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Abstract

It is known that there are no local scalar Lie fields in more than two dimensions. Bilocal
fields, however, which naturally arise in conformal operator product expansions, do generate
infinite Lie algebras. It is demonstrated that these Lie algebras of local observables admit
(highly reducible) unitary positive energy representations in a Fock space. The multiplicity of
their irreducible components is governed by a compact gauge group. The mutually commuting
observable algebra and gauge group form a dual pair in the sense of Howe. In a theory of
local scalar fields of conformal dimension two in four space-time dimensions the associated
dual pairs are constructed and classified. The talk reviews joint work of B. Bakalov, N. M.
Nikolov, K.-H. Rehren, and the author.
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1 Introduction

In his (undelivered) AMS Einstein Lecture [12] Freeman Dyson divides mathematicians into
birds and frogs. “Birds”, he says, “delight in concepts that unify our thinking and bring together
diverse problems from different parts of the landscape. Frogs . . . delight in the details of particular
objects, and they solve problems one at a time.” Dyson identifies himself with a frog; perhaps,
he has chosen the unattractive image to hide his bias? In the introduction to his book [7, 8]
Ivan Cherednik is less diplomatic: the concrete facts, special functions, numbers, . . . are for
him real, while general theories, “conceptual mathematics” belong to the imaginary axis. After
some age it looks easier to use one’s knowledge to find and display connections among different
developments – i.e., to stay imaginary. I find it hard to imitate Ludwig Faddeev who, at 75, still
stays firmly on the real axis.

In the present talk I review some of the results of [2, 3, 41, 42, 43, 44, 45] on 4D conformal field
theory (CFT) models, which turn out to relate two independent developments: Roger Howe’s
theory of dual pairs, [21, 22, 23, 24], and a representation-theoretic version of the Doplicher-
Haag-Roberts’ (DHR) theory of superselection sectors and compact gauge groups [11, 20]. I will
first briefly recall Howe’s and DHR’s theories, then I will explain how some 2D CFT technics
can be extended to four space-time dimensions (in spite of persistent doubts that this is at all

1Talk presented at the conference “Mathematical Physics: From XX to XXI Century” in honor of the 75th
birthday of Ludwig Faddeev, Geneva, 20 March 2009.
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possible), and finally we will see how our study of 4D CFT models provides a bridge between
the two independent developments.

If we pretend to play birds, it is legitimate to ask what have to do conformal quantum field
theory (QFT) models with real physics? After all, if there are discrete masses in the world (in
particular, if we are there), what is conformal invariance good for? Not having a completely
convincing answer to this question I will end this introduction on a speculative note.

Progress in physics demands idealizations. The law of inertia which marked the beginning of
classical mechanics requires neglecting friction. Maybe it makes sense to begin with an idealized
world without masses? It is, in fact, dimensional transmutation, a quantum effect linked to
renormalization, which provides a hope of solving the problem with the mass gap in Yang-Mills
theory [14]. It is also not an accident that some of the most attractive current attempts to
understand the generation of mass in the standard model start with a conformally invariant
classical Lagrangian [6, 15, 40].

1.1 Reductive dual pairs

As the Wikipedia is telling us, the notion of a (reductive) dual pair was introduced by Roger Howe
in an influential preprint of the 1970s that was eventually published in [23, 24]. It was previewed
in two earlier papers of Howe [21, 22], highlighting the role of the Heisenberg group and the
applications of dual pairs to physics. Howe is clearly a bird: for him a dual pair, the counterpart
for groups and for Lie algebras of the mutual commutants of von Neumann algebras [20], is a
(highly structured) concept that plays a unifying role in such widely different topics as Weil’s
metaplectic group approach [52, 53] to θ functions and automorphic forms (an important chapter
in number theory) and the quantum mechanical Heisenberg group along with the description
of massless particles in terms of the ladder representations of U(2, 2) [39], among others (in
physics).

Howe begins in [22] with a 2n-dimensional real symplectic manifold W = V + V ′ where V is
spanned by n symbols ai, i = 1, . . . , n, called annihilation operators and V ′ is spanned by their
conjugate, the creation operators a∗i satisfying the canonical commutation relations (CCR)

[
ai, aj

]
= 0 =

[
a∗i , a

∗
j

]
,

[
ai, a

∗
j

]
= δij .

The commutator of two elements of the real vector space W being a real number defines a
(nondegenerate, skew-symmetric) bilinear form on it which vanishes on V and on V ′ separately
and for which V ′ appears as the dual space to V (the space of linear functionals on V). The real
symplectic Lie algebra sp(2n, R) spanned by anti-Hermitian quadratic combinations of ai and
a∗j acts by commutators on W preserving its reality and the above bilinear form. This action
extends to the Fock space F (unitary, irreducible) representation of the CCR. It is, however, only
exponentiated to the double cover of Sp(2n, R), the metaplectic group Mp(2n) (that is not a
matrix group – i.e., has no faithful finite-dimensional representation; we can view its Fock space,
called by Howe [22] oscillator representation as the defining one). Two subgroups G and G′ of
Mp(2n) are said to form a (reductive) dual pair if they act reductively on F (that is automatic
for a unitary representation) and each of them is the full centralizer of the other in Mp(2n). We
note that the oscillator representation of Mp(2n) has a minimality property [26, 27] that keeps
attracting the attention of both physicists and mathematicians — see, e.g., [18, 33, 34].
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1.2 Local observables determine a compact gauge group

Observables (unlike charge carrying fields) are left invariant by (global) gauge transformations.
This is, in fact, a key property of a gauge symmetry or a superselection rule as defined by Wick,
Wightman, and Wigner back in 1952 [54]. It required the nontrivial vision of Rudolf Haag to
predict in the 1960s that a local net of observable algebras should determine the compact gauge
group that governs the structure of its superselection sectors (for a review and references to the
original work, see [20]). It took over 20 years and the courage and dedication of Haag’s (then)
young collaborators, Doplicher and Roberts [11], to carry out this program to completion. They
proved that all superselection sectors of a local QFT A with a mass gap are contained in the
vacuum representation of a canonically associated (graded local) field extension E , and they are
in a one-to-one correspondence with the unitary irreducible representations (IRs) of a compact
gauge group of internal symmetries of E , so that A consists of the fixed points of E under G.

2 How do 2D CFT methods work in higher dimensions?

A number of reasons are given why 2-dimensional conformal field theory is, in a way, exceptional
so that extending its methods to higher dimensions appears to be hopeless.

(1) The 2D conformal group is infinite dimensional: it is the direct product of the diffeomor-
phism groups of the left and right (compactified) light rays. (In the Euclidean picture it is the
group of analytic and antianalytic conformal mappings.) By contrast, for D > 2, according to
the Liouville theorem, the quantum mechanical conformal group in D space-time dimensions is
finite (in fact, (D + 1)(D + 2)/2)-dimensional: it is (a covering of) the spin group Spin(D, 2).

(2) The representation theory of affine Kac-Moody algebras [28] and of the Virasoro algebra
[31] is playing a crucial role in constructing soluble 2D models of (rational) CFT. There are,
on the other hand, no local Lie fields in higher dimensions: after an inconclusive attempt by
Robinson [48] (criticized in [36]) this was proven for scalar fields by Baumann [4].

(3) The light cone in two dimensions is the direct product of two light rays. This geometric
fact is the basis of splitting 2D variables into right- and left-movers’ chiral variables. No such
splitting seems to be available in higher dimensions.

(4) There are chiral algebras in 2D CFT whose local currents satisfy the axioms of vertex
algebras2 and have rational correlation functions. It was believed for a long time that they have
no physically interesting higher-dimensional CFT analog.

(5) Furthermore, the chiral currents in a 2D CFT on a torus have elliptic correlation functions
[55], the 1-point function of the stress energy tensor appearing as a modular form (these can be
also interpreted as finite temperature correlation functions and a thermal energy mean value on
the Riemann sphere). Again, there seemed to be no good reason to expect higher-dimensional
analogs of these attractive properties.

We will argue that each of the listed features of 2D CFT does have, when properly understood,
a higher-dimensional counterpart.

(1) The presence of a conformal anomaly (a nonzero Virasoro central charge c) tells us that
the infinite conformal symmetry in 1 + 1 dimension is, in fact, broken. What is actually used in
2D CFT are the (conformal) operator product expansions (OPEs) which can be derived for any D

2As a mathematical subject vertex algebras were anticipated by Frenkel and Kac [17] and introduced by
Borcherds [5]; for reviews and further references, see, e.g., [16, 29].
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and allow to extend the notion of a primary field (for instance, with respect to the stress-energy
tensor).

(2) For D = 4, infinite-dimensional Lie algebras are generated by bifields Vij(x1, x2) which
naturally arise in the OPE of a (finite) set of (say, Hermitian, scalar) local fields φi of dimension
d (> 1):

(
x2

12

)d
φi

(
x1

)
φj

(
x2

)
= Nij + x2

12Vij

(
x1, x2

)
+ O

((
x2

12

)2
)
,

x12 = x1 − x2, x2 = x2 − x02
, Nij = Nji ∈ R,

(2.1)

where Vij are defined as (infinite) sums of OPE contributions of (twist two) conserved local
tensor currents (and the real symmetric matrix (Nij) is positive definite). We say more on this
in what follows (reviewing results of [2, 3, 42, 43, 44, 45]).

(3) We will exhibit a factorization of higher-dimensional intervals by using the following
parametrization of the conformally compactified space-time [46, 47, 51, 50]:

M̄ =

{
zα = eituα, α = 1, . . . , D; t, uα ∈ R; u2 =

D∑
α=1

u2
α = 1

}
=

S
D−1 × S

1

{1,−1} . (2.2)

The real interval between two points z1 = eit1 u1, z2 = eit2 u2 is given by

z2
12

(
z2
1z

2
2

)−1/2 = 2
(
cos t12 − cos α

)
= −4 sin t+ sin t−, z12 = z1 − z2, (2.3)

t± = 1/2
(
t12 ± α

)
, u1 · u2 = cos α, t12 = t1 − t2. (2.4)

Thus t+ and t− are the compact picture counterparts of “left” and “right” chiral variables (see
[47]). The factorization of 2D cross ratios into chiral parts again has a higher-dimensional analog
[10]:

s :=
x2

12 x2
34

x2
13 x2

24

= u+ u−, t :=
x2

14 x2
23

x2
13 x2

24

=
(
1 − u+

) (
1 − u−

)
, xij = xi − xj , (2.5)

which yields a separation of variables in the d’Alembert equation (cf. Remark 3.1) One should,
in fact, be able to derive the factorization (2.5) from (2.3).

(4) It turns out that the requirement of global conformal invariance (GCI) in Minkowski
space together with the standard Wightman axioms of local commutativity and energy positivity
entails the rationality of correlation functions in any even number of space-time dimensions [41].
Indeed, GCI and local commutativity of Bose fields (for space-like separations of the arguments)
imply the Huygens principle and, in fact, the strong (algebraic) locality condition(

x2
12

)n[
φi

(
x1

)
, φj

(
x2

)]
= 0 for n sufficiently large,

a condition only consistent with the theory of free fields for an even number of space-time dimen-
sions. It is this Huygens locality condition which allows the introduction of higher-dimensional
vertex algebras [1, 46, 47].

(5) Local GCI fields have elliptic thermal correlation functions with respect to the (differences
of) conformal time variables in any even number of space-time dimensions; the corresponding
energy mean values in a Gibbs (KMS) state (see, e.g., [20]) are expressed as linear combinations
of modular forms [47].
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The rest of the paper is organized as follows. In Section 3 we reproduce the general form of the
4-point function of the bifield V and the leading term in its conformal partial wave expansion.
The case of a theory of scalar fields of dimension d = 2 is singled out, in which the bifields
(and the unit operator) close a commutator algebra. In Section 4 we classify the arising infinite-
dimensional Lie algebras L in terms of the three real division rings F = R, C, H. In Section 5
we formulate the main result of [2, 3] on the Fock space representations of the Lie algebra L(F)
coupled to the (dual, in the sense of Howe [22]) compact gauge group U(N, F) where N is the
central charge of L.

3 Four-point functions and conformal partial wave expansions

The conformal bifields V (x1, x2) of dimension (1, 1) which arise in the OPE (2.1) (as sums of
integrals of conserved tensor currents) satisfy the d’Alembert equation in each argument [43];
we will call them harmonic bifields. Their correlation functions depend on the dimension d of
the local scalar fields φ. For d = 1 one is actually dealing with the theory of a free massless
field. We will, therefore, assume d > 1. A basis {fνi, ν = 0, 1, . . . , d − 2, i = 1, 2} of invariant
amplitudes F (s, t) such that

〈
0 | V1

(
x1, x2

)
V2

(
x3, x4

) | 0
〉

=
1

ρ13ρ24
F (s, t), ρij = x2

ij + i0x0
ij , x2 = x2 − (

x0
)2 (3.1)

is given by

(
u+ − u−

)
fν1(s, t) =

uν+1
+(

1 − u+

)ν+1 − uν+1
−(

1 − u−
)ν+1 ,

(
u+ − u−

)
fν2(s, t) = (−1)ν

(
uν+1

+ − uν+1
−

)
, ν = 0, 1, . . . , d − 2,

(3.2)

where u± are the “chiral variables” (2.5);

f01 =
1
t
, f02 = 1, f11 =

1 − s − t

t2
, f12 = t − s − 1,

f21 =
(1 − t)2 − s(2 − t) + s2

t3
, fν2(s, t) =

1
t
fν1

(
s

t
,
1
t

)
,

(3.3)

fν,i (i = 1, 2) corresponding to single pole terms [45] in the 4-point correlation functions
wνi(x1, . . . , x4) = fνi(s, t)/ρ13 ρ24:

w01 =
1

ρ14 ρ23
, w02 =

1
ρ13ρ24

,

w11 =
ρ13 ρ24 − ρ14 ρ23 − ρ12 ρ34

ρ2
14 ρ2

23

, w12 =
ρ14 ρ23 − ρ13 ρ24 − ρ12 ρ34

ρ2
13 ρ2

24

,

w21 =

(
ρ13 ρ24 − ρ14 ρ23

)2 − ρ12 ρ34

(
2 ρ13 ρ24 − ρ14 ρ23

)
+ ρ2

12 ρ2
34

ρ3
14 ρ3

23

,

w22 =

(
ρ14 ρ23 − ρ13 ρ24

)2 − ρ12 ρ34

(
2 ρ14 ρ23 − ρ13 ρ24

)
+ ρ2

12 ρ2
34

ρ3
13 ρ3

24

.

(3.4)
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We have wν2 = P34wν1(= P12wν1) where Pij stands for the substitution of the arguments xi

and xj . Clearly, for x1 = x2 (or s = 0, t = 1) only the amplitudes f0i contribute to the
4-point function (3.1). It has been demonstrated in [44] that the lowest angular momentum (�)
contribution to fνi corresponds to � = ν. The corresponding OPE of the bifield V starts with
a local scalar field φ of dimension d = 2 for ν = 0; with a conserved current jμ (of d = 3)
for ν = 1; with the stress energy tensor Tλμ for ν = 2. Indeed, the amplitude fν1 admits an
expansion in twist two3 conformal partial waves β�(s, t) [9] starting with (for a derivation, see
[44, Appendix B])

βν(s, t) =
Gν+1

(
u+

) − Gν+1

(
u−

)
u+ − u−

, Gμ(u) = uμF (μ, μ; 2μ; u). (3.5)

Remark 3.1. Equations (3.2)–(3.5) provide examples of solutions of the d’Alembert equation
in any of the arguments xi, i = 1, 2, 3, 4. In fact, the general conformal covariant (of dimension
1 in each argument) such solution has the form of the right-hand side of (3.1) with

F (s, t) =
f
(
u+

) − f
(
u−

)
u+ − u−

.

Remark 3.2. We note that albeit each individual conformal partial wave is a transcendental
function (like (3.5)) the sum of all such twist two contributions is the rational function fν1(s, t).

It can be deduced from the analysis of 4-point functions that the commutator algebra of a
set of harmonic bifields generated by OPE of scalar fields of dimension d can only close on the
V ’s and the unit operator for d = 2. In this case the bifields V are proven, in addition, to be
Huygens bilocal [45].

Remark 3.3. In general, irreducible positive energy representations of the (connected) confor-
mal group are labeled by triples (d; j1, j2) including the dimension d and the Lorentz weight
(j1, j2) (2ji ∈ N) [37]. It turns out that for d = 3 there is a spin-tensor bifield of weight
((3/2; 1/2, 0), (3/2; 0, 1/2)) whose commutator algebra does close; for d = 4 there is a conformal
tensor bifield of weight ((2; 1, 0), (2; 0, 1)). These bifields may be termed left-handed: they are
analogs of chiral 2D currents; a set of bifields invariant under space reflections would also involve
their right-handed counterparts (of weights ((3/2; 0, 1/2), (3/2; 1/2, 0)) and ((2; 0, 1), (2; 1, 0)),
respectively).

4 Infinite-dimensional Lie algebras and real division rings

Our starting point is the following result of [45].

Proposition 4.1. The harmonic bilocal fields V arising in the OPEs of a (finite) set of local
Hermitian scalar fields of dimension d = 2 can be labeled by the elements M of an unital algebra
M ⊂ Mat(L, R) of real matrices closed under transposition, M → tM , in such a way that the
following commutation relations (CR) hold:[

VM1

(
x1, x2

)
, VM2

(
x3, x4

)]
= Δ13VtM1M2

(
x2, x4

)
+ Δ24VM1

tM2

(
x1, x3

)
+ Δ23VM1M2

(
x1, x4

)
+ Δ14VM2M1

(
x3, x2

)
+ tr

(
M1M2

)
Δ12,34 + tr

(t
M1M2

)
Δ12,43;

(4.1)

3The twist of a symmetric traceless tensor is defined as the difference between its dimension and its rank. All
conserved symmetric tensors in 4D have twist two.
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here Δij is the free field commutator, Δij := Δ+
ij − Δ+

ji, and Δ12,ij = Δ+
1i Δ+

2j − Δ+
i1 Δ+

j2 where
Δ+

ij = Δ+(xi − xj) is the 2-point Wightman function of a free massless scalar field.

We call the set of bilocal fields closed under the CR (4.1) a Lie system. The types of Lie
systems are determined by the corresponding t-algebras – i.e., real associative matrix algebras
M closed under transposition. We first observe that each such M can be equipped with a
Frobenius inner product

〈
M1, M2

〉
= tr

(
tM1M2

)
=

∑
ij

(
M1

)
ij

(
M2

)
ij
,

which is symmetric, positive definite, and has the property 〈M1M2, M3〉 = 〈M1, M3
tM2〉. This

implies that for every right ideal I ⊂ M its orthogonal complement is again a right ideal while
its transposed tI is a left ideal. Therefore, M is a semisimple algebra so that every module over
M is a direct sum of irreducible modules.

Let now M be irreducible. It then follows from Schur’s lemma (whose real version [35] is
richer but less popular than the complex one) that its commutant M′ in Mat(L, R) coincides
with one of the three real division rings (or not necessarily commutative fields): the fields of real
and complex numbers R and C, and the noncommutative division ring H of quaternions. In each
case the Lie algebra of bilocal fields is a central extension of an infinite-dimensional Lie algebra
that admits a discrete series of highest weight representations4.

It was proven, first in the theory of a single scalar field φ (of dimension two) [42], and
eventually for an arbitrary set of such fields [45], that the bilocal fields VM can be written as
linear combinations of normal products of free massless scalar fields ϕi(x):

VM

(
x1, x2

)
=

L∑
i,j=1

M ij : ϕi

(
x1

)
ϕj

(
x2

)
: . (4.2)

For each of the above types of Lie systems VM has a canonical form, namely,

R : V
(
x1, x2

)
=

N∑
i=1

: ϕi

(
x1

)
ϕi

(
x2

)
:,

C : W
(
x1, x2

)
=

N∑
j=1

: ϕ∗
j

(
x1

)
ϕj

(
x2

)
:,

H : Y
(
x1, x2

)
=

N∑
m=1

: ϕ+
m

(
x1

)
ϕm

(
x2

)
,

(4.3)

where ϕi are real, ϕj are complex, and ϕm are quaternionic valued fields (corresponding to (3.2)
with L = N, 2N , and 4N , respectively). We will denote the associated infinite-dimensional Lie
algebra by L(F), F = R, C, or H.

4Finite-dimensional simple Lie groups G with this property have been extensively studied by mathematicians
(for a review and references, see [13]); for an extension to the infinite-dimensional case, see [49]. If Z is the center
of G and K is a closed maximal subgroup of G such that K/Z is compact, then G is characterized by the property
that (G, K) is a Hermitian symmetric pair. Such groups give rise to simple space-time symmetries in the sense of
[38] (see also earlier work — in particular by Günaydin — cited there).
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Remark 4.2. We note that the quaternions (represented by 4×4 real matrices) appear both in
the definition of Y – i.e., of the matrix algebra M, and of its commutant M′, the two mutually
commuting sets of imaginary quaternionic units �i and rj corresponding to the splitting of the
Lie algebra so(4) of real skew-symmetric 4× 4 matrices into a direct sum of “a left and a right”
so(3) Lie subalgebras:

�1 = σ3 ⊗ ε, �2 = ε ⊗ 1, �3 = �1�2 = σ1 ⊗ ε,(
�j

)
αβ

= δα0δjβ − δαjδ0β − ε0jαβ , α, β = 0, 1, 2, 3, j = 1, 2, 3,

r1 = ε ⊗ σ3, r2 = 1 ⊗ ε, r3 = r1r2 = ε ⊗ σ1,

(4.4)

where σk are the Pauli matrices, ε = iσ2, εμναβ is the totally antisymmetric Levi-Civita tensor
normalized by ε0123 = 1. We have

Y
(
x1, x2

)
= V0

(
x1, x2

)
1 + V1

(
x1, x2

)
�1 + V2

(
x1, x2

)
�2 + V3

(
x1, x2

)
�3

= Y
(
x2, x1

)+ (
�+
i = −�i,

[
�i, rj

]
= 0

)
,

Vκ

(
x1, x2

)
=

N∑
m=1

: ϕα
m

(
x1

)(
�κ

)
αβ

ϕβ
m

(
x2

)
:, �0 = 1.

In order to determine the Lie algebra corresponding to the CR (4.1) in each of the three cases
(4.4) we choose a discrete basis and specify the topology of the resulting infinite matrix algebra
in such a way that the generators of the conformal Lie algebra (most importantly, the conformal
Hamiltonian H) belong to it. The basis, say (Xmn) where m, n are multiindices, corresponds to
the expansion [50] of a free massless scalar field ϕ in creation and annihilation operators of fixed
energy states

ϕ(z) =
∞∑

�=0

(�+1)2∑
μ=1

((
z2

)−�−1
ϕ�+1,μ + ϕ−�−1,μ

)
h�μ(z),

where (h�μ(z), μ = 1, . . . , (�+1)2) form a basis of homogeneous harmonic polynomials of degree
� in the complex 4-vector z (of the parametrization (2.2) of M̄). The generators of the conformal
Lie algebra su(2, 2) are expressed as infinite sums in Xmn with a finite number of diagonals (cf.
[2, Appendix B]). The requirement su(2, 2) ⊂ L thus restricts the topology of L implying that
the last (c-number) term in (4.1) gives rise to a nontrivial central extension of L.

The analysis of [2, 3] yields the following.

Proposition 4.3. The Lie algebras L(F), F = R, C, H are 1-parameter central extensions of
appropriate completions of the following inductive limits of matrix algebras:

R : sp(∞, R) = lim
n→∞ sp(2n, R),

C : u(∞,∞) = lim
n→∞u(n, n),

H : so∗(4∞) = lim
n→∞ so∗(4n).

In the free field realization (4.3) the suitably normalized central charge coincides with the positive
integer N .
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5 Fock space representation of the dual pair L(F) × U(N, F)

To summarize the discussion of the last section, there are three infinite-dimensional irreducible
Lie algebras, L(F) that are generated in a theory of GCI scalar fields of dimension d = 2 and
correspond to the three real division rings F (Proposition 4.3). For an integer central charge N
they admit a free field realization of type (4.2) and a Fock space representation with (compact)
gauge group U(N, F):

U(N, R) = O(N), U(N, C) = U(N), U(N, H) = Sp(2N)
(

= USp(2N)
)
. (5.1)

It is remarkable that this result holds in general.

Theorem 5.1. (i) In any unitary irreducible positive energy representation (UIPER) of L(F)
the central charge N is a positive integer.

(ii) All UIPERs of L(F) are realized (with multiplicities) in the Fock space F of NdimRF

free Hermitian massless scalar fields.
(iii) The ground states of equivalent UIPERs in F form irreducible representations of the

gauge group U(N, F) (5.1). This establishes a one-to-one correspondence between UIPERs of
L(F) occurring in the Fock space and the irreducible representations of U(N, F).

The proof of this theorem for F = R, C is given in [2] (the proof of (i) is already contained in
[42]); the proof for F = H is given in [3].

Remark 5.2. Theorem 5.1 is also valid — and its proof becomes technically simpler — for a 2-
dimensional chiral theory (in which the local fields are functions of a single complex variable). For
F = C the representation theory of the resulting infinite-dimensional Lie algebra u(∞,∞) is then
essentially equivalent to that of the vertex algebra W1+∞ studied in [30] (see the introduction
to [2] for a more precise comparison).

Theorem 5.1 provides a link between two parallel developments, one in the study of high-
est weight modules of reductive Lie groups (and of related dual pairs — see Section 1.1)
[13, 25, 32, 49] (and [22, 23, 24]), the other in the work of Haag-Doplicher-Roberts [11, 20]
on the theory of (global) gauge groups and superselection sectors, see Section 1.2. (They both
originate — in the talks of Irving Segal and Rudolf Haag, respectively — at the same Lille
1957 conference on mathematical problems in quantum field theory.) Albeit the settings are
not equivalent the results match. The observable algebra (in our case, the commutator algebra
generated by the set of bilocal fields VM ) determines the (compact) gauge group and the struc-
ture of the superselection sectors of the theory. (For a more careful comparison between the two
approaches, see [2, Sections 1 and 4].)

The infinite-dimensional Lie algebra L(F) and the compact gauge group U(N, F) appear as a
rather special (limit-) case of a dual pair in the sense of Howe [22, 23, 24]. It would be interesting
to explore whether other (inequivalent) pairs would appear in the study of commutator algebras
of (spin)tensor bifields (discussed in Remark 3.3) and of their supersymmetric extension (e.g., a
limit as m, n → ∞ of the series of Lie superalgebras osp(4m∗ | 2n) studied in [19]).
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