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Abstract

The use of the data assimilation technique to identify optimal topography is discussed
in frames of time-dependent motion governed by nonlinear barotropic ocean model. As-
similation of artificially generated data allows to measure the influence of various error
sources and to classify the impact of noise that is present in observational data and model
parameters. The choice of length of the assimilation window in 4DVar is discussed. It is
shown that using longer window lengths would provide more accurate ocean topography.
The topography defined using this technique can be further used in other model runs
that start from other initial conditions and are situated in other parts of the model’s
attractor.
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1 Introduction

It is now well known that even the best model alone is not sufficient to make a good forecast.
Any model depends on a number of parameters, it requires initial and boundary condition as
well as other data. However, interpolating data from observational points to the model grid
or smoothing of observed data is not an optimal way to incorporate these data in a model.
Lorenz, in his pioneering work [25], has shown that a geophysical fluid is extremely sensitive
to initial conditions. This fact requires to bring the model and its initial data together, in
order to work with the couple “model-data” and identify the optimal initial data for the
model taking into account simultaneously the information contained in the observational
data and in the equations of the model.

Optimal control methods [24] and perturbations theory [29] applied to the data assimila-
tion technique [20, 21] show ways to do it. They allow to retrieve an optimal initial point for
a given model from heterogeneous observation fields. Since the early 1990s many mathemat-
ical and geophysical teams have been involved in the development of the data assimilation
strategies. One can cite many papers devoted to this problem in the domain of development
of different techniques for the data assimilation such as nudging [2, 5, 37, 39], Kalman fil-
tering and ensemble methods [3, 6, 9, 10], and variational data assimilation (3DVAR and
4DVAR) [21, 23, 31, 36].

These methods have proved capable of combining information from the model and the
heterogeneous set of available observations. They have led to a remarkable increase in forecast
accuracy (see, e.g., [17]). The success of the data assimilation stipulates the development of
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modern models together with methods allowing to integrate all available data in the model.
Thus, in 1997, acknowledging the need for better ocean observations and ocean forecasts
and with the scientific and technical opportunity that readily available satellite data had
delivered, the Global Ocean Data Assimilation Experiment (GODAE) was initiated to lead
the way in establishing global operational oceanography. Another example, the Mercator
Ocean Group was founded in 2002 to set up an operational system for describing the state
of the ocean, an integral part of our environment. Input for the Mercator system comes from
ocean observations measured by satellites or in situ observations through measurements
taken at sea. These measurements are assimilated by the analysis and forecasting model.
The assimilation of observation data in a model is used to describe and forecast the state of
the ocean for up to 14 days ahead of time.

However, the majority of the data assimilation methods are now intended to identify and
reconstruct an optimal initial point for the model. The importance of precise knowledge of the
starting point of the model, pointed out by Lorenz [25], lead to the fact that essentially the
starting point is considered as the control parameter and the target of the data assimilation.

Of course, the model’s flow is extremely sensitive to its initial point. But, it is reasonable
to suppose that an ocean model is also sensitive to many other parameters, like bottom
topography, boundary conditions, forcing fields, and friction coefficients. All these parameters
and values are also extracted in some way from observational data, interpolated on the
model’s grid and can neither be considered as exact nor as optimal for the model. On the
other hand, due to nonlinearity and intrinsic instability of model’s trajectory, its sensitivity
to all these external parameters may also be described by a fast growing function.

Numerous studies show strong dependence of the model’s flow on the boundary data
[1, 38], on the representation of the bottom topography [11, 15, 27], on the wind stress [8, 30],
on the diffusivity coefficients [7], and on fundamental parametrizations like Boussinesq and
hydrostatic hypotheses [26].

Although the bottom topography and the boundary configuration of the ocean are steady
and can be measured with much better accuracy than the model’s initial state, it is not
obvious how to represent them on the model’s grid because of the limited resolution. It has
been known for 30 years that requiring the large scale ocean flow to be well represented,
one has to smooth the topography to get only corresponding large-scale components of relief
[16]. In this case, the influence of subgrid-scales has to be parameterized. But it is not clear
how to apply the parametrization for a given model with a given resolution. It is shown in
[35] that different smoothing of the topography pattern may significantly change the model’s
properties.

This paper is devoted to the use of the data assimilation procedure in order to identify
an optimal bottom topography in a simple barotropic ocean model. The first attempt to
use the topography as a control parameter was performed in [28] for a steady solution of a
linear shallow-water model in a zonal channel. The control parameter in the data assimilation
procedure is the parameter that is modified to bring the model within an estimated error
of the observations. It was shown that the relationship between topography and the surface
elevation does not have a unique inverse and hence all the details of the depth field cannot be
recovered. In this paper we work also with a simple, but different model. First, the model’s
solution is not stationary. We control the topography in the time-dependent motion. And
second, the model is nonlinear with chaotic intrinsically unstable behavior. Thus, our study
is placed in the usual context of forecasting when the dependence of the model’s flow on
the controlled parameter is strong. In addition, barotropic ocean model is a well-studied toy
model frequently used for a preliminary study.
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Another important feature for data assimilation consists in the existence of a nonzero
kernel of the sensitivity operator. That means there is no way to reconstruct the exact
topography pattern by assimilation because of the presence of modes to which the flow is
not sensitive at all. This fact must be taken into account in the data assimilation analysis.

The paper is organized as follows. The second section describes the model, its adjoint,
and the data assimilation procedure. The third section is devoted to numerical experiments
and discussion.

2 The Model
We consider the shallow-water model developed in [13, 34] with the rigid lid assumption
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where u(z,y,t) and v(x,y,t) are two velocity components, H is the water depth, pg is the
mean density of water, Hy is the characteristic depth of the basin, and g is the reduced
gravity. The model is driven by the surface wind stress with components 7, (z,y) and 7,(x,y)
and subjected to the bottom drag that is parametrized by linear terms ou, ov and to the
horizontal eddy diffusion parametrized by n harmonic operator pAwu and pAv. The Coriolis
parameter f is supposed to be linear in y coordinate: f = fy + Sy. Although this linear
approximation may result in significant errors on the North and on the South, we use it
because our goal is to study the data assimilation method rather than physical adequacy of
the model.
The third equation allows us to introduce the streamfunction 1, such as

o oY
Hv=—. 2.2
Denoting the vorticity by w = % — g—Z we get
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This equation is used to solve for 1 given w. It possesses a unique solution when H(x,y)
is always positive. Numerically, it can be solved by Cholesky decomposition method, for
example.
Using this notation we calculate the curl of the first two equations of the system (2.1).

We get
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where J (¢, w) = %%‘; - %g—‘; is the Jacobian operator and F(z,y) = _%T; + %L;/.
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The system (2.4) is considered in a bounded domain €2 and is subjected to the imperme-
ability and slip boundary conditions:

YV|ga =0, wlag =0. (2.5)

The model is discretized in space by finite element method. Details of the discretization
can be found in [19].
This system has been forwarded in time by the following scheme:
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The first step is performed using the two-stage process. On the first stage we calculate the
value of w!/? at the time 7/2. At the second stage we use this value to calculate dw' with
the accuracy of second order at the time 7:
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This procedure helps us to avoid numerical oscillations at the beginning of the integration
of the model.

2.1 Tangent linear and adjoint models

Let us suppose the couple ¢ (z,y,t),w(x,y,t) is a solution of the system (2.3), (2.4) with
a given topography H = H(z,y). If we perturb the topography by some small §H, we get
another solution of the system {¢ + 09, w + dw}.

Our goal is to define the relationship between §H and dw assuming both of them to be
sufficiently small:

[6H] < [[H] and [|dw]] < [lw]-

We start from the stationary equation (2.3). So far, the couple {¢ + d1),w + dw} is a
solution of the system with the perturbed topography, it must satisfy the equation (2.3):

0 1 OY+doy O 1 0+ 0y

RO =S HTGH x| oy HioH 0y

(2.8)

Using the Taylor expansion and keeping only linear terms in dH, §¢, and dw we get the
equation that allows us to compute 41 from dw, 6 H and the reference streamfunction :

1 0H
To get the equation for vorticity perturbation, we consider the evolution equation (2.4).

As above, we write the equation for the perturbed topography using the Taylor expansion
and neglecting higher-order terms.
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Skipping the detailed development of the tangent model, we write it in a short matricial
form

a;—(: = A(Y,w)dw + B(¢,w)dH — Diw, (2.10)

where operators A, B, and D are defined as
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The system (2.10) starts from the zero initial state dw(x,y,0) = 0 because the purpose is
confined to the study of the sensitivity of the solution to the topography, rather than to the
initial state. We require the perturbed solution {t + 09, w + dw} to have the same boundary
condition as {1, w} because we do not want to study the model’s sensitivity to boundary
conditions. Hence, perturbations 61, dw in equations (2.9), (2.10) must satisfy d¢|sq = 0,
dwlan = 0.

Using the same time stepping scheme as in the reference model, we get

dw™ = 6w(T) = G(sp,w, T)6H, (2.13)

where G is the product of tangent linear operators on each time step of the model.

To develop the adjoint model, we calculate the adjoint of the G(¢,w,T) matrix.

Several remarks can be made on the tangent model formulation. First of all, we can see
the right-hand side of the tangent linear model (2.10) is composed of three terms A, B,
and D ((2.11), (2.12)). The combination, A — D, is responsible for the evolution of a small
perturbation by the model’s dynamics, while the operator B determines the way the bottom
topography perturbation is introduced into the model. The first term is similar for any data
assimilation, while the second one is specific to the particular variable under identification.
This term is absent when the goal is to identify the initial point because the uncertainty is
introduced only once, at the beginning of the model integration. But, when the uncertainty
is presented in the bottom topography or some other internal model parameter (like forcing
term or boundary conditions), the perturbation is introduced at each time step of the model.

In order to see the structure of the operator G(v,w,T), let us consider the case when
(,w) is a stationary solution of (2.1). In this case operators A and B do not depend on
time and the system (2.10) can be solved explicitly. The solution is

dw(T) = (e7"A=P) — 1\ (A— D) 'BéH. (2.14)
G(T)

The only dependence on T is associated with the exponential e?(4~P) If we consider long-

time limit T — o0, we see singular values of G tend to singular values of a pure exponential
operator eI(4=D) That means the growth rate of the norm of perturbation on long-time
scales does not depend on the operator B. It is determined by the maximal Lyapunov expo-
nent of the model, that is, it is the same rate as in the study of sensitivity to initial state.
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Intrinsic model’s instability dominates on these time scales and the source of the perturba-
tion is no longer important. No matter how the perturbation is introduced in the model,
in several days the growth becomes exponential in time with the rate determined by the
model’s dynamics.

On short-time scales, when the exponential is comparable with the identity matrix, the
source of perturbation is also important because the matrix B cannot be neglected in the
product (2.14). On these scales the model’s sensitivity to topography differs from the sensi-
tivity to initial conditions. It was shown in [19] that exponential operator starts to dominate
on time scales T > 3 days in this model.

Another difference consists in the fact that the model state of the tangent linear and
adjoint models includes one supplementary variable. In this paper we have to add the bottom
topography as the third variable to the model state.

2.2 Minimization

The purpose of this work is to identify the optimal topography of the ocean model as the
field H*(x,y) that realizes the minimum of the cost function Z:

I(H*(z,y)) = m}}nI(H(m,y))
. (2.15)
- mf}n/ ”CL)(.’E,y,t, H) - wObS(x7y7t)H2 dt?
0

where the norm is defined as

ot = ([ ol dedy v 216)

Here, wops (1, y, t) represents the model’s variable reconstructed from observations. The mini-
mization procedure is devoted to find the topography that ensures the closest model’s solution
to the observational variable.

To minimize the cost function Z we need first to find its gradient. We start from writing
the variation of the functional.

6T = I[H(z,y) + 6H(z,y)] — T(H(z,y))

T
:/0 <<W(t,H) — Wops(t), w(t, H +6H) — w(t, H)>> dt

. (2.17)
= /0 <<w(t7 H) - Wobs(t)7 G(t)(SH» dt

- << /OT G* () (w(t, H) — wops(t)) dt, 5H>>

where the scalar product ((a, b)) is associated with the norm (2.16).
Thus, the gradient of the cost function can be obtained as the integral of the product of
the adjoint operator G* (2.13) and the difference between the model state and observations

T
VI = /O G (1) (w(t, H) — wops (1)) dt. (2.18)
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The operator G* represents the product of time steps of the adjoint model. In practice, we
do not need to conserve the matrix G*(¢) in memory. The multiplication of a vector by the
adjoint operator is realized by the adjoint model integration starting from this vector.

The minimization procedure used here was developed by Jean Charles Gilbert and Claude
Lemarechal, INRIA [12]. The procedure uses the limited-memory quasi-Newton method.

2.3 Experimental setup

The domain was chosen to represent the North Atlantic region. We assume that the domain is
comprised in the rectangle between 78°W ... 39 in longitude and 15°N ... 65N in latitude.
The boundary of the basin corresponds to the 1km depth isobath of the ocean.

To obtain the forcing in this experiment we have used the data set “Monthly Global
Ocean Wind Stress Components” prepared and maintained by the Data Support Section,
Scientific Computing Division, National Center for Atmospheric Research. These data have
been prepared by the routine described in [14]. From this data set we choose the mean
January wind stress components 7, and 7, over the North Atlantic based on 1870-1976
surface observations. These data are presented on the 20 x 20 grid.

The forcing in this experiment is calculated from these data as

07y 1 Ory
Flz,y) COp | cosp ON (2.19)
2.19
0
L
<p=20°+yx500/L,A:—400+“50 /
Cos

where L = 5500km is the characteristic length of the basin. The spatial configuration of
wind stresses 7, and 7, is presented in Figure 1(a).

The bottom topography has been interpolated from the ETOPOS5 5-minute gridded ele-
vation data [33]. This topography is shown in Figure 1(b).
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Figure 1. (a) Wind stress components 7,,7, used as the forces of the model (the longest arrow
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corresponds to 3 ) and (b) the model’s topography (contours from —500m to —6500 m, interval

500m).
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The coefficient of Ekman dissipation we choose as ¢ = 5 x 1078s~!. Lateral friction
coefficient p and forcing were chosen in order to avoid numerical instability which occurs due
to the concentration of variability of the model at grid scale and to ensure chaotic behavior
of the model’s solution. This value has been taken to be p = 300%2 that corresponds to the
damping time scale T), = 6 days for a wave of 100 km length.

The model was discretized by the finite element method. So far, the model (2.4) under
consideration is similar to a barotropic one and the solution produced by the barotropic
model of the North Atlantic typically includes a western boundary layer with intense velocity
gradients, the advantage of refining the triangulation along the western boundary of the
domain is rather clear. A comparison of finite elements (FE) and finite difference (FD)
models performed in [22] revealed that the difference arose between simulations by FE and
FD techniques can be judged as insignificant when the number of FE nodes is about 6 times
lower than the number of FD ones.

The package MODULEF [4] has been used to perform a triangulation of a domain in
order to construct a system of P2 finite elements. This package produces quasi-regular trian-
gulation based on the prescribed grid nodes on its boundary. We require the refining of the
triangulation near the western boundary and especially in the middle of the domain where
velocity gradients are extremely sharp. Obtained triangulation is composed of 195 triangles.
The integration points set, being a union of vertices and mi-edges of triangles, counts 436
points. The resolution of this grid is about 40 km near the American coast and about 300 km
near the FKuropean one.

3 Results

In this section we perform several numerical experiments in order to see whether the proce-
dure is rapid and accurate especially when the observational data are noisy.

First of all, we address the behavior of the model’s solution. Data assimilation is especially
useful and necessary in situations when solution is chaotic and strongly depends on the
control parameter.

As an evidence of irregular behavior of the discussed model’s trajectory, in Figure 2 we
can see the spectrum of the energy of the solution E(t) = —ﬁ Jo¥(z,y, hw(z, y,t) de dy.

This spectrum has been calculated from the energy double-daily time series of T = 50000

days length by the discrete Fourier transform E(t) = S 700" (ay, sin(%) + by, cos(%)). The

amplitude of Fourier harmonics Ej, = 4/ ai + bi as a function of frequency vy = % is presented

in Figure 2. We see a uniform amplitude of low frequency Fourier modes that correspond to
periods 1000 — 50 000 days and decreasing amplitudes corresponding to periods in a range
from 1 to 1000 days. The rate of decrease is linear in logarithmic coordinates with the slope
close to —3/2. That means the energy of the mode that corresponds to the wavenumber k
depends on k as Ej, ~ k~3/2. This power law is close to the power law of the Kolmogorov’s
theory of turbulence Ej, ~ k~%/3. This fact shows the flow is turbulent, the solution’s behavior
is irregular, and there is no dominating periodic motions.

In order to test the efficiency of the proposed procedure, we generate artificial “obser-
vational” data using the same model with the reference topography that is presented in
Figure 1(b). This fact ensures the existence of the absolute minimum of the cost function
with vanishing value. Our purpose is to test the minimization procedure and its capacity to
find the topography used to produce “observational” data, by assimilating these data in the
model.
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Figure 2. Energy spectrum of the model’s solution.

The initial guess of the assimilation procedure is taken as a flat bottom at 4000 meters
depth. Thus, we suppose we have no preliminary information about the bottom relief in order
to perform the assimilation in the most difficult case. During minimization process, we keep
track of two values that characterize the distance to the reference solution. The first one is
the value of the cost function (2.15). It shows the decrease rate of the functional during the
minimization. This value indicates how close is the assimilated trajectory to the reference
one, but gives no information about the error in the reconstructed topography.

In fact, due to the presence of nonzero kernel of the Hessian of the cost function, its
minimum is not unique. As it has been discussed in [19], the mode in the kernel can be
easily seen from a simple analysis of the model (2.1). If we add to the topography H some
perturbation which is proportional to H itself H = aH, the model remains the same. In
this case, only the third equation of the system (2.1) is multiplied by 1 + « and that does
not disturb the equality to 0. Hence, the model exhibits no sensitivity to the perturbation
0H = aH and this mode belongs to the kernel of the operator G(T) (2.13).

So, the assimilation can only help us to find the reference topography multiplied by some
arbitrary constant. We must either have some a priori information about the topography
under reconstruction to be able to estimate this constant, or accept this nonunique result
of assimilation. In this paper we choose to take into account this arbitrary constant in
the post-processing. So, along with the cost function, we trace also the minimal values of
the difference between the topography on the current iteration H,(z,y) and the reference
topography H(x,y) in form

N = min || Hy (z,y) — aH (z,y)|, (3.1)

where the norm ||H|| is defined by (2.16).

In Figure 3 one can see an example of the evolution of the descent procedure. Starting
at value 7 = 54, the cost function decreases rapidly during first 10 iterations. During this
time, the contribution of the most sensitive modes of the Hessian is minimized. In fact, after
10 iterations the model’s trajectory is already close to the reference one. The value of the
cost function has been divided by 200. At the same time, the topography is still far from
the reference one, the value of 7, (3.1) has only been divided by 1.5. The reason of this is
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Figure 3. Cost function and 7, during minimization.

simple: all Hessian modes with low sensitivity have not been damped at this time. These
modes contribute few in the cost function because of low sensitivity of the model. But their
contribution in 7, is as important as the contribution of sensitive modes.

After that, the rate of decrease becomes slower. The procedure needs many iterations to
damp modes with low sensitivity. The final value of the minimization vanishes, as supposed,
because the cost function in this case has a clear minimum with zero value.

Thus, we may note only few iterations of the assimilation are sufficient to get a good
trajectory which is close to the reference one. After 100 iterations the cost function, being
divided by 10°, is already negligible. However, the identified bottom topography may not be
close to the topography of the reference experiment because of presence of numerous modes
with low sensitivity that are not identified at this moment.

Assimilation error Hy(z,y) — H(x,y) at tenth (n = 10) and at hundredth (n = 100)
iterations are shown in Figure 4. One can see that at tenth iteration the identified topography
is much closer to the initial guess (flat bottom of 4000 m) than to the final pattern showed
in Figure 1(b). Error in bathymetry in the region near American coast is about 1 km. That
means the initial guess is improved by 500 meters. Mid-Atlantic Ridge is not identified at
all as well as the Porcupine bank on the North-East of the basin. Errors in identification of
the height of the Mid-Atlantic Ridge reach 2.5 km that is close to the difference between it’s
real height and initial guess of 4 km.

At the hundredth iteration, both Mid-Atlantic Ridge and the bottom topography to the
West from the Ridge are identified. The error of identification in this region is of order of
300 meters. However, bottom relief is not well identified to the East and to the North from
the Mid-Atlantic Ridge. Error in estimation is still big, reaching 1km. As it is noted in [19],
low sensitivity modes of the Hessian are concentrated in this region where flow is laminar.
These modes are not dumped at 100th iteration and they provide the principal contribution
in the error at this stage of assimilation.
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Figure 4. Difference between the reference and identified topography after 10 (left) and 100 (right)
iterations. Contours from —1500m to 2500 m interval 500 m on the left and from —900m to 1200 m
interval 300 m on the right.

3.1 Assimilation window: exact “observations”

The first question we address concerns the length of the assimilation window 7', that is, the
time span during which the assimilation is performed. There is no a priori information for the
choice of T'. In fact, we can choose T as one time step of the model and as one month as well.
In order to see the influence of the window’s width on the convergence of the assimilation
process, we will distinguish two aspects of this influence: the window’s width itself and the
quantity of external information contained in the window. When we use the cost function
(2.15) that is similar to classical 4DVAR cost functions, different windows contain different
quantity of the observational information that is introduced into the model. Each window
contains as many observational fields as time steps.
When we use the simplified cost function

Isimpl(H(xay)) - HW(T7H) - wObS(T)H2 (32)

that compares observational and model’s data just at the end of time interval T', each window
contains exactly the same quantity of information: only one observational field at the end of
the window. Assimilating data by minimization of this cost function Zgyp helps us to see
the effect of the window’s width itself, while using the original cost function (2.15) we will
see the joint effect of the window and the information in the window.

When the assimilation window T increases, the computing time per iteration increases
also because the iteration is composed by the integration of the direct model from 0 to T
and backward integration of the adjoint model. Hence, looking for the optimal 7', we should
refer to the CPU time along with the number of iterations.

In order to see the dependence of the convergence rate on the window’s width, we perform
8 experiments with different assimilation windows T'. All other parameters are the same in
this set. We start from the value 7" = 0.1 day that corresponds to one model’s time step. For
all subsequent experiments, we double T'.

The “observations” are produced by the same model; hence the expected cost function’s
value must be vanishing at the end of assimilation. We use the criterium Z(H (z,y)) = 10716
to stop iterations. The number of iterations and the CPU time that are necessary to converge
the minimization are shown in Table 1. The CPU time is expressed in minutes on Intel
Pentium processor.
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Table 1. Number of iterations and CPU time necessary to converge the minimization process with
different T'.

7 Zsimpl
T(days) Number of iterations CPU Time Number of iterations CPU Time
0.1 2039 1.7 2039 1.7
0.2 1842 2.3 1970 2.3
0.4 1836 3.8 2095 4.1
0.8 1747 6.6 2060 7.3
1.6 1606 11.4 2243 15.1
3.2 1128 15.5 2257 29.5
6.4 891 24.2 2419 62.3
12.8 936 50.7 2398 123.5

Analyzing Table 1, we can see several tendencies. If we use the cost function 7 that uses
observations over the assimilation window, the number of iterations becomes smaller when
the assimilation window increases. Hence, each iteration becomes more efficient. It is not
surprising, because it uses more external information. However, smaller number of iterations
with longer T' cannot compensate increasing of the CPU time per iteration. Each iteration
requires almost double CPU time for double T', while the number of iterations is far from
being divided by two. And, consequently, CPU time is lower for smaller assimilation windows.

In the case when the cost function Zgp is used, the number of iterations seems to be
constant for windows smaller than one day, but when 7" increases, the minimization requires
slightly more iterations to converge. Indeed, no additional information is introduced into the
model by enlarging the window. Therefore, there is no hope for the assimilation to be more
efficient. In this case, hence, the convergence is undoubtedly more rapid when T is small.

As a consequence, when observations contain exactly the necessary information, the best
assimilation window is one time step for both Zgn, and Z (they coincide in this case).

3.2 Assimilation window: noisy “observations”

However, this experiment was carried out in frames of idealized situation. Artificial observa-
tions created by the same model contain the exact information about the model’s topography.
This is not the case if we use real observations containing measurement error. In addition to
this, real observations include signatures of many different physical processes that are not
taken into account in the model. In this case, the information about topography contained
in observations can no longer be considered as exact.

In order to simulate the influence of possible errors in observational fields we add a white
noise of several different amplitudes to assimilated data.

An example of this assimilation experiment is presented in Figure 5. As above, in order
to produce the data to be assimilated, we run the model with the topography H(z,y) (see
Figure 1(a)). After that, a white noise weighted by some small ¢ has been added to these
data at each grid point and at each time step:

o )t @y Dl
w(m,y,t)— ( ’y’t)+€||r(x Y, )H ( ' Ys t)v (33)

where r(x,y,t) is a random real number from the interval —0.5...0.5.
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An example of the noise effect is shown in Figure 5 on the left. The solid line represents
the enstrophy of the reference experiment. Irregular dashed line with small dashes shows the
trajectory with noise. So far the noise is irregular, it produces additional enstrophy to flow
fields, providing the dashed line is almost always above the solid one. The smooth dashed
line with long dashes represents the enstrophy of the trajectory of the model with identified
topography. One can see this line is almost indistinguishable from the reference one.

The convergence of the cost function and the difference 7, defined by (3.1) during the
assimilation process are shown in Figure 5 on the right. Contrary to Figure 3, neither the
cost function nor the difference vanishes at the end of assimilation. They both tend to some
final error. It is clear, this final error is due to the noise that cannot be assimilated by the
model.

Enstrophy x 10 121452

9.0 Original Cost Funct.
20 L Noiwy© lesd Dit. Topo
8:6 7~ Assimil. 5
8.4
8.2 174 2
8.0 pd 1e+03 \
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7.6 y \
7.4 / 2 I
72 y 1e+02
7.0 7 5 \
6.8 / \
6.6 / 2 \
2—: 7 1e+01 \
6.0 A 5
538 2 N
5.6
5.4 1e+00
52 5
5.0 D N B B s
Model Time (days i
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Figure 5. Noisy data. Left: Enstrophy of the reference (solid line), noisy (short dashes) trajectories,
and the assimilation result (long dashes). Right: Convergence of the cost function (solid line) and of
the difference 7,, (dashed line) in assimilation of noisy data.

The question we ask, whether small values of T are still optimal in the case of assimilation
of noisy data. In fact, in the case when artificial “observational” data were generated by the
same model without noise, the result of identification of the topography was always the
same. We were always able to reconstruct the exact topography of the model and reduce the
cost function’s value to zero. We were optimizing the computational cost rather than the
result of assimilation. But when we assume the presence of noise in observational data, the
optimality condition is not the same as in the previous case. Now it is better to obtain more
accurate topography than lower computing time. It is not the convergence rate that we want
to optimize, but the final error in the reconstructed topography.

In order to see whether there exists an optimal assimilation window in this case, we use
noisy data w'(x,y,t) as artificial observations in the assimilation procedure with the cost
function (2.15) that uses observational data over the whole assimilation window. A set of
experiments has been carried out with different windows. In the first experiment the window
length was taken as the smallest possible one time step window. In each next experiment,
the window length was two times longer. T'=0.1,0.2,...51.2 days. Several examples of the
convergence of 7, are shown in Figure 6 for ¢ = 1073. We see in this figure, when the noise
is present, smaller assimilation windows provide worse results. Although the convergence



14 E. Kazantsev

Error in topography (im)

2
1e+00
5
T=0.1
2 1=0.2
X T=0.4
le-01 <
N
\ \ ~
5 : S~
o I
\ >~
e ~0
2 S T=32
\ \
le-02
N \
\
5 \
\ AN
\ \
\
2 Y ;
N
1e-03 D T
\ T=25.6
5 == —— o
T=51.2
) 100 200 300 400 500 Iteration

Figure 6. Convergence of the difference 7,, for different assimilation windows 7T in the case of noisy
data.

rate remains better for small T, the final error of reconstruction is relatively big. Thus,
if assimilation window is restricted to 7' = 0.1 days, the value 1 converges rapidly to the
value 2.8 x 10~! and after that remains stable. Multiplying 7' by 4 makes the convergence
slower, but allows to reach n = 1.7 x 10~!. Using longer assimilation windows allows us
to reduce final residual error in topography to n = 2 x 1072 with T = 3.2 days; to n =
9.4 x 107* with T = 25.6 days and even to n = 4.4 x 10~% with 7" = 51.2 days. However,
the convergence becomes slower for longer windows. Not only the number of iterations of
the descent procedure increases, but each iteration requires more computer time, because on
each iteration the model and its adjoint are integrated for a longer time.

There exists, hence, no optimal value of T'. Longer windows provide always better accuracy
of the identified topography. This is clearly seen at Figure 7, where the final value of 7 is
plotted for each window T for three different amplitudes of added noise e = 10™4,1073, 1072
(these amplitudes are shown in the figure as small, medium, and big noises, respectively).

Increasing assimilation window, we increase the quantity of assimilated information and
improve the accuracy of the resulting topography. This fact seems to be natural if we take
into account that assimilated data are noisy. More noisy information introduced into the
model helps to reduce the noise impact and results in better accuracy. The central limit
theorem provides the expectation of the decrease rate of residual error 1 be proportional to
T—1/2. However, in Figure 7 we see two different decrease rates.

The first one can be seen for windows in range from 0.1 to 2 days. Indeed, the value of
n decreases as T2 in this range. This fact shows the statistical law dominates for these
windows. The noise contained in data influences directly assimilation results and we obtain
the dependence on T predicted by the central limit theorem.

But when the window is longer than 2 days, we see more rapid decrease of residual error in
topography. On this part the decrease rate is close to T73/2 and we can deduce the influence
of noise in data is not as straightforward as before. In order to understand whether the change
of the decrease rate has a physical meaning and occurs effectively at assimilation window
T =1 — 2 days, or this change has numerical origins and corresponds to several time steps
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Figure 7. Final value of 7, for different assimilation windows T' with small (solid lines), medium
(short dashes), and big (long dashes) noises. Small (7 = 0.025 days) and normal (7 = 0.1 days) time
steps are considered in experiments with small and big noises.

of the model rather than to physical time, we perform two similar experiments with 4 times
smaller time step. Assimilation windows in these two experiments were chosen in range from
0.025 days (one small time step) to 1.6 days (64 small time steps). Corresponding lines can
also be seen in Figure 7. Comparing them with lines corresponding to the 0.1 days time step,
we see the same decrease rate: T—1/2 for small windows and acceleration for bigger windows.
That means the change in decrease rate is not related to numerical time stepping and must
have physical origins. We see also both lines with smaller time step lie below corresponding
lines with normal time step. It is natural: so far, the time step is smaller, more external
information is introduced into the model each time unit. And more assimilated information
results in better precision.

Moreover, comparing lines with small and normal time steps, we can see the residual error
in topography depends on the quantity of assimilated data only. No matter how long was
the assimilation window, it is the number of time steps (which is equal to the number of
assimilated observational fields) that determines the residual error. Residual errors obtained
with one, two, or three time steps are approximately equal for both the time step length
0.025 and 0.1 days.

Hence, the change in decrease rate has some physical reason. Indeed, it was shown in
[19] the time scale 2-3 days is important in the sensitivity analysis of this model. On time
scales lower than 3 days, the sensitivity is linear in time. That means an error in the model’s
solution induced by a topography perturbation grows linearly in time. But, on longer time
scales, error growth becomes exponential. That means, during 2-3 days of model time the
perturbation is introduced into the model and, after that, it follows the model’s dynam-
ics. During the phase of introduction, linear transition of perturbation from topography to
model’s variable dominates, resulting in linear dependence on time. But after 2-3 days, it
is the model’s dynamics that governs the error evolution. Being nonlinear and intrinsicly
unstable, the dynamics ensures exponential error growth of a perturbation. On these time
scales, topography perturbation evolves like any other perturbation from any other source.
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Assimilating noisy data we see a similar difference between small and large scales. If the
model’s dynamics has not enough time to get adapted to the noise contained in assimilated
data, then the noise effect is directly transmitted to identified topography. So, its influence
on assimilation’s results is similar to influence of a pure white noise. On large time scales
the noise is transmitted by the dynamics and modified during transmission. As a result, we
have more rapid decrease of the residual error.

3.3 Noise amplitude and assimilation error

In order to quantify the relationship between noise in model’s parameters and error in the
reconstructed topography, we perform a set of experiments assimilating noisy data. We ex-
amine the amplitude of the noise and also its origins. It is clear, bigger noise will provide
bigger residual error in topography. But the source of the noise may also be important.

First, we add the noise in the model’s initial conditions simulating the influence of inter-
polation or residual errors of reconstruction of initial point in the data assimilation process.
Second, we perturb the forcing F(x,y) of the model (2.4) in order to simulate the difference
between parametrization of physical processes in the model and real physical processes in
observational data. And third, we add the noise to all grid-points at all time steps of the
artificial observations to simulate the measurements errors.

Before data assimilation and topography identification, we will see the influence of dif-
ferent perturbation’s sources on the model’s variable. Each of above-mentioned parameters
(initial conditions, forcing, vorticity) were perturbed by the noise (3.3) of a prescribed am-
plitude e = 1073. In Figure 8 we trace evolution of the norm of the difference between the
reference trajectory w with no noise and noisy trajectory w’ during 150 days model run:

&(t) = Hw’(:):,y,t) — w(:c,y,t)” = \// (w’(w,y,t) — w(:r,y,t))zdx dy. (3.4)

Evolution of ¢ during first 15 days is presented as a zoom in this figure.
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Figure 8. Evolution of vorticity perturbation for different sources of noise: noise in initial point
(solid line), noise in forcing (dotted line), noise added to vorticity (oscillating line), and noise in the
bottom topography (dashed line).
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The solid line in this figure represents the evolution of the noise added to initial conditions:

wo(z,y) = wo(z,y) + otz r(z,y),
’ (2, )l
where r(x,y) is a random real number from the interval —0.5...0.5.
Value € = 1073 signifies the norm of initial point is perturbed by 0.1% of its value:

lwo (@, y) = wolz, y)ll
lwo(, y)|

=103,

This line starts at £ = 9 x 10_6% and grows rapidly during the first four days. This is
the case of well-known super-exponential error growth (see, e.g., [32]) that reduces short-
range predictability of chaotic systems because local Lyapunov exponents (that govern the
error growth on short-time scales) are bigger than global exponents on long-time scales
[18]. After the first four days, the value of £ grows exponentially (linearly in logarithmic
coordinates), with growth rate determined by long-time Lyapunov exponents. Beyond the
150 days interval, the line will reach saturation with values about £ = 10_2% which represents
the characteristic radius of the model’s attractor.

The dotted line in Figure 8 represents the evolution of £ in the case when the noise has
been added to the forcing of the model. This line, obviously, starts from 0 but the rapid
growth lasts more than 20 days. This happens because modification of the forcing of the
model changes its attractor. The trajectory evolves first toward the new attractor and after
that, the value of £ grow also exponentially, in a similar way as the solid line.

An oscillating line represents the noise added to all grid-points at all time steps to the
reference trajectory in order to simulate the measurements errors. This noise is not governed
by the model’s dynamics, consequently these lines are oscillating about constant values. This
line oscillates about 9 x 10_6%7 the same value from which starts the solid line. This is natural
because the noise that has been added to initial point is the same as the noise added to the
vorticity.

And finally, in order to compare the influence of noise in all of these parameters with the
influence of the same noise in the bottom topography of the model, we plot the fifth line.
The dashed line in this figure represents the evolution of the norm £ (3.4) when the noise
of the same amplitude ¢ has been added to the topography. The amplitude ¢ = 10~3 means
the depth was perturbed by 4 meters in average. This line reveals stronger influence of the
noise in topography field on the trajectory. The value £ is equal to zero at the beginning
of integration as well as in experiment in which the noise is added to the forcing of the
model. Also similarly to the experiment with forcing, rapid increase of £ lasts approximately
20 days. As well as the forcing modification, modification of topography also changes the
model’s attractor and the trajectory goes also first to the new attractor. However, the noise
in topography generates much higher growth rate of £ than the noise in forcing. That means,
the attractor is more modified by a little change of topography than by an equal change of
the forcing. This fact shows the importance of better identification of the topography of the
model.

Error obtained in the reconstructed topography for different perturbations in model pa-
rameters and its trajectory is shown in Figure 9. The experiment was carried out in four sets.
In each set one and only one parameter (initial point, forcing, vorticity or SSH of the trajec-
tory itself) has been perturbed by random noise with ten different amplitudes. In the first
set the “observational” data were generated by the model with perturbed initial conditions.
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Figure 9. Residual error in topography 1 as a function of noise amplitude €.

The perturbation amplitude was doubled in each of ten experiments beginning at the am-
plitude ¢ = 5 x 107°. The amplitude of perturbation in the tenth experiment was equal to
e=29%x5x107°=2.56 x 1072

The second set was performed with “observational” data obtained with non-perturbed
initial point, but with noisy forcing. As before, the noise amplitude was doubled in each
experiment beginning at the same value €. And in the third set, neither initial point, nor
forcing were perturbed, but the resulting trajectory was subjected to perturbation with
amplitudes beginning at ¢ = 104, In the fourth set, noisy sea surface height was used as
observable variable with the same noise amplitudes as in the third set.

Assimilation window in all these experiments was chosen to be T' = 5 days. The topog-
raphy shown in Figure 1(a) used to create the reference “observational” data was the same
in all experiments. The data assimilation of noisy data was performed up to stabilization of
the minimization processed. We trace then the resulting norm of the difference between the
reconstructed topography and the exact one, used to create the reference “observational”
data.

The dashed upper line with long dashes shows the dependence of the final error in topog-
raphy on the amplitude of the perturbation of initial conditions. Higher position of this line
indicates stronger influence of errors in approximation of initial point of the model. This is
not the case when the forcing is perturbed (lowest solid line). We can see that the model
exhibits lower sensitivity. The amplitude of the noise in the forcing can be 100 times higher
but the assimilation provides equal error obtained in the reconstructed topography.

The influence of noise in the trajectory of the model (dotted line) is a little higher than
the influence of noise in the forcing but lower than the influence of noise in initial point.

The slope of all lines in Figure 9 is equal to one. That means the value of n (3.1) is linear
function of e.

3.4 Beyond the assimilation window

An important difference between identification of optimal initial point of the model and its
optimal topography consists in the fact that topography is an internal model’s parameter. It
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must be identified once for all model runs, while initial conditions are external parameters
and must be identified for each particular model run. The question we should ask in this
case, whether the topography identified once by data assimilation is valid for other model
runs that start from other initial conditions and are situated in other parts of the model’s
attractor.

In this experiment we perform different model runs using results of assimilation of noisy
data obtained in previous section. All runs start from different arbitrary points on the at-
tractor of the model with the reference topography. These initial points have been chosen as
arbitrary points on the long trajectory of the model integrated with the reference topography.

As we have seen, assimilation of noisy observations results in an error of topography
reconstruction. Consequently, it is hopeless to obtain the same solution with two different
topographies. So, we will analyze the evolution of the relative difference between trajectories
of models with the reference topography H and with the reconstructed topography Hieconsr
containing errors due to assimilation of noisy data:

2 ( ) — fQ (wH(x?y7 t) - ereconsr(:U? y7t))2d$ dy
reconsr fQ (WH(I,y,t))Q dx dy

This difference is compared with the effect of a simple perturbation of topography by
random values at each grid-point:

r

(3.5)

7 n
Hrrb($ay) :H(ﬂj’,y)+ X’I"(I‘,y).
et [r(z,y)ll

The amplitude of perturbation in each experiment was exactly equal to the norm of the
residual error in the topography after assimilation: || Hpperb (%, y) — H(z,9)|| = 1. The model
with perturbed topography has been integrated from the same initial point as the reference
model for 180 days. During this time we calculate also the relative difference rp,p,(t) that is
similar to (3.5) but we use perturbed topography Hi1, instead of reconstructed one Hrecons:-

Ten values of residual errors in topography 7 in range from 10cm to 70m have been
tested together with ten equal perturbation amplitudes. Evolutions of 7p:b(t) and rreconsr (t)
corresponding to the lowest and to the highest n are shown in Figure 10 on the left. Two solid
lines represent the difference ryeconsy(t) for n = 10cm and n = 70 m. Two dashed lines show
the difference 7,1 (t) for the same amplitudes of random perturbation. One can see that for
both 7 the difference obtained with the model with reconstructed topography is 5-10 times
lower than that with randomly perturbed topography. Although amplitudes of the random
perturbation and of the residual error are equal to each other, the trajectory of the model
on the reconstructed topography corresponds better to the reference model. This can be
explained by the fact that all sensitive modes in the topography have been damped during
the data assimilation procedure. The residual error is essentially concentrated in modes that
provide low impact on the trajectory. While the random perturbation of the topography
adds noise to all modes and results in bigger model error.

We can see the same feature in Figure 10 on the right where differences 7yeconsr(t) and
Tprtrb(t) are shown at time ¢ = 60 days for all ten amplitudes of the residual error and of
the random perturbation. Model with the reconstructed topography shows 3-10 times lower
difference with the reference model than the model with randomly perturbed topography.
The dependence of the difference at t = 60 days on the amplitude of residual error is linear
in logarithmic coordinates with the slope equal to 1. That means this dependence is simply
linear. If we remind that the dependence of the residual error on the noise amplitude in
assimilated data is also linear, we can deduce that the error in the model trajectory is
proportional to the error in assimilated data.
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Figure 10. Evolution (left) and the value at 60th day (right) of the relative difference r(t) between
the reference model and models with inaccurate topographies: reconstructed topographies (solid lines)
and randomly perturbed topographies (dashed lines).

4 Conclusion

We have studied the procedure of data assimilation for identification of the topography for
a simple barotropic ocean model. Comparing this procedure with now well-developed data
assimilation intended to identify optimal initial state of the model, we can say that there are
both common points and differences as well.

Tangent and adjoint model are composed by two terms A and B ((2.11), (2.12)). The
first one, A, governs the evolution of a small perturbation by the model’s dynamics. This
term is common for any data assimilation no matter what parameter we want to identify.
The second one, B, determines the way how the uncertainty is introduced into the model.
This term is specific to the particular variable under identification. This term is absent when
the goal is to identify initial point because the uncertainty is introduced only once, at the
beginning of the model integration.

The presence of nonzero kernel of the sensitivity operator constitutes another particularity
of the data assimilation in this case. Exact topography cannot be reconstructed because there
exists a mode the model is not sensitive to. Adding this mode to the topography of the model
does not change its solution. Consequently, this mode cannot be identified from the model’s
trajectory. We must either have some a priori information about topography, or modify
the model in order to suppress the kernel. In this paper the kernel can be suppressed by
replacement of the average ocean depth Hy by the real depth in each point H(z,y) in the
forcing term % in (2.1). The presence of one-dimensional kernel has also been pointed
out in [28] where the bottom topography was used as a control parameter for a steady state
solution of a linear shallow-water model in a zonal channel. However, authors note the vector
in kernel shows a nearly pure grid-scale noise that can be explained by technical aspects of
the numerical scheme on a C grid. They point out this issue can be avoided by choosing the
depth at the velocity points as control parameter.
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When assimilated data are perfect and contain exact information, the minimization pro-
cedure always converges to the reference topography. In this case, it is preferable to use
shorter assimilation windows because they require less CPU time due to shorter integration
of direct and adjoint models on each iteration. The number of iterations necessary to assim-
ilate the data depends on the quantity of these data only. When the simplified cost function
that compares observational and model’s data just at the end of assimilation window is used,
almost the same number of iterations is necessary to converge in experiments with different
assimilation windows because the quantity of external information introduced into the model
is the same for any window in this case: just one field at the end of the window. And the
same quantity of information leads to the same quantity of iterations.

When the 4D-VAR assimilation is used, new information is introduced at each model’s
time step. The quantity of external information is, hence, proportional to the length of the
assimilation window. And in this case we see that longer windows require less iterations to
converge. Each iteration becomes more efficient, but this increase of efficiency is not sufficient
to compensate the increase of the CPU time necessary to perform each iteration. So, even
in 4D-VAR, the total CPU time is bigger for longer windows.

When the assimilated data are noisy, more data results in a better accuracy of identified
topography. It was shown that smaller time step and proportionally smaller assimilation
window allows us to obtain the same precision in the reconstructed topography. However,
the dependence of the residual error in topography on the quantity of assimilated data is not
uniform for all windows. When assimilation window is shorter than 2 days, the residual error
decreases as inverse of the square root of the window length. But when we assimilate data
with windows longer than 2 days, the decrease rate of the residual becomes proportional to
T-3/2.

When the noise source is considered, we see the most dangerous noise lies in initial con-
ditions. The same amplitude of noise in the forcing of the model and in its initial point may
result in 30 times bigger error in topography in the second case. Consequently, one can think
about data assimilation for the joint simultaneous identification of topography and initial
point. On the other hand, the final result exhibits relatively low sensitivity to measurements
errors and noise in the assimilated data.

We can state the topography identified once by data assimilation is valid for other model
runs that start from other initial conditions and are situated in other parts of the model’s
attractor. The reconstructed topography can be used in the model for sufficiently long runs
that exceed many times the length of the assimilation window. The final model’s error due
to inexact topography reconstructed assimilating noisy data depends linearly on the noise
amplitude in these data.

Thus, we can state it is possible to use the assimilation of external data in order to
reconstruct the bottom topography of a nonlinear barotropic model in the case of the time
dependent motion. One open question at this time concerns possible principal difficulties
related to baroclinicity and multi-layer models. In particular, optimization of topography
may result in modification of the geometry of the basin at certain layers. Multi-layer model
may also present theoretical particularity and invoke the question about differentiability of
the model with respect to the topographic field.

Another point that has not been discussed here is the possible lack of external data. We
have supposed all the necessary data are available, sea surface elevation and all velocity
fields. In practice, however, only the surface height can be easily measured and assimilated.

And finally, it must by noted that the use of the bottom topography as control is only one
example of a nontraditional control variable. A number of model parameters may require
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such an optimization. One of them, an optimal choice of boundary conditions on rigid and
open boundaries, seems to be the first necessity.
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