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1. Introduction

The structure of band edges of periodic Schrödinger operators is an interesting and wide

open question of mathematical physics. For example, suppose that a band function

k 7!E(k) has a minimum (or maximum) k0. In solid state physics, the tensor of effective

masses Meff at k0 is defined as

{M−1
eff }ij =± 1

~2

∂2E

∂ki∂kj

∣∣∣∣
k=k0

(1.1)

(see [1, Chapter 12, equation (12.29)] for more details). The choice of the sign depends

on whether the extremum is a minimum (“+”, the effective mass of an electron) or a

maximum (“−”, the effective mass of a hole). This definition of Meff makes sense only

if the right-hand side is invertible, i.e. if the critical point k0 is non-degenerate. This is

always true in one dimension; see, for example, [21, §XIII.16]. It is commonly believed

that, for d>2, the spectral gap edges are non-degenerate for “generic” potentials; see,

for example, [18, Conjecture 5.1] and the recent review [15, §5.9.2]. However, there are

very few rigorous results in this direction. In [11], it is shown that the lowest eigenvalue

for the periodic Schrödinger operator is non-degenerate. The same holds for the 2-

dimensional Pauli operator; see [5]. A wide class of operators for which the lower edge
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of the spectrum can be extensively analysed is described in [6]. See also the survey

[14] on photonic crystals, where additional references are given. For periodic magnetic

Schrödinger operators, even the lowest eigenvalue may be degenerate (i.e. the right-

hand side of (1.1) may vanish; see [23]). Note, however, that this can happen only for

sufficiently large magnetic potentials, as shown in [24].

Much less is known about the edges of other bands. In [12], it is established that,

for periodic operators of the form −∆+V with generic V, the edge of each spectral gap

is an extremum of only one band function, but the question of non-degeneracy of these

extrema remains open. In [25], it is shown in two dimensions that for any N there exists

a C∞-neighbourhood of zero such that, for potentials V from a dense Gδ-subset of that

neighbourhood, the first N band functions are Morse functions. In other words, any

finite number of bands is non-degenerate for generic C∞-small potentials.

In the present paper, we establish the following result (Theorem 2.1): for a wide class

of 2-dimensional periodic elliptic second-order operators, any global minimal or maximal

value of any band function can only be attained at a discrete set of points. In other

words, the global extrema of each band function are isolated. In particular, this implies

that the level sets corresponding to spectral band edges cannot contain 1-dimensional

curves. We do not need any genericity or smallness assumptions, and our result holds

for all bands, not necessarily for the edges of the spectrum. We formulate the results for

“smooth” second-order elliptic operators (2.1). We believe that, using methods from [22],

the result can be extended to the same generality in which the absolute continuity of the

spectrum in two dimensions is established. The extension beyond dimension 2, however,

seems significantly more challenging, as our technique relies heavily on 2-dimensional

specifics.

An immediate consequence of our result is that Liouville theorems (in the sense of

[17] and [18]) hold for the operator (2.1) at all gap edges; see Corollary 2.2. Our result can

also be used in studying Green’s function asymptotics near spectral gap edges (see [10],

[19] and [9]) and to obtain a “variable period” version of the non-degeneracy conjecture

in two dimensions [20].

Surprisingly, the statement of the main theorem fails for discrete periodic Schrödinger

operators on Z2, already in the case of a diatomic lattice. We explain the corresponding

example of non-isolated extrema in §7.
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2. Main result

Let

Γ = {n1b1+n2b2 :n1, n2 ∈Z}

be a lattice in R2, and let Ω⊂R2 be an elementary cell of Γ identified with R2/Γ. We will

use notation such as C1
per(Ω) and H1

per(Ω) for the classes of functions satisfying periodic

boundary conditions.

The periodic magnetic Schrödinger operator with metric g is defined by the expres-

sion

(Hu)(x) = (−i∇−A(x))∗g(x)(−i∇−A(x))u(x)+V (x)u(x), (2.1)

where the electric potential V :R2
!R is Γ-periodic, i.e. assumed to satisfy

V (x+bj) =V (x), j= 1, 2, V ∈L∞(Ω), (2.2)

and the magnetic potential A:R2
!R2 is also Γ-periodic and

A∈C1
per(Ω;R2), divA= 0,

∫
Ω

A(x) dx= 0. (2.3)

Note that the last two conditions can be imposed without loss of generality; see Re-

mark 2.3. The metric g is a Γ-periodic symmetric (2×2)-matrix function satisfying

g ∈C2
per(Ω; M2(R)), g(x)>mg1> 0, where 1=

(
1 0

0 1

)
, (2.4)

for some positive constant mg. The operator (2.1) is self-adjoint on L2(R2) with the

domain being the Sobolev space H2(R2). From the standard Floquet–Bloch theory (see,

for example, [21, §XIII.16] or [13, §4.5]), it follows that H is unitarily equivalent to the

direct integral ∫ ⊕
Ω̃

H(k) dk, (2.5)
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where Ω̃∈R2 is an elementary cell Rd/Γ′ of the dual lattice

Γ′= {m1b
′
1+m2b

′
2 :m1,m2 ∈ 2πZ}, 〈bi, b′j〉= δij , (2.6)

and the (m-sectorial) operators H(k) in L2(Ω) are defined on the domain H2
per(Ω) by

H(k) = (−i∇+k̄−A)∗g(−i∇+k−A)+V, k∈C2. (2.7)

The family (2.7) is an analytic-type-A operator family with a compact resolvent, in the

sense of [8]. This means that the domains DomH(k) do not depend on k, and H(k)u is

a (weakly) analytic vector-valued function of k1 and k2 for any u∈DomH(k)=H2
per(Ω).

Note that, while (2.5) and the statement of the main result only use real values of k, we

will often need to consider (2.7) for k∈C2, and we need k̄ in the definition to keep the

expression analytic.

For k∈R2, let us denote the eigenvalues of H(k), taken in the non-decreasing order,

by λj(k). These eigenvalues, considered as functions of k, are called band functions.

These functions are Γ′-periodic and piecewise real analytic on R2. The spectrum of H,

σ(H) =
⋃
j

[λ−j , λ
+

j ],

is the union of the spectral bands [λ−j , λ
+

j ] which are the ranges of λj( ·). It is well known

(under much wider assumptions than ours; see [2] and [22]) that there are no degenerate

bands, i.e. we always have λ−j <λ
+

j . The bands, however, can overlap. Our main result

concerns the structure of the extrema of band functions.

Theorem 2.1. Let H be the operator (2.1) with the potentials and the metric satis-

fying (2.2)–(2.4). Let λ∗ be a global minimal or maximal value of λj( ·). Then, the level

set

{k∈ Ω̃ :λj(k) =λ∗}

is finite.

The following Liouville theorem at the edge of the spectrum follows immediately

from Theorem 2.1; see [17, Theorem 23 and Remark 6.1] or [18, Theorem 4.4].

Corollary 2.2. Let H be the operator (2.1) with the potentials and the metric

satisfying (2.2)–(2.4). Then, for every fixed λ∗∈∂(σ(H)) and n∈N, the space of solutions

of

(−i∇−A(x))∗g(x)(−i∇−A(x))u(x)+V (x)u(x) =λ∗u(x)

satisfying

|u(x)|=O((1+|x|)n)

has finite dimension (which may depend on λ∗ and n).
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Remark 2.3. The second and third conditions from (2.3) can be imposed without

loss of generality using a gauge transformation

A 7−!A−∇Φ−|Ω|−1

∫
Ω

A(x) dx

(see, for example, [3, §1.2]) with Φ periodic. The addition of−∇Φ is a unitary equivalence

transformation of H(k) for all k, and the addition of the last term is equivalent to the

change of the quasi-momentum

k 7−! k−|Ω|−1

∫
Ω

A(x) dx.

Neither of these changes affects the main result.

The structure of the paper. In §§3–5, we deal with the case of the scalar metric

g(x)=ω2(x)1. The proof is based on an identity from [7]. This identity shows that the

values of k1 such that λ(k1e1+k2e2)=λ are eigenvalues of a certain non-self-adjoint oper-

ator T1(k2, λ) (see Proposition 3.1 below). Our main observation is that the band edges

correspond to degenerate eigenvalues of that operator. In §3, we introduce the operator

T1 and formulate the main technical result (Theorem 3.3), which shows that the set of the

values of k2 for which T1(k2, λ) may have degenerate eigenvalues is discrete. Theorem 3.3

immediately implies the main result. In §4, we show that the condition for the operator

T1(k2, λ) to have degenerate eigenvalues is an analytic-type condition. Hence, either the

set of “degenerate” k2 is discrete, or the operator T1(k2, λ) has degenerate eigenvalues

for all k2∈C. In §5, we show that the latter case is impossible for the free operator

and hence, using perturbation theory and estimates on the symbol, for the perturbed

operator. §6 describes the reduction of the case of a general C2-metric to the case of

a scalar one. In §7, we give an example of a discrete periodic Schrödinger operator for

which the statement of the main theorem fails.

3. The operator T1(k2, λ)

In this section, we deal with the operator family

H(k) = (−i∇+k̄−A)∗ω2(−i∇+k−A)+V, (3.1)

which is a particular case of (2.7); here ω is a scalar function satisfying

ω ∈C2
per(Ω) and ω2 >mg > 0. (3.2)
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Let {e1, e2} be a standard basis in R2. We also denote the coordinates of k by k1 and

k2, that is, k=k1e1+k2e2, and we will often denote H(k)=H(k1e1+k2e2) by H(k1, k2).

Since the statement of the main result is invariant under rotations and dilations of R2,

we can fix the following choice of basis of the dual lattice:

b′1 =αe1 and b′2 =βe1+e2, where α, β ∈R. (3.3)

In the Hilbert space H1
per(Ω)⊕L2(Ω), consider the following unbounded non-self-

adjoint operator family:

T1(k2, λ) :=

(
0 ω−2I

−(H(0, k2)−λ) 2(i∂1+A1)−2iω−1∂1ω

)
, k2, λ∈C, (3.4)

where Dom(T1(k2, λ))=H2
per(Ω)⊕H1

per(Ω), and ∂1=∂/∂x1.

The operator T1(k2, λ) is introduced in order to “linearize” the equation

H(k1, k2)u=λu,

considered as a quadratic eigenvalue problem in k1, similarly to [7, Lemma 3]. We

summarize the properties of the family T1 (most of which were also used in [7]) in the

following proposition.

Proposition 3.1. The operators T1(k2, λ) satisfy the following properties.

(i) For all k2, λ∈C, the operator T1(k2, λ) is closed on the domain H2
per(Ω)⊕H1

per(Ω).

As a consequence, the family T1( · , λ) is an analytic-type-A operator family.

(ii) Suppose that λ /∈σ(H(k1, k2)). Then, k1 /∈σ(T1(k2, λ)), and the resolvent(
T1(k2, λ)−k1

(
I 0

0 I

))−1

(3.5)

is compact in H1
per(Ω)⊕L2(Ω).

(iii) k1∈σ(T1(k2, λ)) if and only if λ∈σ(H(k)), where k=k1e1+k2e2.

(iv) For all k2, λ∈C, the set σ(T1(k2, λ)) is discrete in C and 2πα-periodic, where

α is defined in (3.3).

Proof. Part (i). Clearly, we have that the operator T1(k2, λ) is bounded as an

operator from H2
per(Ω)⊕H1

per(Ω) to H1
per(Ω)⊕L2(Ω). We also have∥∥∥∥T1(k2, λ)

(
u

v

)∥∥∥∥2

H1
per(Ω)⊕L2(Ω)

= ‖ω−2v‖2H1
per(Ω)+‖−(H(0, k2)−λ)u+(2(i∂1+A1)−2iω−1∂1ω)v‖2L2(Ω),
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from which it follows that the convergence in T1(k2, λ)-norm implies convergence of v

in H1 and convergence of u in H2, so that T1(k2, λ) is closed on its domain. Strong

analyticity in k2 and λ follows directly from the definition.

Part (ii). Suppose that λ /∈σ(H(k)). Then, the equation(
T1(k2, λ)−k1

(
I 0

0 I

))(
u

v

)
=

(
f

g

)

has a unique solution

(
u

v

)
given by

u= (H(k)−λ)−1{(2i∂1+2A1−2iω−1∂1ω−k1)ω2f−g},

v=ω2(f+k1u).
(3.6)

Let R(k, λ)=(H(k)−λ)−1. By plugging the expression for u into the second equation of

(3.6), we can rewrite (3.6) in the operator form, applied to a vector(
f

g

)
∈H1

per(Ω)⊕L2(Ω),

as follows:(
T1(k2, λ)−k1

(
I 0

0 I

))−1(
f

g

)

=

(
0 0

ω2I 0

)(
f

g

)

+

(
I 0

0 k1ω
2

)
R(k, λ)

(
(2i∂1+2A1(x)−k1−2iω−1(∂1ω)) −I
(2i∂1+2A1(x)−k1−2iω−1(∂1ω)) −I

)(
ω2 0

0 I

)(
f

g

)
.

The first operator in the right-hand side is compact in H1
per(Ω)⊕L2(Ω), because the

embedding H1
per(Ω)⊂L2(Ω) is compact. The operator in the second term is compact,

since R(k, λ) is bounded as an operator from L2(Ω) to H2
per(Ω), and hence is compact

from L2(Ω) to H1
per(Ω). Hence, the resolvent of T1(k2, λ) is compact, which completes

the proof of part (ii).

Part (iii). The “only if” part is included in Part (ii). To establish the “if” part,

suppose that H(k)u=λu. Then, u∈H2
per(Ω), and

T1(k2, λ)

(
u

k1ω
2u

)
= k1

(
u

k1ω
2u

)
.
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This completes the proof of (iii).

Part (iv). From the proofs of the absolute continuity of the spectrum (see, e.g., [2]),

it follows that, for any λ, k2∈C, the set {k1:λ∈σ(H(k1, k2))} is discrete. Hence, there

exists at least one value of k1 such that the resolvent (3.5) exists, which, together with

Part (ii), implies that σ(T (k2, λ)) is discrete. Periodicity of the spectrum follows from

the fact that H(k) is unitarily equivalent to H(k+b′) for any b′∈Γ′ (see (2.6)), and so

H(k1, k2) is unitarily equivalent to H(k1+2πα, k2).

In the sequel, by “the multiplicity of an isolated eigenvalue” we will mean algebraic

multiplicity, i.e. the dimension of the range of the corresponding Riesz projection. We

will call an eigenvalue degenerate if its algebraic multiplicity is greater than or equal to 2.

Otherwise, an eigenvalue is called simple.

Lemma 3.2. Suppose that a band function λj( ·) attains its local minimum or max-

imum value λ∗ at k∗=k∗1e1+k∗2e2∈R2. Then, k∗1 is an eigenvalue of T1(k∗2 , λ∗) with

(algebraic) multiplicity at least 2.

Proof. By Proposition 3.1, k∗1 is an eigenvalue of T1(k∗2 , λ∗). For some ε>0, there

are no other eigenvalues of T1(k∗2 , λ∗) within the closed disc Bε(k
∗
1). Let

P (k∗2 , λ) :=− 1

2πi

∮
∂Bε(k∗1 )

(T1(k2, λ)−�I)−1 d�

be the Riesz projection. The standard arguments [8, §IV.3.5] show that, for some δ>0,

rankP (k∗2 , λ) is continuous in λ as long as |λ−λ∗|<δ. Without loss of generality, assume

that k∗ is a local minimum of λj( ·).
From the proofs of the absolute continuity of the spectrum (see, e.g., [2]), it follows

that λj(k) cannot be constant in k1 on any interval. Then, for a sufficiently small δ>0,

the equation λj(k1, k
∗
2)=λ∗+δ has at least two different solutions as an equation in k1

(note that these arguments do not use any analyticity of λj( · , k∗2), only continuity).

Hence, by part (iii) of Proposition 3.1, rankP (k∗2 , λ∗+δ)>2 for all sufficiently small δ,

and therefore rankP (k∗2 , λ∗)>2, due to continuity.

The following is the main technical result of the paper.

Theorem 3.3. Suppose that the coefficients ω, A and V satisfy (3.2), (2.3) and

(2.2). For any λ∈R, the set

{k2 ∈R : the operator T1(k2, λ) has at least one real degenerate eigenvalue}

is discrete.
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Proof of Theorem 2.1: the case of a scalar metric. Fix a band function λj( ·) and

assume that λ∗ is a minimum or a maximum of λj . From Theorem 3.3 and Lemma 3.2,

the set of possible k2 such that for some k1 we have λj(k)=λ∗ is discrete. For each of

these k2, the set of possible values of k1 is also discrete by Proposition 3.1.

Theorem 3.3 is proved in §4 and §5. The rest of the proof of Theorem 2.1 is a (mostly

standard) argument of transforming a general metric to a scalar metric by introducing

isothermal coordinates. This is done in §6.

4. Proof of Theorem 3.3

Let

p(z) = zn+an−1z
n−1+...+a0

be a monic polynomial with roots z1, ..., zn. The discriminant of p is defined as

∆(p) =
∏

16i<j6n

(zi−zj)2.

It is clear that ∆(p) vanishes if and only if p has roots of multiplicity greater than or

equal to 2. It is well known (see, for example, [26, §5.9]) that ∆(p) is a polynomial

function of the coefficients a0, ..., an−1.

The proof of the following lemma can be extracted from a slightly different and

more abstract setting of [13] and [27]. For the convenience of the reader, we include the

argument.

Lemma 4.1. Suppose that C is a simple closed piecewise smooth contour in C, and

let {T (z):z∈D} be an operator family of type A in a Hilbert space H analytic in a simply

connected domain D⊂C. Suppose that, for all z∈D, the spectrum of T (z) in the interior

of C is discrete and finite, and σ(T (z))∩C=∅. Then, the set

{z ∈D :T (z) has at least one degenerate eigenvalue in the interior of C}

is a null-set of a function analytic in D, and hence this set either coincides with D or is

discrete in D.

Proof. Let

P (z) :=− 1

2πi

∮
C
(T (z)−�I)−1 d�

be the Riesz projection. By assumption, n:=rankP (z)=const is finite and independent

on z, and P (z) is analytic in D. Fix z0∈D. The results of [8, §VII.1.3] imply that



68 n. filonov and i. kachkovskiy

there exists a bounded operator-valued function U :D!B(H)(1) analytic in D, such that

U( ·)−1 is also analytic in D and P (z)=U(z)P (z0)U(z)−1. Take

T0(z) :=U(z)−1T (z)U(z)|ranP (z0).

The family T0(z) is an analytic operator family acting in a fixed finite-dimensional space

that has the same eigenvalues and multiplicities as T (z) restricted to ranP (z). The

monic polynomial pz(�)=(−1)n det(T0(z)−�) is the characteristic polynomial of T0(z)

and has the coefficients analytic in D (in the variable z). Hence, its discriminant ∆(pz)

is also an analytic function in D vanishing if and only if T0(z) (and, as a consequence,

T (z)) has degenerate eigenvalues in the interior of C.

Recall that we had a special choice of basis in Γ′,

b′1 =αe1 and b′2 =βe1+e2.

Let also

k= k1e1+k2e2, k1 = r1+il1 and k2 = r2+il2.

The following two theorems are the main technical statements of the paper. We postpone

the proofs to the next section.

Without loss of generality, one may assume that λ=0, by possibly choosing a differ-

ent V. In the sequel, we will make this assumption and drop λ from the notation for T1,

that is, T1(k2):=T1(k2, 0).

Theorem 4.2. Let δ>0. There exist C=C(A, V, ω) and C1=C1(A, V, ω, δ)∈2πZ
such that operator H(k) defined in (3.1) is invertible and satisfies

‖H(k)−1‖6 C

|l1|δ2
,

provided that dist(r2, 2πZ)>δ, l1∈2πZ, |l1|>C1. As a consequence, the horizontal lines

Im k1=±C1 have empty intersection with σ(T1(k2)).

Theorem 4.3. There exists l=l(A, V, ω)∈2πZ such that, for all n∈2πZ, the spec-

trum of T1(k2) is simple for k2= 1
2π+n+i

(
1
2π+l

)
α.

Proof of Theorem 3.3. Assume the contrary, i.e. that the set of k2∈R for which

T1(k2) has real degenerate eigenvalues has a limit point k
(0)
2 (as above, we assume λ=0).

Let us consider two cases.

(1) B(H) denotes the algebra of bounded operators on a Hilbert space H.
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Case 1. Suppose that dist(k
(0)
2 , 2πZ)>0. Take δ=min

{
1
2π,dist(k

(0)
2 , 2πZ)

}
. There

exists a single n∈2πZ such that k
(0)
2 ∈[n+δ, n+2π−δ]. Let C0 be a path in the k2-plane

starting at k
(0)
2 , then going straight towards the point 1

2π+n, and then going vertically

towards the point k
(1)
2 := 1

2π+n+i
(

1
2π+l

)
α from Theorem 4.3.

The points k2∈C0 satisfy the assumptions of Theorem 4.2. Let us consider the

eigenvalues of T1(k2) lying within the strip |Im k1|<C1, where C1 is the constant from

Theorem 4.2. They form a discrete 2πα-periodic set. For each k2∈C0, there exists a point

r(k2)∈R which is not a real part of any of these eigenvalues. Moreover, by continuity

arguments, this also holds in a small (complex) neighbourhood of k2. Let us cover C0 by a

finite number of these neighbourhoods Dj , j=1, ..., p, so that k
(0)
2 ∈D1 and k

(1)
2 ∈Dp, and

denote the corresponding values of r(k2) by rj . For each j, denote by Cj the boundary

of the following rectangle:

rj <Re k1<rj+2πα and −C1< Im k1<C1.

Informally speaking, each rectangle contains all eigenvalues that we are interested in: they

are initially on the real line, they cannot cross the lines Im k1=±C1, and the pictures to

the right and to the left copy the picture in the rectangle, due to periodicity.

Let us apply Lemma 4.1 to each of the domains Dj and contours Cj . Due to Theo-

rem 4.3, the spectrum of T1(k
(1)
2 ) is simple, and hence the set of “degenerate” k2 should

be discrete in a neighbourhood Dp of k
(1)
2 . By the standard arguments of analytic con-

tinuation, it should also be discrete in every neighbourhood D1, ...,Dp. However, since

k
(0)
2 ∈D1, it is not discrete in D1, which is a contradiction.

Case 2. Suppose that k
(0)
2 ∈2πZ. The set of real eigenvalues of T1(k

(0)
2 ) is, again,

discrete and 2πα-periodic. Let us surround the eigenvalues on one period by a contour C
containing no other eigenvalues. In a small neighbourhood D0 of k

(0)
2 , these eigenvalues

still stay within C. Apply Lemma 4.1 to C and D0. Again, since the set of “degenerate”

values of k2 is not discrete in D0, it should coincide with D0, and hence there exists

at least one more point with the same property that belongs to R\2πZ, and thus the

situation reduces to Case 1.

5. Proofs of Theorems 4.2 and 4.3

Let us start by recalling some notation introduced above:

b′1 =αe1 and b′2 =βe1+e2, α, β ∈R;

k= k1e1+k2e2, k1 = r1+il1 and k2 = r2+il2, r1, r2, l1, l2 ∈R.
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In this section, we will emphasize the dependence ofH on g, A and V, and use the notation

H(k; g,A, V ). Consider the free operator H0(k):=H(k;1, 0, 0). Its eigenfunctions are of

the form

exp{im·x}= exp{i(m1b
′
1+m2b

′
2)·(x1e1+x2e2)}= exp{i((αm1+βm2)x1+m2x2)},

m=m1b
′
1+m2b

′
2 ∈Γ′, m1,m2 ∈ 2πZ,

and

H0(k) exp{im·x}= ((−i∂1+k1)2+(−i∂2+k2)2) exp{im·x}=hm(k) exp{im·x},

where hm(k) is the symbol of H0(k):

hm(k) = (αm1+βm2+k1)2+(m2+k2)2 = q+

m(k)q−m(k),

q±m(k) =αm1+βm2+r1∓l2+i(l1±m2±r2).

Let also Q±(k) be the operators with symbols q±m(k), respectively, so that

H0(k) =Q+(k)Q−(k).

Suppose that the magnetic potential A satisfies (2.3). Then, there exists a Γ-periodic

scalar function ϕ∈C2
per(Ω) such that

(∇ϕ)(x) =A2(x)e1−A1(x)e2,

∫
Ω

ϕ(x) dx= 0, ‖ϕ‖C2(Ω) 6C‖A‖C1(Ω). (5.1)

Let also

B(x) = ∂1A2(x)−∂2A1(x), w(x) := e−2ϕ(x).

The operator H(k;1, A,B) is called the Pauli operator (more precisely, a block of the

Pauli operator). The following is proved in [2] and allows us to reduce the case of the

magnetic potential, essentially, to the case of the free operator.

Proposition 5.1. Under the above assumptions, if Q+(k) and Q−(k) are invertible,

then H(k;1, A,B) is also invertible, and

H(k;1, A,B)−1 = eϕQ−(k)−1e−2ϕQ+(k)−1eϕ

= eϕ(x)H0(k)−1(e−ϕ+(−i∂1w+∂2w)Q+(k)−1eϕ).
(5.2)

The following proposition can also be easily verified; see [4]. It will be used to reduce

the case of a scalar metric g=ω21 to the case g=1.
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Proposition 5.2. Let ω∈C2
per(Ω), V ∈L∞(Ω) and A∈C1

per(Ω). Then,

H(k;ω21, A, V ) =ωH(k;1, A, ω−2V +ω−1∆ω)ω, (5.3)

ωH(k;1, A, V )ω=H(k;ω21, A, ω2V −ω∆ω). (5.4)

Proof of Theorem 4.2. Suppose that dist(r2, 2πZ)=δ. Since l1±m2∈2πZ, we have

|q±m(k)|>δ. In addition, Im q+

m(k)+Im q−m(k)=2l1, and hence we either have |q+

m(k)|>|l1|
or |q−m(k)|>|l1|. Combining these estimates, we obtain |hm(k)|>|l1|δ, and

‖H0(k)−1‖6 1

|l1|δ
and ‖Q+(k)−1‖6 1

δ
, (5.5)

which completes the proof for A=0, V =0 and ω=1. If A 6=0 and V (x)=B(x), then, from

(5.2) and (5.5), we get

‖H(k;1, A,B)−1‖6 C

|l1|δ2
, (5.6)

where C depends on A via w and ϕ. The standard Neumann series arguments imply

that the bound (5.6) holds for the operator H(k,1, A, V ) with arbitrary V ∈L∞(Ω) (and

maybe a different C) for sufficiently large l1, say

|l1|>
2‖V −B‖L∞(Ω)C

δ2
.

The case of arbitrary ω follows from Proposition 5.2.

We now make some preparations for the proof of Theorem 4.3. Fix k2 as in the

formulation of the theorem, so that

r2 = 1
2π+n and l2 =

(
1
2π+l

)
α, l, n∈ 2πZ. (5.7)

For these k2, define

Σn := {k1 ∈C:hm(k1, k2) = 0 for some m1,m2 ∈ 2πZ}.

In other words, it is the set of k1 for which H0(k1, k2) is not invertible. A simple

computation shows that Σn consists of points r1+il1 of the following form:{
r1 =−αm1−βm2∓

(
1
2π+l

)
α,

l1 =±
(

1
2π+n+m2

)
,

m1,m2 ∈ 2πZ. (5.8)

Since one can replace the variables m1 by m1+l, one can see that the set Σn does not

depend on l.
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Figure 1. The sets Σn and Gn.

Let us describe the set Σn in more detail. First of all, it is easy to see that different

values of (m1,m2) give different points of Σn, asm2 and the signs are uniquely determined

by the value of l1, and m1 is determined by r1 afterwards. Next, the set Σn lies on the

union of horizontal lines Im k1∈ 1
2π+πZ. On each line, it is a sequence of equally spaced

points with the spacings 2πα.

We will also need another set Gn defined by

Gn := (R+iπZ)∪
⋃
z∈Σn

(
z+πα+i

[
−π

2
,
π

2

])
.

The set Gn consists of horizontal lines Im k1∈πZ separating the horizontal lines of Σn.

In addition, for each point of Σn, we include a vertical line segment of the length π

separating this point from the next point of Σn lying on the same line. One can imagine

Gn as a “brick wall” consisting of rectangles such that there is exactly one element of

Σn inside of each rectangle.

In Figure 1, an example of Σn and Gn is shown for n=0, α=0.75 and β=0.075.

The set Gn is represented by thick lines, and the locations of points of Σn are indicated

by black and white circles, corresponding to the upper or lower choice of signs in (5.8),

respectively.
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Lemma 5.3. Suppose that k1∈Gn and k2= 1
2π+n+i

(
1
2π+l

)
α, where l, n∈2πZ. Then,

|hm(k)|>C|l|

uniformly in m1,m2∈2πZ.

Proof. Since |Re q+

m(k)−Re q−m(k)|=2|l2|>C|l|, we have for each m either

|q+

m(k)|> 1
2C|l| or |q−m(k)|> 1

2
C|l|.

On the other hand, |q+

m(k)|, as well as |q−m(k)|, is a distance between k1 and some point

on Σn, which implies the following lower bound:

|q±m(k)|>dist(k1,Σn)>dist(Gn,Σn) = min
{

1
2π, πα

}
. (5.9)

The combination of these estimates completes the proof of the lemma.

Remark 5.4. Lemma 5.3 is the main ingredient of the proof that relies on the as-

sumption d=2. In d>3, one cannot construct a set Gn with similar properties and

constant size of the bricks.

Corollary 5.5. Under the assumptions of Lemma 5.3, there exists L0(A, V, ω)>0

such that, if |l|>L0(ω,A, V ), then the operator H(k;ω21, A, V ) is invertible and

‖H(k;ω21, A, V )−1‖6 C(ω,A, V )

|l|
,

where the constants C and L0 depend only on ‖A‖C1(Ω), ‖V ‖L∞(Ω), ‖ω‖C2(Ω) and on the

constant mg from (3.2).

Proof. From Proposition 5.2, we have

‖H(k;ω21, A, V )−1‖6m−2
g ‖H(k;1, A, Vω)−1‖,

where

Vω =ω−2V +ω−1∆ω,

and therefore

‖Vω‖L∞(Ω) 6m−2
g ‖V ‖L∞(Ω)+m−1

g ‖ω‖C2(Ω).

From (5.2), (5.1), Lemma 5.3 and (5.9), we have

‖H(k;1, A,B)−1‖6C(A)‖H0(k)−1‖6 C1(A)

|l|
,

where C(A) and C1(A) depend only on ‖A‖C1(Ω). Since ‖B‖L∞(Ω)62‖A‖C1(Ω), we can

use the same Neumann series argument as in the proof of Theorem 4.2 to replace B

by Vω.
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Proof of Theorem 4.3. Denote by Tµ(k2) the operator T1(k2), with V, A and ω re-

placed by µV, µA and µω+(1−µ), respectively. It is a 1-parameter family connecting

the “free” operator T0(k2) with T1(k2).

It is easy to see that σ(T0(k2))=Σn, because Σn is exactly the set of k1∈C for which

the symbol of H0(k) is not invertible. Moreover, an easy computation shows that, for

each k1∈Σn, the corresponding eigenspace is 1-dimensional and is spanned by
(
eim·x

k1eim·x

)
,

where m is determined by k1 via (5.8). Note that each value of m appears twice (for

two different values of k1) because of two possible signs. Hence, the total collection of

eigenvectors spans H1
per(Ω)⊕L2(Ω), so there are no Jordan cells and the spectrum of

T0(k2) is simple.

It remains to prove that T1(k2) also has simple spectrum. Consider the Riesz pro-

jection of Tµ(k2) with respect to the boundary of some rectangle of Gn. For µ=0, the

rectangle contains exactly one simple eigenvalue, and the range of the projection has

dimension 1. Let us increase µ. The only way for the dimension of the range to change

is to have an eigenvalue of Tµ(k2) approach the set Gn. This, however, is impossible for

µ∈[0, 1], due to Corollary 5.5, and hence the eigenvalues of T1(k2) is simple.

Remark 5.6. The proof of Theorem 4.3 is based on the ideas of [7, §VI].

6. The case of variable metric

In this section we show how to reduce the case of an operator with arbitrary metric g

satisfying (2.4) to the case of the scalar metric. The technical difference with standard

arguments such as in [22] is that we need to keep track of the quasi-momentum, in

order to ensure that it is transformed linearly. This is done by an additional “gauge

transformation”. The following proposition establishes the existence of global isometric

coordinates in which the metric g becomes scalar. See [16, Proposition 18] for the proof.

Proposition 6.1. Suppose that g satisfies (2.4). Then, there exists a basis {b∗1, b∗2}
of R2 and a one-to-one map Ψ:R2

!R2, Ψ∈C3(R2), det Ψ′(x) 6=0,

Ψ(0) = 0 and Ψ(x+n1b1+n2b2) = Ψ(x)+n1b
∗
1+n2b

∗
2 for all n1, n2 ∈Z,

such that

|det Ψ′(x)|−1Ψ′(x)g(x)Ψ′(x)t =ω2(Ψ(x))1, (6.1)

where ω∈C2(R2) is a strictly positive scalar function periodic with respect to the lattice

Γ∗ spanned by b∗1 and b∗2.
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Let us introduce some notation. Suppose that the operator H(g,A, V ) satisfies the

assumptions of Theorem 2.1. Let Ψ be the transformation obtained from Proposition 6.1.

Denote by T∗:R2
!R2 the linear transformation defined by T∗(b1)=b∗1 and T∗(b2)=b∗2.

The transformation T∗, as well as the map Ψ, transforms the lattice Γ into Γ∗. Let also

y= Ψ(x), A∗(y) = (Ψ′(x)−1)tA(x), V∗(y) =ψ∗(y)−2V (x), ψ∗(y) = |det Ψ′(x)|1/2.

Let also

ΩΨ = Ψ(Ω) and Ω∗= {y1b
∗
1+y2b

∗
2 : y1, y2 ∈ [0, 1)}.

Note that both Ω∗ and ΩΨ are fundamental domains of Γ∗, and there is a natural

correspondence between L2(Ω∗) and L2(ΩΨ), as both can be identified with Rd/Γ∗.

Lemma 6.2. In the above notation, let Φ: L2(Ω)!L2(Ω∗) be the unitary operator of

change of variables

u(x) =ψ∗(y)(Φu)(y), y= Ψ(x),

where u is considered as an element of L2(Ω∗). Then,

ΦH(0; g,A, V )Φ−1 =ψ∗H(0;ω21, A∗, V∗)ψ∗.

Proof. Let v=Φu, and let us extend it Γ∗-periodically into Rd. Then, due to (6.1)

and the change of variable rule, the quadratic form of the left-hand side applied to v is

equal to

(H(0; g,A, V )Φ−1v,Φ−1v)L2(Ω)

= (H(0; g,A, V )u, u)L2(Ω)

=

∫
Ω

〈g(x)(−i∇x−A(x))u(x), (−i∇x−A(x))u(x)〉 dx+

∫
Ω

V (x)|u(x)|2 dx

=

∫
ΩΨ

〈ω2(y)(−i∇y−A∗(y))ψ∗(y)v(y), (−i∇y−A∗(y))ψ∗(y)v(y)〉 dy

+

∫
ΩΨ

V∗(y)ψ∗(y)2|v(y)|2 dy

=

∫
Ω∗

〈ω2(y)(−i∇y−A∗(y))ψ∗(y)v(y), (−i∇y−A∗(y))ψ∗(y)v(y)〉 dy

+

∫
Ω∗

V∗(y)ψ∗(y)2|v(y)|2 dy

= (H(0;ω21, A∗, V∗)ψ∗v, ψ∗v)L2(Ω∗).

Theorem 6.3. Suppose that k∈R2. Under the assumptions of Theorem 2.1, the

operator H(k; g,A, V ) is unitarily equivalent to the operator

H((T−1
∗ )tk, ω2ψ2

∗1, A∗, ψ
2
∗V∗+ψ

2
∗ω∆ω−ψ∗ω∆(ψ∗ω)) (6.2)
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acting in L2(Ω∗), where Ω∗⊂R2 is an elementary cell of Γ∗, and T∗, ω, ψ∗, A∗ and V∗

are defined above.

Proof. We will perform the required unitary transformation in several steps. First,

let us note that H(k; g,A, V )=H(0; g,A−k, V ). Consider the unitary transformation

u(x)=eiα(x)v(x), where α∈C1
per(Ω). Note that, under this transformation, the operator

H(k; g,A, V ) becomes H(0; g,A−k−∇α, V ). Take α(x)=k(T−1
∗ Ψ(x)−x). This function

is Γ-periodic, and

(∇α)(x) = Ψ′(x)t(T−1
∗ )tk−k.

Hence, the operator H(k; g,A, V ) is unitarily equivalent to H(0, g, A−Ψ′(x)t(T−1
∗ )tk, V ),

which, by Lemma 6.2, is equivalent to

ψ∗H(0, ω21, A∗−(T−1
∗ )tk, V∗)ψ∗=ψ∗H((T−1

∗ )tk, ω21, A∗, V∗)ψ∗.

Applying (5.3) and then (5.4), we ultimately obtain

ψ∗H((T−1
∗ )tk, ω21, A∗, V∗)ψ∗

=ωψ∗H((T−1
∗ )tk,1, A∗, ω

−2V∗+ω
−1∆ω)ωψ∗

=H((T−1
∗ )tk, ω2ψ2

∗1, A∗, ψ
2
∗V∗+ψ

2
∗ω∆ω−ψ∗ω∆(ψ∗ω)).

This completes the proof of Theorem 2.1, because its statement has already been

established for the operators (6.2), and the operator families H(k; g,A, V ) and (6.2) have

the same band functions up to a linear transformation of k.

7. An example of degenerate band edge in the discrete case

Consider the discrete Schrödinger operator H=D+V in l2(Z2), where

(Du)n = 1
2 (un+e1 +un−e1 +un+e2 +un−e2), n∈Z2,

is the discrete Laplace operator, and V is the operator of multiplication by the potential

given by

(V u)n =

{
v0un, if n1+n2 is even,

v1un, if n1+n2 is odd,

where the real numbers v0 and v1 are fixed. In other words, the lattice is formed by two

different types of atoms placed in a chessboard order, and V is periodic with respect to

the lattice spanned by {2e1, e1+e2}. The corresponding Floquet–Bloch transform

F : l2(Z2)−!L2(Õ×{0; 1})
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is given by

(Fu)(k;m) =
1

π
√

2

∑
n1+n2≡m(mod 2)

e−iknun.

Here k∈Õ={k∈R2 :|k1+k2|<π}, and m∈{0, 1}. The operator F is unitary, and it is

easy to see that

FHF ∗=

∫ ⊕
Õ
H(k) dk,

where H(k) is a self-adjoint operator in C2,

H(k) =

(
v0 cos k1+cos k2

cos k1+cos k2 v1

)
.

Eigenvalues of this matrix are

λ±(k) =
v0+v1

2
±

√(
v0−v1

2

)2
+(cos k1+cos k2)2 ,

from which it follows that

minλ−=
v0+v1

2
−

√(
v0−v1

2

)2
+4, maxλ−= min(v0, v1),

minλ+ = max(v0, v1), maxλ+ =
v0+v1

2
+

√(
v0−v1

2

)2
+4.

So, the spectrum of the operator H consists of two bands separated by a gap, whenever

v0 6=v1.

The edges of this gap (v0 and v1, respectively) are attained on the set

{k∈R2 : cos k1+cos k2 = 0}= {k∈R2 : k1±k2 = (2p+1)π}p∈Z,

which is a countable union of straight lines. Figure 2 shows the graphs of λ±( ·) for v0=0,

v1=2, with the dashed lines indicating the level sets at the edges of the gap [0, 2].

Remark 7.1. This example seems to be one of the simplest possible 2-dimensional

diatomic tight binding models. We believe that it should be known to the experts in

solid state physics. We could not, however, find it in the literature, which is the reason

why we discuss it in detail.
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Figure 2. The band functions λ+(k) and λ−(k).
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[27] Zăıdenberg, M. G., Krĕın, S. G., Kuchment, P. A. & Pankov, A. A., Banach bun-

dles and linear operators. Uspehi Mat. Nauk, 30 (1975), 101–157 (Russian); English
translation in Russian Math. Surveys, 30 (1975), 115–175.



80 n. filonov and i. kachkovskiy

Nikolay Filonov
St. Petersburg Department
V. A. Steklov Mathematical Institute
Fontanka 27,
St. Petersburg, 191023
Russia

and

St. Petersburg State University
Universitetskaya emb. 7/9
St. Petersburg, 199034
Russia
filonov@pdmi.ras.ru

Ilya Kachkovskiy
Department of Mathematics
Michigan State University
Wells Hall, 619 Red Cedar Road
East Lansing, MI, 48910
U.S.A.
ikachkov@msu.edu

Received March 26, 2016

mailto:Nikolay Filonov <filonov@pdmi.ras.ru>
mailto:Ilya Kachkovskiy <ikachkov@msu.edu>

	1 Introduction
	Acknowledgements.

	2 Main result
	The structure of the paper.

	3 The operator T_1(k_2,\lambda)
	4 Proof of Theorem 3.3
	5 Proofs of Theorems 4.2 and 4.3
	6 The case of variable metric
	7 An example of degenerate band edge in the discrete case
	References

