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Abstract Time-dependent perturbation theory is a suitable tool for the description of population transfer induced
by weak shaped laser pulses, however its application can lead to norm divergences. We presented in a recently
published work by numerical evidence but without analytical proofs in which way the norm deviations from unity
can be split into numerical errors caused by the discretization of time and errors which are related to the perturbative
expansion order. These proofs are elucidated in this publication for what we have called in our recent work “simple
algorithm”. Moreover, we present new results for the “simple algorithm”.

MSC 2010: 81Q15

1 Introduction

In a recently published work [17], we discussed how far numerical algorithms for the implementation of perturbation
theory are applicable to ultra-short laser pulse molecule interactions. This is an important issue because time-
dependent perturbation theory is most commonly employed for the investigation of the interaction of atoms [5]
and molecules [14] with electromagnetic fields. However, the disadvantage of the application of time-dependent
perturbation theory is that it is generally not norm-conserving. Although non-perturbative and norm-conserving
algorithms can be used to solve the time-dependent Schrödinger equation, the advantage of perturbative methods
is that they allow for a clear decomposition of multi-photon processes into contributions which stem from different
orders. As an interesting example, we mention time-resolved four-wave mixing spectroscopy, where one determines
the third-order polarization associated with the signal emitted into a given direction [2]. It is possible to analyze
four-wave mixing experiments with non-perturbative methods [7,12,19]. Nevertheless, within perturbation theory it
is possible to differentiate contributions form higher-order interactions [4,10,20].

In the analysis presented in [17], we used a model of two molecular electronic states (ground state (|0〉) and
excited state (|1〉)). In this model, initially only one of these two states is populated. Such conditions are realized, for
example, in pump/shaped-dump experiments which have recently been reported [1,9,22]. In such processes where
high intensity laser pulses interact with molecules, it is important to understand how the results of perturbation theory
converge to the exact results. Although this convergence behavior, depending in detail on the chosen numerical
parameters, on the molecular system, and on the electric fields, cannot easily be described quantitatively, it is still
possible to analyze qualitatively the general trends of how the deviations of the norm from unity depend on the
chosen parameters and the physical situation. In our former analysis, we used a simple and an improved algorithm,
and we stated that the norm deviations can be decomposed into two parts, which we named the stationary orders
and the oscillatory orders. These different parts differ in their behavior when the following parameters are changed:
the time step for the discretization of time in the numerical algorithm, the order of perturbation in which the wave
functions are calculated, the shape of the potentials of the two electronic states |0〉 and |1〉, and the electric field.
In short, the stationary orders occur only for the simple algorithm; they depend on the electric field and the time
step; they converge to zero for the limit that the time step goes to zero, but they do not depend on the shape of
the potentials. Thus, we concluded that norm deviations caused by the stationary orders are purely numerical and
they are not related to norm deviations that are caused by the discarding of higher-order interactions. In contrast to
the norm deviations caused by the stationary orders, the norm deviations caused by the oscillatory orders occur for
both algorithms, they do not depend in leading order on the time step, and thus they do not vanish in the limit of
a vanishing time step. Moreover, they depend strongly on the chosen perturbation order for the wave function, the



2 Journal of Physical Mathematics

shape of the potentials of the two electronic states |0〉 and |1〉, and on the electric field. This clearly indicates that the
errors are related to the perturbative expansion of the wave function. The numerical results presented in [17] were
interpreted with the help of analytical expressions which, however, were given without proofs. It is the purpose of
the present paper to fill this gap for those analytical expressions, which are related to the simple algorithm. Due to
reasons to conciseness, we explain here the main ideas of the mentioned proofs; the analytical details can be found
in an extended version of this article published in arXiv [16]. The according calculations for the improved algorithm
will be presented in an additional paper, which is in preparation. Besides mathematical proofs for results which
were presented but not proven in [17], we show in this publication new numerical results and explanations for the
behavior of the simple algorithm.

The paper is organized as follows: we describe in Section 2 the structure of the discussed Hamiltonian, summa-
rize the basis of perturbation theory, and show how the simple algorithm introduced in [17] using perturbation theory
for the calculation of the wave function can be derived. Section 3 contains an analytical analysis of the wave function
calculated with the simple algorithm, and in Section 4, an analytical analysis of the norm of this wave function is
given (in this section we derive the expressions which were given in [17] without proofs). Then, in Section 5 we
summarize shortly an interpretation of the analytical results of Section 4, which was published in [17], and we show
how, based on this interpretation, new conclusions and explanations for the behavior of the simple algorithm can be
drawn. Finally, the paper is finished by a summary in Section 6.

2 Theory

2.1 Hamiltonian

As mentioned in the introduction, we investigate the interaction of an ultrashort laser pulse with a molecule in a
model where we consider two electronic states |1〉 and |0〉. The nuclear degrees of freedom are represented by a
single coordinate R. The total Hamiltonian Ĥ(R,t) consists of the system Hamiltonian Ĥ0(R), and the field-matter
interaction term Ŵ (t),

Ĥ(R,t) = Ĥ0(R)+ Ŵ (t) =

(
T̂ +V1(R) 0

0 T̂ +V0(R)

)
+

(
0 −μE(t)

−μE(t) 0

)
, (2.1)

where T̂ is the kinetic energy operator, and where Vj(R), j ∈ {0,1}, are the potentials in the electronic states.
The term for the operator Ŵ (t) appearing in (2.1) results from the dipole interaction with the electric field E(t)
of the laser pulse and the projection μ of the transition dipole moment on the laser polarization vector. We take
into account the Condon approximation and neglect the dependence of the transition dipole-moment on the nuclear
coordinates. Moreover, dipole-coupling within a single electronic state is not regarded. As we analyze a system with
two electronic states, we have to work with a two-component nuclear wave function �Ψ(R,t) and the time-dependent
Schrödinger equation reads (in atomic units):

i
∂

∂t

(
Ψ1(R,t)

Ψ0(R,t)

)
= Ĥ(R,t)

(
Ψ1(R,t)

Ψ0(R,t)

)
. (2.2)

Due to the structure of the perturbation operator Ŵ (t) for even powers of Ŵ (t) with η ∈ N, the following equation
holds:

W (t)2η = μ2ηE(t)2η
(

1 0
0 1

)
= μ2ηE(t)2η1. (2.3)

In order to emphasize this point, we will denote even powers of the perturbation operator Ŵ (t) without an operator
head as W (t)2η in the following. According to (2.3) for odd powers of the perturbation operator Ŵ (t) we have

Ŵ (t)2η−1 =W (t)2(η−1)Ŵ (t) =⇒ [
Ŵ (t)2η−1, Ĥ0(R)

]
=W (t)2(η−1)[Ŵ (t), Ĥ0(R)

]
.

Thus odd powers written in the form Ŵ 2η−1 are proportional to the perturbation operator Ŵ (t). As initial condition
we fix [15,17]

�Ψ
(
R,t= t0

)
=

(
Ψ1
(
R,t= t0

)
0

)
. (2.4)

In the following calculations, for clarity, we suppress in the notation dependencies on the vibrational coordinate R

for all quantities.
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2.2 Perturbation theory

The starting point of time-dependent perturbation theory is the integral equation for the wave function [11],

�Ψ(t) = e−iĤ0t�Ψ(0)− i

∫ t

0
dt′e−iĤ0(t−t′)Ŵ (t′)�Ψ(t′), (2.5)

where we assumed that the interaction starts at time t0 = 0. In perturbation theory, the wave function �Ψ(t) is
expanded in orders of the interaction-operator, and an approximative wave function �Ψ(t,k) is obtained which
contains all terms up to order k.

The wave function in first-order �Ψ(t,1) is obtained by substituting the exact wave function �Ψ(t′) appearing
under the integral by the initial function (0th-order wave function) evolving in time with the system propagator
(�Ψ(t,0) = e−iĤ0t�Ψ(0)):

�Ψ(t,1) = e−iĤ0t �Ψ(0)− i

∫ t

0
dt′ e−iĤ0(t−t′) Ŵ (t′) �Ψ(t′,0). (2.6)

By iterating (2.6), we obtain higher-order corrections as

�Ψ(t,k) = e−iĤ0t �Ψ(0)− i

∫ t

0
dt′ e−iĤ0(t−t′) Ŵ (t′) �Ψ(t′,k−1). (2.7)

We can use (2.7) as a basis to devise a numerical algorithm for the calculation of perturbative wave functions [3]. For
this aim we discretize the time t into time steps Δt yielding a time-grid where the times tn are defined as tn = nΔt

with whole-number values for n. As a next step, we set up an iteration scheme, where �Ψ(tn+1,k) is calculated from
�Ψ(tn,k).

Therefore the integral in (2.7) is divided into a first integral in the limits from t′ = 0 to t′ = tn, and a second one
reaching from t′ = tn and t′ = tn+Δt, yielding

�Ψ
(
tn+1,k

)
= e−iĤ0Δt �Ψ

(
tn,k

)− i

∫ tn+Δt

tn

dt′ e−iĤ0(tn+Δt−t′) Ŵ (t′) �Ψ(t′,k−1). (2.8)

This expression (2.8) for the wave function can be interpreted easily: the first term represents an unperturbed time-
evolution of the system (during the time-interval [tn, tn+Δt]), whereas the second term stands for the possibility
that during this interval at least one interaction takes place.1 With these considerations a numerical scheme for
the evaluation of the wave functions can be developed, which we call the simple algorithm (S). This algorithm
is constructed by a replacement of the integral in (2.8) by a single term at the time t′ = tn+1, what leads to wave
functions �ΨS(tn,Δt;k) depending on tn, Δt, and k. Introducing the abbreviating notations �Ψ(n,k) :=ΨS(tn,Δt;k)
and Ŵ (n) := Ŵ (tn), we get the following equation for the simple algorithm [17]:

�ΨS(n+1,k) = e−iĤ0Δt �ΨS(n,k)− iΔtŴ (n+1) �ΨS(n+1,k−1) (2.9)

with the start conditions �ΨS(0,k) = �Ψ(0).

As a last purpose in this section, we explicate how the short-time propagator e−iĤ0Δt, which appears in (2.9)
and moves the wave function �ΨS(n,k) over a time step Δt, can be executed numerically: this is customarily done
by the split operator method of Feit and Fleck [6], where a grid for the spatial coordinate R is used. Being a one-
step method correct in second order in the time step Δt, the application of the split-operator method in the simple
algorithm S does not diminish the order in the time-step Δt, in which the simple algorithm is correct. The reason
for this is as we will see in the following section that the simple algorithm is a one-step method which applies
perturbation theory correctly only in first order in Δt.

1 Here we note that equation (9) of [17], which corresponds to (2.8) in this paper, is misleading, because there interactions taking place in
the small time interval [tn, t′] were discarted.
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3 Error analysis of the wave functions �ΨS(n,k)

In this analysis of the wave functions �ΨS(n,k), first we state a closed form for them, and then we show that the
simple algorithm is a one-step method correct in first order in Δt.

Before we start our analytic analysis of the wave functions �ΨS(n,k), we have to introduce notations that are
important for the following.

First, we define the sequence of non-commuting operators Âj when we use the product symbol
∏

:

n∏
j=0

Âj := Â0Â1 · · · Ân. (3.1)

In the subsequent calculations combinatorial arguments are important. In particular, we will analyze combinatorial
problems, where we have to calculate sums over all possible combinations with repetition. In these combinations m
elements are taken out of a set that contains n elements, and the sequence in which the elements are chosen has no
relevance. We specify a particular combination with repetition by a vector �ν(n,m) that has n components, which are

natural numbers or zero. The jth component ν(n,m)
j of such a vector equals the number of cases how often the jth

element is chosen in this particular combination. By definition this implies

n∑
j=1

ν
(n,m)
j =m.

Moreover, we introduce the combinatorial sum symbol ΣP
�ν(n,m)

,

∑
P
�ν(n,m)

f
(
ν
(n,m)
1 ,ν

(n,m)
2 , . . . ,ν

(n,m)
n

)
,

where f is a function in the components of the vector �ν(n,m), and where the sum contains all possible combinations
with repetition for the situation that m elements are taken out of a set with n elements. For example, it is obvious
that for n= 2, m= 3 the equation

∑
P
�ν(2,3)

f
(
ν
(2,3)
1 ,ν

(2,3)
2

)
= f(3,0)+f(2,1)+f(1,2)+f(0,3)

is valid. Now the preparation for the virtual analysis is complete, so we can introduce the announced closed form of
the wave functions �ΨS(n,k)

�ΨS(n,k) =

⎡
⎣ k∑
m=0

(−iΔt)m
∑

P
�ν(n,m)

n−1∏
j=0

(
Ŵ (n− j)

ν
(n,m)
n−j e−iĤ0Δt

)⎤⎦ �Ψ(0). (3.2)

This is proved in [16, Appendix A]. The expression (3.2) allows an analysis of the norm given in Section 4.
Now we show that the simple algorithm is a one-step method that applies perturbation theory correctly in first

order in Δt for all k ∈ N. Therefore, we expand the perturbation wave function �Ψ(Δt,k) for all k ∈ N in second
order in the time step Δt, where we regard as a starting point the equation (2.7) for t=Δt:

�Ψ(Δt,k) = e−iĤ0Δt�Ψ(0)− i

∫ Δt

0
dt′ e−iĤ0(Δt−t′)Ŵ (t′)�Ψ(t′,k−1)

=

[
1−iΔt

(
Ĥ0+Ŵ (0)

)−Δt2

2

(
Ĥ2

0+Ŵ (0)Ĥ0+Ĥ0Ŵ (0)+
(
1−δk1

)
W (0)2+i

∂W (t′)
∂t′

∣∣∣
t′=0

)]
�Ψ(0)

+O(Δt3).
(3.3)

Then we calculate with (2.9) the wave function �ΨS(1,k) for all k ∈ N by propagation of the start wave function
�Ψ(0) over one-time step with the simple algorithm and expand the result in second order in Δt. For this calculation
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it is practicable to write Ŵ (Δt) instead of Ŵ (1):

�ΨS(1,k) = e−iĤ0Δt�Ψ(0)− iΔtŴ (Δt)�ΨS(1,k−1)

= e−iĤ0Δt�Ψ(0)− iΔtŴ (Δt)
[
e−iĤ0Δt�Ψ(0)− iΔt

(
1− δk1

)
Ŵ (Δt)�ΨS(1,k−2)

]
=
[
e−iĤ0Δt− iΔtŴ (Δt)e−iĤ0Δt−Δt2(1− δk1

)
W (Δt)2e−iĤ0Δt

]
�Ψ(0)+O(Δt3)

=

[
1− iΔt

(
Ĥ0 + Ŵ (0)

)− Δt2

2

(
Ĥ2

0 +2Ŵ (0)Ĥ0 +2
(
1− δk1

)
W (0)2 +2i

∂W (t′)
∂t′

∣∣∣
t′=0

)]
�Ψ(0)

+O(Δt3).

(3.4)

By comparison of (3.3) and (3.4), it can be recognized that

�Ψ(Δt,k)− �ΨS(1,k) =
Δt2

2

(
Ŵ (0)Ĥ0 − Ĥ0Ŵ (0)+

(
1− δk1

)
W (0)2 + i

∂W (t′)
∂t′

∣∣∣
t′=0

)
�Ψ(0)+O(Δt3), (3.5)

so the simple algorithm is a one-step method which applies perturbation theory correctly in first order in Δt for
all k ∈ N. Due to standard numerical textbook analysis of the asymptotic development for the global discretization
error of one-step methods [21], the difference between the perturbation wave function �Ψ(t,k), which is independent
of the time step Δt, and the wave function �ΨS(n,k) propagated over the time t with the simple algorithm, with
n= t/Δt, is given by2

�Ψ(t,k)− �ΨS(n,k) =Δt�χ(t,k)+O(Δt2). (3.6)

For the function �χ(t,k) appearing in the above equation it holds that it is independent of the time step Δt and it
fulfils �χ(0,k) = 0.

For the evaluation of the accuracy of the simple algorithm, it has to be taken into account that the perturbation
wave function �Ψ(t,k) is itself an approximative solution of the Schrödinger equation (2.2), which deviates from the
exact solution �Ψ(t). This deviation can be noted as �Ψ(t)− �Ψ(t,k) = �φ(t,k). Therefore for the difference between
�ΨS(n,k) and the exact solution �Ψ(t) the following holds:

�Ψ(t)− �ΨS(n,k) = �φ(t,k)+Δt �χ(t,k)+O(Δt2). (3.7)

As the main conclusion of this section, the simple algorithm is a one-step method that applies perturbation theory
correctly for all k ∈ N only in first order in Δt, so one might think that it is not useful to calculate wave functions
�ΨS(n,k) with k > 1. However, this reasoning is not correct because the use of a higher perturbation order k

takes according to (3.7) influence on the difference �Ψ(t)− �ΨS(n,k) and stabilizes so the simple algorithm against
divergences of the norm; see the appendant discussions in Section 5.

4 Error analysis of the norms for the wave functions �ΨS(n,k)

4.1 Preliminary remarks

From the closed form expression (3.2) for the wave functions �ΨS(n,k), it emerges that the wave functions can be
decomposed into terms of �Ψm,S(n) for different orders of perturbation:

�ΨS(n,k) =
k∑

m=0

�Ψm,S(n) (4.1)

with

�Ψm,S(n) = (−iΔt)m
∑

P
�ν(n,m)

n−1∏
j=0

(
Ŵ (n− j)

ν
(n,m)
n−j e−iĤ0Δt

)
�Ψ(0), (4.2)

2 The associated proposition in [21] to the equation (3.6) was discussed there for real functions instead of a complex wave function but it is
straightforward to see that this is no limitation for an application of this proposition here. Furthermore, we suppose that the electric field
E(t) and therefore the wave function �Ψ(t), too, depend in practical applications of the simple algorithm smoothly on time so that the
proposition requirements given in [21] are not violated.
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where the parameter m denotes the order of perturbation. The wave functions �Ψm,S(n) have a clear interpretation as
they are related to an interaction between the laser pulse and the molecular system, where m photons are exchanged,
and therefore the electronic state changes m times during the time interval [0,nΔt]. Employing the decomposition
(4.1), the norm yields

Nk
n,S =

〈
�ΨS(n,k)|�ΨS(n,k)

〉
=

k∑
j=0

k∑
h=0

〈
�Ψj,S(n)|�Ψh,S(n)

〉
. (4.3)

Using the substitution p= j+h, we can transform (4.3) regarding that the norm of the initial wave function �Ψ(0) is
defined as 〈�Ψ(0)|�Ψ(0)〉= 1 as follows:

Nk
n,S =

k∑
j=0

j+k∑
p=j

〈
�Ψj,S(n)|�Ψp−j,S(n)

〉
=

2k∑
p=0

min(p,k)∑
j=max(0,p−k)

〈
�Ψj,S(n)|�Ψp−j,S(n)

〉

= 1+
2k∑
p=1

min(p,k)∑
j=max(0,p−k)

〈
�Ψj,S(n)|�Ψp−j,S(n)

〉
.

(4.4)

We note that terms for odd p in (4.4) are zero, which results from the choice of the initial conditions, where only the
electronic state |1〉 is populated (see (2.4)). These terms involve the scalar product of wave functions in the different
electronic states |0〉, |1〉, which are orthogonal. Due to this connection we substitute p= 2m in (4.4), which yields

Nk
n,S = 1+

k∑
m=1

min(2m,k)∑
j=max(0,2m−k)

〈
�Ψj,S(n)|�Ψ2m−j,S(n)

〉
:= 1+

k∑
m=1

Nk
n,2m,S , (4.5)

where the terms Nk
n,2m,S , given by

Nk
n,2m,S =

min(2m,k)∑
j=max(0,2m−k)

〈
�Ψj,S(n)|�Ψ2m−j,S(n)

〉
, (4.6)

characterize norm deviations from unity. As was already discussed in [15,17], these orders Nk
n,2m,S can be decom-

posed into two different types: for 2k ≥ 2m> k we call these orders oscillatory orders:

Nk
n,2m,S =

k∑
j=2m−k

〈
�Ψj,S(n)|�Ψ2m−j,S(n)

〉
(4.7)

and for k ≥ 2m> 0 they are called stationary:

Nk
n,2m,S =

2m∑
j=0

〈
�Ψj,S(n)|�Ψ2m−j,S(n)

〉
. (4.8)

Note that the stationary orders contain no explicit dependence on k any more.
In [17], it has been shown that these two kinds of orders behave differently when parameters in the numerical

simulation are changed and thus they have different physical interpretations. The former presented discussion was
based on equations, which were presented without proof. In what follows the missing derivation will be given for
the simple algorithm.

4.2 Norm analysis for the simple algorithm S

In the norm analysis for the simple algorithm in this section, we state first that the stationary orders can be written
in a closed form. Secondly, we discuss that for the oscillatory norm orders we can introduce an approximation that
allows to analyze how these norm orders scale in the time step Δt, and in this context we explain an evidence called
annihilation thesis, which is a pre-condition for the approximation. Thirdly, we show that we can easily apply this
approximation method, implemented foremost for the oscillatory orders, and for the stationary orders too.
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In the calculations given here we are focussing on the considerations referring to the mentioned approximation
because the most important point for the understanding of the mathematical background of the results presented
in [17] is to get the idea how this approximation is introduced. In addition, all further calculations for the norm
analysis for the simple algorithm are given in [16].

Thus, for the stationary norm orders Nk
n,2m,S of the perturbative wave functions calculated via the simple

algorithm we first note that

Nk
n,2m,S = (−1)mΔt2m

∑
P
�ν(n,m)

n∏
j=1

W (j)
2ν(n,m)

j . (4.9)

The proof of this equation is given in [16, Appendix B]. We emphasize that in (4.9) only even orders of Ŵ (n)
appear, for which (2.3) is valid.

After having presented the closed form (4.9) for the stationary orders of the simple algorithm Nk
n,2m,S ,k ≥

2m > 0, we will investigate now the announced properties of the oscillatory orders Nk
n,2m,S ,k < 2m ≤ 2k. To do

so, we employ (4.7) to calculate that for the orders Nk
n,2m,S , k < 2m≤ 2k the following equation holds:

Nk
n,2m,S =

k∑
j=2m−k

〈
�Ψj,S(n)|�Ψ2m−j,S(n)

〉

=Δt2m
k∑

j=2m−k

∑
P
�ν(n,j)

∑
P
�ρ(n,2m−j)

(−1)m−j

×
〈
�Ψ(0)

∣∣∣∣∣∣
n∏

q=1

(
eiĤ0ΔtŴ (q)ν

(n,j)
q

)n−1∏
p=0

(
Ŵ (n−p)ρ

(n,2m−j)
n−p e−iĤ0Δt

)∣∣∣∣∣∣ �Ψ(0)

〉
.

(4.10)

Each summand of the sums in (4.10) over j,P�ν(n,j) and P�ρ(n,2m−j) is a product of the sign factor (−1)m−j and a

bracket term 〈�Ψ(0)| · · · |�Ψ(0)〉. The same bracket terms 〈�Ψ(0)| · · · |�Ψ(0)〉 appear multiple in different summands of
these sums, but the j-value of these summands differs, and thus they have different sign factors (−1)m−j . Due to
these different sign factors, these summands must cancel (at least) partly each other. Thus, all remaining summands
for a certain type of bracket term survive with the same sign factor. But this leaves the question open if the surviving
summands related to different types of bracket terms can have different signs. It can be shown that the surviving
summands for all types of bracket terms appearing in (4.10) do not have different signs but the same sign, namely
(−1)k−m. This coherence is from now on called the annihilation thesis and the proof of it is presented in [16,
Appendix C].

Our aim is to count the total number #kn,2m,S of all the surviving summands in (4.10) because the scaling of the

number of these terms in the time step Δt helps to draw conclusions how the oscillatory order Nk
n,2m,S scales in the

time step Δt. Employing the annihilation thesis allows to count the total number of all the surviving summands, and
it can be concluded that

#kn,2m,S =

∣∣∣∣∣∣∣
k∑

j=2m−k

⎡
⎢⎣(−1)j

⎛
⎝ ∑

P
�ν(n,j)

1

⎞
⎠
⎛
⎜⎝ ∑

P
�ρ(n,2m−j)

1

⎞
⎟⎠
⎤
⎥⎦
∣∣∣∣∣∣∣ . (4.11)

Now we introduce an approximation for the calculation of the norm orders Nk
n,2m,S by approximating each of the

surviving summands in (4.10) with a constant factor W
2m

and we take into account the fact that all the surviving
terms have the sign prefactor (−1)k−m by a global sign prefactor (−1)k−m for the calculation of the norm orders
Nk

n,2m,S :

Nk
n,2m,S = (−1)k−mΔt2mW

2m
#kn,2m,S

= (−1)k−mΔt2mW
2m

∣∣∣∣∣∣∣
k∑

j=2m−k

⎡
⎢⎣(−1)j

⎛
⎝ ∑

P
�ν(n,j)

1

⎞
⎠
⎛
⎜⎝ ∑

P
�ρ(n,2m−j)

1

⎞
⎟⎠
⎤
⎥⎦
∣∣∣∣∣∣∣ .

(4.12)
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Since the sum
∑

P
�ν(n,j)

is executed over all combinations with repetition for a choice of j elements out of a set with

n elements, elementary statistics yield [8]

∑
P
�ν(n,j)

1 =

(
n+ j−1

j

)
=

(n+ j−1)(n+ j−2) · · ·(n+1)n
j!

=
nj

j!
+

⎛
⎝j−1∑

q=1

q

⎞
⎠ nj−1

j!
+O

[(
1
n

)2−j
]
=

nj

j!

{
1+

1
2
j(j−1)

n
+O

[(
1
n

)2
]}

.

(4.13)

Inserting (4.13) in (4.12) and shifting the sum index j by m, we find

Nk
n,2m,S = (−1)k−mΔt2mW

2m
n2m

∣∣∣∣∣∣
k−m∑

j=−(k−m)

(−1)j

(m+ j)!(m− j)!

∣∣∣∣∣∣
[

1+O
(

1
n

)]

:= (−1)k−mΔt2mW
2m

n2m |ξ(m,k)|
[

1+O
(

1
n

)]
,

(4.14)

where we introduced the help function ξ(m,k):

ξ(m,k) =
k−m∑

j=−(k−m)

(−1)j

(m+ j)!(m− j)!
. (4.15)

With an induction proof over k one can show that if the oscillatory condition k < 2m ≤ 2k is valid, ξ(m,k) can be
written in the form (for proof see [16])

ξ(m,k) =
(−1)k−m

m

1
k!(2m−1−k)!

. (4.16)

For a re-writing of (4.14), we first substitute the expression (4.16) for ξ(m,k) in (4.14), and second, introducing the
propagation time t= nΔt, we substitute furthermore t

Δt for n in (4.14). So as a final result we get a central equation
of [17] presented there without proof:

Nk
t,2m,S =

(−1)k−m

m

t2m

k!(2m−1−k)!
W

2m
+O(Δt). (4.17)

In the latter equation, we have replaced the index n on the left side by t referring explicitly to time.
As the third task in this section, the above approximation can be applied not only for the oscillatory orders

Nk
n,2m,S ,k < 2m ≤ 2k, but as well for the stationary orders Nk

n,2m,S , k ≥ 2m > 0, because in (4.9) it can be seen
that all terms appearing in the sum over P�ν(n,m) have the same global sign (−1)m. Therefore, we approximate all

factors W (j)2 by W
2

in (4.9). Regarding (4.13), this leads to

Nk
n,2m,S = (−1)mΔt2m

∑
P
�ν(n,m)

n∏
j=1

W (j)
2ν(n,m)

j = (−1)mΔt2mW
2m ∑

P
�ν(n,m)

1

= (−1)mΔt2mW
2m nm

m!

[
1+O

(
1
n

)]
.

Substituting n= t
Δt , we receive the final result

Nk
t,2m,S = (−1)m

tm

m!
ΔtmW

2m
+O (Δtm+1) (4.18)

which was presented in [17] without proof, too.
In Section 5, we will discuss further consequences of the results derived in this section.
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5 New conclusions

In this section, we will pick up the areas of interest established in [17, Sections 2.3 and 3]. Therefore, we summarize
how the equations (4.17) and (4.18), which we discussed analytically in Section 4.2, were interpreted in [17].
Moreover, we will show how, based on the calculations done in Section 4, new conclusions and explanations for
the behavior of the simple algorithm can be drawn, which complement the above-mentioned interpretation.

As a starting point we will focus on the interpretation of the stationary orders Nk
n,2m,S , k ≥ 2m > 0. The

norm deviations caused by the stationary orders depend according to (2.3) and (4.9) only on the time step Δt, the
projection μ of the transition dipole moment on the laser polarization vector, and the electric field E(t), but neither
on the shape of the potential surfaces Vj(R), j ∈ {0,1} of the two electronic states |1〉 and |0〉, nor on the propagation
of the wave function components Ψ1(R,n) and Ψ0(R,n) (here we explicitly wrote out the R-dependence) onto these
surfaces. Due to (4.18) the stationary orders disappear in the limit Δt→ 0. So the stationary orders are only purely
numerical errors which arise using the simple algorithm because of the approximation of the integral in (2.8) by only
one summand and they are related to the Δt-dependent part in the difference of the approximative wave functions
�ΨS(n,k) to the exact wave function �Ψ(t) (see (3.7)).

For a not too large propagation time t and a small time step Δt, the stationary order for m= 1, Nk
t,2,S , gives the

dominant contribution to the norm deviation. In [17], we derived a result for Nk
t,2,S by choosing m= 1 in (4.18),

Nk
t,2,S =−tΔtW

2
+O(Δt2) (5.1)

which can be used for a qualitative discussion of the behavior of Nk
t,2,S . However, we show here that a quantitative

calculation of Nk
t,2,S is possible, too.

Therefore, we compute the norm deviation caused by the stationary orders Nk
n,2m,S ,k ≥ 2m> 0, for an electric

field given by

E(t) = A(t)cos
(
Φ(t)

)
, (5.2)

where A(t) is the envelope of the electric field and Φ(t) is a fast oscillating phase function. We consider that
permutation vectors of the form �ν(n,1) have n components at which one component is 1 and all other components
are 0. So we can simplify (4.9) for m= 1:

Nk
n,2,S =−Δt2

∑
P
�ν(n,1)

n∏
j=1

W (j)
2ν(n,1)

j =−Δt

n∑
j=1

W (j)2Δt. (5.3)

Inserting (2.3) and (5.2) into (5.3) and approximating the sum by an integral leads to the result

Nk
t,2,S =−μ2Δt

∫ t

0
dt′A(t′)2 cos2 (Φ(t′)). (5.4)

Here, we denoted the time dependency again by t. Since this integral in the limits 0 and t is proportional to the stored
energy in the laser pulse in this time interval, the norm deviations caused by the stationary orders at a certain point
in time t are approximately a proportion for this quantity. Therefore for the limit t→ ∞, the stationary order Nk

t,2,S
is proportional to the total energy of the laser pulse. Within the “slow-varying envelope approximation” [13,18] we
can approximate (5.4) by substituting the factor cos2(Φ(t′)) under the integral by 1

2 and get as a result

Nk
t,2,S =−μ2Δt

2

∫ t

0
dt′A(t′)2. (5.5)

This result reveals that if the “slow-varying envelope approximation” is valid, the norm deviations caused by the
stationary orders do not depend approximately on the phase Φ(t) but on the time integral over the squared envelope
of the electric field. Furthermore, it can be recognized from (5.5) that Nk

t,2,S depends linearly on the time step Δt.
This result is related to the fact that according to (3.7) the leading order of the Δt-dependent part of the deviations
of the wave functions �ΨS(n,k) to the exact solution �Ψ(t) is the first order.

In particular, we regard as an example for the use of (5.5) the Gaussian laser pulse modified by a linear spectral
chirp b2 we employed for our numerical application of the simple algorithm in [17] and compare the results we got
there numerically with the norm deviations we are now able to calculate analytically with (5.5).

The unchirped pulse is given by

E(t) = E′
0e

−β′(t−td)
2

cos
[
ω0
(
t− td

)]
(5.6)



10 Journal of Physical Mathematics

0 200 400 600 800 1000 1200

0.94

0.96

0.98

1.00

(a)

0 400 800 1200
0.92

0.96

1
N

or
m

b =    - 1000 fs
b = +/- 400 fs
b =      0 fs

t [fs]

(b)

b  =     -1000 fs
b  = +/-400 fs
b  =      0 fs

2
2

2
2

2
2

t[fs]

N
or

m

2

2

2
2

2

2

Figure 1: The norm deviations arising from a numerical simulation employing the simple algorithm (panel (a)), and
the norm deviations calculated analytically with (5.9) (panel (b)). The analytically calculated deviations in panel (b)
accurately match the numerical results in panel (a).

with an envelope having a full width at half maximum of τ ′ =
√

4ln2/β′, and the chirped laser pulse is given by

E(t) = E0e
−β(t−td)

2
cos
[
ω0
(
t− td

)
+

a2

2

(
t− td

)2
]
. (5.7)

In the last equations, the field strengths are denoted as E′
0 and E0 for the unchirped and for the chirped fields,

respectively, and td denotes the point in time when the envelope of the field is maximal. The various parameters
appearing in the equations for the shaped and for the unshaped electric fields are related as follows [23]:

E0 =

√
1

1+2iβ′b2
E′

0, |E0|=
(
1+4β′2b2

2

)− 1
4 |E′

0|

β =
1

1
β′ +4β′b2

2

, a2 =
b2

1
4β′2 + b2

2

.

(5.8)

For the electric field given by (5.7), we can calculate with (5.5) and (5.8) that the norm deviations caused by the
stationary orders are given by

Nk
t,2,S =−μ2ΔtE′2

0 τ ′
√

π

128ln2

{
1+ erf

[√
32ln2τ ′2

τ ′4 +
(
16ln2b2

)2

(
t− td

)]}
. (5.9)

Norm deviations calculated with (5.9) match excellently with the numerical results which are presented in [17,
Figure 4]. This relation is presented in Figure 1, where the norm deviations from unity caused in the numerical
simulation with the simple algorithm are shown again in panel (a), and the norm deviations from unity calculated
analytically are shown in panel (b). For the analytical calculation, we used the parameter values which lead to the
numerical results presented in [17, Figure 4], namely μ = 1 a.u., Δt = 3.31 a.u., τ ′ = 4.13 ∗ 102 a.u. and E′

0 =
1.19∗10−2 a.u., and different values for the spectral chirp parameter b2, which are given in Figure 1.

Furthermore, in the limit t→ ∞, one obtains from (5.9)

lim
t→∞

Nk
t,2,S =−μ2ΔtE′2

0 τ ′
√

π

32ln2
. (5.10)

This result is independent of the spectral chirp parameter b2 because the total energy of the laser pulse does not
depend on the spectral chirp parameter b2. For the parameters of our numerical example, (5.10) leads to a value of
0.927, which is in excellent agreement to our numerical results.

Next, we summarize the analysis of the norm deviations caused by the oscillatory orders Nk
n,2m,S ,k < 2m ≤

2k, we gave in [17]. For longer propagation times t these orders make up the dominant contribution to the norm
deviations for the simple algorithm because in taking the ratio between the stationary and oscillatory orders (see
(4.18) and (4.17)), this number scales with (Δt/t)m. Thus for large t the stationary terms are negligible. As can
be deduced from (4.17), the oscillatory terms in contrast to the stationary terms, in leading order, do not depend on
the time step Δt and they lead to oscillations in time for the norm deviation. Therefore, we can conclude that the
oscillatory orders Nk

n,2m,S ,k < 2m ≤ 2k, in contrast to the stationary orders Nk
n,2m,S ,k ≥ 2m > 0, do depend on
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the Δt-independent part of the difference of the approximative wave functions �ΨS(n,k) to the exact wave function
�Ψ(t), which is given in (3.7) by �φ(t,k). For large enough t, the highest oscillatory order for m = k, Nk

n,2m,S ,
leads to a divergence of the norm deviations towards infinity. However, it is possible to retard or even to suppress
this divergence if the perturbation order k is chosen high enough. Since a choice of a perturbation order k for
the calculation of the wave functions �ΨS(n,k) is equivalent to exclude all interactions which involve more than k

photons, these kinds of norm divergences can be interpreted in such a way that system-field interaction pathways
which involve more than k photons have to be taken into account to describe the system-field interaction correctly.

We discussed in [17] that the oscillatory orders Nk
n,2m,S , 2k ≥ 2m > k, (in contrast to the stationary orders)

depend on the shape of the potentials V1(R) and V0(R). However, we presented there only a numerical example
without an analytical explanation for this dependency. This gap is filled with the following discussion.

Therefore, we calculate explicitly with (4.2) and (4.7) the oscillatory orders for the simple algorithm:

Nk
n,2m,S =

k∑
j=2m−k

(−1)m−jΔt2m

×
∑

P
�ν(n,j)

∑
P
�ρ(n,2m−j)

〈
�Ψ(0)

∣∣∣∣
n∏

q=1

(
eiĤ0ΔtŴ (q)ν

(n,j)
q

)n−1∏
p=0

(
Ŵ (n−p)ρ

(n,2m−j)
n−p e−iĤ0Δt

)∣∣∣�Ψ(0)

〉
.

(5.11)

The bracket terms 〈Ψ(0)| · · · |Ψ(0)〉 in (5.11) describe the overlap between a bra-state that is influenced by interaction

operators Ŵ (q) at certain points in time (ν
(n,j)
q �= 0) with a ket-state that is influenced by interaction operators

Ŵ (n−q) at other points in time (ρ(n,2m−j)
n−q �= 0). Through the impact of the interaction operators at different points

in time the bra-state and the ket-state propagate over the time interval [t0, tn] in a different way.
That means for points in time tn′ with t0 < tn′ < tn the bra-state and the ket-state can be localized in different

electronic states. But at tn, when the overlap is calculated, the bra-state and the ket-state must be in the same
electronic state, otherwise the overlap is zero. If the absolute value of the difference between the potential gradients
in the two electronic states ΔV ′(R) := |dV1(R)

dR − dV0(R)
dR | is large in the spatial region, where the wave function

is positioned during the interaction of the molecular system with the laser pulse, the differences in the temporal
propagation in these two electronic states |1〉 and |0〉 lead to a small overlap of the bra-state and the ket-state. This
leads to the effect that the oscillatory orders are suppressed for large potential gradient differences ΔV ′(R).

This effect can interpreted in that way that for a large potential gradient difference ΔV ′(R) the interaction time,
where the laser pulse induces transitions between the two electronic states |1〉 and |0〉 effectively, is small and then
a smaller amount of photon is enough to describe the interaction between the pulse and the system properly. As
a result, in contrast to the stationary orders not only the electric field E(t) but as well the full dynamics of the
molecular system are relevant for the values of the oscillatory orders Nk

n,2m,S , 2k ≥ 2m> k.

6 Summary

In [17], we presented methods for the numerical application of perturbation theory with the aim to characterize the
interaction of shaped laser-pulses with molecules. In order to control the quality of the calculations, we analyzed
norm deviations caused by the necessary discretization of the appearing time-integrals and also the truncation of
the perturbation expansion; both causes can lead to substantial deviations. Moreover, in [17] numerical results on a
model system incorporating a single nuclear degree of freedom were presented, where a chirped-shaped laser pulse
induces electronic transitions. These results, in particular the dependence of the different contributions to the norm
deviation on parameters like the propagation time step, the steepness of the potential curves, and the chirp parameter
are explained in [17] for brevity by some equations and interrelationships without proofs. The latter are provided in
the present paper for what we called simple algorithm in [17], where the time-integral over one time step occurring
in perturbation theory is approximated by one term.

In our analysis of norm deviations from unity calculated with the simple algorithm in [17], we stated that two
classes of terms of different character contribute to the norm deviation: the first ones are called the stationary orders
and are of purely numerical nature. They can be suppressed in the limit of small time steps. The second kind of
contributions, called the oscillatory orders, are related to the property of time-dependent perturbation theory, which
is not norm conserving. These orders can cause oscillations in the norm of the total wave function, and moreover, for
long enough propagation times, these terms can lead to divergences of the norm towards infinity. In this publication,
we prove equations and interrelations which explain this behavior of the stationary and the oscillatory orders for the
simple algorithm that was documented for numerical calculated results in [17]. Moreover, here we present a method
to calculate the norm deviations caused by the stationary orders quantitatively analytically. The accuracy of this
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method is demonstrated for a numerical example. In addition, we show an analytical explanation why the oscillatory
orders are suppressed for large potential gradient differences between the electronic states which are coupled by the
laser pulse.

In the future, we will publish how the calculation done in this paper can be devolved from the simple algorithm
to what in [17] we called improved algorithm. Moreover, our research goals are to implement the results depicted
in [17] and in this publication in order to get a better understanding of multi-photon processes. With the help of the
derived results we are now in the position to analyze which processes of different orders are relevant for the correct
description of a chemical reaction. Therefore, we will compare the results calculated with converged perturbation
theory and numerically exact results, which contain all perturbation orders.
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