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Abstract

In this paper we prove that Bose gas with weak pair interaction is nonergodic system.
In order to prove this fact we consider the divergences in some nonequilibrium diagram
technique. These divergences are analogous to the divergences in the kinetic equations
discovered by Cohen and Dorfman. We develop the general theory of renormalization of
such divergences and illustrate it with some simple examples. The fact that the system
is nonergodic leads to the following consequence: to prove that the system tends to the
thermal equilibrium we should take into account its behavior on its boundary. In this
paper we illustrate this thesis with the Bogoliubov derivation of the kinetic equations.
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1 Introduction

In this paper we study divergences in some nonequilibrium diagram technique which is anal-
ogous to the Keldysh diagram technique. It is more or less evident that these divergences
are the same as the divergences in the kinetic equations discovered by Cohen and Dorfman
[1, 2, 3]. We develop the general theory of renormalization of such divergences analogously to
the Bogoliubov-Parasiuk R-operation method [4, 5, 6]. Our main result can be formulated as
follows: for a wide class of Bose systems in the sense of formal power series on coupling con-
stant there exists non-Gibbs functional 〈·〉, commuting with the number of particle operator
such that the correlators 〈Ψ±(t, x1) · · ·Ψ±(t, xn)〉 are translation invariant, do not depend
on t, and satisfy the weak cluster property. Here Ψ± are the fields operators and the weak
cluster property means the following:

lim
|a|→∞

∫
R3n

〈
Ψ±
(
t, x1 + δ1e1a

)
· · ·Ψ±

(
t, xn + δne1a

)〉
f
(
x1, . . . , xn

)
d3x1 · · · d3xn

=
∫
R3n

〈
Ψ±
(
t, xi1

)
· · ·Ψ±

(
t, xik

)〉〈
Ψ±
(
t, xik

)
· · ·Ψ±

(
t, xin

)〉
f
(
x1, . . . , xn

)
d3x1 · · · d3xn,

there δi ∈ {1, 0}, i = 1, 2 . . . , n and

i1 < i2 < · · · < ik, ik+1 < ik+2 < · · · < in,{
i1, i2, . . . , ik

}
=
{
i = 1, 2 · · ·n | δi = 0

}
6= ∅,{

ik+1, ik+2, . . . , in
}

=
{
i = 1, 2 · · ·n | δi = 1

}
6= ∅.

f(x1, . . . , xn) is a test function, and e1 is a unit vector parallel to the x-axis. This statement
is a simple consequence of the theorem from Section 6.
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Let us prove that the existence of such functionals implies nonergodic property of the
system. We consider the problem only on classical level. The accurate consideration for the
quantum case can be found in Section 10. Suppose that our system is ergodic, i.e., there are
no first integrals of the system except energy. Then, the distribution function depends only
on energy. We can represent the distribution function f(E) as follows:

f(E) =
∑

cαδ
(
E − Eα

)
,

where the sum can be continuous (integral). Let 1 be some enough large but finite subsystem
of our system. Let 2 be a subsystem obtained from 1 by translation on the vector ~l of
sufficiently large length parallel to the x-axis. Let 12 be a union of the subsystems 1 and 2.
Let ρ1, ρ2, and ρ12 be distribution functions for the subsystems 1, 2, and 12, respectively.
Let Γ1, Γ2, and Γ12 be points of the phase spaces for the subsystem 1, 2, and 12, respectively.
By the same method as the method used for the derivation of the Gibbs distribution we find

ρ12 =
∑

cαdα
e−

EΓ1
Tα

Zα

e−
EΓ2
Tα

Zα
, dα > 0, ∀α,

in the obvious notation. But the weak cluster property implies that ρ12 = ρ1ρ2. Therefore
all the coefficients cα are equal to zero except one. We find that f(E) = cδ(E − E0) for
some constants c and E0. So each finite subsystem of our system can be described by Gibbs
formula and we obtain a contradiction.

Nonergodic property means that there is no thermalization in infinite Bose-gas system.
This fact implies to prove that the system tends to thermal equilibrium we should take

into account the behavior of the system on its boundary. Indeed if a system has no boundary
the system is infinite.

To illustrate this fact we will study Bogoliubov derivation of kinetic equations [7]. When
one derives BBGKI-chain, one neglects some boundary terms. If one takes into account this
boundary terms and uses the Bogoliubov method of derivation of the kinetic equations, one
finds that these boundary terms compensate the scattering integral.

I think that the dependence of behavior of the system on boundary can be observed for
small systems such as nanosystems or biological systems.

Note that our main result is closely related with the so-called Prigogin hypothesis which
states that the infinite-dimensional Liouville dynamics cannot be derived from the Hamilton
dynamics. The Prigogin hypothesis is proven in [8].

The paper is organized as follows. In Section 2 we introduce the notion of the algebra
of canonical commutative relations and develop a useful representation for some class of
the states on this algebra. In Section 3 we describe the von Neumann dynamics for the
states. In Section 4 we describe a useful representation for the von Neumann dynamics—the
dynamics of correlations. In Section 5 we describe the decomposition of the kinetic evolution
operator by the so-called trees of correlations. In Section 6 we describe the general form of
the counterterms which subtract the divergences in the nonequilibrium perturbation theory.
In Section 7 we describe the so-called Friedrichs diagrams. In Section 8 we describe the
Bogoliubov-Parasiuk prescriptions and formulate our main theorem. In Section 9 we prove
our main theorem. In Section 10 we derive the nonergodic property of Bose gas with weak
pair interaction from our main result. In Section 11 we consider one example related to
our general theory. In Section 12 we reconsider the Bogoliubov derivation of the Boltzmann
equation. This example illustrates the main thesis of this paper: to prove that the system
tends to the thermal equilibrium one has to take into account its behavior on its boundary.
Section 13 is a conclusion.
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2 The algebra of canonical commutative relations

Let S(R3) be a Schwatrz space of test functions (infinitely-differentiable functions decaying at
infinity faster than any inverse polynomial with all its derivatives). The algebra of canonical
commutative relations C is a unital algebra generated by symbols a+(f) and a(f), f ∈ S(R3)
satisfying the following canonical commutative relations:

(a) a+(f) is a linear functional of f ,
(b) a(f) is an antilinear functional of f ,[

a(f), a(g)
]

=
[
a+(f), a+(f)

]
= 0,

[
a(f), a+(g)

]
= 〈f, g〉,

where 〈f, g〉 is a standard scalar product in L2(R3), 〈f, g〉 :=
∫
d3xf∗(x)g(x).

Let ρ0 be a Gauss state on C defined by the following correlator:

ρ0

(
a+(k)a+(k′)

)
= ρ0

(
a(k)a(k′)

)
= 0, ρ0

(
a+(k)a(k′)

)
= n(k)δ(k − k′),

where n(k) is a real-valued function from the Schwartz space. In the case then

n(k) =
e−β(ω(k)−µ)

1− e−β(ω(k)−µ)
,

where µ ∈ R, µ < 0, ρ0 is called the Plank state. Here ω(k) = k2

2 .
Let C′ be a space of linear functionals on C, and C′+,1 a set of all states on C. Let us make

the GNS construction corresponding to the algebra C and the Gauss state ρ0. We obtain
the set (H, D, ,̂ 〉) consisting of the Hilbert space H, the dense linear subspace D in H, the
representation ˆ of C by means of the linear operators from D to D, and the cyclic vector
〉 ∈ D, i.e., the vector such that Ĉ〉 = D. This set satisfies the following condition: ∀a ∈ C,
〈â〉 = ρ0(a). Below we will omit the symbol ,̂ i.e., we will write a instead of â.

Let us introduce the field operators:

Ψ(x) =
1

(2π)
3
2

∫
eikxa(k)dk, Ψ+(x) =

1

(2π)
3
2

∫
e−ikxa+(k)dk.

We say that the state ρ on C satisfies the weak cluster property if

lim
a→∞

∫ 〈
Ψ±
(
t, x1 + δ1e1a

)
· · ·Ψ±

(
t, xn + δne1a

)〉
f
(
x1, . . . , xn

)
d3x1 · · · d3xn

=
∫ 〈

Ψ±
(
t, xi1

)
· · ·Ψ±

(
t, xik

)〉〈
Ψ±
(
t, xik

)
· · ·Ψ±

(
t, xin

)〉
f
(
x1, . . . , xn

)
d3x1 · · · d3xn,

where δi ∈ {1, 0}, i = 1, 2 · · ·n and

i1 < i2 < · · · < ik, ik+1 < ik+2 < · · · < in,{
i1, i2, . . . , ik

}
=
{
i = 1, 2 · · ·n | δi = 0

}
6= ∅,{

ik+1, ik+2, . . . , in
}

=
{
i = 1, 2 · · ·n | δi = 1

}
6= ∅.

f(x1, . . . , xn) is a test function. e1 is an unit vector parallel to the x-axis.
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Definition 2.1. The vector of the form∫
v
(
p1, . . . , pn

)
a±
(
p1

)
· · · a±

(
pn
)〉
d3p1 · · · d3pn, v

(
p1, . . . , pn

)
∈ S

(
R3n

)
, (2.1)

is called a finite vector. The finite linear combination of the vectors of the form (2.1) is also
called a finite vector.

Let f(x1, . . . , xk | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn) be a function of the form

f
(
x1, . . . , xk | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
=g
(
x1, . . . , xk | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
δ

(
k∑
i=1

xi−
m∑
j=1

wj−
l∑

f=1

yf+
n∑
g=1

vg

)
,

where g is a function from Schwartz space.
Consider the following functional on C:

ρf (A) :=
∫ k∏

i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwg

×f
(
x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
(2.2)

×ρ0

(
: a
(
x1

)
· · · a

(
xn
) ︷ ︸︸ ︷
a+
(
y1

)
· · · a+

(
yl
)

:A : a
(
v1

)
· · · a

(
vm
)
a+
(
w1

)
· · · a+

(
wn
)

:
)
.

Here the symbol : (.
︷ ︸︸ ︷
.) : A : (. .) : means that when one transforms the previous expression

to the normal form according to the Gauss property of ρ0, one must neglect all correlators
ρ0(a±(x1)a±(xn)) such that a±(x1) and a±(xn) both do not come from A.

Let C̃′ be a subspace in C′ spanned on the functionals just defined.
Now let us introduce a useful method for the representation of the states just defined.
Let C2 = C+ ⊗ C−, where C+ and C− are the algebras of canonical commutative relations.

The algebras C± are generated by the generators a±(k), a+
±(k), respectively, satisfying the

following relations:[
a+

+(k), a+
+(k′)

]
=
[
a+(k), a+(k′)

]
= 0,

[
a+
−(k), a+

−(k′)
]

=
[
a−(k), a−(k′)

]
= 0,[

a+(k), a+
+(k′)

]
= δ(k − k′),

[
a−(k), a+

−(k′)
]

= δ(k − k′),
[
a±+(k), a±−(k)

]
= 0.

Here we put by definition a−± := a±. Let us consider the following Gauss functional ρ′0 on C2

defined by its two-point correlator:

ρ′0
(
a±−(k)a±−(k′)

)
= ρ0

(
a±(k)a±(k′)

)
, ρ′0

(
a±+(k)a±+(k′)

)
= ρ0

(
a∓(k′)a∓(k)

)
,

ρ′0
(
a+

+(k)a−−(k′)
)

= ρ′0
(
a−+(k)a+

−(k′)
)

= 0, ρ′0
(
a−+(k)a−−(k′)

)
= n(k)δ(k − k′),

ρ′0
(
a+

+(k)a+
−(k′)

)
=
(
1 + n(k)

)
δ(k − k′).

One can prove that the functional ρ′0 is a state.
Let us make the GNS construction corresponding to the state ρ′0 and the algebra C2. We

obtain the set (H′, D̃, ,̂ 〉) consisting of the Hilbert space H′, the dense linear subspace D̃ in
H′, the representation ˆ of C2 by means of the linear operators from D̃ to D̃, and the cyclic
vector 〉 ∈ D̃, i.e., the vector such that Ĉ〉 = D̃. This set satisfies the following condition:
∀a ∈ C2, 〈â〉 = ρ′0(a). Below we will omit the symbol ,̂ i.e., we will write a instead of â.
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Now we can rewrite the functional, defined in (2.2) ρf as follows: ρf (A) =
〈
A′Sf

〉
, where

A′ is an element of C2 such that it contains only the operators a−, a+
− and can be represented

through a−, a
+
− in the same way as A can be represented through a, a+. Sf is an element of

C2 of the form

Sf =
∫ k∏

i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwgf
(
x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
× : a+

+

(
x1

)
· · · a+

+

(
xn
)
a+

(
y1

)
· · · a+

(
yl
)
a−
(
v1

)
· · · a−

(
vm
)
a+
−
(
w1

)
· · · a+

−
(
wn
)

: . (2.3)

Here the symbol : · · · : is a normal ordering with respect to the state ρ′0.
Denote by D̃′ the space dual to D̃. We just construct the injection from C ′ into D̃′. Denote

its image by H̃′.
By definition the space C′′ is a space of all functionals on C which can be represented as

finite linear combinations of the following functionals: ρ(A) =
〈
A′ : Sf1 · · ·Sfn :

〉
. Here A′

is an element of C2 such that it contains only the operators a−, a+
− and can be represented

through a−, a
+
− in the same way as A can be represented through a, a+ and Sfi are the

elements of the form (2.3). Denote by H̃′′ the subspace in D̃′ spanned on the vectors :
Sf1 · · ·Sfn :〉 (in obvious sense).

There exists an involution ? on H̃′ defined by the following formula:{∫ k∏
i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwgf
(
x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
× : a+

+

(
x1

)
· · · a+

+

(
xn
)
a+

(
y1

)
· · · a+

(
yl
)
a−
(
v1

)
· · · a−

(
vm
)
a+
−
(
w1

)
· · · a+

−
(
wn
)

:
〉}?

=
∫ k∏

i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwgf
∗(x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
× : a+

−
(
x1

)
· · · a+

−
(
xn
)
a−
(
y1

)
· · · a−

(
yl
)
a+

(
v1

)
· · · a+

(
vm
)
a+

+

(
w1

)
· · · a+

+

(
wn
)

:
〉
.

We define the involution ? on Hom(H̃ ′, H̃ ′) by the following equation: (a|f〉)? = a?(|f〉)∗,
where a ∈ Hom(H̃ ′, H̃ ′) and |f〉 ∈ H̃ ′.

We also define the involution ? on C2 by the following equation:{∫ k∏
i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwgf
(
x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
× : a+

+

(
x1

)
· · · a+

+

(
xn
)
a+

(
y1

)
· · · a+

(
yl
)
a−
(
v1

)
· · · a−

(
vm
)
a+
−
(
w1

)
· · · a+

−
(
wn
)

:

}?

=
∫ k∏

i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwgf
∗(x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
× : a+

−
(
x1

)
· · · a+

−
(
xn
)
a−
(
y1

)
· · · a−

(
yl
)
a+

(
v1

)
· · · a+

(
vm
)
a+

+

(
w1

)
· · · a+

+

(
wn
)

:,

where f(x1, . . . , xk | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn) is a test function of its arguments.
Note that the involution on Hom(H̃ ′, H̃ ′) extends the involution on C2. We say that the
element a ∈ C2 is real if a? = a. The involution on H̃ ′′ can be defined in a similar way.
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3 The von Neumann dynamics

Suppose that our system is described by the following Hamiltonian: H = H0 + λV , where

H0 =
∫
d3k
(
ω(k)− µ

)
a+(k)a(k),

V =
∫
d3p1d

3p2d
3q1d

3q2v
(
p1, p2 | q1, q2

)
δ
(
p1+p2−q1−q2

)
a+
(
p1

)
a+
(
p2

)
a
(
q1

)
a
(
q2

)
.

Here the kernel v(p1, p2 | q1, q2) belongs to the Schwartz space of test functions. To point
out the fact that H is represented through the operators a+, a− we will write H(a+, a−).

The von Neumann dynamics takes place in the space H̃′′ and is defined by the following
differential equation: d

dt |f〉 = L|f〉, where the von Neumann operator has the form

L = −iH
(
a+
−, a

−
−
)

+ iH†
(
a+

+, a
−
+

)
,

where we put by definition(∫ n∏
i=1

dpi

m∏
j=1

dqjv
(
p1, . . . , pn | q1, . . . , qm

)
: a+

(
p1

)
· · · a+

(
pn
)
a
(
q1

)
· · · a

(
qn
)

:

)†

=
∫ n∏

i=1

dpi

m∏
j=1

dqjv
(
p1, . . . , pn | q1, . . . , qm

)∗ : a+
(
p1

)
· · · a+

(
pn
)
a
(
q1

)
· · · a

(
qn
)

: .

Let us divide the von Neumann operator into the free operator L and the interaction Lint,
L = L0 + λLint, where

L0 = −iH0

(
a+
−, a

−
−
)

+ iH†0
(
a+

+, a
−
+

)
, Lint = −iHint

(
a+
−, a

−
−
)

+ iH†int

(
a+

+, a
−
+

)
.

Note that the operators L0 and L1 are real (with respect the involution ?).
Let us introduce kinetic evolution operator (in the interaction representation)

U(t′′, t′) = e−L0t′′eL(t′′−t′)eL0t′ .

After differentiating with respect to t we find the differential equation for U(t, t′).

d

dt
U(t, t′) = Lint(t)U(t, t′),

where Lint(t) = e−L0tLinte
L0t. So the state 〉ρ under consideration in the space H̃′′ in the

interaction representation has the form 〉ρ = T exp
( ∫ 0
−∞ Lint(t)dt

)
〉, where T is the time-

ordering operator.
Note that we have a linear map from H̃ ′′ into C̃′. It is easy to see that the von Neumann

dynamics are in agreement with the Heizenberg dynamics in C′.

4 Dynamics of correlations

Let us construct some new representation of the von Neumann dynamics useful for the
renormalization program. This representation is called the dynamics of correlations. The
ideas of the dynamics of correlations belong to Prigogin [9]. The dynamics of correlations
take place in the space Hc :=

⊕∞
0 sym⊗nH̃′. Now let us describe how the operators Lc0 and

Lcint act in the space Hc.
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Let us define the actions of operators Lc0 and Lcint which correspond to the operators L0

and Lint.
By definition all the spaces ⊗nH̃′ are invariant under the actions of operators Lc0. Note

that the space H̃′ is invariant under the action of operator L0. Let us denote the restriction of
L0 to the space H̃′ by the symbol L′0. By definition the restriction of Lc0 to the each subspace
sym⊗nH̃′ of Hc has the form

L′0 ⊗ 1⊗ · · · ⊗ 1 + 1⊗ L′0 ⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗ L′0.

Now let us define Lcint. Let |f〉 ∈ Hc belong to the subspace ⊗nH̃′ and have the form

|f〉 =
m∑
i=0

f i1〉 ⊗ · · · ⊗ f in〉,

where f ij has the form

f ji =
∫ k∏

i=1

dxi

l∏
j=1

dxj

m∏
f=1

dvf

n∏
g=1

dwgf
(
x1, . . . , xn | y1, . . . , yl | v1, . . . , vm | w1, . . . , wn

)
× : a+

+

(
x1

)
· · · a+

+

(
xn
)
a+

(
y1

)
· · · a+

(
yl
)
a−
(
v1

)
· · · a−

(
vm
)
a+
−
(
w1

)
· · · a+

−
(
wn
)

: . (4.1)

By definition Lc,lint|f〉 = 0 if l > n. Let us consider the following vector in H̃′′:
∑m

i=1 :∏n
j=1 f

i
j :〉. Let us transform the expression Lint

∑m
i=1 :

∏n
j=1 f

i
j : to the normal form. Let us

denote by hl the sum of all the terms in the previous expression such that exactly l operators
f ij couple with Lint. We find that hl〉 has the form

hl〉 =
k∑
i=1

: gi1 · · · gin−l+1 :〉

for some k. Here gik has the form of the right-hand side of (4.1). Now let us consider the
following vector:

|f〉cl = sym
k∑
i=1

: gi1 :〉 ⊗ · · · ⊗ : gin−l+1 :〉,

where we define symmetrization operator as follows:

sym
(
f1 ⊗ · · · ⊗ fn

)
=

1
n!

∑
σ∈Sn

fσ1 ⊗ · · · ⊗ fσ(n).

(Sn—the group of permutation of n elements.) Put by definition Lc,lint|f〉 = |f〉cl . One can
prove that this definition is correct. Analogously, in the expression Lint

∑m
i=1 :

∏n
j=1 f

i
j :〉 let

us keep only the terms such that Lint does not couple with any of f ij . Let us write the sum
of such terms as follows:

∑f
i=1 :

∏n+1
j=1 h

i
j :〉. Here hij〉 has the form of the right-hand side of

(4.1). Let |h〉 be a vector in sym⊗n+1H̃′ defined as follows: |h〉 = sym
∑f

i=1

⊗n+1
j=1 : hij :〉.

Put by definition Lc,0int|f〉 = |h〉.
We have the evident linear map F : Hc → H̃′′ which assigns to each vector sym : f1 :

〉 ⊗ · · · ⊗ : fn :〉 the vector : f1 · · · fn :〉. Denote by U c the evolution operator in interaction
representation in the dynamics of correlation. The following statement describes the relation
between the von Neumann dynamics and the dynamics of correlations.

Statement. The following relation holds:

F ◦ U c(t′, t′′) = U(t′, t′′) ◦ F.
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5 The tree of correlations

The useful representation of dynamics in Hc is a decomposition by the so-called trees of
correlations.

Definition 5.1. A graph is a triple T = (V,R, f), where V , R are finite sets called the set
of vertices and set of lines, respectively, and f is a map:

h : R→ V (2) ∪ V × {+} ∪ V × {−},

where V (2) is a set of all disordered pairs (v1, v2), v1, v2 ∈ V such that v1 6= v2.
If (v1, v2) = f(r) for some r ∈ R, we say that the vertices v1 and v2 are connected by a

line r. If f(r) = (v1, v2), v1, v2 ∈ V , we say that the line r is internal.

Remark 5.2. We use this unusual definition of graphs only in purpose of this section to
simplify our notations.

Definition 5.3. The graph Γ is called connected graph if for two any vertices v, v′ there
exists a sequence of vertices v = v0, v1, . . . , vn = v′ such that ∀i = 0, . . . , n − 1 the vertices
vi and vi+1 are connected by some line.

By definition we say that the line r is an internal line if f(r) = (v1, v2) for some vertices
v1 and v2.

For each graph Γ we define its connected components by the obvious way.

Definition 5.4. We say that the graph Γ is a tree or an acyclic graph if the number of its
connected components increases after removing an arbitrary line.

Definition 5.5. The elements of the set f−1(V ×{−}) we call the shoots. Put by definition
Rsh = f−1(V × {−}). The elements of the set f−1(V × {+}) we call the roots. Put by
definition Rroot = f−1(V × {+}).

Definition 5.6. Directed tree is a triple (T,Φv,Φsh), where T is a tree and Φv and Φsh are
the following maps:

Φv : V → {1, 2, . . . ]V }, Φsh : Rsh →
{

1, 2, . . . , ]Rsh

}
.

Definition 5.7. We will consider the two directed trees (T,Φv,Φsh) and (T ′,Φ′v,Φ
′
sh) as

identical if we can identify the sets of lines R and R′ of T and T ′, respectively, and identify
the sets of vertices V and V ′ of T and T ′, respectively, such that after these identification
the trees T and T ′ become the same, the functions Φv and Φ′v become the same, and the
functions Φsh and Φ′sh become the same.

Denote by r(T ) the number of roots of T and by s(T ) the number of shoots of T . Below,
we will denote each directed tree (T,Φv,Φsh) by the same symbol T as a tree omitting the
reference to Φv, Φsh and write simply tree instead of the directed tree.

We say that the connected directed tree T is right if there exists exactly one line from
f−1(V × {+}).

We say that the tree T is right if each of its connected components is right.
The vertex v of the tree T is called a root vertex if (v,+) ∈ f−1(R).
To point out the fact that some object A corresponds to a tree T we will often write AT .

For example, we will write T = (VT , RT , fT ) instead of T = (V,R, f).
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Definition 5.8. For each connected right tree T there exists an essential partial ordering on
the set of its vertices. Let us describe it by induction on the number of its vertices. Suppose
that we have defined this relation for all right trees such that the number of their vertices is
less than or equal to n−1. Let T be a right tree such that the number of its vertices is equal
to n. Let vmax be a root vertex of T . Put by definition that the vertex vmax is a maximal
vertex. Let v1, . . . , vk be all of its children, i.e., the vertices connected with vmax by lines.
By definition each vertex vi < vmax, i = 1, . . . , k. We can consider the vertices v1, . . . , vk as
a root vertices of some directed trees Ti, i = 1, . . . , k. By definition the set of vertices of Ti
consists of all vertices v which can be connected with vi by some path v = v′1, . . . , v

′
l = vi

such that vmax 6= v′j for all j = 1, . . . , l. The incident relations on Ti are induced by incident
relations on T . Put by definition that ∀(i, j), i, j = 1, . . . , k, i 6= j and for any two vertices
v′1 ∈ Ti and v′2 ∈ Tj , v′1 ≮ v′2. If v′1, v

′
2 ∈ Ti for some Ti, we put v′1 ≶ v′2 in T if and only

if v′1 ≶ v′2 in the sense of ordering on Ti. We put also v < vmax for every vertex v 6= vmax.
These relations are enough to define the partial ordering on T .

If the tree T has several connected components, we define a partial ordering at each its
connected components as previously and put v1 ≯ v2 if v1 and v2 do not belong to the same
connected component of T .

Below without loss of generality we suppose that for each tree of correlation T and its
line r the pair (v1, v2) = f(r) satisfies the inequality v1 > v2.

Definition 5.9. The tree of correlations C is a triple C = (T, ϕ, ~τ), where T is a directed
tree, ~τ is a map from R \Rsh to R+ := {x ∈ R | x ≥ 0}:

~τ : R \Rsh −→ R+, r 7−→ τ(r),
(
τ(r)

)
r∈R = ~τ(r),

and ϕ is a map which assigns to each vertex v of T an element ϕ(v) ∈ Hom
(⊗

r→v H̃′, H̃′
)

of a space of linear maps from
⊗

r→v H̃′ to H̃′.
In
⊗

(r→v) H̃′ the tensor product is taken over all lines r such that r → v. Let v be a
vertex of the tree T . If f(r) = (v′, v) for some vertex v′ or f(r) = (v,+), we say that the line
comes from the vertex v and write r ← v. If f(r) = (v, v′) for some vertex v′ or f(r) = (v,−),
we say that the line comes into the vertex v and write r → v.

Definition 5.10. Let (T, ϕ, ~τ) be a tree of correlations such that for each vertex v ϕ(v) =
Lc,lvint , where lv is a number of lines coming into v. We call this tree the von Neumann tree
and denote it by T~τ . We also say that ϕ is a von Neumann vertex function.

Definition 5.11. To each tree of correlations (T, ϕ, ~τ) we assign an element U tT,ϕ
(
~τ
)
∈

Hom
(⊕

Rsh
H̃′,
⊕

Rroot
H̃′
)

by the following way.
If T is disconnected, then

U tT,ϕ
(
~τ
)
f1 ⊗ · · · ⊗ fn =

⊗
CT

{
U tCT,Cϕ

(
C~τ
) ⊗
i∈Rsh(CT )

fi

}
.

Here the number of connected components of T is equal to n, and connected components of
T are denoted by CT . Cϕ and C~τ are the restrictions of ϕ and ~τ to the sets of vertices and
lines of CT , respectively. Rsh(CT ) is a set of shoots of CT . Now let T be a connected tree.
To define U tT,ϕ

(
~τ
)⊗

r∈Rsh
fr by induction it is enough to consider the following two cases.

Case (1). The tree T has no shoots.
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(a) Suppose that the tree T has more than one vertex. Let vmin be some minimal vertex
of T and v0 a vertex such that a unique line r0 comes from vmin into v0. Let T ′ be a tree
obtained from T by removing the vertex vmin of T . Let ~τ ′ be a restriction of ~τ to R \ {r0}.
Let ϕ′ be a function, defined on V \ {vmin} as follows: ϕ′(v) = ϕ(v) if v 6= v0 and

ϕ′
(
v0

) ⊗
r→v0; r 6=r0

fr = ϕ
(
v0

) ⊗
r→v0

hr,

where hr = fr if r 6= r0, and hr0 = eL0τ(r0)ϕ(vmin).
Put by definition U tT,ϕ(~τ)〉 = U tT ′,ϕ′(~τ

′)〉,
(b) The tree T has only one vertex vmin. Then

U tT,ϕ
(
~τ
)

= e−(t−τ)L0ϕ
(
vmin

)
.

Case (2). The tree T has a shoot r0 coming into the vertex v0. In this case instead of
the tree (T, ϕ, ~τ) we consider the tree (T ′, ϕ′, ~τ ′), where the tree T ′ has the same vertices as
T , the set of lines of T is obtained by removing the line r0 from the set of lines of T ′, the
function ~τ ′ is a restriction of the function ~τ to the set of lines of T ′, and the function ϕ′ is
defined as follows:

ϕ′(v) = ϕ(v), if v 6= v0, ϕ′
(
v0

) ⊗
r→v0; r 6=r0

hr = ϕ(v0)
⊗
r→v0

gr,

where gr = hr, if r 6= r0, gr = eL0(t−tr)fr0 . Here we put tr =
∑
τr′ , where the sum is taken

over all lines r′ which forms decreasing way coming from + to v0. Put by definition

U tT,ϕ
(
~τ
)
|f〉 := U tT ′,ϕ′

(
~τ ′
)
|f ′〉,

where |f ′〉 =
⊗

r∈(Rsh)T ′
fr.

Let (T, ϕ, ~τ) be some tree of correlations. We can identify the tensor product
⊗

r∈Rsh
H̃′r

with
⊗sh(T )

i=1 H̃′ and the tensor product
⊗

r∈Rroot
H̃′r with

⊗r(T )
i=1 H̃′. Using these identifica-

tions let us consider an operator V t
T,ϕ(~τ) : Hc → Hc defined by the following formula:

V t
T,ϕ = sym ◦U tT,ϕ ◦ Psh(T ),

where Psh(T ) is a projection of Hc to sym
⊗sh(T )

i=1 H̃′.

Remark 5.12. If (T, ϕ, ~τ) is a von Neumann tree of correlations, then we will shortly denote
the operators U t(T,ϕ) and V t

(T,ϕ) by U tT and V t
T , respectively.

The following theorem holds.

Theorem 5.13. The following representation for the evolution operators holds (in the sense
of formal power series on coupling constant λ):

U c(t′, t′′) =
∑
T

λnT

nT !

∫
∀r∈Rsh t−tr>t′′

V t
T (~τ)d~τ .

Here nT is a number of vertices of the directed tree T .
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6 The general theory of renormalization of U(t,−∞)〉

In the present section we by using the decomposition of correlations dynamics by trees
describe the general structure of counterterms of U(t,−∞)〉, which subtract the divergences
from U(t,−∞)〉. We will prove in Section 10 below that there exist divergences in the theory.
Note that the structure of R-operation for the processes at large times for some class of
systems has been considered in [10].

Let T be a tree. Let us give a definition of its right subtree.

Definition 6.1. Let v1, . . . , vn be vertices of T such that ∀i, j = 1, . . . , n, i 6= j, vi ≮ vj . Let
us define subtree Tv1,...,vn . By definition the set of vertices VTv1,...,vn of Tv1,...,vn consists of all
vertices v such that v < vi for some i = 1, . . . , n.

The set RTv1,...,vn of all lines of the tree Tv1,...,vn consists of all lines r of RT such that
h(r) = (v′′, v′) and v′, v′′ 6 vi for some i = 1, . . . , n. The incident relations on Tv1,...,vn are
induced by the incident relations of T except the following point: if the line r comes from
the vertex v into vi, i = 1, . . . , n, we put fT{v1,...,vn}(r) = (v,+). In this case the line r is
a root and the vertex v is a root vertex of the tree VT{v1,...,vn} . The tree Tv1,...,vn is called a
right subtree of T .

The Bogoliubov-Parasiuk renormalization prescription. Let us define the following
operator:

Wr0(t) =
⊗

r∈Rroot(T )

Zr,r0(t),

where by definition Zr,r0(t)=1, if r 6=r0, Zr,r0(t)=e−L0t. We say that the amplitudes {AT,ϕ}
are time-translation invariant amplitudes if for each tree T and for each its root line r0

Wr0(t)AT,ϕ = AT,ϕ.
For each set of amplitudes AT,ϕ put by definition AT,ϕ〉 = F ◦AT,ϕ, where T is an arbitrary

tree without shoots.

Now let us formulate our main result.

Theorem 6.2. There exists a procedure called renormalization which to each tree T without
shoots assign the amplitudes ΛT,ϕ satisfying to the following properties (a)–(e):

(a) If the tree T is not connected and {CT} is a set of its connected components, while
{Cϕ} is a set of its restriction of ϕ to CT , ΛT,ϕ =

⊗
ΛCT,Cϕ in obvious notations.

(b) The amplitudes ΛT,ϕ are real, i.e., (ΛT,ϕ)? = ΛT,ϕ∗
(c) The amplitude ΛT,ϕ satisfies the property of time-translation invariance.
It has been proven that

U(t,−∞)〉 =
∑
T

λnT

nT

∫
d~τU tT

(
~τ
)
〉. (6.1)

In the last formula the summation is taken over all trees T without shoots.
Let T be a tree without shoots and T ′ a right subtree of T in the described before sense. Let

us define the amplitude ΛT ′,ϕ ?U tT,ϕ(~τ). Let by definition T\T ′ be a tree obtained by removing
from the set VT all the vertices of T ′ and from the set RT all the internal lines of T ′. In
(6.1) ~τ is a map from RT\T ′ into R+.
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We can consider the amplitude U tT\T ′ as a map⊗
(RT\T ′ )sh

H̃ ′ −→
⊗

(RT\T ′ )root

H̃ ′.

By using this identification we simply put

ΛT ′,ϕ ? U tT,ϕ
(
~τ
)

= U tT\T ′,ϕ
(
~τ
)
ΛT ′,ϕ.

Now let us define the renormalized amplitudes, by means of the counterterms ΛT , by the
following formula:(

RΛU
)
(t,−∞) =

∑
T

λnT

nT !

∑
T ′⊆T

∫
ΛT ′ ? U tT

(
~τ
)
d~τ .

(d) The renormalized amplitudes (RΛU)(t,−∞)〉 are finite.
(e) Let T be an arbitrary connected tree without shoots. Consider the following element

of H′: a :=
∑

T

∑
T ′⊆T

∫
ΛT ′ ? U tT

(
~τ
)
〉d~τ . We can represent the element a as follows:

a =
∞∑

k,l,f,g=0

∫
wm
(
x1, . . . , xk | y1, . . . , yl | v1, . . . , vf | w1, . . . , wg

)
:
km∏
i=1

a+
+

(
xi
)
dxi

lm∏
i=1

a+

(
yi
)
dyi

fm∏
i=1

a−
(
vi
)
dvi

gm∏
i=1

a+
−
(
wi
)
dwi :〉.

Let w̃k,l,f,g(z1, . . . , zn) (n = km+ lm+fm+gm) be a Fourier transform of wk,l,f,g(x1, . . . , xk |
y1, . . . , yl | v1, . . . , vf | w1, . . . , wg). Then∫

dz1, . . . , dznw̃k,l,f,g
(
z1 + s(1)e1a, . . . , zn + s(n)e1a

)
f
(
z1, . . . , zn

)
tends to zero as a as a→ +∞. Here s(i) are the numbers from {0, 1} and there exist numbers
i, j, i, j = 1, . . . , n such that s(i) = 0, s(j) = 1 for some i, j = 1, . . . , n. f(z1, . . . , zn) is a
test function. e1 is a unit vector parallel to the x-axis.

Remark 6.3. The property (d) implies the weak cluster property of the functional
(RU)(0,−∞).

This theorem is a simple consequence of the Theorem-Construction from Section 8.
The renormalized amplitudes satisfy the following properties.

Property 1. For each t ∈ R(
RΛU

)
(t,−∞)〉 = e−L0t

(
RΛU

)
(0,−∞)〉.

This property simply follows from the definition of (RΛU)(t,−∞)〉 and means that the
functional (RΛU)(t,−∞)〉 is a stationary state.

Property 2. (RΛU
)
(t,−∞)〉 = U(t, 0)

(
RΛU)(0,−∞)〉.

This property follows from the following representation of (RΛU)(t,−∞)〉:(
RΛU

)
(t,−∞)〉 = U(t,−∞)I〉,

where I〉 =
∑

T
1
nT !ΛT 〉, and the sum in the last formula is taken over all von Neumann

trees without shoots. Property 2 means that the functional (RΛU)(t,−∞)〉 satisfies the von
Neumann dynamics.

Remark 6.4. The existence of the stationary translation invariant functional satisfying the
weak cluster property follows from the previous theorem and Properties 1 and 2.
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7 The Friedrichs diagrams

Now let us start to give a constructive description of the counterterms ΛT such that the
amplitude R(U)(t,−∞)〉 is finite, and the counterterms ΛT satisfy the properties (a)–(e)
from the previous section.

At first we represent U tT,ϕ(~τ), where T is some tree without shoots, as a sum taken over
all the so-called Friedrichs graphs Φ concerned with T .

Definition 7.1. A Friedrichs graph ΦT concerned with the directed tree T without shoots
is a set (Ṽ , R,Or, f+, f−, g), where Ṽ is a union of the set of vertices of T and the set {⊕}.
Recall that there is a partial order on VT . We define a partial order on the set Ṽ if we put
∀v ∈ VT ⊕ > v. f+ and f− are the maps f+, f− : R → V such that f+(r) > f−(r). Or is
a map R → {+,−} called an orientation. g is a function which to each pair (v, r), v ∈ VT ,
r ∈ R such that f+(r) = v or f−(r) = v assigns + or −. The graph (Ṽ , R,Or, f+, f−, g) must
satisfy the following property: if we consider ⊕ as a vertex, the obtained graph is connected.

If f+(r) = v, we write r → v, and if f−(r) = v, we write r ← v.
If we want to point out that the object B concerned with the graph Φ, we will write BΦ.

For example, we will write VΦ and RΦ for the sets of vertices and lines of Φ, respectively.
At the picture we will represent the elements of V by points and the element ⊕ by ⊕. We

will represent the elements of R by lines. The line r connects the vertices f+(r) and f−(r)
at the picture. We will represent orientation Or(r) by arrow on r. If Or(r) = +, the arrow
is directed from f−(r) to f+(r). If Or(r) = −, the arrow is directed from f+(r) to f−(r).
To represent the map g : (r, v) → {+,−} we will draw the symbol g((r, v)) (+ or −) near
each shoot (r, v). At the picture a shoot (r, v) is a small segment of the line r near v.

Definition 7.2. The Friedrichs diagram Γ is a set (T,Φ, ϕ, h), where T is a tree, Φ is a
Friedrichs graph, ϕ is a map which assigns to each vertex v of T a function of momenta
{pr | r ∈ RΦ} of the form

ϕv
(
· · · pr�v · · ·

)
= ψv

(
· · · pr�v · · ·

)∏
Si

δ

(
ji∑
j=1

±pji

)
,

where ψv is a test function of momenta coming into (from) the vertex v. {Si}nvi=1 is a de-
composition of the set of shoots of v into nv of disjunctive nonempty sets Si, p1

i , . . . , p
ji
i are

momenta corresponding to the shoots from {Si}, h is a function which assigns to each pair
v ∈ V , r ∈ R such that f+(r) ≥ v ≥ f−(r) a real positive number h(v, r).

It will be clear that it is enough to consider only the diagrams Γ such that for each of its
vertex v and set Si ∈ {Si}nvi=1 there exists a line r such that (r, f−(r)) ∈ Si.

To each Friedrichs diagram Γ = (T,Φ, ϕ) we assign an element of H̃′′c of the form

U t(T,Φ,ϕ)

(
~τ
)

=
∫
· · · dpext · · ·U tΓ

(
· · · prext · · ·

)
: · · · a±±

(
prext

)
· · · :〉.

Here prext are momenta of external lines, i.e., such lines r that f+(r) = ⊕. We choose the
lower index of a±±(prext) by the following rule. Let v be a vertex such that f−(rext) = v. If
g((r, v)) = +, we choose + as a lower index, and if g((r, v)) = −, we choose − as a lower
index. We choose the upper index of a±±(prext) by the following rule. If the lower index of
a±±(prext) is {−}, then the upper index is equal + if the corresponding line comes from the
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vertex v and this index is equal − if the corresponding line comes into the vertex v. If the
lower index of a±±(prext) is {+}, then the upper index is equal − if the corresponding line
comes from the vertex v and this index is equal + if the corresponding line comes into the
vertex v.

Now let us describe the amplitude U tΓ(· · · pext · · · ). By definition we have

U0
Γ

(
~τ
)(
· · · pext · · ·

)
=
∫
r∈Rin

∏
v

ϕv
(
· · · pr�v · · ·

)
×
∏
r∈RΓ

e
iOr(r)p2

r(
∑
rT∈(RT )r

τrT +
∑
v∈Vr h(v,r))

dpr

×
∏
r∈R

G
(
Or(r), g

((
r, f+(r)

))
, g
((
r, f−(r)

)))
(p).

Let us describe the elements of this formula. RΓ is a set of all lines of diagram Γ.
Symbol r � v denotes that the line r comes into (from) the vertex v. In the expression
ψv(· · · pr�v · · · )δ

(∑
r�v ±pr

)
we take the upper sign + if the line r comes into the vertex

v and we take lower sign − in the opposite case. The symbol RT denotes the set of lines of
the tree T from the triple (T,Φ, ϕ) and symbol rT means the line from RT . The symbol Vr
denotes the set of all vertices v such that f+(r) ≥ v ≥ f−(r). The symbol (RT )r denotes the
set of all lines rT of RT such that the increasing path coming from f−(r) into f+(r) contains
rT . G(Or(r), g(f+(r)), g(f−(r)))(p) is a factor defined as follows:

G
(
Or(r), g

(
f+(r)

)
, g
(
f−(r)

))
(p)δ(p− p′)

= ρ′0

(
a

sgn(−Or(r)g((r,f+(r))))
g((r,f+(r)))

(p), asgn(Or(r)g((r,f−(r))))
g((r,f−(r)))

(p′)
)
.

Below we will simply write Gr(p) instead of G(Or(r), g(f+(r)), g(f−(r)))(p).
It is evident that we can represent U0

T (~τ) as a sum taken over some Friedrichs diagrams
Γ corresponding to the tree T of the quantities U0

Γ(~s).
Now let us define the quotient diagrams.

Definition 7.3. Let Γ = (T,Φ, ϕ, h) be a Friedrichs diagram, A ⊂ RT a subset of the set
RT of lines of T , and ~τ a map from RT into R+.

We define the quotient diagram ΓA~τ := (TA,ΦA, ϕA~τ , hA) in the following way. To obtain
the tree TA we must tighten all lines from A into points. To obtain ΦA we must remove all
loops obtained by tightening all lines from A into the point.

Now let us define ϕA~τ . Joint all the vertices of T to A. We obtain a tree denoted by AT . Let
{CAT} be a set of all connected components of AT . Let v0 be a vertex of ΦA corresponding
to the connected component CAT of AT . Put by definition

ϕΓ

(
· · · pr�v · · ·

)
A~τ

=
∫ ∏

v∈V
ϕv
(
· · · ± pr�v · · ·

) ∏
r∈Rin

e
iOr(r)p2

r(
∑
r∈(RT )r

τrT +
∑
v∈Vr h(v,r))

.

Let us point out the notations in the previous formula. Rin is a set of all lines of ΦA such
that f+(r) and f−(r) are the vertices of CAT . (RT )r denotes the set of all lines rT of RT
such that the increasing path coming from f−(r) into f+(r) contains rT . The symbol Vr
denotes the set of all vertices v such that f+(r) ≥ v ≥ f−(r). hA(v0, r) =

∑
v∈V

CAT
h(v, r) +∑

rT∈A; rT∈(RT )r
τrT .
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Definition 7.4. Let Γ be a Friedrichs diagram. Let FΓ be a space of all functions of external
momenta of the diagram Γ of the form ψ(· · · pext · · · ), where ψ(· · · pext · · · ) is a test function
of external momenta.

We denote the convolution of the amplitude AΓ(~τ)(· · · pext · · · ) with the function f ∈ FΓ

by AΓ(~τ)[f ].

8 The Bogoliubov-Parasiuk renormalization prescriptions

Let for each Friedrichs diagram Γ = (T,Φ, ϕ) AΓ(~τ)(· · · pext · · · ) be some amplitude. Fix
some diagram Γ and let T ′ be some right subtree of the tree T corresponding to Γ. Let
ΓT ′ be a restriction of the diagram Γ on T ′ in obvious sense. Define the amplitude AΓT ′ ?
UΓ(· · · pext · · · ) by the following formula:

AΓT ′ ? UΓ

(
· · · pext · · ·

)
=
∫ ∏

r∈R′

{
e
iOr(r)p2

r(
∑
rT∈(R′

T
)r
τrT +

∑
v∈V ′r

h(v,r))
}

×
∏
v∈V ′

ϕv
(
· · · pr�v · · ·

)
AΓT ′ (· · · p · · · ).

In this formula V ′ is a set of all vertices v such that v is not a vertex of VT ′ , R′ is a set of
all lines r of ΦΓ such that f+(r) is not a vertex of T ′. (R′T )r is a set of all lines rT of T such
that rT is not a line of T ′ and there exists an increasing path on T coming from f−(r) into
f+(r) such that this path contains rT . V ′r is a set of all vertices v of T such that v is not a
vertex of T ′ and f+(r) ≥ v ≥ f−(r).

Let AΓ(~τ)(p) be some amplitude. Put by definition

ÂΓ

(
s1, . . . , sn

)
(p) := AΓ

(
1
s1
, . . . ,

1
sn

)
(p)

n∏
i=1

1
s2
i

,

where n is a number of lines of TΓ. Below we will consider the amplitudes ÂΓ(~s )[f ] as
distributions on (R+)n, i.e., as an element of the space of tempered distributions S′((R+)n).
Let ψ(~s ) be a test function from S((R+)n). We denote the convolution of the amplitude
ÂΓ(~s )[f ] and the function ψ(~s ) by〈

ÂΓ

(
~s
)
[f ], ψ

(
~s
)〉

:=
∫

(R+)n
d~s ÂΓ

(
~s
)
[f ]ψ

(
~s
)
.

The Bogoliubov-Parasiuk prescriptions. It will be clear below that we can take into
account only the diagrams Γ such that for each line rT of the corresponding tree of corre-
lations T ]RrT ≥ 3. Here RrT is a set of all lines r of Γ such that the increasing path on
T which connects f−(r) and f+(r) contains rT . Below we will consider only such diagrams.
Other diagrams can be simply subtracted by some counterterms ΛT .

According to the Bogoliubov-Parasiuk prescriptions we must to each diagram Γ (corre-
sponding to the connected tree) assign the counterterm amplitude ĈΓ(~s )[f ] f ∈ FΓ satisfying
the following properties.

(a) (Locality). ĈΓ(~s )[f ] is a finite linear combination of δ functions centered at zero and
their derivatives.

(b) Let Γ be a Friedrichs diagram and T a corresponding tree of correlations. Let A ⊆ RT
and T ′ is some right subtree of T such that
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(1) all lines rT of T such that rT is not a line of RT ′ belong to A,
(2) all the root lines of T ′ do not belong to A.

Then ĈΓA~τ (~s )[f ] = (ĈΓ′
A′~τ

? ÛΓ)(~s )[f ], where A′ := A ∩ (RT ′) and Γ′ is a restriction of Γ
on T ′.

(c) ĈΓ(~s )[f ] = −T
(∑

∅⊂A⊂RTΓ
ĈΓA~τ (~s )[f ] + ÛΓ(~s )[f ]

)
, where ~τ = (τ1, . . . , τn) =

( 1
s1
, . . . , 1

sn
), the symbol ⊂ means here the strong inclusion and T is some subtract operator.

(d) The amplitudes ĈΓ(~s )[f ] satisfy the property of time-translation invariance, i.e.,

e
i
∑
r∈(Rroot)Γ

Or(r)p2
rtĈΓ

(
τ1, . . . , τn

)
[f ] = ĈΓ

(
τ1 + t, . . . , τn

)
[f ].

(e) Let Γ be a Friedrichs diagram. Let

R̂′Γ
(
~s
)
[f ] := ÛΓ

(
~s
)
[f ] +

∑
∅⊂A⊂RTΓ

ĈΓA~τ

(
~s
)
[f ],

R̂Γ

(
~s
)
[f ] := ÛΓ

(
~s
)
[f ] +

∑
∅⊂A⊂RTΓ

ĈΓA~τ

(
~s
)
[f ] + ĈΓ

(
~s
)
[f ].

The amplitudes R̂Γ(~s ) are well-defined distributions on (R+)n.
(f) The amplitudes R̂Γ(~s ) satisfy the weak cluster property. This property means the

following. Let f(· · · pext · · · ) be a test function. Then∫
dpR̂Γ

(
~s
)(
· · · pext · · ·

)
f
(
· · · pext · · ·

)
eia

∑
r∈A p

1
r −→ 0,

as a→∞. Here p1
r is a projection of pr to the x-axis.

Put by definition for each diagram Γ

ΛΓ

(
~τ
)

=
′∑

A⊆RTΓ

CΓA~τ ,

where ′ in the sum means that all the root lines of TΓ do not belong to A.
Put ΛT =

∑
Γ∼T

∫
(R+)n d~τΛΓ(~τ)(· · · pext · · · ) · · · a±±(pext) · · · 〉, where the symbol Γ ∼ T

means that the sum is taken over all diagrams corresponding to T with suitable combina-
toric factors. Suppose that the properties (a)–(f) are satisfied. Then ΛT are the counterterms
needed in Section 8. Not that the state corresponding to (RU)(t,−∞)〉 will obviously com-
mute with the number of particle operator.

Theorem-Construction. It is possible to find such a subtract operator T such that there
exist counterterms ĈΓ satisfying the properties (a)–(f).

Note that it is not necessarily for us to use nonreal counterterms. Indeed the evolution
operator is real, so after renormalization we can simply take Re(RU)(t,−∞)〉.

9 Proof of the theorem-construction

In this section we prove the Theorem-Construction from the previous section. Note that to
prove our theorem we will use some ideas of the papers [11, 12, 13].

Before we prove our theorem let us prove the following.
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Lemma 9.1. Let L1 = S(Rk), L2 = S((R+)n), k, n = 1, 2, . . .. Let A(p) be some nonzero
quadratic form on Rk. Let T 1

t , t ≥ 0 be a one-parameter semigroup acting in L1 defined as
follows: T 1

t : f(· · · p · · · ) 7→ eiA(p)tf(· · · p · · · ).
Let T 2

t t ≥ 0 be some infinitely differentiable semigroup of continuous operators in L2.
Let M be a subspace of finite codimension in L2. Suppose that M is invariant under the

action of T 2
t , i.e., ∀t > 0 T 2

t M ⊂M .
Suppose that there exist the linear independent vectors f1, . . . fl in L2 such that

Lin
{{
f1, . . . , fl

}
,M
}

= L2, M ∩ Lin
{
f1, . . . , fl

}
= 0.

For each i = 1, . . . , l and t ≥ 0 we have

T 2
t fi = fi + ai−1fi−1 + · · ·+ a1f1 + f,

for some coefficients ai−1, . . . , a1 and the element f ∈M .
Let g be a functional on L1⊗M such that g is continuous with respect to the topology on

S(Rk)×S((R+)n). Suppose that ∀f ∈ L1⊗M and ∀t > 0 〈g, Ttf〉 = 〈g, f〉 where Tt = T 1
t ⊗T 2

t .
Then, there exists a continuous extension g̃ of g on S(Rk) × S((R+)n) such that ∀f ∈

L1 ⊗ L2 and t > 0 〈g̃, Ttf〉 = 〈g̃, f〉.

By definition we say that the functional h on L1⊗L2 is invariant if ∀t > 0 and ∀f ∈ L1⊗L2

〈h, Ttf〉 = 〈h, f〉.

Proof of Lemma 9.1. At first we extend our functional g to the invariant functional g̃ on
L1 ⊗ L2 and then we prove that g̃ is continuous.

Let N be a subspace of L1 of all functions of the form A(p)f(p), where f(p) is a test
function. Let M1 = Lin{M ∪ {f1}}. Let h :=

(
d
dtT

2
t

)
|t=0f1. Let k be a continuous functional

on N defined as follows:〈
k, ϕ(p)A(p)

〉
= −

〈
g, ϕ(p)⊗ h

〉
. (9.1)

Let k̃ be an arbitrary continuous extension of k on whole space L1. The existence of such con-
tinuation follows from Malgrange’s preparation theorem [14]. Now we define the continuous
functional g̃1 on L1 ⊗M1 as follows:

g̃1|L1⊗M = g|L1⊗M ,
〈
g̃1, f ⊗ f1

〉
=
〈
k̃, f

〉
, ∀f ∈ L1.

According to (9.1) we find that g̃1 is an invariant extension of g on L1 ⊗M1. Step by
step we can extend by the same procedure the functional g to the functionals g̃2, . . . , g̃l
on L1 ⊗M1, . . . , Ll ⊗Ml, respectively, where M2 = Lin{M ∪ {f1, f2}}, . . . ,Ml = Lin{M ∪
{f1, f2, . . . , fl}}, respectively. Just constructed functional is separately continuous so it is
continuous. The lemma is proved.

Sketch of the proof of the theorem. We will prove the theorem by induction on the
number of lines of the tree of correlations TΓ corresponding to the diagram Γ. It is evident
that it is enough to consider only the diagrams with connected tree of correlations.

The base of induction is evident. Suppose that the theorem is proved for all diagrams of
order < n. (Order is a number of lines of the tree of correlations.)
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Let us give some definitions. Let ξ(t) be a smooth function on [0,+∞) such that 0 ≤
ξ(t) ≤ 1, ξ(t) = 1 in some small neighborhood of zero and ξ(t) = 0 if t > 1

3n . Let us define
a decomposition of unit {ηA(~s ) | A ⊂ {1, . . . , n}} by the formula

ηA
(
~s
)

=
∏
i/∈A

ξ
(
si
)∏
i∈A

(
1− ξ

(
si
))
.

Let ψ(x) be some test function on real line such that ψ(t) ≥ 0,
∫
ψ(t)dt = 1, and ψ(t) = 0

if |t| > 1
10 . Put by definition δλ(x − λ) = x

λ2ψ
(
x−λ
λ

)
. We have

∫ +∞
0 dλδλ(x − λ) = 1. Let

SN ((R+)n), N = 1, 2, . . . , be a subspace of S((R+)n) of all functions f such that f has a
zero of order ≥ N at zero. Let Ψ(~s ) be a function of S((R+)n).

We have〈
R̂Γ

(
~s
)
[f ],Ψ

(
~s
)〉

=
∑

A⊂{1,...,n}

∫ +∞

0
dλλn−1

∫
(R+)n

d~s R̂ΓAλ~s

(
~s|{1,...n}\A

)
δ1

(
1−

∣∣~s∣∣)Ψ(λ~s )ηA(~s ). (9.2)

The inner integral in (9.2) converges according to the inductive assumption. There-
fore if Ψ(~s ) ∈ SN ((R+)n) and N is large enough, the integral at the right-hand side of
(9.2) converges. So 〈R̂Γ(~s )[f ],Ψ(~s )〉 defines a separately continuous functional on S(R3f )⊗
SN ((R+)n). f = l−1, where l is a number of external lines of Γ. To define a subtract operator
T we must extend the functional 〈R̂Γ(~s )[f ],Ψ(~s )〉 to the space S(R3f )⊗ S((R)n) such that
extended functional will satisfy time-translation invariant property. To obtain this extension
we use the lemma. In our case L1 = S(R3f ), L2 = S((R+)n), A(p) = −

∑
r∈Rext

Or(r)p2
r . T

2
t

is an operator acting in the S((R+)n) as follows:

T 2
t f
(
s1, . . . , sn

)
= f

( s1

1− s1t
, s2, . . . , sn

)
if si <

1
t
,

T 2
t f
(
s1, . . . , sn

)
= 0 if si ≥

1
t
.

The basis {f1, . . . fl} from the lemma is {sm1
1 · · · smnn η∅(~s )}, m1, . . . ,mn = 1, 2, 3 . . .,

m1 +m2 + · · ·+mn ≤ N lexicographically ordered. We can now apply our lemma directly.
Now let us prove the weak cluster property. Let p ∈ R3. Denote by p1, p2, p3 the

projections of p to the x, y, z-axis, respectively. To prove the weak cluster property it
is enough to prove the following statement: for each connected diagram Γ the function
〈FΓ(~s )(· · · pext · · · ),Ψ(~s )〉 defined by

δ
(∑

±pext

)〈
FΓ

(
~s
)(
· · · pext · · ·

)
,Ψ
(
~s
)〉

=
〈
R̂Γ

(
~s
)(
· · · pext · · ·

)
,Ψ
(
~s
)〉

is a distribution of variables · · · p2
ext · · · p3

ext · · · (constrained by momentum conservation law)
which depends on · · · p1

ext · · · (constrained by momentum conservation law) by the continu-
ously differentiable way. We will prove this statement by induction on the number of lines
of the corresponding tree of correlations. The base of induction is evident. Suppose that the
statement is proved for all the trees of correlations such that the number of their lines is
less than n. Let Γ be a diagram such that the number of the lines of the corresponding tree
of correlations is equal to n. It is evident that if Ψ(~s ) has a zero of enough high order at
zero, then 〈F̂Γ(~s )(· · · pext · · · ),Ψ(~s )〉 belongs to the required class (its enough to use our con-
struction with decomposition of unit). Therefore we need to solve by induction the system
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of equations of the form(
i
∑
±
(
pext

)2)〈
FΓ

(
~s
)(
· · · pext · · ·

)
,Ψ
(
~s
)〉

=
〈
FΓ

(
~s
)(
· · · pext · · ·

)
,
d

dt
T 2
t Ψ
(
~s
)〉
.

According to Malgrange’s preparation theorem [14] we can choose the solution
〈FΓ(~s )(· · · pext · · · ),Ψ(~s )〉 such that it belongs to the required class if 〈FΓ(~s )(· · · pext · · · ),
d
dtT

2
t Ψ(~s )〉 belongs to the required class. Therefore the statement is proved. So our theorem

is proved.

10 Derivation of nonergodic property from main result

Let us prove (more accurately as in introduction) that our system (Bose gas with weak pair
interaction in thermodynamical limit) is nonergodic system.

Let us recall definition of ergodicity [16].

Definition 10.1. Consider a quantum system described by Hamiltonian H. This system is
said to be ergodic if the spectrum of H is simple.

This definition is equivalent to the following.

Definition 10.2. A quantum system described by Hamiltonian H is said to be ergodic if
each bounded operator commuting with H is a function of H.

The generalization of this definition to the case when there exist some additional com-
muting first integrals is obvious [16].

It is to difficult to define a Hilbert space and Hamiltonian (as a self-adjoint operator
in Hilbert space of states) of the system, in thermodynamical limit. So we give some new
definition of ergodicity for this case which can be considered as some variant of last definition.
Let us introduce some useful notations. Let V be an algebra of all Wick monomials with
kernels from the Schwartz space, i.e., V is a linear space of all expressions of the form∫

w
(
p1, . . . , pn | q1, . . . , qm

) n∏
i=1

a+
(
pi
)
dpi

m∏
j=1

a
(
qi
)
dqi, w ∈ S

(
R3(n+m)

)
,

where the multiplication is defined by canonical commutative relations. Let V ′ be an algebraic
dual of V . We say that the functional ρ ∈ V is a stationary functional if ∀v ∈ V ρ([H, v]) = 0.
Here H is a Hamiltonian of our Bose gas. We say that the functional ρ ∈ V is a translation-
invariant functional if ∀v ∈ V ρ([~P , v]) = 0, where ~P is an operator of momentum of our
system. We say that the functional ρ ∈ V commutes with the number of particle operator
if ∀v ∈ V ρ([N, v]) = 0, where N ia a number of particle operator. Note that ∀v ∈ V
[H, v], [N, v], [~P , v] ∈ V . Denote by Vs the linear space of all Wick monomials of the form
[H, v0] + [N, v1] + [~P ,~v], v0, v1, ~v ∈ V . Denote by V ′s the space of all translation-invariant
stationary states commuting with the number of particle operator. We have ∀f ∈ V ′(f ∈
V ′s ⇔ ∀v ∈ Vs f(v) = 0). Now let us introduce a notion of Gibbsian states.

Let β, µ ∈ R, β > 0, ~v ∈ R3. We define Gibbsian state on V formally by the following
formula:

〈a〉β,µ,~v =
1

Zβ,µ,~v
tr
(
ae−β(H−µN+~v ~P )

)
,
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where a ∈ V , N is a particle number operator and Z is the so-called statistical sum:

Zβ,µ,~v = tr
(
e−β(H−µN+~v ~P )

)
.

This states corresponds to canonical distributions. Note that one of the basis statement of
statistical mechanics states that there no difference which distribution we use: canonical
or microcanonical distribution. Bellow we will omit ~v, ~P at all formulas to simplify our
notations.

Let V ′G be a subspace spanned by all Gibbsian states, i.e., V ′G is a set of all functionals
〈·〉 on V of the form 〈·〉 =

∑
α cα〈·〉βα,µα , where the sum is understood in some generalized

sense, for example, it may be continuous (integral). It is evident that V ′G ⊆ V ′s .
Now we can give the definition of ergodicity for Bose gas in thermodynamical limit.

Definition 10.3. We say that our system is ergodic if each translation invariant stationary
state can be represented as a superposition of Gibbsian states, i.e., V ′s = V ′G.

After these previous discussions let us start to prove our statement. Recall that we find
non-Gibbsian real stationary translation-invariant functional 〈·〉 constructed as a formal
power series on coupling constant λ satisfying the weak cluster property. This functional
can be represented as follows: 〈·〉 = 〈·〉0 + 〈·〉1 + · · · , where 〈·〉0 is a functional of zero order
of coupling constant λ, 〈·〉0 is a functional of first order of coupling constant λ and e.c.t.

Suppose that our system is ergodic.
We do not suppose that the series 〈·〉0 + 〈·〉1 + · · · converges, but we will work with it

formally as with convergent series and find explicit formulas for 〈·〉 under the assumption of
ergodicity. Let us illustrate formal manipulation that we will use by several examples.

Example 10.4. Let us calculate the sum
∑∞

i=0 x
i. We do not suppose that |x| < 1. Denote

by S the sum of this series. We have

S =
∞∑
i=0

xi = 1 +
∞∑
i=1

xi = 1 + x
∞∑
i=0

xi = 1 + xS.

Therefore

S = 1 + xS, (1− x)S = 1, s =
1

1− x
.

Example 10.5. Let us calculate the sum
∑∞

i=1
1
i2

. Consider the function sinx
x = a0x +

a1x + a2x
2 + · · · as a polynomial of infinite degree. Let us use the Viete theorem for this

“polynomial”. The roots of sinx
x are xi = iπ, i ∈ Z \ {0}. According to the Viete theorem we

have ∏
i∈Z\{0}

xi = C,
∑

j∈Z\{0}

∏
i∈Z\{0,j}

xi = 0,
∑

i<j, i,j∈Z\{0}

∏
k∈Z\{0,i,j}

xk = −C
6
.

We find from these equations that
∑

i∈Z\{0}
1
xi

= 0 and

∑
i<j, i,j∈Z\{0}

1
xixj

= 1/2

( ∑
i∈Z\{0}

1
xi

)2

− 1/2
∑

i∈Z\{0}

1
x2
i

= −1/2
∑

i∈Z\{0}

1
x2
i

= −1
6
.

Therefore
∑

i=1,2,...
1
x2
i

= 1
6 . But xn = πn, so we finally have

∑∞
i=1

1
i2

= π2

6 . Such formal
manipulation was widely used by Euler and others. Suppose that the set of such formal rules



On nonergodic property of Bose gas with weak pair interaction 21

is enough large from one hand and does not contain a contradiction from the other hand.
These rules we call the Euler rules. If we can find the “sum” of some series by using the
Euler rules, then this series is called convergent in Euler sense. The “sum” of this series is
called a sum in Euler sense.

Let us prove that our functional 〈·〉 can be represented as follows (under the assumption
of ergodicity): 〈·〉 =

∑
α cα〈·〉βα,µα , where cα are the “sums” of probably divergent series. The

convergence (in the Euler sense) of this series will be proven below (under the assumption
of ergodicity). The sum can be continuous (integral).

Let {eα, α ∈ A} be a Hamele basis of Vs, Vs = Lin{eα, α ∈ A}. Let {eβ, β ∈ B}, A∩B = ∅
be a completion of {eα, α ∈ A} to the Hamele basis of V , i.e., {eα, α ∈ A} ∪ {eβ, β ∈ B}
be a Hamele basis of V . ∀γ ∈ A ∪B let fγ be an element of V ′ such that fγ(eγ) = 1 and
fγ(eγ′) = 0 if γ 6= γ′, γ′ ∈ A ∪B.

An arbitrary functional ρ from V ′ now can be represented as a sum ρ =
∑

α∈A lαfα +∑
β∈B lβfβ, where lα, lβ are arbitrary numbers. Note that for arbitrary lα, lβ the right-hand

side of last equation is well defined because ∀v ∈ V fγ(v) 6= 0 only for finite number of
elements γ ∈ A ∪B. It is obvious now that an arbitrary element f ∈ V ′s ⊆ V ′G (ergodicity)
can be represented as follows: f =

∑
β∈B lβfβ, where lβ are arbitrary numbers.

For all i= 0, 1, 2, . . . we have the following representations: 〈·〉i =
∑

α∈A s
i
αfα+

∑
β∈B siβfβ.

But ∀α ∈ A we have
∑∞

i=0 s
n
α =

∑∞
i=0〈eα〉i = 〈eα〉 = 0, because eα ∈ Vs and 〈·〉 is a

translation invariant stationary functional. Therefore ∀a ∈ V

〈a〉 =
∞∑
i=0

〈·〉i =
∞∑
i=0

(∑
α∈A

siαfα(a) +
∑
β∈B

siβfβ(a)

)

=
∞∑
i=0

∑
α∈A

siαfα(a) +
∞∑
i=0

∑
β∈B

siβfβ(a)

=
∑
α∈A

( ∞∑
i=0

siα

)
fα(a) +

∞∑
i=0

∑
β∈B

siβfβ(a)

=
∞∑
i=0

(∑
β∈B

siβfβ

)
(a)

in Euler sense. Finally 〈a〉 =
∑∞

i=0〈a〉′i, where we put 〈·〉′i =
∑

β∈B siβfβ ∈ V ′G and our
statement is proved.

Let 1 be some enough large but finite subsystem of our system. Let 2 be a subsystem
obtained from 1 by translation on the vector ~l of sufficiently large length parallel to the
x-axis. Let 12 be a union of the subsystems 1 and 2. Let U1, U2, and U12 be density matrices
for the subsystems 1, 2, and 12, respectively (which correspond to 〈·〉).

Let {ϕ1
n,N , n,N = 1, 2, . . .} be a basis of eigenvectors of Hamilton operator for subsys-

tem 1. Let{ϕ2
m,M , m,M = 1, 2, . . .} be a basis of eigenvectors of Hamilton operator for

subsystem 2. N , M are the number of particles in systems 1, 2, respectively. Then the basis
of eigenvectors of Hamiltonian for subsystem 12 is {ψn,N,m,M = ϕ1

n,N ⊗ϕ2
m,M , n,N,m,M =

1, 2, . . .}. According to the assumption that the systems 1,2 are enough large we find the
following expression:

U1,2 =
∑

cα
e−

H1,2−µαN1,2
Tα

Zα
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for density matrix of subsystems 1,2 in obvious notations. We have also the following expres-
sion for the density matrix of subsystem 12 (if l = +∞):

U12 =
∑

cα
e−

H1−µαN1
Tα

Zα
⊗ e−

H2−µαN2
Tα

Zα
.

But if l = +∞, the weak cluster property implies that U12 = U1 ⊗ U2. This leads to the
following relation:

∑
α

cα
e−

En,N−µαN
Tα

Zα

e−
Em,M−µαM

Tα

Zα
=
∑
α

cα
e−

En,N−µαN
Tα

Zα

∑
β

cβ
e
−
Em,M−µβM

Tβ

Zβ
.

Here {En,N , n,N = 1, 2, . . .} is a set of eigenvalues of H1,2. But the set of sequences{
e−

En,N−µαN
Tα

}
is linear independent if for all two indices α, β, such that α 6= β, (Tα, µα) 6=

(Tβ, µβ). So for each α we have

cα
e−

En,N−µαN
Tα

Zα
= cα

∑
β

cβ
e
−
En,N−µβN

Tβ

Zβ
.

According to the linear independence of {e−
En,N−µαN

Tα } we find that ∀α cα = c2
α. So the series

representing cα are convergent in the Euler sense and ∀α, cα = 0, 1.
But we have

∑
α cα = trU = 1. So for some β, cβ = 1 and cα = 0 if α 6= β. We see

that 〈·〉 is a canonical Gibbsian distribution 〈·〉 = 〈·〉β,µ for some inverse temperature β and
chemical potential µ.

Let us calculate now 〈a(k)a+(k′)〉. We have constructed 〈·〉 by some Gauss state ρ0 de-
scribed by some test function n(k). It follows from our construction of 〈·〉 that

〈a(k)a+(k′)〉 = n(k)δ(k − k′).

But if momentum k is sufficiently large, we can neglect by potential energy and find

〈a(k)a+(k′)〉 = const e−β
k2

2 δ(k − k′).

If we chose n(k) such that n(k) tends to zero as k → ∞ slowly than each Gauss function,
we obtain a contradiction. This contradiction proves nonergodic property of our system.

Now let us discuss the so-called the Boltzmann ergodic hypothesis (1871). Let 〈·〉 be a
translation-invariant stationary functional on V such that ∀t∈R the functionals 〈eitH(·)e−itH〉
are well defined. The Boltzmann hypothesis states that for each such functional there exists
an element 〈·〉′ ∈ V ′G such that ∀a ∈ V ,

lim
T→+∞

1
T

∫ T

0

〈
eitHae−itH

〉
dt = 〈a〉′.

We see that according to V ′s 6= V ′G the Boltzmann hypothesis does not hold.
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11 Examples, chain diagrams

In this section we consider by direct calculation some class of divergent diagrams in Keldysh
diagram technique. At first let us introduce the basis notion of the Keldysh diagram tech-
nique.

Let us introduce the Green functions for the system

ρ
(
T
(
Ψ±H
(
t1, x1

)
, . . . ,Ψ±H

(
tn, xn

)))
.

Symbol H near Ψ± means here that Ψ±H are Heizenberg operators.
We require in nonequilibrium diagram technique the following representation for the Green

functions:

ρ
(
T
(
Ψ±H
(
t1, x1

)
, . . . ,Ψ±H

(
tn, xn

)))
= ρ0

(
S−1T

(
Ψ±0
(
t1, x1

)
, . . . ,Ψ±0

(
tn, xn

)
S
))
.

The symbol 0 near Ψ± means here that Ψ±0 are operators in the Dirac representation
(representation of interaction). The S-matrix has the form S = T exp(−i

∫ +∞
−∞ V (t)dt) and

S−1 = T̃ exp(i
∫ +∞
−∞ V (t)dt). T̃ is a symbol of the antichronological ordering here. ρ0 is some

Gauss state defined by density function n(k) as usual.
Let us recall the basic elements of nonequilibrium diagram technique. The vertices coming

from T -exponent are marked by symbol −. The vertices coming from T̃ -exponent are marked
by symbol +. There exist four types of propagators:

G+−
0

(
t1 − t2, x1 − x2

)
= ρ0

(
Ψ
(
t1, x1

)
Ψ+
(
t2, x2

))
,

G−+
0

(
t1 − t2, x1 − x2

)
= ρ0

(
Ψ+
(
t2, x2

)
Ψ
(
t1, x1

))
,

G−−0

(
t1 − t2, x1 − x2

)
= ρ0

(
T
(
Ψ
(
t1, x1

)
Ψ+
(
t2, x2

)))
,

G++
0

(
t1 − t2, x1 − x2

)
= ρ0

(
T̃
(
Ψ
(
t1, x1

)
Ψ+
(
t2, x2

)))
.

Let us write the table of propagators:

G+−
0 (t, x) =

∫
d4k

(2π)4
(2π)δ

(
ω − ω(k)

)(
1 + n(k)

)
e−i(ωt−kx),

G−+
0 (t, x) =

∫
d4k

(2π)4
(2π)δ

(
ω − ω(k)

)
n(k)e−i(ωt−kx),

G−−0 (t, x) = i

∫
d4k

(2π)4
{ 1 + n(k)
ω − ω(k) + i0

− n(k)
ω − ω(k)− i0

}e−i(ωt−kx),

G++
0 (t, x) = i

∫
d4k

(2π)4
{ n(k)
ω − ω(k) + i0

− 1 + n(k)
ω − ω(k)− i0

}e−i(ωt−kx).

11.1 Divergences

A typical example of divergent diagram is pictured in Figure 1.

�
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Figure 1.
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The ovals represent the sum of one-particle irreducible diagrams. These diagrams are
called chain diagrams. Let us suppose that all divergences of self-energy parts (ovals) are
subtracted. The divergences arise from the fact that singular supports of propagators coin-
cide. At first we consider diagrams with one self-energy insertion (one-chain diagram). These
diagrams are pictured in Figure 2.

�
�� ���

++

Figure 2.

These diagrams are analogous to one-loop diagrams in quantum field theory.
The aim of this section is to prove that the Green functions can be made finite by the

following renormalization of the asymptotical state:

ρ0(·)→ 1
Z
ρ0

(
e−

∫+∞
−∞ h(t)dt(·)

)
,

where h =
∫
h(k)a+(k)a(k)d3k, h(k) is a real-valued function and Z = ρ0

(
e−

∫+∞
−∞ h(t)dt).

11.2 Proof of the existence of divergences in the theory

Suppose that there are no divergences in the Keldysh diagram technique if n(k) 6= 1

eα
k2
2 +β+1

for any positive α, β. Therefore the Green function

ρ
(
S−1

(
SΨ+

0

(
t1, x1

)
Ψ0

(
t2, x2

)))
is translation invariant. So the density matrix

ρt
(
x1, x2

)
:= ρ

(
S−1

(
SΨ+

0

(
t, x1

)
Ψ0

(
t, x2

)))
is an integral of motion. Let ρt(k) =

∫
d3xρt(0, x)eikx. In zero order of perturbation theory

ρ(k) = n(k). But if there are no divergences in Keldysh diagram technique, it is possible (see
[15]) to derive the following kinetic equation for ρ(k):

∂ρt(k)
∂t

=
∫
w
(
p, p1 | p2, p3

){(
1 + ρ(p)

)(
1 + ρ

(
p1

))
ρ
(
p2

)
ρ
(
p3

)
− ρ(p)ρ

(
p1

)(
1 + ρ

(
p2

))(
1 + ρ

(
p3

))}
.

The right-hand side of this equation is equal to zero only if ρ(k) = 1

eα
k2
2 +β+1

for some

α, β (α > 0, β > 0). But n(k) = ρ(k) in zero order of perturbation theory, so n(k) has a
Bose-Einstein form. This contradiction proves our statement.

11.3 Regularization

Let us now introduce regularization. Note that

1
x+ iε

=
x

x2 + ε
− π i

π

ε

x2 + ε2
.
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Therefore we use the following regularization:

δ
(
ω − ω(k)

)
−→ 1

π

ε(
ω − ω(k)

)2 + ε2
=: δε

(
ω − ω(k)

)
,

P
(

1
ω − ω(k)

)
−→ ω − ω(k)(

ω − ω(k)
)2 + ε2

=: Pε
(

1
ω − ω(k)

)
.

11.4 Some simple relation on the Green functions

Lemma 11.1. The following equalities hold:

G−−
(
t1 − t2, x1 − x2

)? = G++
(
t2 − t1, x2 − x1

)
, (11.1)

G+−(t1 − t2, x1 − x2

)? = G+−(t2 − t1, x2 − x1

)
. (11.2)

Proof. We have

G−−
(
t1 − t2, x1 − x2

)? = ρ0

(
T
(
ΨH

(
t1, x1

)
Ψ+
H

(
t2, x2

)))?
= ρ0

(
T̃
(
Ψ+
H

(
t1, x1

)
ΨH

(
t2, x2

)))
= G++

(
t2 − t1, x2 − x1

)
.

So the equality (11.1) is proved. We have

G+−(t1 − t2, x1 − x2

)? = ρ0

(
ΨH

(
t1, x1

)
Ψ+
H

(
t2, x2

))?
= ρ0

(
ΨH

(
t2, x2

)
Ψ+
H

(
t1, x1

))
= G+−(t2 − t1, x2 − x1

)
.

So the equality (11.2) is proved.
The lemma is proved.

It is easy to prove the following.

Lemma 11.2. The following equalities hold:

G+−(t, x) = θ(t)G−−(t, x) + θ(−t)G++(t, x),

G−+(t, x) = θ(t)G++(t, x) + θ(−t)G−−(t, x).

Let us introduce the following matrix:

G =

∥∥∥∥∥G++ G+−

G−+ G−−

∥∥∥∥∥ .
Let us introduce a similar matrix for the self-energy operator:

Σ =

∥∥∥∥∥Σ++ Σ+−

Σ−+ Σ−−

∥∥∥∥∥ .
Dyson equations in Fourier representation have the form G = G0 + G0ΣG. We have from
these equations that Σ = G−1

0 − C−1, or in the matrix form

Σ =
1

detG0

∥∥∥∥∥ G−−0 −G+−
0

−G−+
0 G++

0

∥∥∥∥∥− 1
detG

∥∥∥∥∥ G−− −G+−

−G−+ G++

∥∥∥∥∥ . (11.3)
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It follows from Lemma 9.1 that

G++(ω, p) = G−−(ω, p)? G+−(ω, p) = G+−(ω, p)?, G−+(ω, p) = G−+(ω, p)?.

Therefore detG0, detG are real and we have the following lemma.

Lemma 11.3.

Σ−−
(
t1 − t2, x1 − x2

)? = Σ++
(
t2 − t1, x2 − x1

)
,

Σ+−(t1 − t2, x1 − x2

)? = Σ+−(t2 − t1, x2 − x1

)
.

The following lemma holds.

Lemma 11.4.

Σ++(ω, p) + Σ−−(ω, p) = −Σ−+(ω, p)− Σ+−(ω, p).

Proof. The statement of the lemma follows from the Dyson equation (11.3) and the following
two obvious equalities:

G++(ω, p) +G−−(ω, p) = G−+(ω, p) +G+−(ω, p),

G++
0 (ω, p) +G−−0 (ω, p) = G−+

0 (ω, p) +G+−
0 (ω, p).

11.5 Calculation of the propagators in one-chain approximation

Lemma 11.5. The following limit equalities hold (in the sense of distributions):

lim
ε→0

(
δ2
ε(x)− 1

2πε
δε(x)

)
= 0, lim

ε→0

(
1
ε
δε(x)− 1

ε
δ(x)

)
= reg,

lim
ε→0

{
1
π

1
x2 + ε2

− 1
ε
δ(x)

}
= reg, lim

ε→0
δε(x)Pε

(
1
x

)
= reg, x ∈ R.

Here reg means some correct distribution.

Proof. Let f(x) be some test function with compact support. We have∫
δ2
ε(x)f(x) =

1
π2

∫
1(

x2 + ε2
)2 f(x) dx

=
1
π2

∫
ε2(

x2 + ε2
)2{f(0) + xf ′(0) + x2ψ(x)

}
dx

for some smooth bounded function ψ(x). We have∫
δ2
ε(x)f(x) =

1
επ2

∫
1(

x2 + 1
)2{f(0) + εxf ′(0) + ε2x2ψ(εx)

}
=

1
π2

{
1
ε

∫
1

(x2 + 1)2
dx

}
f(0) +O(ε).

But
∫

1(
x2+1

)2 dx = π
2 . So

∫
δ2
ε(x)f(x) = 1

2πεf(0) +O(ε). So the first equality is proved. One

can prove the other three equalities in the same way.
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Therefore we see from the Lemmas 9.1 and 11.2 that we can consider only the function
G−−(t, x). But the function G−−(t, x) can be represented as a sum of chain diagrams. At
first let us consider the diagrams with one self-energy insertion (one-chain diagram). We
have G−−ε =

∑
i,j=±H

ij
ε , where the diagrams for H ij

ε are presented in Figure 2. We have the
following representation for the divergent parts of these diagrams:(

H−−ε
)

div
(ω, p) +

(
H++
ε

)
div

(ω, p)

= 2πΣ−−(ω, p)n(p)
(
1 + n(p)

)1
ε
δ
(
ω − ω(p)

)
+ 2πΣ++(ω, p)n(p)

(
1 + n(p)

)1
ε
δ
(
ω − ω(p)

)
.

We see that the divergent part of these two diagrams is real (because Σ−− = (Σ++)∗).
Let us consider the singular part of other two diagrams presented in Figure 3.

�
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Figure 3.

We have(
H−+
ε

)
div

(ω, p) +
(
H+−
ε

)
div

(ω, p)

= π(2π)
(
1 + 2n(p)

)(
1 + n(p)

)
δ2
ε

(
ω − ω(p)

)
Σ−+(ω, p)

+ π(2π)
(
1 + 2n(p)

)
n(p)δ2

ε

(
ω − ω(p)

)
Σ+−(ω, p)

= π
(
1 + 2n(p)

)(
1 + n(p)

)1
ε
δ
(
ω − ω(p)

)
Σ−+(ω, p)

+ π
(
1 + 2n(p)

)
n(p)

1
ε
δ
(
ω − ω(p)

)
Σ+−(ω, p) +O(ε).

We see that (H−−ε )div(ω, p) + (H++
ε )div(ω, p), (H−+

ε )div(ω, p) + (H+−
ε )div(ω, p) are real.

We will use the dotted line for lines which connect creation-annihilation operators with
operators arising from the vertex:

∫
h(k)a+(k)a(k)d3k (see Figure 4).

� qqqqq�� ��� qqqqq
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Figure 4.

So the divergences in G−−ε =
∑

i,j=±H
ij
ε can be subtracted by the following counterterm:

h(p) = Σ++(ω, p) + Σ−−(ω, p)

+

(
1 + 2n(p)

)
2n(p)

(
1 + n(p)

){(1 + n(p)
)
Σ−+(ω, p) + n(p)Σ+−(ω, p)

}
.

By using Lemma 11.4 we have

h(p) =
1 + 2n(p)

2
(
1 + n(p)

)
n(p)

{(
1 + n(p)

)
Σ−+(ω, p)− n(p)Σ+−(ω, p)

}
.
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The left-hand side of this equation can be rewritten as follows (in approximation used in
[15]):

h(p) =
1 + 2n(p)

2n(p)
(
1 + n(p)

)St(p),
where St(p) is a scattering integral. So h(p) 6= 0 for nonequilibrium matter.

Analogously one can consider two-chain diagrams presented in Figure 5 by direct calcu-
lation and prove that the divergences can be subtracted by the counterterms of the asymp-
totical state.

�
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Figure 5.

Note that there arises the phenomenon of overlapping divergences in this example.

12 Notes on Bogoliubov derivation of Boltzmann equations

In this section we study the problem of boundary conditions in Bogoliubov derivation of
kinetic equations [7]. Let us consider N particles in R3. Let qi be a coordinate of particle
number i, and pi a momentum of particle number i, i = 1, . . . , N . Suppose that particles
interact by means of the pair potential V (qi−qj). We suppose that V belongs to the Schwartz
space. Let xi = (pi, qi) be a point in the phase space Γ. Let f(x1, . . . , xn) be a distribution
function of N particles. If we want to point out that f(x1, . . . , xN ) depends on t, we will
write f(x1, . . . , xN | t). Let

f1

(
x1

)
=
∫
dx2 · · · dxNf

(
x1, . . . , xn

)
, f2

(
x1, x2

)
=
∫
dx3, . . . , dxNf

(
x1, . . . , xN

)
be marginal distribution functions. Put by definition

ρ1

(
x1

)
= Nf1

(
x1

)
, ρ2

(
x1, x2

)
= N2f2

(
x1, x2

)
.

If A is a function on the phase space Γ, Γ = R6N and A =
∑N

i=1A(xi), then

〈A〉 =
∫
f
(
x1, . . . , xn

)
A
(
x1, . . . , xN

)
= N

∫
dx1A

(
x1

)
f
(
x1

)
=
∫
dxA(x)ρ1(x).

Now if A is a function on the phase space A =
∑

i 6=j A(xi, xj) in the limit of large N , we find
〈A〉 =

∫
dx1dx2ρ2(x1, x2)A(x1, x2). Let us introduce also three-particle distribution function:

f3

(
x1, x2, x3

)
=
∫
dx4 · · · dxNf

(
x1, . . . , xN

)
.

Let us derive the equation for f(x). At first let us write equation of motion for f(x1, . . . , xN ).
We have

∂

∂t
f
(
x1, . . . , xN | t

)
+

n∑
i=1

pi
m
∇if

(
x1, . . . , xn | t

)
−
∑
i 6=j

∂V
(
qi − qj

)
∂qi

∂f
(
x1, . . . , xn | t

)
∂pi

=0.
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This equation is only an infinitesimal form of the Liouville theorem. Let us multiply this
equation by N and integrate over dx2, . . . , dxN . Suppose that f(x1, . . . , xN ) is a function of
rapid decay of momenta. This assumption allows to integrate over pi by parts. We find

∂

∂t
ρ1

(
x1 | t

)
+
p

m
∇ρ1

(
x1, t

)
+
∫
dx2

p2

m

∂

∂q2
ρ2

(
x1, x2 | t

)
=
∫
dx2

∂V
(
q1 − q2

)
∂q1

∂ρ2

(
x1, x2 | t

)
∂p1

.

(12.1)

Note that we have kept here boundary term. Let us now talk about derivation of kinetic
equation. According to the standard prescription we put ρ3(x1, x2, x3) = 0 in equation for
ρ2(x1, x2). We find the following equation for ρ2:

d

dt
ρ2

(
x1(t), x2(t) | t

)
= 0, (12.2)

where (x1(t), x2(t)) is a solution of corresponding two-body problem.

Condition of correlation breaking. We consider only translation-invariant matter in
purpose of simplicity. Usual correlation-breaking condition has the form

ρ2

(
x1, x2 | 0

)
= h

(
p′1
(
x1, x2

))
h
(
p′2
(
x1, x2

))
.

Here h is a function on momenta-space of one particle. We consider only translation-invariant
gas, so h depends only of momentum.
p′1(x1, x2) and p′2(x1, x2) are momenta of particles 1 and 2 at t = −∞ if at t = 0 their

coordinates and momenta were x1 and x2, respectively.

Proposition 12.1.

∂

∂t
ρ2

(
x1, x2

)
= 0. (12.3)

Indeed, according to (12.2), ρ2(x1, x2 | t) = ρ2(x0
1, x

0
2 | 0), where x0

1 and x0
2 are phase

coordinates of particles 1 and 2, respectively, at a moment t = 0. Therefore

ρ2

(
x1, x2 | t

)
= h

(
p′1
(
x0

1, x
0
2

))
h
(
p′2
(
x0

1, x
0
2

))
.

But the points x0
1 and x0

2 come to the points x1 and x2 after the time t. So(
p′1
(
x0

1, x
0
2

)
, p′2
(
x0

1, x
0
2

))
=
(
p′1
(
x1, x2

)
, p′2
(
x1, x2

))
,

ρ2

(
x1, x2 | t

)
=h
(
p′1
(
x0

1, x
0
2

))
h
(
p′2
(
x0

1, x
0
2

))
=h
(
p′1
(
x1, x2

))
h
(
p′2
(
x1, x2

))
=ρ2

(
x1, x2 | 0

)
.

In result ρ2(x1, x2 | t) = ρ2(x1, x2 | 0). The proposition is proved.

It follows from equations (12.2) and (12.3) that(
p1

m
∇1 +

p2

m
∇2

)
f2

(
x1, x2 | t

)
=
(
∂V
(
q1 − q2

)
∂q1

∂

∂p1
+
∂V
(
q1 − q2

)
∂q2

∂

∂p2

)
f2

(
x1, x2 | t

)
.

(12.4)
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The function h(p) can be found from the following equation:

ρ1(x) = lim
N→∞

1
N

∫
ρ2

(
x1, x2

)
dx2.

But in zero order of gas parameter the particles are free and ρ1(x) = h(x). Formula (12.4) is
usually used for the transformation of the right-hand side of equation (12.1) to the scattering
integral. On the other hand the equation ∂

∂tρ2(x1, x2) = 0 shows that there is no irreversible
evolution in the system. From an other point of view we will show that the last term in the
left-hand side of (12.1) is equal to the scattering integral.

For simplicity we will show the case v1 = 0, v = p
m . The general case can be reduced to

this case by means of Galilei transformation. So let us consider the integral

I = lim
R→∞

∫
d3p2

∫
VR

dq2
p2

m

∂

∂q2
ρ2

(
0, 0, p2, q2

)
,

where VR is a ball of radius R with the center at zero. Let us integrate over dq2 by using
Gauss theorem. We find

I = lim
R→∞

∫
d3p2

∫
SR

dS
p2

m
cosψρ2

(
0, 0, p2, q2

)
.

Here SR is a boundary of VR and ψ is an angle between two rays: the first of them is parallel
to p2, the second starts from zero and passes throw q2. We have

I = lim
R→∞

∫
d3p2

∫
SR

dS
p2

m
cosψh

(
p′1(0, 0)

)
h
(
p′2
(
p2, q2

))
.

Let us suppose that the particles scatter only, then they are not too far from each other. Then
h(p′1(0, 0))h(p′2(p2, q2)) = ρ1(p2)ρ1(0) for all q2 ∈ SR \ O, where O is a small neighborhood
of the point q0 := p2

|p2|R ∈ SR. The diameter of O is approximately equal to the diameter of
suppV . Therefore the integral I is not equal to zero and is equal to

I =
∫
d3p2

p2

m

∫
2πb db

×
{
ρ1

(
p′1
(
p2, q2(b)

)
, (0, 0)

)
ρ1

(
p′2
(
p2, q2(b)

)
, (0, 0)

)
− ρ1

(
p2

)
ρ1(0)

}
,

(12.5)

where b := q2 − q0. But the right-hand side of (12.5) is a usual scattering integral.
Therefore if we keep boundary terms in BBGKI-chain, we obtain the kinetic equations

without scattering integral.

13 Conclusion

In the present paper we have developed the general theory of the renormalization of nonequi-
librium diagram technique. To study this problem we have used some ideas of the theory of
R-operation developed by N. N. Bogoliubov and O. S. Parasiuk.

We illustrate our ideas by simple examples of one- and two-chain diagrams in Keldysh
diagram technique.

We want to illustrate in this paper the following general thesis: to prove that the system
tends to the thermal equilibrium, one should take into account its behavior on its boundary.
In the last section we have shown that some boundary terms in BBGKI-chain which are
usually neglected in Bogoliubov derivation of kinetic equation compensate scattering integral
in kinetic equation.

The author is grateful to I. V. Volovich, O. G. Smolyanov, Yu. E. Lozovik, A. V. Zayakin,
and I. L. Kurbakov for very useful discussions.
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