (6 e POV (bpbop+brb" e P

pEAT

=:T+1I.

(5.13)

From the proof of [3, Lemma 5.4], we have
1 < CLePOE, (W, +1)(K+1)ePOg).

To estimate II, we switch to position space. We find

W< 3 Il [ dody N2V @)l sty 06 a,, by 4507 )e PO
pEAi

peEA’,
X (| (bpb—p+03b% YN A1) ™ 2y e PO 4 [y e O+ [|ag e P T E ]+ 1€])
SCE e PO WN )W +1)e ),
since 7€/!(A%), uniformly in N. From (5.13), we obtain that
(&, 7P HN+D[B(), N ]e PO S CLE, e PO Hy + )W +1)eP0g). (5.14)
The second term on the right-hand side of (5.12) can be bounded as in [3] by
(€, e PO B(r), IV, +1)eP D) | < O e PD M+ 1) (Ve +1)ePe). (5.15)

Finally, we analyze the third term on the right-hand side of (5.12). Again, it is

convenient to switch to position space. We find

BN =5 [ dody NV =)o) (5, (V41

+/ dx dy N2V (N (z—y)) (bEb5a* (7,)d, +h.c.) (N +1),
AxXA
(5.16)

where %(m):ZpGAi e ®. Using [|7ls <||7]1 <C< o0 and |7, ||=|7||=|7]|<C<o0o in-
dependently of y€A and of N, it is then simple to check that

(€, e POB(r), VNN +1)e*P D) < OE, e PO Uy + N+ D (Ve 4 1)ePTg).
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Combining this bound with (5.14) and (5.15), we obtain
0:(€, e PO HN+ 1N+ 1)e PO < Ol e PO (Hy + 1V +1)er ).

By Gronwall’s inequality and integrating over s€]0, 1], we conclude (5.10).
To prove (5.11), on the other hand, we write

e BMyyel _yy = /01 dse *BO Wy, B(7)]esB).
With (5.16), it is simple to check that
+[B(1), UN] < N"Y2(Vn+ N +1) (N, +1).
By (5.10) and N, <K, the last bound immediately implies

(e PMYyeB) Yy ) KON Y2 (Hy + 1)V, +1). o

The next lemma shows that the generalized Bogoliubov transformation eZ(7) di-
agonalizes the quadratic operator Q 7, , up to errors that are negligible in the limit of
large N. A similar result was established in [3, Lemma 5.2], but only under the addi-
tional assumption of small interaction potential, which guaranteed ||7|| to be sufficiently
small, and therefore allowed us to use the identity (2.18) and the bounds in Lemma 2.3

B(r).

to control the action of e Below, we provide a new proof which does not require

smallness of ||7]|.

LEMMA 5.3. Let VeL3(R3) be non-negative, compactly supported and spherically
symmetric. Let Q 7, be defined as in (5.2) and 7, be as in (5.9) with the coefficients F,
and G, as in (3.37). Then,

—B(T T 1 *
e B, Bl >:5 S (-FAF2-G2)+ Y \/F2-Ganap+in,

pEA} pEAL
) <N
where the operator Oy is such that, on F3',

+oy KON HK+1) (N, +1). (5.17)
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Proof. Using the commutation relations (2.3), we expand

1
e_B(T)bpeB(T) :bp—i—/o dse B [bp,B(T)]eSB(T)

1
= bp—l—/ ds efsB(T)pr*_peSB(T)
0

1
1
—/ dse_gB(T)< N+ TN Z bZa*qaqu)€SB(T)
0

qEAf‘F

1 1
:bp‘f‘prtp-i-/o dsl/ dss e_SZB(T)TZ%bpeSQB(T)

! B N 1 B
_/0 dse™* (T)< —b* TN Z b;a*_qaqu)es )

qeENT
1 S1
—/ dsl/ dss 6_823(7—)( 71) —|— Z 740~ ,a—gby ) s2B(m),
0 0 qu*

Iterating the expansion, and using Lemma 2.1 to control the error term, we get
e~ Pb,eB ) = cosh(, )b, +sinh(r,)b* ,+ Dy, (5.18)

with the remainder operator

DP_Z/ dsi.. / dsop+1

n>=0

X6_52n+1B(T)( 2n+1 N b*p ]17 72 Z b*a aqu> eS2n+1B(7)

qEA*
San—1
+Z/ dsy.. / dsaop,

n>1

1
« e~ 52nB(T) <_Tgnpr]\/;_N gn 1 Z afpa oba Tq>682n3(7')
qeENT

From ||7]|; <C and Lemma 2.1, it follows that

C : c [t
[N+ 1 2Dyl < Sl INA D™ 9264 T [ ds (N4 1 2/2B 0.
0
(5.19)
With (5.18), and using the shorthand notation 5, =cosh 7, and ¢,=sinh7,, we can
write

“BOQs P = N (F52+GoApty)+ Y (Fp(72+62)+2Gp5,7,)b5by
PEAT PEAT

1 ~ ~ ~ ~ K 1%
+§ Z (2Fp'7p0p+Gp('Y§+U,2,))(bpb—p+bpb—p)+5Na
PEAL

(5.20)
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where
o= F,Dpe PDb,ePT 4 N B, (5,5 +6,bp) Dy
pEAL PEATL

1 1 s *
+5 > Gp(Dpe POyt peB<T>+h.c.)+5 > Gu((pby+6pb-p)D* +hoc.).
pEAL pEAY

(5.21)

With (5.9), a lengthy but straightforward computation leads to
—B(T T 1 *
e B Qs bl >=§ S (—Fp+\[F2=G2)+ > \JF2—G2bb,+0.
pEAL PEAL

From the bound F,<C(1+p?) in Lemma 5.1, we obtain

F2—G2((¢,brb . ~|4 F2-G? N
Y VB -GRUE b )~ (€ )| = | D /R~ GRE apNeag)
pEAT PEATL

C
<y D @+ Dllap(Vo+1) %2

pEAL

(€ Ve +1)(K+1)8)

Q

N

for all £ G}'fN. Hence, the claim follows if we can show that the operator §y defined in
(5.21) satisfies (5.17). Consider first the expectation of the first term on the right-hand

side of (5.21). Using (5.19), the bounds |F,|<C(1+p?) and |7,|<C|p|~*, Lemma 2.1 and
then also Lemma 5.2, we arrive at

Z (D¢, e Bp,eBe)

pPENT

C B . ]
SV ST BN A1) 2Dyl (W +1) 2 B, eBg|

PEATL

c
< 2 WP IVADE ap(Ve 1)1 250

PEAT

C 1
Jrﬁ Z (1+p2)/ dSHap(N++1)1/2€SB(T)£|| ||ap(N++1)l/263(T)§||
0

PEAT

< {6 (Hn+1) NV +1)8).

X

=2l Q
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The expectation of the second term on the right-hand side of (5.21) can be bounded
similarly. As for the third term on the right-hand side of (5.21), we estimate

Z G D* 7B('r p B(T)£>‘

PEATL
= 2 IGIV 1) T2 Dy (W +1) 2P0 P
pEAT
<x T 16 |(|Tplll<N++1él+ / s [Jbp (N +1)! /e T>s||)||w++1>s||

PEATL
< NII(MH)&IIQ,
where we used Lemma 2.1 and the bound |G(p)|<C|p|~2 from Lemma 5.1. The last term
on the right-hand side of (5.21) can be controlled similarly. O
It follows from Lemmas 5.2 and 5.3 that the new excitation Hamiltonian My : ]:fN
FSV defined by
MN —B(T) jN@ (1) _e—B(T) —A —B(17 UNHNUNe 7]) A B(T)
can be decomposed as
MN :OMN+QMN +VN+€M1\M
where
1 *
Cmy = CJN+§ Z (=Fp+4/F?—G2) and Quy = Z \ FE—Giapap, (5.22)
PEAL PEAL
with Cz7, asin (3.36), F,, and G, as in (3.37), and where the error €4, is such that
+Emy SCN VY (HN+HD)N+1)+ (N, +1)3).

To conclude this section, we are going to compute the constant Cnq, and the di-
agonal coefficients (F2—G2)'/? appearing in the quadratic operator Qa,, up to errors
that are negligible in the limit N —o0. To this end, we introduce the notation

(87ra0)2).

2p?

1
EBog1:§ Z ( pt+16magp? —p? —8rag+
pEAi

(5.23)

LEMMA 5.4. Let VEL3(R®) be non-negative, compactly supported and spherically
symmetric.

(i) The constant Caqy in (5.22) is given by

Cpy =4m(N—=1)ag+epai+ Epog+O(N ' log N),
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where

4 <
ex=2— lim 3 M. (5.24)
PEZI {0} p
[p1ls|p2l,lps|<M

In particular, we will show that the limit exists.

(ii) The quadratic operator Qaqy in (5.22) is given by

= Z \/p4+16ﬂ'aop2a;ap+c§1v,

PEATL
where the error SN 1s bounded by

+ony <KCNHKH1).

Proof. To show (i) we recall from (5.22) that Cq, is explicitly given by

Cmy :%‘7(0)—% Z (‘7<N) *U)p%ap— Z W

PEAY PEAL
pP—q
*3 N > V( N )Upquq (5.25)
P,gEAY
Z (p np (V(N)*n> np) +EBog,N7
peA* P

with

EBog,N::% Z (\/P4+2p2 (V(N)*fz N) —p?

PEAL

(7 (5 )+ T

(5.26)

First, we compare Epog ny with its limiting value (5.23). From (5.26), we write

1
-EBogN*:'_g § €N,p>
peEAT

with

enp=p"+ (V(N) *fz,zv)p— \/p4+2p2 (V(N) *fe,N)p_ w

2p
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Taylor expanding the square root, we easily check that |ey p|<C/|p|*, for a constant
C>0, independent of N and of p, if |p| is sufficiently large with respect to

(7() ),

On the other side, replacing GA/(N) *f“v)p by (17<ﬁ> *fe,zv)o and then, using Lemma
3.1(ii), by 8mag, we produce an error that can be estimated by

87ag)? C
- <p2+87ra0—\/ Ip|*+16magp? — ( 72TU.;)) > ’ <
p

Nip|*

Using this bound for [p|<N and |en ,|<C/|p|* for [p|>N, we obtain
|Egog, N — EBog| SCN ' log N. (5.27)

Hence, let us analyze the remaining terms on the right-hand side of (5.25). First,

using the scattering equation (3.15) and the approximation (3.10), we find that
1~ 1 1 /~7 -
104 T (e 7))
SV O+ Z(p np+2N ) ¥e) o
p€A+
=200 Y V() O = —dmag + O )
pGA*

Moreover, using that 0,7y, —n,|<C/p°, we have
1 .
5 2 (V(5)=) 70
eA*+
P—q _
Z V( )7711%711 N Z V( )npn0+O(N b
p,qEA*
and, writing o4v,0pYp=(0¢Yg—Nq+1)(0pYp—1p+np) and expanding the product,

1 S (DP—q
v 2 V(5o

P,gENT

N Z V( )nqaﬂp IN Z (N )nqnp—l-(’)( b

P,gEAY p,qENT

Summing up the different contributions from above, we arrive at

N ~
Cmy = —V(0)747ra0+EBog+(’)(N*1 log N)

2NZ( ( ) )”P pz((/JZI));“fZN ZV( )npno.

EA’jr pGA*
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Writing (recall from (3.7) that fgyN(p):(S o+N"1n,)

oy U%ﬁ?ml%=—§§3(( %ﬂw)%+ S V(L) 570,
pEAL peEA’, pEA*
and noticing that

+3 2 V() =3 (7(5) ),

pEA*

we arrive at

Caty = E(V(;)*ﬁN) (k%) Anag+ Epog+O(N ' log N)

3 U 05

PEATL

With Lemma 3.1, we compute
~/ - ~ 3ap
(V(N)*f"N)o_”“‘)(HQeN)+O( O
770:7]\772 —7N /wg :7*7Ta0£2+0( )

Hence, with the scattering equation (3.14), we obtain

4 .
Cpiy =4mag(N —1)+ Epog +6madl ™ <1+17;€3> +O(N"tlog N)

_ Z N3)‘Z§(\Z(p) (‘//\Y(/N)*ff,N)p

et 2p2 (528)
il
of 1 2 Xe(p) -1
=A4nag(N—1)+Epog+6mag Z —é —£—3 5 | TO(N""log N),
pEAj_

because |(‘7(ﬁ)*fg7N)p—87Tao|<C|p|/N and [¢(p)|<Clp|~2 by (5.5). To finish the
proof of (i), we evaluate the expression in the parenthesis, showing that it is actually
independent of ¢, for £& (0, l). Again by (5.5), we find

Xé 5 sin(£|p|) —€|p| cos(|pl)
=—8m¢* lim - ,
B pg\:* M-00 p;\:: (Ipl€)>
|pi| <27 M

because the sum converges absolutely, since |X¢(p)|/|p|>*<C/|p|* for all pe A*. With

—

(MVWPA&MWﬁmm

4t ~ 6sin(¢lg|) | 6cos(flg|) | 3sin(flg]) cos(f|ql)
B G e e e i

(5.29)
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and (5.5), we conclude that

2 Xe(p)
B Z P2

peEA”
—8n lm Y sin(£|p|) —£|p| cos(¢|p|)
W 2 (ple?
|pi|<27 M
| Lao(p) 1 (st o)
=—8rl? lim [ += -
M—00 pezAi 3 (fp)2 2\ (pl)? (¢p)?
|p:[<2m M
1 sin(€|p|) = cos(f|p|) = . sin({|p|) cos(€|p|))]
Sy +6 +3 -
6( (Llpl)3 (Llp))* (¢lpl)? (¢p)? (5.30)
8 l? cos(£|p|)
=— lim —_—
3 M- pEZAj_ (6]9)2
|pi|<2m M
. 1 1 —
2 m Y (gt sl P
pehe
|pi| <27 M
8 cos({p|) 1 . 1 —
=T 3 000 (T PO,
T
|pi| <27 M

because square partial sums for the Fourier series of z+y,(z) and of x+22x,(z) converge
at x=0; see [9]. With (5.5) and (5.29), we obtain

Xe(0)=37m6* and (x| [?)(0)= 2m°.

Thus,
2 X¢(p) 1 4xe?
- =l ———— .
7 > 2 R (5.31)
pEAL
where 2 (o))
4 8w .. cos(l|p
pEAi
lpi|<2mM

We claim now that I, is independent of the choice of £€(0,1). This implies that, for

example,
1 2
Iy=1 5, = 3r 3n ]V}ILHOO
pEL3
lpi|<M

cos(lpl)
p?
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Inserting in (5.31), and then in (5.28), we obtain

. COS(\pI)
CMN:47ra0(N—1)+EBog+2a§(1—2]\/}51100 Z — +O( 1logN),
pEZ3
|pi| <M

which concludes the proof of part (i) (notice that, in particular, our analysis shows the
existence of the limit M — o0 in the parenthesis). It remains to show that Iy, defined as
n (5.32), is independent of ¢. To this end, we observe that

@ @= [ il e do—an( - =G0, (5:33)

Hence, for ¢1,45€ (O7 %), we find

In—Tyy = Z(@—3)- % tim 3 Cos(ﬁl\pl)—zcos(éalp\)

3 M—00 pEAjr p
|ps | <2 M
47 2 . .
e S ),
PEATL
|pl‘<27TM

where h(z)=(xe, (%)~ e, (2))/|]. By [9], we find
I, I, = 36— 13) 2 (h(0) = h(0)) = 0,

because h(0)=0 and, with (5.33), h(0)=—27(£2—¢2); hence Iy, =1I,,, as claimed.
Finally, we prove part (ii). Here, we use the two bounds

‘\/p +2p )*fe N) —\/p4+2p2(‘7(];[>*fe,N)o‘<CN1|p|,

’\/p +2p . )*fe N)o—\/p4+1677ﬂ0p2

It follows immediately that

\/ 4+2p . )*fz N) a,ap = Z Vp*+16Tagp2a ap—HSN7
peA;

PEATL

as well as

<CN~L.

where the operator SN is bounded by iSNgCN_l(IC+ 1). This concludes the proof of
the lemma. 0O
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Combining Proposition 3.3 with the results of the last two sections, we obtain the

following corollary, which will be used in the next section to show Theorem 1.1.

COROLLARY 5.5. Let VE€L?(R3) be non-negative, compactly supported and spheri-

cally symmetric. Then, there exists a constant C'>0 such that the excitation Hamiltonian
My =e B e A= B U*eBM AeB(T), ]-'fN — ]:fN

can be written as

1 8map)?
My :47T(N_1)a0+61\ag+§ Z (_p2_87'r0.0+ p4+167ra0p2—|—( ;rpg) )
pEAi

+ Z Vpt+16maop?anap+VN+Emy s

peAi

(5.34)

with ep as in (5.24) and where
ety SONVA(Hy+ 1N 1)+ (N, +1)2).

Furthermore, let 1 €L2(R3N), with ||[¢n|=1, belong to the spectral subspace of Hy
with energies below En+(, where En is the ground state energy of Hy and (>0. In

other words, assume that

YN =1 (—oo,Ex+c](HN)UN.
Let Ey=e BMe=Ae= BTy E]—'fN be the excitation vector associated with n. Then,
there exists a constant C>0 such that

(Ens (Hn+1) N+ 1)+ NV +1)%)en) S CA+C). (5.35)

Proof. Equation (5.34) follows from Proposition 3.3, Lemmas 5.2-5.4. Equation
(5.35) is, on the other hand, a consequence of Corollary 4.5. O

6. Proof of Theorem 1.1

We define

1
Emy ::47(N—1)ao+e[\a§+§ Z <p287rao+ pt4+-16magp?+
pEAT

Liva)

2p?

To prove Theorem 1.1, we compare the eigenvalues of My —E, below a threshold (>0

with those of the diagonal quadratic operator

D:= Z EpQpyp (6.1)

PEATL
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with the dispersion e,=(|p|*+16magp?)!/? for all pcA*. For meN, we denote by A,
the mth eigenvalue of My —FExq, and by v, the mth eigenvalue of D (in both cases,

eigenvalues are counted with multiplicity). To show Theorem 1.1, we prove that
A —Vim| SCNTVA(14¢%) (6.2)

for all meN\{0} such that A,, <. Using (6.2), Theorem 1.1 can be proven as follows.
Taking the expectation of (5.34) in the vacuum, we conclude that \; <CN /4. Hence,
for N large enough, we have A\; <¢ and we can apply (6.2) to show that |\ —v; | <CN /4,
Since v, =0, we conclude that |A;|<CN~/4 and therefore that

|Ex—Epy| <CNTYA, (6.3)

where Ey is the ground state energy of Hy, as defined in (1.1). This proves (1.10). Equa-
tion (1.12), on the other hand, follows from (6.2), from (6.3) and from the observation

that the eigenvalues of D have the form

b= 3 e,
pEAi
for every j€N\{0}. Here the coefficients nz(,j) belong to N, for all jeN and all peA7.

Notice that the eigenvector of D associated with the eigenvalue v; is given by

$=¢ 11 (GZ)"‘(’j)Q (6.4)

pGAi

for an appropriate normalization constant C;>0 (if v; is degenerate, the choice of ; is
not unique; we will always use eigenvectors of the form (6.4)).

To show (6.2), we will combine a lower and an upper bound for A, in terms of v,,.
Since Vy >0, we can ignore the potential energy operator appearing on the right-hand
side of (5.34) when proving the lower bound. For the upper bound, on the other hand, we
make use of the following lemma, where we control the expectation of Vy on low-energy

eigenspaces of the quadratic operator D.

LEMMA 6.1. Let VeL3(R3) be non-negative, compactly supported and spherically
symmetric and let Vy be defined as in (3.23). Let (>0 and meN such that v, <. Let
&1,y &m be defined as in (6.4) (§; is an eigenvector of D associated with the eigenvalue
vj) and Y be the subspace spanned by &1, ...,&m. Then, there exists C>0 such that

C(¢+1)"/?

(6 Vn8) <

for all normalized €Y.
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Proof. The bounds e, >p* and 11 <...<v,, <¢ imply that a,&;=0 for all ge A* with
lg|>¢'/2. This also implies that a,&=0 for all £€Y7". Hence,

Evne sy |7 ) lagsuaptl lapsuagt]

g, uENY
C
< N Z llag+uaptll [|ap+uaqd]l
P, uEAT
Ipl,lql,|ul<CCH/2
C’C /2
[Ny +1)E12.
Since M, <CD, we find
Cc3/2 +1)7/2
e < S nge < ST 0

In addition to Lemma 6.1, we will need the following result which is an extension of

Lemma 7.3 in [3] to the Gross—Pitaevskii regime.

LEMMA 6.2. Let VEL3(R®) be non-negative, compactly supported and spherically
symmetric, and let K and Vy be defined as in (3.23). Then, there exists C >0 such that,
on F§N7

Proof. We bound

Ewe <t 3 [V (o) lapruactl lagsua]

P,qEAT
u€eN*
uF—p,—q
1 |V (u/N)]
S+ Z W(P+U)2||ap+uaqf||2
P,gENT
ueN*
u#—p,—q
V u/N)|
< ( sup — Z | / >||IC1/2N1/2€||2
qu* ueEN*
u#—q
< C|KYV2NY2¢)2, O

With the help of Lemmas 6.1 and 6.2, we are now ready to prove (6.2).
Let us first prove a lower bound for A,,, under the assumption that \,, <. From
the min-max principle, we have

Am= inf  sup (§,(Mpy—FEnr,)E).
vcFsY gey

dimY=m [I&|l=1
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From the assumption A,, <(, we obtain

Am = inf ., sup &, (MN—Enmy)E),
YCP(FY") €Y

dimY=m [l§ll=1
where P¢ is the spectral projection of My —FEaq, associated with the interval (—oo;(].
Hence, with (5.34), Yy >0 and (5.35) we find

A = inf sup (€, DE)—CNV4(14¢3)
YCP(F§Y) gey
dimY=m [€ll=1

> inf  sup (§,DE)—CN 4 (1+¢%)
YycFsN gey
dim Y=m [I§||=1

= U —CON"Y4(143).

Let us now prove an upper bound for A,,. From the assumption \,, <( and from the
lower bound proven above, it follows that v, <{+1 (without loss of generality, we can
assume N ~'/4¢3<1, since otherwise the statement of the theorem is trivially satisfied).

The min-max principle implies that

Am = inf<N sup <£7 (MN—EMN)£> < sup <§7 (MN—EMN)€>7 (65)
ycFsN cey ceyy
dim Y=m [[§[=1 l€]|=1

where Y73' denotes the subspace spanned by the m vectors &, ..., &, defined in (6.4).
From Lemma 6.2 and the inequalities N <CK<CD<LCr,,, <C(¢+1) on YA, we find
that

(€ (HN+1) N+ 1)+ (N4 +1))€) SO (Vo +1)*(K+1)€6) < C(1+¢)

for all normalized £€Y}'. Inserting the last inequality and the bound from Lemma 6.1
in (5.34), we obtain that

(& My —Epy )€) < (6, D +ONTA(14¢7)
for all £€YE . From (6.5), we conclude that

Am < sup (€, DE)+CN V414 v+ CN~YV4H(14C3).
LEY D
llgl=1

Combining lower and upper bound, we showed that [\, — vy, | SCN~V/4(1+¢3), for
all meN such that A, <(. This completes the proof of Theorem 1.1.
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To conclude this section, we come back to the remark after Theorem 1.1, concerning
the eigenvectors of the Hamilton operator Hy introduced in (1.1). Theorem 1.1 shows
that the eigenvalues of Hy can be approximated in terms of the eigenvalues of the di-
agonal quadratic operator D defined in (6.1). Following standard arguments, one can
also approximate the eigenvectors of Hy through the (appropriately transformed) eigen-
vectors of D. More precisely, let 01 <A2<... denote the ordered eigenvalues of Hy (i.e.
0;=\;+En,, with the notation introduced after (6.1)) and let 0=11 <2 <... denote
the eigenvalues of the diagonal quadratic operator D defined in (6.1). Fix jeN\ {0} with
vj<vjt1. From (6.2) we obtain that also 6;<6;41, if N is large enough. We denote
by P; the spectral projection onto the eigenspace of Hy associated with the eigenvalues
01 <...<0;, and by Q; the orthogonal projection onto the eigenspace of D associated with

the eigenvalues 0=17 <...<v;. Then, we find

C+1)(1+13)

||e_B(T)e_Ae_B(”)UNPjU]*VeB(”)eAeB(T)—QjH%IS< —
Vit1—Vj

N=V4 (6.6)
In particular, if ¥y denotes a ground state vector of the Hamiltonian Hpy, there

exists a phase we|0, 2m) such that
C

H%\r—e“"U}(,eB(")eAeB(T)QH2 < .

1_001\7—1/4. (6.7)

The proof of (6.6) and (6.7) can be obtained, using the results of Theorem 1.1, analo-
gously as in [16, §7]. We omit the details.

7. Analysis of Gn

In this section, we prove Proposition 3.2, devoted to the properties of the excitation
Hamiltonian Gy defined in (3.22). In particular, we will show part (b) of Proposition
3.2, since part (a) was proven already in [2, Proposition 3.2]. In fact, the bound (3.25) is
a bit more precise than the estimate appearing in [2, Proposition 3.2], but it can be easily
obtained, combining the results of Propositions 4.2-4.5 and 4.7 in [2], taking always »=1.
Notice that, in these propositions from [2], the assumption that >0 is sufficiently small
is only used to guarantee that ||n|| is small enough, so that we can apply the expansion
from [2, Lemma 2.6] (which corresponds to (2.16) above). Here, we do not assume that
the size of the potential is small, but nevertheless we make sure that ||| is small enough
by requiring that £€ (0, 1) is sufficiently small (because of the bound (3.17)).

As for the bound (3.26), it was not explicitly shown in [2]; however, it follows
from the analysis in [2] by noticing that the commutator [¢Ny, Ay] is given by the
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sum of the same monomials in creation and annihilation operators contributing to Ay,
multiplied with a constant A (given by the difference between the number of creation
and the number of annihilation operators in the monomial). To be more precise, it
follows from [2] that Ay can be written as a sum Ay=> .-, Ag\];), where the errors
Ag\’f), keN, are sums of monomials of creation and annihilation operators that satisfy
:I:Ag\];)g(0||77||)k(7-[1v+l) for some constant C'>0, independent of N. Moreover, the
commutator of a given monomial in Ag\];) with A, is given by the same monomial,
multiplied by some constant A(*) which is bounded by [A®)|<(2k+1)<C* (if, without
loss of generality, the constant C' is sufficiently large). Hence, terms in [iN,, Ay], and
analogously in higher commutators of Ay with 4NV, can be estimated exactly like terms
in Ay (up to an unimportant additional constant), leading to (3.26). From now on, we
will therefore focus on part b) of Proposition 3.2.

Using (3.3), we write
Gnv=6V+60+6P+6 0, (7.1)

with g%):e’B(”)E%)eB(”), for j=0,2,3,4. In the rest of this section, we will compute
the operators on the right-hand side of (7.1), up to errors that are negligible in the limit
of large N (on low-energy states). To quickly discard some of the error terms, it will be
useful to have a rough estimate on the action of the Bogoliubov transformation e~ B(;

this is the goal of the next lemma.

LEMMA 7.1. Let B(n) be defined as in (2.4), with n as in (3.13). Let V€L3(R3) be
non-negative, compactly supported and spherically symmetric. Let K and Vy be defined
as in (3.23). Then, for every jEN, there exists a constant C>0 such that

e BN, +1)eBM <CORWN, +1) +CN (N, 1)L,
e BV (N, +1) e <OV (N, +1) +CON (N, +1)7.

Proof. To prove the bound for the kinetic energy operator, we apply Gronwall’s

inequality. For & EffN and s€R, we define ®,=e*B(1¢ and we consider

as<q>37IC(N++l)j‘I)s> = <q)8a [K(N++1)j’ B(n)]@a> (7 2)
(@, [C, BN+ 1)+ (Do, KN, +1)7, B @),

With
K, B =D p*mp(bpb—p+b5b",),

PEATL
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the first term on the right-hand side of (7.2) can be bounded by

(@5, [IC, BN +1) @,))|

<C Y PPInpl Iop (N +1)728 | (N +1) 020, |
PEAL

C(Dy, KN +1) @) +CN (€, (N, +1)711E).

Here, we used the Cauchy—Schwarz ineqaulity, the estimate (3.19) and Lemma 2.1 to
replace, in the second term on the right-hand side, ®; by £. As for the second term on
the right-hand side of (7.2), we have

<(I)sa IC[(NJr"_]-)jﬂ B(n)]®s>

J—1
=30 (@, KN+ R (02b" +bpb_ ) (Ve +1)F D).

k=0 pGAj

Writing IC:Zq Ay anZaq and normal ordering field operators, we arrive at

(@, KN +1)7, B(n)]@s)]

<C Y Plmplllagap Vi +1)970728,|lag (N +1)720,|
P,gEANT
+C " PPnplllapV+ 1) D20 (W +1)720|
pEAL

<C(Dg, KN, +1) B ) +CN(E, (N, +1)7¢).

Inserting the last bound and (7.3) into the right-hand side of (7.2) and applying Gronwall,
we obtain the bound for the kinetic energy operator.
To show the estimate for the potential energy operator, we proceed similarly. Using

again the notation ®,=e*BM¢, we compute

63<<(I>57VN(N++1)j(DS>

. : (7.4)
= (®s, VN, BO)](N5+1) @)+ (s, VN[N +1), B(n)] ).

Using the identity

WV, B =5 > V(N)nq+rbqb,q+ﬁ 3 V(N)nq+rbp+rbqa,q,ra,,+h.c.
gqeEAY P,gEANT
reA* reA*
r#—q r#p,—q
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and switching to position space, we can bound the expectation of the first term on the
right-hand side of (7.4) by

(@, Vv, BN +1)7 @)

< ‘;/ dxdyNQV(N(xfy))ﬁ(x—y)@S,B;LZ(N++1)J'(DS>
A2

+ dxdyNQV(N(m—y))<<I>s,B;BZa*(ﬁy)aw(N++1)j<bs>

A2

<C | dady NV(N(z—y) (N +1)72bb, @ | [[(V- 41720
A2

+C | dwdy N*V(N (@ =y))[liy 2 |V +1)7 22, @ | [0 (V. +1) VD20, |
A

<C(P, VNN +1) D) +CON(E, (N, +1)7¢),

where we used the Cauchy—Schwarz inequality, the bound |7, ||2<C, the fact that N} <N
on ffN and, in the last step, Lemma 2.1 to replace ®, by £ in the second term. As for
the second term on the right-hand side of (7.4), it can be controlled similarly, using the

identity

VN[N +1), B(n)] = i: (N +1)7 1V (bpbp+ 0% (N +1)",

p—p

and expressing Vy in position space. We conclude that
|05 ((®s, VN (Ve 41) )| S Oy, Vv (N +1) ) +CN (€, (N, +1)7€).

Gronwall’s lemma gives the desired bound. O

7.1. Analysis of gl(\?)ze_B(")Lgs)eB(")

From (3.4), recall that

~

I A LN VAG )

0) _
N =5N
With Lemma 2.1, we immediately obtain that
Gy = 3(N-D)V(0)+€,
where the error operator EJ(\?) is such that, on ]-"fN,

+£0 < %(MH)? (7.5)
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7.2. Analysis of &) =B £ B
We define the error operator 8](\?) by the identity
G =00 +g0" +EL (7.6)

where we set

1 N,
G =K+ > <p2a ( +N—N) +p2 0y (by bp+bpb*p)+2p2a§b;bp>
pEA*

1 *
+ D §Pon 2 (i+o)bibetod)

" 1 o (7.7)
+ Z Np%ﬁ Z (YqOgb—qbg+h.c.)
PEA; qui
+ 3" (pPnpb_pdy+hec)
PE/\*+
and,g (2V) is defined as in
G2 = 3 ((2)ozs (L), (12
N NP N )P N
peEAT
A~ p N
+3 V(N>(’yp+0p)2bpbp
peEAT
1 o( P 2 - (7.8)
t3 Z V(N)(wﬁap) (bpb—p+bb" )
PEA*
+ 2 ( V(%) ubpropbs,)dy+3 V(N>dp(’ypbp—|—apbip)> the..
PEAY

The goal of this subsection consists in proving the following lemma, where we bound the
error term SJ(\?)

LEMMA 7.2. Let 5](\?) be as defined in (7.6). Then, under the same assumptions as
in Proposition 3.2, we find C'>0 such that

+EP SONVAK+N?+1)(N.+1). (7.9)

Proof. From (3.4), we have E%):K—I—ﬁg\?’v)? with

V= V(% )(b;bp—;[a;ap>+; > V(%) bt +bby). (710)

PEATL PEAL
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We consider first the contribution of the kinetic energy operator K. We write

N_]. 7 % 27 % N+ (N+_1)2
K=" S pb,t > p bby o +K

pEAL PEAL
Writing N+:Zpe/\j; (bibp+ N~ arN ay,) in the second term, we find
1 ~
e PP = 3" p e*BW)b;b,,eB("Mﬁ > P B bbgb, P&, (7.10)
PEAT p,qENT

where, with Lemma 7.1,
+& <KCN2e BN +1)2eBM CONTIK(V +1)+CN IV +1)3. (7.12)

Next, we study the first term on the right-hand side of (7.11). We claim that
5 e s Y (1)
PEATL PEAL

+ Z (p2‘7p'7p (bpb—p+b;bip)+2p202b;bp) (7.13)

PEATL

+ Y (PPnpb_pdythe)+Es,

pEAL
with the error operator & such that
+& <CNTYV2(KA41) (N, +1). (7.14)
To prove (7.14), we use (2.18) to decompose

pEAL

with
Ei:= Z p2<7pb;+0pbfp>(’Ypbp‘f'apbip)’
pEAi

Ey:= Z P*((vpby +0pb—p)dp+dy (1pbp+03b" ),
pGAi

Es:= Z p2d;dp.

PEAL
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The term E; can be rewritten as
N 5 7% * &
Ei=K+ ) p’o < N) + > (PP (bpbp+b3b" ) +2702bnb,) +E3,
PEAT PEAT
where
o 1 2/ % 2 x
&= N p*(apNiap+oyayap,)
PEATL
is such that, for any fe}'fN
- 1 B
(EEOI<T D W lapN %P 40700 an) SONTHE KW HDE). (715
pEAi

The term E5 can be split as

Ey= Y (0°mpb_pdp+h.c)+Es,

PEATL
where
|<§7‘§4§>| < Z p2|0p_77p| (€, b—pdp&)|+ Z p2|7p| |<€ab;dp§>|

pEAL PEAT
1
3 Pl IV 1l

pEAi

1
+ > Pllbp N+ 1) 2 (I I+ D)€+l (V4 +1) %)
peA]

SONTV2IKVA (N +1)2¢)1%.
As for the term E3, we estimate

(& BsO)< Y pPlldpg]?

pEAT
C
<Syz > PPN A1) 2P+ 10, Ve +1)E)1%)
peAi
SONTH Wi+ 122 P+CNTH(K+1) 2 (W +1) 212

for any £ FSY. This concludes the proof of (7.13), with the estimate (7.14).
Next we consider the second term on the right-hand side of (7.11). We claim that

N > PP BOb bbb, B

p,qEAT

1
=N Z po; +— Z p20202+— Z p’on(vi+o7)bib, (7.16)

PEAL p,qEA* p,qEA*

—|—— Z PP07404( b;biq+h.c.)+5~5,

p,qGA
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with an error term 55 such that
+& KON V2KANZF)(N, +1). (7.17)

To prove (7.17), we consider first the operator

D= Z E*B(n)bequ(n)
qeEAT
= (vgb)+ogb_g+d}) (1gbg+ogb” ,+dy)
qeAy
= 3 (240202 bg 0 1g (D317 g +beb—g)+02]+E,
qeAy

where the error & is such that
+& <CN ' N +1)%, (7.18)

as can be easily checked using the commutation relations (2.3) and the bound (2.19). We
go back to (7.16), and we observe that

1
N Z pe_B(")b;beqbpeB(")
p,qEAT

1
= Z » e*B(n)b;eB(n)DefB(n)bpeB(n)

pEAL
: (7.19)
=N Z p2(’Ypb;JFUpb—p+d;)D(’YpbP+UPbtp+dP)
peEAL
1 . &
=N Z p2cr§prbp+57,

pEAT

where
o 1 2 * * * 1 2
Er= N Z p Up(’ypbp—’—dp)Dbfp_’_N Z P opb_pD(Ypbp+dp)
pEA} PEATL

1 % *
+ N Z p2 ('Vpbp+dp)D<7pbp+dp)
pEAi
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can be bounded using (2.19) and the fact that, by Lemma 2.1, DK C(N, +1), by

~ 2 *
(& &GI< 5 D PPlonl (IDY/2b,€ll+IDdye ) DM/ 25¢]
pGA:

1
+~5 > PPUIDY 2]+ D2 €] ) (D20, + D2 d,¢ )
pEAi

C
< 2o Pl (I0p N+ D Y2E ]+ N2, [| (VA4 1) 26 [N+ 1€
pEAT

C
tx 2o PUb N+ 22N gy | (N +1)%2¢1%)

PEA L *

SON“Y2|(K4N2+1D)V2(N, +1)1 2|12

As for the other term on the right-hand side of (7.19), we have, by (7.18),

N 3 oy, Dby = — 3 oy (Vg +0g)bpbgbebl + > pojolbby

PEAL 1)#1161\3r P,qEAL (7.20)
+N Z pQJI%’yqaqbp(b;bfq—I—h.c.)b;—&—é’g,
p,qEAT

where, using (7.18), it is easy to check that +&<CN (N, +1)2. Rearranging the
other terms on the right-hand side of (7.20) in normal order and using the commutator
relations (2.3), we obtain (7.16) with an error term satisfying (7.17).

Finally, we focus on the contribution of (7.10). We claim that

e*B(n)Lg\%»V)eB(n)

-5 (1R G ()

peA]

+) V(%) (vp+ap)2b;bp+%

PEAL pEA

where

+& <ONYAHKAN2+1)(N, +1). (7.22)
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To prove (7.21) and (7.22), we start from (7.10) and decompose

6_3(17)553,\/)63(77) _ Z V(%)G—B(n)b;bpeB(n)
peEAL

|

|~
]
<
=z

)eBm)a;apefB(n)
PEAL (723)
S5(D — * 7%
=y V(N)e B (b 4b3b*,)e B

PEATL
=:F1+Fy+Fs.
The operators F; and Fy can be handled exactly as in the proof [3, Proposition 7.6]

(notice that the bounds are independent of S€(0;1) and they can be readily extended
to the case Gross—Pitaevskii case 8=1). We obtain that

S P * * &
F,= Z V(N>(vpbp—kapb_p)(ypbp—kapb_p)—|—510,
PEAL

where
+€0<CN YN, +1)2,

and that
+Fy <CN YN, +1).

Let us consider the last term on the right-hand side of (7.23). With (2.18), we obtain

1 S(D * *
Fa=3 Y V(%) ubptonb’,)(pb—ptouby)
pGAj

1 S(P . x
+§ Z V(N) [('Ypbp‘FUpbfp) d_p+dy, ('Ypbfp*‘gpbp)]
pEAi

“}*(?11%*}1.&7
where the error term 511:% ZpeA’; \A/(p/N)dpd_p can be bounded, using (2.19), by

& Enol<e Y |7 (2)|Iden iyl
peEAL

C ~
< N*EAZ |7 (5) IOV + 272l I OV + 1% 2€ |+ (- + 1)

SONTV2|(Ne+1)*2¢) 1%,

since ||V (- /N)||a<CN®/2. This concludes the proof of (7.21) and (7.22). Comparing
(7.6), (7.7) and (7.8) with (7.11). (7.13), (7.16) and (7.21), we conclude that the bounds
(7.12), (7.14), (7.15), (7.17) and (7.22) imply the desired estimate (7.9). O
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7.3. Analysis of G =B £ B

From (3.4), we have

1 ~

gz(\?) = Z V(%)e_B(")b;+qaipaqu(")-|-h.c..
P,gEAY
p+q#0

We define the error operator 81(5’) through the identity

3 1 SEPN x  x « 3
08 = —= 3 V(%) bty (raby+ogby) +hee) +E5.

The goal of this subsection is to prove the next lemma, where we estimate £ ](\? ).

(7.24)

LEMMA 7.3. Let 6'](\?) be as defined in (7.24). Then, under the same assumptions as

in Proposition 3.2, we find C>0 such that
+EP CONV2(Vn+ N+ 1)V, +1).

Proof. With
a’,aq = bipbq+N71a*_pN+aq,
we obtain )
G¥ == 3 V(%)e*BW)b;ﬂbtpbqu(”)+£1+h.c.,
PgEAT
p+q7#0

where )
i § : (P —-B * * B
51 = W V(N)e (”)bp+qa_paqe (77)

P,gEAT
p+q#0

can be bounded, switching to position space, by

(&, £16)]

(7.25)

(7.26)

< [ dody N2V (N (@) (N 1) PO aa (N 1) 250

A2

SCON732(g, e BMYN (N, +1)eBMe) 4 ONTV2(e e BN, +1)2eBM¢),

With Lemmas 2.1 and 7.1, we conclude that

(&, E16) SCNTV2(E, (VN +N AN +1)8).

(7.27)
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To control the first term on the right-hand side of (7.26), we use (2.18) to decompose

= 2 V(%) e Dby b bye” ) = Mo+My +Ma+Ms, (7.28)
p,qEA*
p+q#0

where

1 =~ P
My:=—= V(—)’y+7b b*  +YptqOpbs obpt+0prqgopb_p_qb
\/NZ N pPTq IPYp+q”—p pPTqa¥pPYp+q”pP pTq¥pY—p—qvp 799
P (7.29)
+Jp+q'7pbipb*p*q_Nilaerq'Ypa*—pafpfq)(’Yqbq +ogb”,)

and
1 o~ p
M= —— V(—)(7+ b odt A Opgbpqd® A ypd, b +oydh, bydt )
\/ﬁ% N PTq”p+q~—p pP+q¥—p—q¥—p PYp+q”—p P¥p+q P p+q
x(fyqb +ogb” ),
ZV( ) Yo+ Vpbprqb™ ptVp+a0pbp s gbp+TprqOpb—p—qbp
+0p+q Vb’ yb—p—g _N_10p+q7pa*—pa—p—q)dq7

M;: = \F Z V( ) (Yp+alprqd”p+0ptab—p—qd”,+7pdp 4 07+ 0opdy  bp)dy

p,q

ZV( ) prad—p(Vabg+ogbZy),

S S T

p,q

Here, we introduced the shorthand notation

*

2=

g p,gEAY
p+q#0

and we used the identity
* * —1 _x
bopgb”, =0 by q—N""al,a_p g,

for all g€ A}. Notice that the index ¢ in M; counts the number of d-operators it contains.
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Let us start by analysing Ms. Switching to position space we find, using (2.20) and
the bound ||7]|co <CN (as follows from (3.11) since, by the definition (3.13), we have
(z)=—Nwy(Nz)),

(€M) < / dw dy N2V (N (z— )|V + 1) dady € [+ 1) de |

< [ dady NPV @) I+ D72+ (V +1%])
X (NN A+ DE (N +1)% 2 |
Sy (#1726 + a (N + DE)

SCN7Y2(e (VN +N2+1)6).

(7.30)

As for My, it reads in position space
M, = / dx dy N°PV (N (z—y)) (b" (%) dyy +b(5 ) dy +db* (7)) +d5b(6 ) ) o
+ [ dady NPV (N (@) sy b(32) 4 (02)
=: Mo +Mag.
To control Mag, we use the bound (2.20) to estimate
(€, Ma28)| < / dx dy N°/2V (N (z—y)) (N +1) " dy di €|
X[|(N5+1) (b(F2) +b"(52))& ||

SCN‘2/dxdyN5/2V(N($—y))(|\(N++1)3/2€||+H&x(/\f++1)§H)

X (N[N A 1)€ N+ flas (Ve +1)%2¢ |
(Ve A41)22€]| +|aoy (N +1EN)
SCNTHE (VN + N+ 1)V +1)€).

With the first and the second bounds in (2.20), we can also control Ma;. We find
[(§, Ma16)| < C’/dx dy N°/2V (N (z—y))||d£]|

% (ldyb(F2)€ ]|+ lldyb* (0 )&l +[1b(5y) ||+ 16 (5, ) dot )

<C [dody NPV (N @) (VA D2+ W+ DED 751

X (N[N A+ D[+ [l (V41228 +[lay (N +1)22¢ |
+llaza, (Ve +1)E])
SCONTHE (VNN +1) (N +1)E),
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where we used that ||7]|cc <CN. Hence, we proved that
(6, M2&)| SONTHE, (Vv + N +1) (N +1)8). (7.32)

Next, let us consider the operator M;. In position space, we find

My = [ dady N2V(N @) (G)dy 40005+ () +45b(5,)
% (b(3e) 15" (52))
+ [ dady NP2V (N (=) (0 () () ()00, +65)0(3,)
5 (30)b(5,) ~ N e (a)a(3,))ds
=: M1 +Mo.

To estimate M;;, we proceed as in (7.31). With (2.20), using again ||7||cc <CN, we find

(€, M11€)|
</d:vdyN5/2V(N(ff—y))(||b(%)£\\+IIb*(ffz)éII)
X (|[dy (e )€+ [l dyb* (52 )&l 4100y ) o€ ||+ 16 (5 ) )
<C / dz dyN*/>V (N (z—y)) (| (N +1) /%€ +la€])
X (NN ADE]+llaw (N +1)22€ ]|+ [lay (N A+ 1) 2]+ | andy (N +1)E])
SCNTY2E (VN +NL+1) (N +1)8).

As for the term Mo, we use the bound

I 1) 2 (0" ()b () 4+ (7)0( ) +0(52)b(5y) +" (7)b(5,) — N 0" (5z)a(5y) )|
SOV +1)*2€] |+ | aw (N A+ D)€+ lay (N +1)E N+ [l dy (Ve +1)2¢])

to conclude that
(€, M126))| <c/dxdyN3/2V(N(a:—y>)(||(N++1>£||+H%(MH)”%H)
X ([N A1)+l (N 4+ 1EN g (N +1)EN +laaty (N +1)12¢])
SCNY2(E, (Wn+ N A1) (N, +1)¢).

Thus,
(€, M1€)| SCNY2E, (VN +NL+1) (NS +1)€). (7.33)
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Finally, we consider (7.29). We split Mg=Mg; +Mp2, with

*

1 S P * * *

Moy :=—= ~ p;q V(ﬁ)’Yp+q7pbp+qb7p(’7qbq+Uqbfq),
1 o P

M02:275V<—>(7+0b* bp+0ptqOpb—p—qbp+TptqYpb b p—
/*Np’q N ) Ip+a%p0p+q0p T Tpt+qTpO—p—qOp T Op+qTpO—pY—p—q

—1 *
—N 70 qVp0" pa—p—g) (YgbgFogb” ).
Switching to position space, we find

(€, Mo2€) | S/dw dy N2V (N (z—y))([|as€]|+[| (M- +1)%¢])

X (Vs + 1]+ laa (N +1) 2]+ lay (N, +1) %))
SCNTV2(E, (N +1)%).

As for Mo, we write v,=1+(v,—1) and Yp1,=1+(7p+4—1). Using that |y,—1|<C/p?

and o, are square summable, it is easy to check that

1 - S P * * * &
Mor=—= 3" V(%) Uity (aby+00b2 ) +E5,

p,q

where &, is such that

(€, E26)| SCNTV2(g, (N +1)2%€).

Combining the last bound, with the bounds (7.27), (7.30), (7.32), (7.33) and the decom-
positions (7.26) and (7.28), we obtain (7.25). O

7.4. Analysis of gf\?):e_B(")[,gs)eB(")

From (3.4), we have

1 ~/T
g](\;l):ﬁ Z V(N)e_B(n)a;-i-raZapaq-&-reB(n)- (7.34)
P,qENYL
reEA*

r#—p,—q
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We define the error operator £ 1(\? ) through the identity

4 1 S/(P—q 1 2N+
o =gy 2 V(F )t m -
P,gEAT
1 5(P—q
oy 2 V(5 )m
pEAL
qeEN*

X (Vabab* 427, 0pb5 by +0abpb_p+dy (Vpb—p+0,b5) (7.35)

+(Ypbp+opb”,)d_p+h.c.)

1 5 (Pp—q
+ﬁ Z V(—N )77p77q

D,quENY
x(Vibzbu4‘Uibzbu4‘7u0ubzbiu'FVuUubub—u‘Fai)
+E.
The goal of this subsection is to bound the error term 51(\;1).

LEMMA 7.4. Let 51(\?) be as defined in (7.35). Then, under the same assumptions as
in Proposition 3.2, we find C'>0 such that

+EW <CONV2(Vn4+N 41N, +1). (7.36)

Proof. First of all, we replace, on the right-hand side of (7.34), all a-operators by
b-operators. To this end, we notice that

* * * * ZJV. * *
Ay Qg UpQgir =y b bpbG 4 (1— N+ N+) +ap Qg pagtr ON,
where
0 N—/\/'++2N+—1+N+—22
Ne o= N N N
N _Aﬁﬁm_l N-N.42N-N,+1
N2 N2 N2 N N

is such that £0,, <C(N,+1)?/N? on FSN. With Lemma 7.1, we conclude that

N+1 -~
gw N S V(L)efmmb* b2bybgreP

N 2N? N prra
P,gEAT
reA*
r#—p,—q
. . ) (7.37)
+m Z V(N)e_B(n)b;+rb2bzbubpbq+r63(n)"‘Sh
P, uEAY
reA*

r#=p,—q
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with the error & satisfying
+& KCN Y Wn4N + 1)V, +1).

We split the rest of the proof in two steps, where we analyze separately the two terms

on the right-hand side of (7.37).
Step 1. The first term on the right-hand side of (7.37) can be written as

N+1 7 — * *
- Z V(N) B(n)prrrb bybgreB™

2N?2
P,qEAT
reA*
T#-p,—
p—q 1 2N
_VN+7 Z V( N )aﬂq%%(l“‘N N+> (7.38)

p qeENY

S5 (P—q 7k *
3 V(T)Uq’yq[ 2peb 29,0, byt 02byb

P,gEAY _
+dp(Ypb—p+0opby,) + (Ypbp+0opb” ) d_p+h.c]+E

where the error S~2 is such that
+& KONTV2(Vn+ N +1) (N, +1).

To show (7.38), we write

N+1 S/

oNT 2 V(N) T bbb gre® M = Vot Vi Vo Vs £V,
P,gEAY
reA*
r#—p,—q

with
N+1 PN T * * *
Vo:= ON? (ﬁ) Yp+rYabp+rbg +Vp4r0abp 1 rb—g+0pirogbprb_g

p.a,r
+Up+r7q(b2bfpfr_N_lazafpfr)][apqurrb -

JrC’P'Yq+rb*—pbq+r +7pVg+rbpbgtr +7p‘7q+r(b—q—rbp *Nila*—q—rap)]

N+1 >(P—4q * 7% * — *
57 2 V(5o [( A2bE  +27p0pb5by— N Impopata, (739

2N?2
N
+o2byb_p) <1— N*) —|—h.c}

N - NY
+2+1 2 V(qu)U”qoﬂp(l ]\;)

P,qENT
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N+l <y . ax N
— on2 L/(jV)[7@+T7ﬁbp+rbq4_7P+Taqbp+rb*q
Pagr
+0pirOgb—p—rb_g+0pirVg(Vib_p—r =N 'aia_p_)]

< [(vpbp+0pbZ ) dgsr+dp (Yarrbgtr + 041007 ,)] (7.40)
N+1 S(P—q N,
o 2 V( N )U‘”Q(l_N

p,qEAY

X [dp (Vpb—p+0opbs)+(Vpbp+opb ) )d_p]+h.c.,
and
N+1 .
2N2 ZV( ) VotrOpr T Optrbpr)dy+dy . (Ygby +04b—g)]

p.q,T

X [(vpbp+ Upbip)dqw' +dp (Vg rrbgrr+ Uq-l-rbiq )l

N+1 ~(p— N N,
Y V(qu)aqu{d*_pd;( N)+<1 >dd }

PgEA]

22

7.41
_ N+1 (741

T 9NZ2 ZV( ) (Vp+rbp v T Optrb—p—r)dg+dp 1 (Vgby+0gb—g)]dpdg v

P,
+h.c.,

N+1 PN * *
Vii= 5 30 V(50 ) dierdydpdyir

Here, we used the notation

*
P,q,T P,gEAL
reA*
T#—p,—q
for simplicity. Notice that the index of V; refers to the number of d-operators it contains.

Let us consider V4. Switching to position space and using (2.20), we find

(6, Va6) | <O / do dy N2V (N (3—1)) || dady€]| [ dadyé]

< C/dw dy V(N (z—y) (| (N4 +1)%[[+N [ (N +1)¢]|

+ [l (Ve A1)372€ |+ [lay (N +1)%2€ ||+ |apy (N +1)E]])?
SCON7HE, (VN +N +1) (N +1)6).

Next, we switch to the contribution Vg, defined in (7.41). Switching again to position
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space, using (2.20) and the bound N, <N, we obtain

(€ V29I <C [ dody NV(N(-y)]ldud, ]
< (1, b0 )€+ 1" )€+ 165, )+ 116 (2,) o)
<C [ dodyVIN@-p) [N+ D+ [an (N + 1)
iy (N 126 4y (N + D€+ NI V1€

SCONTHE (VNN + DNV +1)E).

Proceeding similarly, Vo can be bounded, switching to position space, by

(€Vag) <C [ dody NV (N ()
< (1, b3 )&+ b (50 )El|+ b, € | 4116 (5,) o )2
+C [ dody NPV -y)l(o+3) )] [ +1) o, € N+ 1]
< [ dady V(N (@ -y))(|N. + 1€+ [a N+ 1]
-y N #1726 |4y (N + D]+ | (V + 1)e])?
+C [ dudy NV(N =) | (Ve + €I +176] 4+ NN + 1)
i N 12 g N, +1)72€]| + [y (N + 1)E])
SCON7YHE (VNN +H1)(NV+1)E).

Here we used the bound ||6*%|/cc <KCN from (3.21).

Let us now study the term V;. We write

1 o (P4 " .
Vi= N Z V(T)Uq’Vq(dp(’Ypbfp"‘apbp)"‘(Wbp"‘gpb—p)dfp)+h~C~
Pa€AT (7.42)

+Vi2+ Vi3,

where V73 denotes the first sum on the right-hand side of (7.40) and V15 is the difference
between the second term on the right-hand side of (7.40) and the term on the right-hand
side of (7.42). Switching to position space and using (2.20), we easily find

(& Vi28)| < C/dx dy NV (N (z=y))|(6+7) (z—y)| (N +1)E]|
* (| dab(7y )€l + [l dab™ (o )EN+[16(Fz ) dy € |+ 167 (52) 1)

SCN7HE (NN H DN, +1)E)
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and

(6, V1s6) | < C / dz dy N*V(N(z—y))

X ([N A+ DEN+ llaw (N +1) 2|+ llay (Ve +1) %€+ lazayé])
X (|16(F2 ) dy &l 41167 (52 ) dy &l 4 | b (5 )€+ [Idy b (5 )E])
SCN7HE (VN+N + D)V +1)€).

Finally, we analyze Vo, as defined in (7.39). We write Vo=V1+Vo2+ Vo3, where

2
o=t S (s (45

P,gEANT

N+1 >(P—4 *7 % * — *
Vo2 := SN2 Z V(N)aqwq<(7§bpbp+2wpopbpbp—N Yypopanay

p,qEAT
+0oobpb_p) (1—%*) +h.c.),

N+1 /T v s .
Vg : = ONZ Z V(N> (7P+T7qbp+rbq +7p+roqbp+rb*q+0p+rgqbfpfrb7q
P
+UP+r’Yq(b;b—p—T*Nﬁla;a—p—r))(Up0q+rbipb*—q—r +0pYg+rb” ybgr
+YpVa+rbply+r +7p0q+r(biq7rbp_N_laiqfrap))'

Proceeding similarly as above, switching to position space and using (in the estimate for
&,) the bound [|6 /s <CN, we find that

1 ~/P—q 1 2N, =
V01—2N Z V( N )oq'yqap'yp(l—i-N— N )—1—53,

P,qEN
279N N 0qYq(Vp0p0_p +27p0p0,0p+0,0,0_pt+h.c.)+Cy,
P,gEAY
Voz =Vn+Es

Combining with (7.42) and with all other bounds for the error terms, we arrive at (7.38).
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Step 2. We claim that

1 ST —B * K7k
5 2 V()¢ b bbibubyby e
P,q,uE€AY
reA*
r#—p,—q

1
:m Z V(L)Uq'yqo'p')’p(q/ub*b +o, b*b +'Vu(7ubzb*—u+'7uo'ubub7u) (7.43)

1 P—q
+F Z V( N )aq'yqopvpa +&s,
p,q,uEAi‘F

where the error 86 is such that, on F; gN

£ SCNTV2 (VN + N+ 1)V, +1).

To show (7.43), we split

1 ~

7 2 V()b bybibubyby e = Wot Wi 4+ Wa,
P,quEN]
7"»€A*Jr

r#—p,—q

where

1 5(P—q NN =By B N
WO.—F Z V(N)o'qﬂyqo—p,}/p(l_N (e n bubue 77) 1_W

P,q,u€A}

1 S5(P—q 27 %7 % * —1 * 2
Wiz > v( )oara (G + 230y~ Ny opanay+02byby
P,q,uEAY
+pb” oy Fopbpdy +ypd” by Fopdyby+dy  dy)
Ny

X (e_B(n) b;bueB(n)) (1— N) —‘rh.C.7

Wa:i= N2 Z ( ) Yp+rYabp 11y T ¥p410gbp 40— +0p4r0gb_prb_g
P4
+0ptrYq(bgb—p—r— N_la*a—p—r) +(VptrbpirtOptrb_p—r)dg
+d;+r(’yqb;+o—qb )+d*+rd2][ B(n)bzbueB(n)][O—PO—QJFT’b—pb—q r
+0pYq+rb" pbgtr +9 Va1 bpbgsr +9p0 4 (07 4 bp ~N"'a a’y ,ap)

=+ (’Vpbp +O'pb*—p)dq+r + dp ('Yq+rbq+r +O-q+7”b*—q—7') +dpdq+r] .
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Here, we introduced the notation

*
P, p,quENT

reA*
r#—p,—q

for simplicity. Using Lemma 2.1 to get rid of the factor

S B0 b, B0 = Bl N, (1 _ Aj@) (B

u€Al
and then proceeding similarly as in Step 1, we obtain that

(&, W1E)| SCN V(e (Un+ N+ 1)V +1)€)
(€, Wal) | SCNTHE, (VN + N4 +1) (N, +1)€).

As for Wq, we write

1 5(P—4
Wo=g5 3 V(55 oo

D,quENY
X(VEbeu4‘03bzbu4‘7u0ubzbtu_FVuUububfu'Foﬁ)ﬁ_g%'

Using (2.18) to decompose
e Bbb,eB M = (y,b) +0ub_u+d) (Yubu+0ub®, +du)

and then the bounds (2.19), it is easy to estimate the remainder operator &, on ]—'fN,
by

+& <CN~Y (N, +1).

Hence, we obtain (7.43).
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Step 3. (Conclusion of the proof.) Combining (7.38) and (7.43) with (7.37), we

conclude that

1) _ 1 S(P—a 1 2N,
I =VNntoy > V<N>0q7q%7p(1+N— N

P,qENL

1 S5(P—q k7% * *
for > V(T)aqu[ygbpb_pwypapbpbp+a§bpb_p+dp(7pb_p+apbp)

P,gENT

+(vpbp+opb”,)d_p+h.c]
1 S(P—4q
tyr 2 V(R )rem
X(7szbu4‘Uibzbu4‘7u0ubzbiu_%7uaubub—u‘%05)4‘£éa
(7.44)
. 5 <N
with an error & such that, on F7,
+E KON YV2(Vy+ N +1)(N, +1).

To conclude the proof of (7.36), we just observe that, in the term appearing on the second
line on the right-hand side of (7.44), we can replace the product o47, simply by 7,. Since
l047q—nq| <C|g| ™% (or, in position space, [|(5*¥) =1 <C), it is easy to show that the
difference can be incorporated in the error term. Similarly, in the term appearing on the
third and fourth lines on the right-hand side of (7.44), we can replace 0pY,047q by 7p0g;
also in this case, the contribution of the difference is small and can be included in the

remainder. This concludes the proof of the lemma. O

7.5. Proof of Proposition 3.2
Collecting the results of (7.5) and Lemmas 7.2-7.4, we obtain that
Gn =Con+ 96y +Dn+HN+Cn+Eqy s (7.45)
where Cy is the cubic term defined in (3.31), &g, is an error term controlled by
+€, SCNTYV2(HN+N2) (N, +1),
and where CN'gN, égN and Dy are given by

Cou =701+ ¥ (o214 ) +7 (%) bod) )

pEAL

1 ~/D— 1
+ﬁ Z V(]%)Utﬂqazﬁp <1+N> (7.46)
5

1 1 ~p—
& 5 3 (e 3 ()

u€AY pEAL qeENT
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Qoy=>_ b;b,,(20§p2+‘7<§7)(%+0p) ~ ep Z V(( J:f )nq)

PEAT

+ ) by, bypbp)
pEAT

(o 57 () ormegy X 750tk o))

qGA*

N S( D 1 S(P—4
N 2 (o7 (B wm gy ¥ V(55 wewaes
+

qui

(7.47)

1 2 2\ 7% K 1%
oy 2 ((iFoDbibutruou (b, +bub-u))
uEAi

<X (ot r X 7(5) )
pEAL qu*
and

Dy=3" <p Nobpd_p+ = V( ) d_p+2§\, (?(ﬁ) *n)pbpd_p+h.c.>

PEAL

+% > (f/(ﬁ)*f},N)(p)((vp—l)b,,d_pwpbt Jd_pthic) (7.48)

pEAL

3 Z( ( )*feN)(p)(’vpdpbfp+apdpb;+h.c.),

pEAL

with fg, ~ defined as in (3.7). Next, we analyze the operator Dy, which still contains
d-operators, to extract the important contributions. To this end, we write

Dy =D; +Dy+Ds.

where D1, Do and D3 denote the operators on the first, second and, respectively, third
line on the right-hand side of (7.48).

Using the relation (3.15) and the bound (2.19), we find
(€ DI D [(Rexfen) O TNV ADEN V417 2d €|

PEAT

1
< X (p4|| N++1>5||+p2|bp<N++1>1/2§||)

PEAT

<o+ e

2

Similarly, using (2.19), we find

+Dy KCN N, +1)2
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Thus, we switch to D3. We split

D3 =D31+D32+D33,

with
D?,lzzgpezAi (V(57) #ev) @)y i,
Dszi=3 ZA (7 (55 ) s ) @) —mp ey
Dggzzggi (V(55) #fev) @hmpi by 1.

Switching to position space and using (2.20), we observe that

(€ Ds1§)| < C/dfv dy N*V (N (z—y)) fo(N (@ —y)) | (Vo +DE N2 +1) 7 dab(5, €]

<C / da dy N2V (N (z—1)) fo(N (@ —)) | (V. +1)¢]

X ([N ADEN+ e (N +1) 2]+ llay (N +1) 2]+ llanay )
SON7V2(e (VNN 1) (N, +1)8).

As for D3z, we can use the decay of |, —n,|<C|p|~° to prove that
+D3s < CN_l(N++1)2.

We are left with D3s; here we cannot apply (2.19), because of the lack of decay in p. This
term contains contributions that are relevant in the limit of large N. To isolate these
contributions, it is useful to rewrite the remainder operator d, as

dpy=e"Bp, B0 p —opbt,

1
N-N.
* —sB tix  _sB
:(l—yp)bp—o'pb_p—knp/o dse (")Tb_pe ()
L S e~ BOpta" a,esBO)
- — ds 1qe bya” jape

Nlo & (7.49)

1 1
S)*x 77 —S * S
:77”/0 ds d") fﬁp/o dse BN b e B0

1

1
N | ds Z nqe_SB(”)bZaiqapeSB("),

qeENT
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where, in the last step, we wrote e*SB(")bipeSB(”):’yés)b*_p—f—az(f)bp—kd(_sz))* (the label s

indicates that the coefficients fy,(,s) and a(s) and the operator d(fl),* are defined with n

(s) (s)

replaced by sn, for an s€[0,1]), and we integrated -y, ’ and o, ’ over s€[0, 1]. Inserting

(7.49) into D33 and using the additional factor 1, appearing in the first two terms on the
right-hand side of (7.49), we conclude that

1 1 . . B -
_ o —sB(n) % * sB(n) %
Dgs = 5N /0 ds Z (V(N) *fg,N) (P)npng(e*Z PV bza” ja,e® by +h.c.)+&,

with an error operator 51 such that
+& <ON"YN, +1)2 (7.50)

We expand

—e*SB(”)aiqapeSB(”)— —a qap—/o dt e By biqb7p+nqbqbp)et3(").

Again, the contribution containing the additional factor 7, is small. Hence, we have

—sB * 5B
Dy =35 / ds Z V(¥ )*fezv)(p)<npnqe T
« (a*qapb;—i—/ dtnqe—tB(n)bqbpetB(n)b;> +h.C.) +g~27
0

where, similarly to (7.50), £&<CN~Y(N,+1)%. In the contribution proportional to

a’ ,apby, we commute by to the left. In the other term, we expand
e~tBO)p,ctB0) — 4O 4O 1 l)

using the notation introduced after (7.49), and we commute the contribution Wz(f)bp to

the right of b%. We obtain D33=Dss1 +Ds32+&2, with

D33 : Z——/ ds Z ( )*fg N) npnqe_SB(”)bZeSB(")biq
/ ds / gt Z ( ) )77 pRe B8 B g=tB)p B0
quA*

+h.c.
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and
e (2 Vst B B(n)
D332::_ﬁ/0 ds Z (V(N>*fg,N)pnpnqe s (”)bqes 771)7qapap
p,qEAT
1 1 S /\ . R
_ = [ 4 dt ( (7> ) 2,—sB(n)py* osB(n) ,—tB(m), otB(M)
p,gEA
X (b3b,— NN =N ada, + (40 = 1)bybs+0 b br+db%) +hec. .

Since %gt) —1<Cn,p and U](,t) <Cn, , we can bound

(¢, D328)| SCNHE, (N +1)%€).

We are left with the operator D33, which is quadratic in the b-fields. Expanding
e BpresB) =0y 4 o +d(D*  and e BMpe B =4 Wb 4+o0pr +d1)

and, using the bounds (2.19), we obtain

1 ! o P S) 1k 1% S) 7. s
D331:—ﬁ/ ds Y (V(N)*fe,N)pnpnq(yg>bqb_q+ag>bqbq+ag>+h.c.)
0 P,gEAT
1 ' ’ v(_ ¢ 2 t t
—ﬁ/ ds/ it Y (V(N)*f“;) o2 (YYD bg 7 D ptbr
0 0 pachs P
+a((ls)’y(gt)bqbq+J§S)oét)b;bq+o(gs)a((lt)+h.c.)+£2,
(7.51)

where the operator & is such that £ <CN~1(N,+1)2. Integrating (7.51) over ¢ and s,
we conclude that

Dy =5 2 (V5 ) #Fen) @0 (a0a B0 g Fbab—g) + (2 +72)03by +72)

V(- (7.52)
toN (V(ﬁ>*fé71v)(p)npb§bq+ég,
pEA*
qEAY

where the error €~3 satisfies
+ & <CON"V2(WN N H1) (N +1).

Notice that, in (7.52), we are summing also over the mode p=0 (this contribution is
small, it can be inserted in the operator 53).
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Inserting (7.52) into (7.45), we obtain the decomposition (3.32) of the Hamilton-
ian Gy. In fact, combining (7.46) with the constant contribution in (7.52), we find

Cgy — % p%; (V(ﬁ) *fz,N) (p)mpos
qeA]

S50 5 ot (B o)
+

+% Z ‘7<1%)0'q’7q0'p'7p+% Z (p2"2+%(‘7(ﬁ)*ﬂ)(p)ﬂp> (7.53)
q6A1

pEAL
=YY (pQUZ—l‘A/(p)anrl(‘7<')*n)(p)np>
N & s 2" \N)" TN '\ N
+O(N™Y)

(the error O(N 1) arises from the substitution 0,7, in the terms appearing at the end
of the third and on the fourth line). Using the relation (3.14), we have

l~/p 1 -~ ~/ D o
=5V (5 )t s (Ve @) ==V (5 )ip+ N Ao o) P (7.54)

Since N3X\,=0O(1) and
I(Rex fon )l <IIRex fenll2 [nllz = Ixefell2 Inll2 < Ilxellzllnll < C,

uniformly in N, we conclude that the right-hand side (7.53) coincides with (3.27), up to
errors of order N~!. Similarly, combining the quadratic term (7.47) with the quadratic
terms on the right-hand side of (7.52) (and using again the relation (7.54)), we obtain
(3.30), up to terms that can be incorporated in the error. We omit these last details.

8. Analysis of the excitation Hamiltonian Jn

In this section, we analyze the excitation Hamiltonian
IN = e*Ae*B(")UNHNU]”{,eB(”)eA =e AGye?
to show Proposition 3.3. The starting point is part (b) of Proposition 3.2, stating that
Gn=Cgy+Qgy +Cn+HN+Eqy
where Cg,,, Qg, and Cy are defined in (3.27), (3.30) and (3.31) and the error term &g,
is such that
C

£y < ﬁ((MH)(HNHH(MH)S)-
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From Proposition 4.2 and Proposition 4.4 we conclude that

+e &g e < \/C’N((N++1)(HN+1)+(N++1)3).

In the following sections we study the action of e on Qg,, Cy and Hy separately. At

the end, in §8.4, we combine these results to prove Theorem 3.3.

8.1. Analysis of e_AQgNeA

The action of e# on the quadratic operator Qg, defined in Proposition 3.2 is determined

by the next proposition.
PROPOSITION 8.1. Let A and Qg,, be defined as in (3.34) and, respectively, (3.30).
Then, under the assumptions of Proposition 3.3, we have

e_AQgN eA = QQN +51(VQ)7

where the error SJ(VQ) s such that, for a constant C>0,
<
VN

To prove the proposition we use the following lemma.

+6F <= Wi +1)%

LEMMA 8.2. Let A be defined as in (3.34) and let ®, and I', such that
|®,|<C and |T,|<Clp|~2

Then, under the assumptions of Proposition 3.3,

. C
£ 3 Bl A< = Vi1, (8.1)
PEAT
C
+ Y Tpllbpbp+byb”,), Al < e )? (8.2)

pEAL

Proof of Proposition 8.1. We write
1
e Qg e = Qg +/ dse *4[Qn, Ale*A.
0

We recall the expression for Qg, in (3.30), where the coefficients of the diagonal and
off-diagonal terms are given by ®, in (3.28) and, respectively, by T', in (3.29). With
(3.15), one can show that |®,|<C and |T',|<C|p|~2. Hence, Proposition 8.1 follows from
Lemma 8.2 and Proposition 4.2. O
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Proof of Lemma 8.2. We start from the proof of (8.1). We use the formula

[bpa Al= ﬁ Z Nr (('Y'ubv +0ub_y)b— <1 - J\;) Op,rto

rePy
vEPL

N, —1
+('yvb:+avbv)bT+v<1— ;\r )5,H

N — N (8.3)
+0, (1—N+> N, R i (1— N+)5p7y>

1
- Z N (Vb +00b—0) (0 ar v+ ana_rbryy)
N\/N re€Py
vePy +0uap,a b by oy =Yl b anay)

and the fact that [b,, A]=[b;, A]* to compute [bsb,, A]. We get

8
> ®ylbybp, Al=Y  Aj+he.,
j=1

peAi‘F

where

1 N, -1
A=—= S| 11— —— by b vby vbi ;
1 \/N Z +oT] < N ) r4+ov r(’y +o 11)

rePy
ve P

1 N, -2
Ag=—— ®,n,.1- b b wby+0,07 ),
2 \/N Z n ( N ) r r+v(’7 +o v)

r€Py
vePr,

1 N, -3

D= 3 o (1 Pt it

VN & N
vEPL

1 N, —2
A =TT = ® 1- * b Vv,
4 N Z vl ( N )b—rbr+v’y1 b

r€Py
vePL

1 * % * *
AE):_W Z Z (I)Pn?”bpaervanfr('yvbv+0—71b7v)’

PEAY r€EPH
vEPL

1 * 7% * *
AG:_W Z Z Qpnbyby s, a”ap(Yuby +0u,b” ),

pPEAY rE€EPH
vEPL

1 % 7 % * *

pEAj‘F rePy
vEPL

1 .
Aszw Z Z Q1 yubpanapb byt

pENY r€PH
vEPL
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Using |®,|<C, |n,|<C|r|~2 and |o,|<C|v|~2, we estimate, for any € FSV

C
(€, A8 < —= 70| [1b—rbr o€l (o] [| (N3 + 1)1 2€]+ 15

veEP,

i 2
< \/NII(MH)EII :

The terms Aj, with j=2, 3,4, are bounded in a similar way. To bound As, we first move

b* ,. to the left, obtaining

1
A5:*W Z Z q)Pnrb;birai-i-uap('vav+‘7vb*—u)
pEAY r€EPH
vePL

1 * * *
< Z ®,mb*br o, (wbe+oub" )
rePy
vePr,

SN SENS
The cubic term Aéz) can be estimated similarly as A;, while

C *
Z Z 72| | ar40b—rbp€ || [|ap(yobo +0ub™, )E ||

N3/2
pGAi r€ Py
veEPr,

C 1 ) 1/2
<N<N Z Z Har+7jb7rbp£” )

pEAj‘F rePy
vEPL

1/2
X( > > |Th~2(||apbv€||2+0v2||apb*_uﬁllz)>

PEAY r€EPH
vEPL

c
< SIW A+ e

€, A0¢) <

(In the last step, to bound the contribution proportional to ||a,b* ,£||, we first estimated
the sum over r and p with fixed v by |o,|? |\J\/'+1/2b’iv§||2<|Uv|2 [[(NM:4+1)&]], and then we
summed over v). The terms A, with j=6,7,8, can be treated as Aél). Hence, for all

7=1,...,8, we have

i

\/N(N++1)2.

This concludes the proof of (8.1).
To show (8.2), we use (8.3) and its conjugate to compute

9
> Tpl(bpbop+bjb" ), Al=>  T,+he,
j=1

PEAT
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where
N, +1 1
T = Fr vllr i —r—v " {7 i —r—uv vYv v i 9
\FZ +n( ) (b 00 (Wwbo+aub”,)
rePy
vEPL,
N,
T Z Fr+vnr (1_)b*r(7vbv+a'ub*v)brv7
\/>T€PH N
vePr
N+ * 1 * *
\/T Z Fﬂ?r( )(br+ubr_Nar-s-var)(%bv"'gvb—u)a
r€Pgy
vePL
-1
— ¥ rrnr( )bi+v(%b@+avbi br,
\/7T€PH
veEPL
Ni=1\, ., 1 «
Z FU’I]TO'U< N )(br+vb ﬁar+vav)b—ra
TEPH
vePL
N, 2)
5 Lo (1- 252 Yot
\/7TEPH N
vEPL,
and
N, Ni+1
777 Z Fiﬂ%f%(( N )+<1 N ))br+vb—rb—va
7€PH
veEPL,
Z Z rp??r r+1)a—Pb* +br+v —ra—P)(’yUb +gvb*v)
pEA* rePy
vePyL +0oubpbr b7 at a_p —Yubpaga_pb_rbyyy),
9: \/* Z Z FPnT r+va’l7b +br+v 77" )(Wvb’u—*—o-vbtv)bfp
pPEAY r€PH
veEPL +0,by 0 a” japb_p, —vyasapb_rbrgyb_p).
We show now that for all j=1,...,9 we have, on }'fN
i(T<+hc)<£(N’ +1)? (8.4)
§ .c.) < \/ﬁ 4 . .
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We observe that

1§, T16)] < \/]V Z Lol (70| l|[a—r&]] la—r—o (b +00 b3 )E]]

r€Py
vEPL

C 1/2
gi FT U2 -r 2>
(T I o)

rePy
vePL

1/2
X( > |nr|2(||bv(/\f++1)1/2£ll2+|0v|2|(N++1)€||2))

r€ Py
vEPr,

C 2
< ;73;|KJV;'%1)5H

and similar bounds hold for T; with j=2,3,4. Next, we bound

(€, T56) qu Y Lol lnel o] llarso€ll asb™ €]

re Py
ve Py,
/2 1/2
( YOI ||ar+u£|2) ( S 2 |au|2w++1>s||2)
TEP TEPH
vEP, veEPL,
< LI+ Del,

ﬂ

and similarly for Y. To bound Y7, we use

1
(€Tl < 7 D Lol 1B N2 b €| |V %)

r€ Py
vEPL
1/2 1/2
<o (S i) (IR i vel?)
re€ Py re Py
vePr, vEPL
7II(N++1)£II2

ﬂ
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We consider now YTg. In the first term, we move b* . to the left:

Tg i= N3/2 Z Z Cpmebpay 0 pb™  (Yoby 400" )

pEAL TE€EPH
vE P,

= N3/2 Z Z FPnTb bz rarJrva p('yvbv'i_o'vbiy)

pEA* re Py
vEPL

1 ) )
o W Z FrnrbTbT-i-v ('vav +O'vb_v)

rePy
vE Py,

=1 i

To bound the quintic term, we use that |P;|<CN?3/2 and Y orepy In.|?<CN—1/2:

M6 TEOI< a7z 2 3 ITpllnd I5jarsal laph?., (ot

PEAY TE€EPH
veEPL

1 1/2
<N( 2. 2 Il |<N++1>1/2a,-+U§2)

pEAY TEPH
vePr

1/2
( S 5 Il lacybt bl + o Pllapb® 5 £ >)

pEA* rePy
vEPL,

C
< ﬁ||(N++l)§||2’
where, in the last step, to bound the contribution proportional to [la_,b* ,b,&||?, we first
estimated the sum over p by [N/2b%,b,€]|<|[by (N +1)€]|, and then we summed over r
and v (and similarly for the term proportional to ||a—_,b* ,.b* &||). As for the cubic term,

we have

1/2
b 1 *
(€. 1676) 1< 5372 ( > 0P ||bTbr+v5||2)

rePy
vePr

1/2
( S Iinl? (bl + o 21N 1) 262 >)

r€Py
veEPL

N3/2 ||(N++1)£||2

The remaining terms in Tg and Y9 can be treated with the same arguments shown above,
thus concluding the proof of (8.4). O
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8.2. Analysis of e~ 4Cne?

In this section, we analyze the action of the cubic exponential on the cubic term Cy,
defined in (3.31).

PROPOSITION 8.3. Let A be defined as in (3.34) and let Cn be defined as in (3.31).

Then, under the assumptions of Proposition 3.3, we have

e ACyet =CN+% T;H (?(%) —|—‘7(TJJ\;D>)W

vePr, (85)
(024 (724 02) biby +7004 (bub—o +BEDE ) +ES,
where the error 51(\76) satisfies
169 <« C (V1) (i +1)+ (VL + 1)), (8.6)
VN

To prove the proposition we use the following lemma.

LEMMA 8.4. Let A be defined as in (3.34) and Cn be defined as in (3.27). Then,

under the assumptions of Proposition 3.3,

Cn, A= Ej+h.c. (8.7)

=0

o= 30 (V) +7(Th0) )02 + (3 402) Dbt (bub o+ B30,

- 1 STtV * N+ Y *
S1T N V<N)77r('7qu;+gvb—v)<(1]v) —1)(vbv+o,bZ,)

1 > * N++1 N :
+N Z V(;\}>nr(%bv+0vbu)<(l— i >(1—]\;)—1)(%bv+avbv)’

—_ 1 ~/T N++1 N+ *
o 3 TG (5 (8 Yottt

2
=== 3 V(S o, (1%) br (b +ob7,),
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E4Z_$ Z V(%)nr% (1_%)br("/rbr+arb*r)a

rePy
veEPL
—_ 1 S P * N++1 * 1 *
Es= Z Z V(N)m(%bv—&—ayb,v) (1— ~ >(bpbr—Napar)
re Py pGAi
VEPL ptygy

*
X (Yrtv—pbrv—p+ 0'7”+’U*Z7bp7r7'u)

and

‘~6— Z Z V( )nr ’va +o,b_ v)(l_./\]@> (bipbr-ﬁ-v_%a*_parﬁ-v)

TGPH PGA*

vEP; _ *
ol X (Vrtpb—r—pF0ripbrip),

N . 1,
TEZPH pg\:* (%) < —]\;>Gv(b—pbr+“_Na—paT+v)b—r

vEP, _ *
L p#—v X ('Yp+vb—p—v+0-p+vbp+v)7

—_ 1 S D N_2 * * 7% *
=TTN > 2 V(N>nr(1_ ;V >%br+vb—rb—p(7pvbp+v+0pvbp—v)’

rePy pEAi
veEPL, pFv

1 ~
Egz—ﬁ Z Z V(%) (1_./\]:';>ava—pa—7b7+v(7p+vb—p ’U+UP+’pr+U)

r€ Py pEA:_
VEPL pst—y

N2 Z Z V( )Wr Yoby+oub— U)(a;-i-qar‘*‘vb—T+b7'+va;+qa—7')bip

r€Py p,gEAY
vEPr, _ *
p#—aq X (Ygbg+0gb™ ),

N2 Z Z V( )nr Yo T+Ub7,aap+qav—l—a,,a;ﬂa,vb,rb”v)b’ip

rePy p, q€A*

(1]

10

(1]

11

vePL pt_g X('YqquFUqb*_q)
and
1 ~
Elo= —— V(£ )bhalb™ s Alrabs b,
\/N P,gEAY
PFE—q
1 ~
Ei3=— Vv by g plg, Al
VN ety <N) (8.8)
PFE—q
— 1 1 * * *
:14:ﬁ V(N) bp-‘rqb p[b—q7A]'
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For all j=1,...,14 (but not for j=0) we have

+(Ej+h.c.) < —[(N++1)(IC+1)+(N++1)3]. (8.9)
N
Moreover,
+[Zo, 4] < %(N++1)2. (8.10)
Proof of Proposition 8.3. We write
1
e ACnel = cN+/ dse *A[Cy, Ale’. (8.11)
0
We set
14
£V =[Cn, A]-20 = (g;+h.c)
j=1

and rewrite (8.11) as
e_ACN et = Cn+250 —&-51(\?)

with ) )
S1 ~
51(\51):/ dsl/ dss e*SQA[QEo,A]eSQAJr/ dse*SAEJ(\g)eSA.
0 0 0

Lemma 8.4 together with Propositions 4.2 and 4.4 imply (8.6); with the definition of =g
we obtain (8.5). O

Proof of Lemma 8.4. We have

14
e Al=—= > V(L) 0 g0 A7 (raba+oab™ )+ Zj+hc. (8.12)
p,qEA* j=12
pP#—q

We use the formula (8.3) to compute the first term on the right-hand side of (8.12).
Putting in normal order the quartic terms (but leaving unchanged the term in parentheses

(fyvb;“ﬂravb_v) and its conjugate), we obtain

= 2 V(£ ) bygs AW, (bt ab,)

p,qGA*
p# q

N Z V( e b+ oud- v)(l—N}“) (1—/\]@>(%bv+avb*v)

T‘GPH
vEPL,

2 11
Z V( =)t ob J(lAJ\[;) (obutanb, )+ Ej.

TEPH j=2
vePL
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The first two terms on the right-hand side of the last equation can be further decomposed
as Zo+=;. Combining (8.12) with the last equation, we obtain the decomposition (8.7).
Next, we prove the bound (8.9). With

Z V(%)UTSC'N and Z \angC,

rEAL vEPL

we obtain that
+5, <CN YN, +1)2

As for Z5, we find

C 1/2 /2
6201« S (3 o v
rePy
veEPL
1/2
X( Z |Uv|(||brv€||2+|Ur+v|2||(N++1)1/2§”2))
rePy
vEPL
C
< = Ve +D)Y %)%,
VN
using Y-, p, |0,|<CN /2 The terms =5 and Z4 can be bounded analogously. As for

the term Z5= "(1)—1—_(2) we use that

|PL|<C'N3‘/2 and Z |77T\2<CN_1/2,

rePy

hence

\<s,aé”f>|
< 3 [T (L)l bl 1o Gt pbrsomp o pbh )]

r€ Py ;DEA*
vePL pErt+v

1 ) ) 1/2
(T X mrmae)

rePy pEA*+
vePL pEr+ov

><<( 2 2 ||b_rbr+v_pf|2>1 - (Z S lorina ot o v§”2>1/2>

r€Py peEAY r€Py pEAL
vE Py, p;éT*F’U veEPL, p;,g,,‘Jr,U

C 2
< ﬁ”(/\/‘rf—l)f\\ .
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In the last step, to bound the term proportional to [[b_,b;_,._ |, we first shifted
p—p+r+w, then we estimated the sum over r by

IN 205 < NN+ DE]

and at the end we summed over v and p (using the factor |o,|?). The bound for Ef) and
for the terms =;, with j=6,7,8,9, can be obtained similarly. As for the term Zig, we

first move the operator by, to the left, obtaining

w=5z 2 V(R)miubitob )a;+qar+v<bi,,b_r—;,a*_pa_r>

rePg p, qu
vePr _ *
p£—q X (Ygbg+ogb” )

(1]

1 * * *
5 2 2 V(B ) rbi b )b by g (Ygba+gb,)

r€Py p,gEAY
vePL pt_g

+ = Z Z V( )nr ’va +o,b_ v)ai+qar+v(7qbq+aqbiq) (813)

rePy qEA*
VEPL gzt

g Z Z V< )777" Yoby+oub- ”)br+vb:+q(7qbq+0qbiq)

rePy qEA*
vEPL gty

To bound E%), we commute the operator a,, to the right of b* ,. We find
=1
€ EOl< o Z > V(%)|im

X [1b—pap+q(yuby+0ub7, )E]| ||ar+vb—7'('Yqbq""aqb*—q)g‘l

Oy ()

p,qEA vEPL
p#—q PTvEPlH

X [1bp g (Vobo+00bZ )EN 1bp+0 (vgbg + b 4 )E -

(8.14)

By the Cauchy—Schwarz inequality, and using the bound

> (5 <
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we obtain

1€, 206

C . 1/2
<xi( XX Pyt P4 Playapia £

P,qEAN] TEPY
p#£—q vEPL,

~ 1/2
><< > Z!V(ﬁ)\z(lamaraq£||+|oq|2|ar+vaTa;§||2)>

P,qEA] r€Py
p#—q VEPL

C i} 1/2
+]V2< Z Z "7p+v|2(||ap+qbv§”2+|0v|2|ap+qby£|2)>

p,qEAf‘F vePr,
pF—aq

1/2
X( Z Z (||ap+qu§||2+|Uq|2||ap+vb*q£||2)>

p,qGAi‘F vEPL,
PF—q

(8.15)

C
< ﬁ(&a (N++1)3€>'

The bound for Eg%) is similar. As for the quartic operators Eg

handled like the second term on the right-hand side of (8.14) (in E%) we first commute
briy and by, ). We obtain that

=(4)

%) and =;,, they can be

<
VN

The operator =17 can be controlled similarly as Z1g9. To estimate =12, 213 and =14,

+£E10 < (N++1)3.

we insert (8.3) into (8.8); this produces several terms. The contributions arising from
=12 are similar to the terms =4, ...,=1; considered above and their expectation can be
estimated analogously. On the other hand, to bound some of the contributions to 23
and =14 we need to use the kinetic energy operator. To explain this step, let us compute

=13 explicitly. We find

with

—(1 1 S P * * N * *
-Ly ¥ v(N)mw,bpMﬂb_p(le b (yobut-oub™),

r€Py peEAY
VEPL pt_p_y

Eg?z% Z Z ‘7(%>77r7rb;_rbip (1_/\/‘;\[_1)bi+v<7vbv+avbiv>v

r€ Py ;DEAi
vEPL pET
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— * * * N
5533)_ 2. 2 ( )nr%gvbp w0 pbr 07 (1_ N+ ’
rEPHpEA*
vEPL pFv

—(4 1 ~/Pp v ix N

':‘§3) = 7N Z Z V(N)nrﬁygbp+vb—p< ]\; b—rbr+1n
re Py pEA:_
vEPL p#—v

5553)—_7 Z Z V( )Uﬂq p+qb—p( :—i-vaqbir+b:+ua’*—raq)(7vbv+O"Ubiv)v

r€Py p,qEA’
vEPL pE—q

—(6 * *
‘253)_N2 Z Z V( )777"qu p+qb—p(’yva aqb b7"+U Uvbr+vb ,,.CL_UCLq).

rePy P;qu
vEPL pE—q

(1)

To bound Zj5 we use the Cauchy-Schwarz inequality. We find (with appropriate shifts

of the summation variables)
(G=]

¢ B 1/2
<N( Yo P bbby (V1) 1/25”2)

rePy pEAi
VEPL ptrtoy

1/2
(Z 5 ! p/év B N+ )26 4o P+ 1) )>

rePy pEA*
VEPL ptrtu

N+ 1) M2 (1) 2]+ N+ DE )

gi
VN

The bounds for E%), with j=2,3,4, can be obtained similarly. As for the terms Eg‘? and

Eg?, they can be estimated proceeding as we did for =;9. We conclude that

JC;V(N++1)(K+1)+(N++1)3' (8.16)

Also the term =14 can be controlled analogously. To avoid repetitions, we skip the details.

+E13<

To conclude the proof of the lemma, it remains to show (8.10), which follows from

Lemma 8.2 since, for any ve Py, we have
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8.3. Analysis of e " 4H yed

In this section, we analyze the action of the cubic exponential on Hy=K+Vy.

PROPOSITION 8.5. Let A be defined as in (3.34) and Hy be as defined after (3.23).

Then, under the assumptions of Proposition 3.3, we have

e Aty et =Hy— \/» Z V( ) Tﬂbir(%bv—i—avb’iv)—i—h.c.)

rePy
vEPL
1 S/ ~(r+v
-5 2 V() ()
rePy
Vel (024 (24 02)b% by + 000 (byb_y +b%b% )

+eq)
(H) ;
where the error 5" satisfies
+&M CONTVAN, A1) (Hy+1)+ WV, +1)%).
To show the proposition, we use the following lemma.
LEMMA 8.6. Let A be defined as in (3.34) and let

Op=— \ﬁ > V(5 )bt (ubstoubt,).

rEPy
vEPL

as defined in Lemma 4.3. Then, under the assumptions of Proposition 3.3,

(00465, A ZH +h.c.,

with
My = —— 3 (?(%)+?(’";”))nr(ag+(y,%+ai)szbv+wv<bvb7v+bzbiv)),
wer
2
le_% Z V(?})nr(’}/vbi'f'avbv)((l_j\]@—) _1) (’yvbv—'_aﬂbtU)
r€Py
vEPL
N.+1
& s (-5 -) )
T’GZPH ( ) N

verr ('vau+0vb—v)
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:—7 Z V( )anU( NJ}V+1> (1—%)bT+v(’yr+vbr7j+o"r’+'ub:+v)’

TEPH
vePr,

H3:—% > > V(T)nr(%bﬁavbv)(l—/\[ﬁl)

rePy we Py,
vePr, —w+r+vePy < 1

b*w r— vb _Na;ij r—o@ >(7wb +Uu)b* )

]. Z A~
1 7
¥ X
rePgy wePr
veEP, w+rePy

r4+w N N,
N )nT(vav+0vb—v) (1 N)

1
X (b:+wbr+v - Na:+war+v) (’oww—f—O'wbiw)’

- N Z Z (U+w)mav<1—j\]@>

TGPH wePr
vePr, wHvePy <

* 1 * *
b1u+1)b7”+v - Na1u+va7’+ﬂ> b—?”(f)/wbw +O—wb—w)7

v+w N . .
I = N2 Z Z ( )nrgv (1_]€>av+waT’bTJrv(’Vwbw"‘waw)a

rePy wePr
vEPr, w+vePy

¥ X Tttt (15 bttt

TGPH weP
vEP, v—wEPy
1 ~/ S . § . ) )
H8 B m ;3 V<N)777"(’-yfubv+O'Ub_v)(b_Tas+war+U +as+wa—rbr+v)b—s(7wbw +Uu;b—w)7
T8 H
v,wEPr,
1 ~/s
Hg:ﬁ Z V(N)m(ov @l Oib_pbrgy =0 by b ka0 )0 (Vb +0uwb™ ),
r,s€ Py
v,wE Py,

and

Z V( ) r+v trvA](’vavJFO'vb*_q;)a

rePy
vEPL

rePy
vePr,

S
VN
1 ST *
=% 3 V() bttt oo 4l 817
S
VN

> V(5 )biabt oulbn . AL

rePy
vEPL
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For all j=1,...,12 (but not for j=0) we have

C
+(II;+h.c.) < ﬁ((/\f++1)(/c+1)+(/\/++1)3). (8.18)

Proof of Proposition 8.5. To show the proposition, we write
e_AHNeA:HN—I—/Ol dse A Hy, Ales™. (8.19)
From Lemma 4.3, we know that
[Hn, A= @0+@3+51(v?:[1)’

where
0 SONTVA(N A+ 1) (K+1)+ (N +1)%). (8.20)
Hence, (8.19) implies that

e_ArHNeA:rHN—l-@o—F@S
/ dsl/ dsy e=*24 (0040, A] SQA—i—/ dse_SAf(%) A,

Using Lemma 8.6 and setting 51(\?,{2):ij1 Il;+h.c., we finally obtain

e " Hye =Hn+60+65+11,

/ dsl/ dsz/ ds3 e "3 2H , Ale s3A
1
—l—/o dsl/o d52e_32A51(\,77{2)es2A+/0 dse_SASJ(Vqtll)egA

Proposition 8.5 now follows combining (8.20) with the estimates (8.18) and with the
observation that Ilp=—Zg, where Zg is defined in Lemma 8.4 and satisfies the bound
(8.10). O

Proof of Lemma 8.6. We write

©0.Al= = 3 V() Baae AW, (b ord” Jry T,

r€Py j=10
vEPL
r4+v#£0

Using (8.3) and normal ordering the quartic terms (with the exception of the factor
(wby+0ub%,)), we obtain that

5 2 V() B AW (bt b :iﬂf

TEPH Jj=



324 C. BOCCATO, C. BRENNECKE, S. CENATIEMPO AND B. SCHLEIN

We now show (8.18). The bound for II; follows from

emel< o 3 7 WL (4 1) 2602 2 O +2)€012)

r€Py
veEPL
C
< NII(/\QH)EIIQ-
To bound II;, with j=2,3,4,7, one uses that

|PL| <CN®? and Z In.|? <CN~Y/2,

re Py
Hence
STl L 0 Y o [ A S
rePH
veEPr,
1/2 1/2
( S Il loul2 15 m?) ( 3 ||wﬂb_r_v+ar+vb::+0>f||2)
rePy rePy
vE Py, vE Py,

C
< 1)1/2¢)2.
<\/NH(N++) éll

Similarly, using the Cauchy—Schwarz inequality, we can bound I3 by

2\@

1/2
(€, 38| ( oY nePUbebu—roElP+lou Ibwrv(/\f++1)”2£||2))

rePy wePr
vEPr, —w+r+vePy

1/2
X( > > (b—rbw£||2+|0w|2IIb—r(N++1)1/2£II2)>

rePy wePr,
veEPr, —w+r+vePy

C
< —= [N +1)¢]12
The terms II4 and II; are bounded similarly. It is easy to check that Il5 and Il satisfy

(8.18). For example, we have

emal< T S 3 [P() el buse 1) 2]

TGPH wePr,
vEPL w+vEPy

X (1br4b—rbuw Ns A1) TV 2E] [0 | [by40b—r b (Mo +1) 2]
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¢ 1/2
<Af( Z Z |77T|2|UU|2|‘bw+v(/\/‘++1)1/2£“2>

rePy wePL
vEPr, w+vEPy

X(Z D (Ibravborbu (N +1) 722

rePy wePy
vEP, wt+vEPy Usos 1/2
FlowllBroborb® (N 4+1) 2] >)

C
< SIW A+ e

*

v, we first sum over v=v+r and over 7.

(In the term containing the creation operator b
This produces a factor N, +1 which can be moved through b¥. At this point, we can
estimate b%, by an additional factor (A, +1)'/?; with this procedure, we do not have to
compute the commutator between b}, and the other annihilation operators). The bound

for Ilg is similar. As for IIg, we decompose it as

1 /S * * % *
Mg =— Z V(i)nr(’%bv+O'vb—v)b—rb_sas+war+v(’oww+0wb_w)

N2 N
r,s€ Py
v,wePr,
1 (T * * *
+m Z V(T)nr('}/vby+O’vbfv)b7rb7r7y+w('ywbw+0-wb7w)
rePy
v,wePr,
1 /7S * % * *
+m Z V(N)nr(’)/vbv+Uvb7v)aerwafrerrvbfs(’oww+wa7w)
r,s€ Py
v,we Py,
="+ +11).

The term Hél) can be bounded commuting first the operator b_,. to the right, analogously
to the estimates (8.14) and (8.15) for the term E%) in the proof of Lemma 8.4. Also
the terms Héz) (which is similar to Eg%) in (8.13)) and Hég) can be treated similarly. We

conclude that
+TIg <CN V2N, +1)3.

The operator IIg can be controlled as Ilg.

Finally, to bound the terms Iyo, IT1; and IIj5 in (8.17), we can expand them using
(8.3). The contributions arising from Il are similar to the terms IIy,...,IIg, and can
be estimated analogously. On the other hand, the terms arising from II;; and Il are
similar to those arising from =13 and =14 in the proof of Lemma 8.4, and can be handled

proceeding as we did to show (8.16), making use of the kinetic energy operator. O
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8.4. Proof of Theorem 3.3
Combining the results of Propositions 8.1, 8.3 and 8.5, we conclude that
In=e *Gye?
=Cgn+Qon+HN
1 ~/T ~/r+v
)

ver X (024 (V24 02)b5by +70 00 (byb—y +D5b,)) (8.21)

1 1> * * *
Hoy— 3 V(%)(br+vb_r(%bv—i—avb_v)—i—h.c.)

r€ Py
vePr,

+Eqs
with an error operator & 7n satisfying
&7, SONVA((Hy+1)(N+1)+ (V. +1)?).

We show now that the sum of the cubic terms on the fifth line of (8.21) also contributes
to the error term. In fact, we have

1 N )
=T > V(ﬁ)(br+vb—r(%bvJrUvb_U)Jrh.c.)

re Py
vEPL

:ﬁ S° V(5 ) B by +b ) +hic)

vE Py
reAl
r+v#0

1 i * * *
+ﬁ Z V(%) (br+vbfr (7vbv+0vb,v) +h.c.)

v,re€PL,
r4+v#0

=71+%2Zs.
To bound Z;, we use that |[v|"*<N~!/2 for v€ Py and

> louP<CNTV2

vEPy
We find
C =5 T 1/2
6nol< 7T 3 V(55 ) [r+0b-r €1l Q100 1+ ol 1V +1)1/2¢))
rEAY

r4+v#£0
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SR ppaTaanTS B DRI

vE Py vE Py
rEAj_ TGAj_
r+v#0 r+v#£0
c - Vr/N)2, o\
+\/N( Z r2|b7-+ub_7.§||2> ( Z 7"7| u|2>
vE Py vEPyH
reA? reA?
r+v;2—0 r+v;2—0 X H (N++1)1/2§”

< o+ 2+ 1) %2

The term Zs is bounded using the Cauchy—Schwarz inequality and the estimate

> ITP<eoN'2

repPy,

‘We obtain

c 1/2
AT () D

r,vEPr,
r+v#0
1 1/2
(X o I 1 2P
r,wePr,
r4+v#£0
C
<WII(N++1)1/2(/C+1)1/2£H2'

Similarly, we can show that, in the term on the third and fourth line in (8.21), the
restriction r€ Py and v€P;, can be removed producing only a negligible error. We
conclude that

IN ZCgN—l-QgN-f—HN

pt+q -
b S (D (o2 + (34 02005yt by B3D,))

quA*
+— 3 V( )nq 024+ (V2 402N b5 by (bpb_p +H3H7,)
p7q6A*
+g.7N7
with o
+&7, < N1/4((’HN+1)(N++1) +(N+1)3).



328 C. BOCCATO, C. BRENNECKE, S. CENATIEMPO AND B. SCHLEIN

Theorem 3.3 now follows from the observation that

Corty 2 T meiey 2 V(5 =Coro)

p,qEAY p,gEAY
and that
O +K+— v P (2 402)0%by 47,0 (byb_p+ 520" )
N N N Ng\\"Yp 70, )0p0p TYpOp(Opb—pT0,0_,
p,qEAY
(8.22)
e ST V(L) 0y (24024 (Bpbp+5b7,)) = Oy +E
N N Nq\\p Jp) pVp VPUP( p0—pt0, —p))— N 1<y
P,qEA]L
with o
+&o, < VD). (8.23)

Here we used the fact that the contribution to Qp arising from the last term in (3.28)
and (3.29) cancels with the last sum on the left-hand side of (8.22) (it is easy to check

that the remainder corresponding to the momentum ¢=0 satisfies (8.23)).

Appendix A. Condensate depletion

The goal of this short appendix is to prove formula (1.14) for the number of orthogonal
excitations of the condensate, in the ground state of (1.1).
We start with the observation that

(UnYn, N2 UnYn) = ([Untpn —eeBMeAeBOQ| N Uniy)
+ (e eBMeABMO N [Untpy —e@eBMeABMQl) (A1)
+(eBMeABMQ N, BM A0,

From (6.7), Lemma 2.1 and Proposition 4.1, we conclude that
HUNYN, N Unon)—(eBMeAeBMQ N, eBPMeABMNQ) | < ONT/8,
Proceeding as in §7.2 and recalling the notation
vp=coshn, and o,=sinhn,,
we find

e—B(n)N+€B(n) = Z ((’Y;+‘7;27)b;bp+7p0p(b*b* +bpb—p)+‘7§)+éla

p—p
PENT
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where + & <CN (N, 41)2. By Lemma 8.2 and Proposition 4.2, we have

e~ Ae BN BMeA = Z (('yz+a§)b;bp+'ypop(b;b*_perpb_p)+Ug)+<‘jg,
pEAT

with + & <CN~V2(N,+1)2. Conjugating with the generalized Bogoliubov transforma-
tion e®(7) and taking the vacuum expectation, we obtain
(B ABMIQ N, B ABTIQ
= Z (UZ Jr(orfj +’y§) sinh? Tp+27p0p sinh(7,) COSh(Tp))+O(N71/2).
pEAT

With (5.9), we find

F, -G
P —1 and 2sinh7,cosht,= P

F2—G2 N e

p p

.12
2sinh” 7, =

Using (3.37), we arrive at

(B ABEIQ N, B0 ABEQ)

_ Z p2+(‘7(~/N)*fAl,N)p—/\\/p4+2p2g‘7(-/N)*fZ,N)p_’_O(N—l/Q)’
2V + 202 (V(- /N fon)y

with ﬁ’N as in (3.7). Proceeding as in the proof of (5.27), we conclude that

2
<eB(n)eA€B(7—)Q)N+eB(n)eAeB(-r)Q>: Z p +8m0_\/p4+16m0p2+(’)(N‘1/2).

peny 24/ p*+16magp?

Equation (1.14) follows by combining (A.1) with the last equation, since

1—<<Po,%(\})900> =N UnYN, N UNYN).

Appendix B. Properties of the scattering function

In this appendix we give a proof of Lemma 3.1 containing the basic properties of the

solution of the Neumann problem (3.5).

Proof of Lemma 3.1. We adapt the proofs of [12, Lemma A.1] and [4, Lemma 4.1].
We start showing an upper bound for (3.9). We consider the solution f of the zero
energy scattering equation (1.2) on R? with boundary condition f(x)—1 as |z|—oo (for
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the properties of f we refer to [14, Lemma D.1]). We set r=|z| and m(r)=rf(r). Clearly,
m(r) satisfies

—m" (r)+ 3V (r)m(r)=0. (B.1)
We define -
y(r) = ED), (B2)

with k€R. From

Orp(r) = %(m’(r)kr cos(km(r))—sin(km(r))),

r

we conclude that 1 satisfies Neumann boundary conditions at r=N/ if and only if
EN{=tan(k(Nl—uap)) (B.3)

(recall that m(r)=r—a for r outside the support of the potential). We choose k to be
the smallest positive real number satisfying equation (B.3). Expanding the tangent, we
find a constant C'>0 such that

3a 9 a 9 3a 9 a
<Neo>( vt O >><’“<<Neo>( ST >>' (B4

We calculate now <1/J, (fAJr%V)w). To this end, we compute

— (sin(km(r)))" = k*(m/ (r))? sin(km(r)) —km” (r) cos(km(r)). (B.5)
Using that ,
AY(r) =L ()

and (B.5), we get

+2 <—km” sin(km(r)) cos(km(r))+ ;wsm(km(r))f) .

,
We denote by R the radius of the support of V, so that supp V C{r€R?:|z|<R}. Note
that the second and third term on the right-hand side of (B.6) are supported on |z|<R;
the contribution to <¢, (—A+%V)1/J> coming from the second line is bounded by

k2m?(r)
r

R
47r/<:2/ dr r2((m! (1)) —1) <Ok,
0
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where we used that m(r)<r (and the fact that m’ is bounded, as follows from [14,
Lemma D.1]). We consider now the contribution coming from the third term on the
right-hand side of (B.6). Using equation (B.1), we notice that the summands of order
k? in the big parentheses cancel. We get

R
277/0 dr V (r)(=km(r) sin(km(r)) cos(km(r)) + (sin(km(r)))?) < Ck*.
We have therefore

(, (~A+3V)Y) <E* (W, )+ CK™.

Using the estimate
sin(km(r)) = Ckm(r) > Ckr for 2R<r <N/

(since m(r)=r—a>r—R for r>R), we also get the lower bound

N¢ N¢
(W) =dr [ drsin®(km(r))=C [ drk*r®>C(NOPE? 2 C,
0 2R

by the lower bound in (B.4). The upper bound in (B.4) implies therefore that

< (B (CA+HVIY)

(¥, ) (NOP\ 5NE (NE)?

We look now for a lower bound for A\,. Given any function ¢ satisfying Neumann

2
<K’ +CE < 340 (1+9a°+c“0>. (B.7)

boundary conditions at |z|=N¥¢, we can write it as ¢(z)=g(x)(z), with 1(z) being
the trial function defined in (B.2) and g>0 satisfying Neumann boundary condition at
|x|=N¥, too. From the identity

(~A+3V)o=((-A+3V)¥)g—(Ag)p—2VgVy,
we have
_ 1 1
d —A4+=V |p= dz |Vg|*y? d2<AV).
/. o5 -a+3v)o [ tevlee [l ~aegv)
From (B.6), we see that
|¥(—A+3V)—k*¢?| < Ck'r?x(r < R).

Therefore,

_ 1
/ dw¢(A+V)¢>>k2||¢||§+/
lz|<Ne 2 lz|<Ne

X

‘ 2

lz|<R |z[? ’
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where we indicated by || |2 the L? norm on By,={z€R3:|z|<N¢}. In the second

integral, we can bound

being m(r)>cr for a constant ¢>0 (see [14, Lemma D.1]). We get

2

_ 1
/ dm¢>(—A+v)¢>k2||¢||2+c2k2/ o
|| <N 2 || <N

|z|<R |z[?

The third integral can be bounded using the following finite volume version of the Hardy

inequality (see, for example, [12, Lemma 5.1]), so that

|9(5U)|2 2 c (/ dx ) / 2
de<C Vg|*dz+—+= — g|* dx.
/g,-gR |z[2 |w|<N€| | (NO3\Jjz<r 122 |x\<w| |

We have therefore

_ 1 Ck*
/ dm¢<—A+V)¢>k2||¢2+(c2k2—0k4)/ dx|Vg|2—73/ dx |g)?.
2| <NE 2 || <NE (N3 Jiz1<ne

Using again 1 >ck, we get the lower bound

5 1 Ck?
d ALV o> k2 2 d 91 19
/Mw m( +3 >¢> 1]l N0 /Mw g2 ¢
2 Ck> )
>k <1_(N€)3)|¢” (B.8)
3(10 9 ap ap 9
e (1+5W_C(N€)2>II¢II :

The last estimate, together with inequality (B.7), proves (i).

We now prove part (i) and equation (3.12) in part (iii). The bounds 0< f, and
we<1 have been proved in [12, Lemma A.1]. We show (3.10) and (3.12). We set r=|z|
and my(r)=rf,(r), where f;(r) is now the solution of the Neumann problem (3.5). We

rewrite (3.5) as

—my (r)+ 3V (r)me(r) = Aeme(r). (B.9)
For re(R, N{], we find
mye(r) = )\;1/2 sin()\i/Q(r—Nﬁ))—&—NE cos()\ém(r—]\fﬁ)). (B.10)

Expanding up to order )\5, we obtain

- 3 ap 1 ap
me(r)=r a0+2N£7‘ AGOE

P+ O(ad(NO)h. (B.11)
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Using the scattering equation, we can write

Ne
/ V(x)fe(z)de=4r drrV (r)ymye(r)
0 (B.12)

N/{
_sr /0 dr (rm’ () + Aerme(r)).

The first contribution on the right-hand side vanishes due to the boundary conditions.

We evaluate the second contribution using expansion (B.11), to get

e (N0)®  ag

8mAe drrmg(r) =8mA; (3—10(]\75)24—@@2]\75)). (B.13)
0

With (3.9), we obtain
N¢
87T/\1g/ dr rmy(r)
0
3ag 9 ag a3 (NO® a0 o 2
- 14250 _SoN N
87T(£N)3( +5N€+O((€N)2 3 10( 0)*+0(a*NY)

_ 3a0 o 9
_8ﬂ<a0+2m+o((m)2>),

which proves (3.10). Starting from the expansion (B.11) and recalling that w,=1— fy,
an easy calculation leads to (3.12). Equation (3.11) in part (iii) and part (iv) have been

shown in [4, Lemma 4.1]. O
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