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Abstract We obtain the low-lying energy-momentum spectrum for the imaginary-time lattice four-Fermi or Gross-
Neveu model in d + 1 space-time dimensions (d = 1, 2, 3) and with N -component fermions. Let 0 < κ � 0

be the hopping parameter, λ > 0 the four-fermion coupling, m > 0 the bare fermion mass and take s × s spin
matrices (s = 2, 4). Our analysis of the one and the two-particle spectrum is based on spectral representation for
suitable two- and four-fermion correlations. The one-particle energy-momentum spectrum is obtained rigorously
and is manifested by sN

2 isolated and identical dispersion curves, and the mass of particles has asymptotic value
order − lnκ. The existence of two-particle bound states above or below the two-particle band depends on whether
Gaussian domination does hold or does not, respectively. Two-particle bound states emerge from solutions to a lattice
Bethe-Salpeter equation, in a ladder approximation. Within this approximation, the ( sN2 − 1) sN4 identical bound
states have O(κ0) binding energies at zero system momentum and their masses are all equal, with value ≈ −2 lnκ.
Our results can be validated to the complete model as the Bethe-Salpeter kernel exhibits good decay properties.

MSC 2010: 81Qxx, 81Txx, 81Vxx

1 Introduction

The determination of elementary excitations in physical models is of great importance, as they determine the time
evolution of quantum systems, and are related to the falloff rate of correlation functions (CFs). Furthermore, in
models of classical statistical mechanics and quantum field theory, the spectra of the associated Hamiltonian and
momentum operators can be simultaneously determined and are associated with a particle interpretation.

In this work, we determine the low-lying particle spectrum of an imaginary-time (Euclidean) lattice functional
integral formulation of a four-Fermi or Gross-Neveu (GN) model, with N flavor-component fermion fields in d+ 1

dimensions (d = 1, 2, 3 is the spatial dimension) and a global U(N) flavor symmetry. This is an interesting model,
both from theoretical and experimental point of view, because it presents a set of nice features and has a non-
trivial behavior. For example, in d = 1, the GN model is perturbatively renormalizable, asymptotically free in the
ultraviolet scale (ifN > 1) and also exhibits the phenomenon of dynamical symmetry breaking with mass generation
and dimensional transmutation (see [16]). On the other hand, the GN model is simple enough to be, in principle,
accessible via purely analytical approaches (see [6,1]). Moreover, being a model with pure fermion fields, and due
to the fact that the Pauli principle implies that fermion fields are associated with bounded operators, the GN model
is placed in a special position to apply both perturbative and non-perturbative techniques to obtain the rigorous
control of the ultraviolet and infrared limits, as well as some important correlation properties, going far beyond the
level of the most common analysis employing simply a few perturbation orders. In this way, the ultraviolet limit
of the complete model was constructed in [13,14] for d = 1 and N > 1, and asymptotic completeness has been
verified up to the two-particle threshold in [19]. In [23], the existence of the infrared limit and mass generation was
proved for the complete model, for d = 1 and N � 1. For d = 2, this was done in [30] and, though the model
is perturbatively non-renormalizable, its ultraviolet limit was constructed for large but finite N and small values
of the coupling constant in [7], using non-perturbative analytical techniques. This corresponds to one of the few
examples of a theory which is not trivial but is asymptotically safe, with a stable renormalization group fixed point,
and has become a source of inspiration to the search of a good quantum model for Einstein’s gravity (see e.g. [3,5,
17,24,25] and references therein). The existence of the ultraviolet limit of the model for d = 3 is an open question.
However, the question of the existence of the ultraviolet limit or how to adapt the previous constructions to our
cutoff model does not bother us here since we keep the unitary lattice step fixed throughout this work. Furthermore,
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it is worth mentioning that the GN model plays an important role in testing properties of more sophisticated field
theoretical models [41] and in the description of interesting physical phenomena such as superconductivity and
strong interactions (see e.g. [21,26]).

Let 0 < κ � 1 denote the lattice hopping parameter, M > 0 the fermion bare mass, λ > 0 the four-fermion
coupling and let us consider s × s Euclidean spin matrices. Here, we consider the lattice GN model defined by the
action

S
(
ψ̄, ψ

)
=
κ

2

∑

x

ψ̄α,a(x)Υ
εeµ

αβ ψβ,a
(
x+ εeμ

)
−M

∑

x

ψ̄α,a(x)ψα,a(x)−
λ

N

∑

x

(
ψ̄α,a(x)ψα,a(x)

)2
, (1.1)

with summation over repeated indices and where ψ̄α,a(x) and ψβ,b(y) are Grassmann variables, x = (x0, �x) ≡
(x0, . . . , xd) is a lattice site, x0 ∈ Z 1

2
≡

{
± 1

2 ,±
3
2 ,±

5
2 , . . .

}
, �x ∈ Z

d, α, β ∈ {1, 2, . . . , s} are spin indices,

a, b ∈ {1, 2, . . . N} are flavor indices, ε = ±1 and, for μ = 0, . . . , d, the eμ are unitary vectors of Zd+1, where
Z
d+1
0 ≡ Z 1

2
× Z

d. Originally, instead of M , the lattice formulation gives us a bare mass M(m̄, κ) = (m̄ + 2κ).
However, without loss of generality, given κ, we choose the bare fermion mass m̄ = O(1) � κ such that M(m̄, κ) =

M > 0. Also, Υ±eµ = −I± γμ, where Is is the s-dimensional identity matrix. For d = 2, 3, we take s = 4 and γμ,
μ = 0, 1, . . . , d are the 4× 4 Euclidean Dirac matrices

γ0 =

(
I2 0

0 −I2

)
and γj =

(
0 −iσj
iσj 0

)
,

where σj , j = 1, 2, 3, are hermitian, traceless and anti-commuting Pauli spin matrices. For d = 1 and alternatively
for d = 2, we can consider another choice of spin matrices by taking s = 2, γ0 = σ3, γj=1,...,d = σj , j �= 3.
From now on, we will concentrate our text only on the d = 3 case, with Dirac matrices. The analysis for the other
dimensions is very similar and can be easily reproduced from the one given here.

To be precise, we start in a compact box of finite-volume Λ ⊂ Z
d+1
o , of size |Λ|. Using fermionic (Berezin)

integration (for details see [2]), the normalized statistical mechanical expectation or averages of a function F (ψ̄, ψ)

of the fields is formally given by

〈
F (ψ̄, ψ)

〉
Λ
=

1

Z

∫

Λ

F (ψ̄, ψ)e−S(ψ̄,ψ) dψ̄ dψ, (1.2)

where dψ̄ dψ =
∏
x,α,a dψ̄α,a(x)dψα,a(x) and ZΛ =

∫
Λ
e−S(ψ̄,ψ)dψ̄ dψ. The 2n-point CFs are given by choosing

F (ψ̄, ψ) = ψ̄(y1) · · · ψ̄(yn)ψ(z1) · · ·ψ(zn), for external points y’s and z’s. The CFs vanish if the number of ψ̄ and
ψ are different, and are all real, for κ = 0.

The choice of the shifted lattice for the time direction, avoiding the zero-time coordinate, follows what happens
for bosonic models. In this case, in the continuum limit, two-sided equal time limits of field correlations can be
accommodated. This is also the case here, at least for d = 1. Besides, the above choice of parameters guarantees,
with the extra condition | κM | � e−5

4(d+1)sN
|1 + 2λ

M2 |1−sN , that the thermodynamic limit Λ → Z
d+1
o of the model

exists, and the physical positivity holds [29]. For M = 0, the lattice thermodynamic limit (if any!) cannot be easily
reached, at least in the same way as before, and takingM > 0 guarantees that the one-particle free fermion dispersion
curve is monotonically increasing in each momentum component, which is physically desirable.

To show the existence of the thermodynamic limit, we use cluster expansion techniques, such as a polymer
expansion (see [38,39]). In the infinite-volume limit |Λ| → ∞, denoted by 〈·〉, are lattice translation invariant and

joint analytic in κ and λ for | κM | < e−5

4sN(d+1)
. As a consequence, the truncated CFs have exponential tree decay with

rate of at least (1− ε)| ln(O(1)κ)|, where ε→ 0 as κ→ 0. From now on, we work only in the infinite-volume limit.
For completeness, we give a brief and intuitive idea on how the polymer expansion is generated. Like a standard

virial expansion in statistical mechanics, in the region of parameters where the coupling between different lattice
sites is weak, we write eκψ̄(x)Γψ(y) = 1 + ϑ〈xy〉 and expand the expectation value of an observable O in the small
parameter ϑ〈xy〉. By this expansion, we obtain decoupled expectations of the form 〈O

∏
<xy>∈ς ϑ〈xy〉〉Λ|κ=0,

where ς is a set of lattice links. Note that the expectation 〈AB〉Λ|κ=0 factorizes into 〈A〉Λ|κ=0〈B〉Λ|κ=0 when-
ever A and B depend on disjoint sets of field variables. A polymer ςp is a set of field variables that does not
break up into disjoint subsets. So, we obtain an expansion for 〈Oe−S〉Λ|κ=0 in terms of the quantities z(γp) =

〈O
∏
<xy>∈ςp ϑ〈xy〉〉Λ|κ=0, called the activity of the polymer ςp. Writing this expansion for both the numerator

and the denominator in (1.2), we can take the quotient and show that the resulting expansion has a finite domain
of convergence (see the convergence condition above) uniformly in the volume ‖Λ of the finite box Λ, so that
infinite-volume limit can be taken.
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For κ � 0, the action of (1.1) preserves positivity. Thus, by the fundamental work of [27,28], the CFs can
be analytically extended to a quantum filed theory in the Minkowski space. The idea consists of using the CFs
to define (through a Feynman-Kac formula [15]) an inner product in the underlying physical quantum mechanical
Hilbert space of physical states H (see [29,38]). This construction provides an imaginary-time lattice quantum field
theory. Besides, associated with this model, we can show there is a positive metric Hilbert space, an inner product
(F,G)H, a vacuum vector Ω and field operators ψ̄aα(x), ψ

a
α(x). Thus, we can construct in H commuting self-adjoint

energy-momentum (E-M) operators H � 0, �P = (P 1, . . . , P d) (with spectral points �p ∈ Td ≡ (−π, π]d). These
operators are the generators of lattice semi-group of time translations T0, with T 2

0 > 0, and the unitary group of space

translations �T = ei
�P ·�x, respectively. Therefore, by the spectral theorem, the operators H and �P can be diagonalized

in a common basis, and so points in the spectrum ofH can be written as functions of the points in the spectrum of �P .
A straightforward consequence of the above construction is that the squared transfer matrix T 2

0 = e−2H , in the
infinite volume limit, is a well-defined self-adjoint contraction operator in the Hilbert space H if we assume that T0
does not have a 0 eigenvalue.

The methods we apply here allow us to access the low-lying energy-momentum spectrum and were introduced
and established in [8,34,35,36,37], for lattice spin chains, and in [9,11,12,33], for treating other field theoretical
models. We analyze the one- and two-particle sectors of the energy-momentum spectrum. Up to near the three-
particle threshold, the energy-momentum spectrum exhibits isolated dispersion curves that are identified as particles
and bound states. In the one-particle sector, using our method and the U(N) flavor symmetry, we show that there are
sN
2 particles corresponding to identical and isolated dispersion curvesw(�p) ≡ w(�p, κ, λ). We thus provide a rigorous

proof of both the lower and upper mass gap properties of the spectrum. Also, the particle masses m(κ) ≡ w(�p = �0)

are all equal, and we show that the asymptotic value of the one-particle masses are of order (− lnκ).
Above the one-particle spectrum, there are finite width free (noninteracting) multiparticle spectral bands. Using

a lattice version of the Bethe-Salpeter (B-S) equation, we show that two-particle bound states may appear near
the two-particle band. At least in a leading approximation, that we call the ladder approximation, the existence
of these bound states, either above or below the free two-particle band, depends on whether or not a Gaussian
domination condition holds, respectively. The Gaussian domination condition is characterized by the negative sign
of the quantity

ℵ ≡ 1

2

〈
ψ̄αa(x)ψαa(x)

〉−2∣∣
κ=0

− 1

2

〈
ψ̄αa(x)ψ̄βa(x)ψαa(x)ψβa(x)

〉−1∣∣
κ=0

. (1.3)

Otherwise, if ℵ > 0, we say that we are in the Gaussian subjugation regime.
Within our ladder approximation, the ( sN2 − 1) sN2 bound states we detect in any case have masses which are

all equal and of order (−2 lnκ), with an O(1) (κ-independent) binding energy. This spectral pattern is similar to the
one obtained in our previous work on the O(N) spin model (see [8]).

We note that a discussion on the asymptotic completeness up to the two-particle threshold, for the Gross-Neveu
model in the continuum space-time, can be found in [20]. Of course, to establish this result we need to know about
the existence of two-particle bound states below this threshold. This paper does not solve the problem, however, so
that our bound state analysis for the model on the lattice is justified. Besides this point, our spectral bound states
results are relative to the two-particle band. This is a feature of the lattice model, which is absent in the continuum
spacetime case. An interesting point is to see how much of the results obtained for the lattice subsist in the continuum
limit.

It is also worth emphasizing that our spectral results are obtained from spectral representations for correlations
which follow from the spectral theorem applied to the energy-momentum operators and a Feynman-Kac formula.
This is a fundamental point in our work that guarantees we are indeed talking about the particle spectrum. Note that
the commonly found analysis in the theoretical physics literature, involving only the decay rate of correlations, is not
sufficient to this end. The analysis is still more delicate when various spectral points are too close and a continuous
spectrum is present.

Last, we note that our method incorporates the main ingredients to validate our bound state results beyond our
ladder approximation to the complete model, as it was done in the context of the stochastic Ginzburg-Landau models
and for the ferromagnetic spin models (see [9,35,36]). The basic ingredient is the fast enough decay properties
satisfied by the B-S kernel K (see below). This result will be established elsewhere.

The remainder of the paper is organized as follows. In Section 2, we introduce the two- and four-point CFs
and obtain the corresponding spectral representations. We also discuss some symmetry properties that are used to
simplify these CFs. In Section 3, we obtain the one-particle spectrum. In Section 4, we introduce the lattice B-S
equation and derive our ladder approximation to the B-S kernel. In Section 5, we solve the B-S equation in this
approximation and obtain the two-particle bound states and the corresponding binding energies. Finally, we draw
some conclusions in Section 6.
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2 Spectral representations of correlations

For x ≡ (x0, �x) ∈ Z
d+1
0 , F and G functions of the fields with finite support on x0 > 1

2 , and for the uppercase
check ˇ denoting an operator on H, taking x0 > 0, we have the Feynman-Kac formula [15] (recall that Ω denotes
the vacuum)

(
ǦΩ, Ťx

0

0 Ťx
1

Ťx
2

Ťx
3

F̌Ω
)
H =

〈[
Tx

0

0 T�xF
]
ΘG

〉
, (2.1)

where Tx
0

0 denotes time translation by x0, T�x = Tx
1

· · ·Tx
d

denotes a space translation by �x = (x1, . . . , xd) and
Θ is an anti-linear operator which involves time reflection. More precisely, the action of Θ on the fermion fields is
given by

Θψαa
(
x0, �x

)
= γ0ααψ̄αa

(
− x0, �x

)
, Θψ̄αa

(
x0, �x

)
= ψαa

(
− x0, �x

)
γ0αα.

The virtue of the Feynman-Kac formula (2.1) is that it relates inner products involving functions of the field operators
in the Hilbert space (left-hand side) with statistical mechanical random process (field variables) correlations (right-
hand side).

In our method, the key idea to detect particles and bound states in the E-M spectrum consists of using the
Feynman-Kac formula (2.1) to obtain spectral representations for convenient truncated two- and four-point CFs. It
is these spectral representations that allow us to mathematically justify the relation between the complex momentum
singularities of the Fourier transform of these CFs to points in the E-M spectrum (see [8]). This basic ingredient is
missing in many works in the literature, where only the exponential decay rates of correlations are obtained. These
decay rates may, of course, have no relation with the spectrum, specially when narrow spectral splittings and spectral
bands are involved.

In order to obtain the one-particle spectrum, that is the spectrum associated with the subspace generated by
vectors of the form ψ̄αa(x)Ω, we analyze the following two-point CFs:

Gabαβ(x, y) = χy0�x0

〈
ψ̄αa(x)ψβb(y)

〉
− χx0>y0

〈
ψαa(x)ψ̄βb(y)

〉∗
, (2.2)

where χα is the characteristic function of the set α and ∗ denotes complex conjugation. Using the spectral theorem,
we can write spectral representations for the Tx

0

0 and T�x operators given as

Ť0 =

∫ 1

−1

λ0dE0
(
λ0

)
, Ťj=1,...,d =

∫ π

−π
eiλ

j

dEj
(
λj

)
,

where E0(λ0) and Ej(λj) are the respective spectral families of Ť0, Ť j , and we define E(λ) = E0(λ0)
∏d

1 Ej(λj).
Using these representations in the Feynman-Kac formula (2.1), we obtain the spectral representation for the two-
point CFs:

Gabαβ(x, y) =

∫ 1

−1

∫

Td

λ
|x0−y0|−1
0 ei

�λ·(�x−�y) d
(
ψ̄βa, E(λ)ψ̄αb

)
H . (2.3)

To obtain the two-particle spectrum, that is the spectrum associated with the subspace generated by vectors of
the form ψ̄α1a1(x1 = (x0, �x1)) ψ̄α2a2(x2 = (x0, �x2)) Ω, we analyze the partially truncated four-point CFs:

Dabαβ
(
x1, x2, y1, y2

)
= χy01�x0

1

〈
ψ̄α1a1

(
x1

)
ψ̄α2a2

(
x2

)
ψβb1

(
y1
)
ψβ2b2

(
y2
)〉

− χx0
1<y

0
1

〈
ψα1a1

(
x1

)
ψα2a2

(
x2

)
ψ̄β1b1

(
y1
)
ψ̄β2b2

(
y2
)〉∗

,
(2.4)

where ab (resp. αβ) means a1a2b1b2 (resp. α1α2β1β2), and we work in the equal time representation (i.e. x01 = x02
and y01 = y02). Using the lattice relative coordinates (see [33])

�ξ = �x2 − �x1, �η = �y2 − �y1, τ = y1 − x2,

(2.4) can be written as, setting Dabαβ(x1, x2, y1, y2) ≡ Dabαβ(
�ξ, �η, τ),

Dabαβ
(
�ξ, �η, τ

)
= −χτ0>0

〈
ψα1a1

(
1

2
,�0
)
ψα2a2

(
1

2
, �ξ
)
ψ̄β1b1

(
τ0, �τ + �ξ

)
ψ̄β2b2

(
τ0, �τ + �ξ + �η

)〉∗

+ χτ0�0

〈
ψ̄α1a1

(
1

2
,�0
)
ψ̄α2a2

(
1

2
, �ξ
)
ψβ1b1

(
τ0 +

1

2
, �τ + �ξ

)
ψβ2b2

(
τ0 +

1

2
, �τ + �ξ + �η

)〉
.
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Note that vacuum contributions are automatically removed in (2.4) since they vanish by the imbalance on the number
of fermion fields. Thus, D has an exponential temporal decay in τ0.

Next, in the same way as before for the two-point CFs, we can write the spectral representation (τ0 �= 0)

Dabαβ
(
�ξ, �η, τ

)
=

∫ 1

−1

∫

Td

λ
|τ0|−1
0 ei

�λ(�ξ+�η+�τ) d
(
φb2b1β2β1

(−η), E(λ)φa1a2α1α2
(ξ)

)

H
, (2.5)

where φabαβ(x) = ψ̄aα(0)ψ̄
b
β(x)Ω.

Let f̃(p) =
∑
u∈Zd+1 f(u)e

−ip.u denote the Fourier transform of f(u), u ∈ Z
d+1. Noting that (x0 − y0) ∈ Z

for x0, y0 ∈ Z 1
2

, using (2.3) and lattice translational invariance, the Fourier transform G̃abαβ(p) of Gabαβ(x − y) ≡
Gabαβ(x, y) is given by

G̃abαβ(p) = G̃(0, �p) + λ−1
0

∫ 1

−1

∫

Td

δ
(
�p− �λ

)
[

1

eip0 − λ0
+

1

e−ip0 − λ0

]
d
(
ψ̄αa, E(λ)ψ̄βb

)
H . (2.6)

Therefore, for �p fixed, the singularities in the imaginary p0 axis are associated with the one-particle spectrum.
Similarly, D̃abαβ(p, q, θ0, �τ), the Fourier transform of Dabαβ(�ξ, �η, τ) is given by

∫ [
f̃(�p)

]∗
f̃(�q)D̃abαβ(�p, �q, θ) d

3p d3q = D̃abαβ
(
�p, �q, (0, �τ)

)
+

∫ [
1

eiθ0 − λ0
+

1

e−iθ0 − λ0

]

× δ
(
�λ1 − �p

)
δ
(
�λ2 − �q

)
δ
(
�λ3 − �θ

)
d
(
φb2b1β2β1

(f), E(λ)φa1a2α1α2
(f)

)

H
,

(2.7)

where φabαβ(f) =
∑
�x f(�x)φ

ab
αβ(�x). Thus, for �p fixed, the singularities in the imaginary p0 axis determine the two-

particle spectrum and so bound states.
As we stressed above, without these spectral representations, the analysis of the decay rate of suitable CFs may

not lead to the identification of particles and bound states. Particles and bound states are isolated dispersion curves
in the E-M spectrum. If there is by chance a relation with the spectrum, for example, decay rates may be related to
points within a spectral band.

The CFs given in (2.2) and (2.4) are associated with matrix-valued operators on convenient spaces, and we can
use symmetries at the level of CFs to simplify them. We follow [11] where the most usual symmetries were treated
in detail. A symmetry operation Y defined on the Grassmann algebra G of the fields ψ and ψ̄ is an operation of G
onto itself such that

Yψαa(x) = Aabαβψ̃βb(Yx), Yψ̄αa(x) =
˜̄ψβb(Yx)Bbaβα,

where A and B are 4× 4 complex matrices and Y is a bijective linear map of Zd+1
0 into itself. The symbol ∼ stands

for the introduction or the removal of a bar. A symmetry of the model is defined to be a symmetry operation which
leaves invariant the action (1.1) and the CFs. Usual symmetries such as discrete spatial rotations, time reversal T ,
charge conjugation C and parity P , which can be implemented as unitary (or anti-unitary for time reversal) operators
in the Hilbert space H, are symmetries of the model (see [12]). We also found a new time reflection symmetry T,
which can be implemented only at the CFs level, and which is described by

Y
(
x0, �x

)
=

(
− x0, �x

)
, A = i

(
0 −I2

I2 0

)
⊗ IN , B = A−1.

By applying C, the one-particle and the one anti-particle CFs are the same. So, we only need to consider the lower
spin indexes (i.e. α, β = 3, 4) in the CFs given by (2.2) and (2.4). Next, using CPT, we see that the two-point CFs
G defined by (2.2) is a multiple of the identity. So, we can drop the spin and flavor (due to U(N) flavor symmetry)
indices for the two-point function.

Using these properties, next we discuss the determination of the one- and the two-particle spectrum.

3 One-particle spectrum

Concerning the one-particle spectrum, we adapt the analysis of [34,39] for spin models. By (2.6), we just need
to determine the imaginary p0 singularities of the Fourier transform of G. To identify these singularities, we use
the correspondence between the spacetime decay of the two-point CFs and the width of the analyticity strip of the
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two-point CFs in momentum coordinates, in accordance with the Paley-Wiener theorem (see [31,32]). Thus, we
need a detailed control of the spacetime decay rates of the two-point CFs. Also, it is important to note that the
polymer expansion employed here can be controlled even with the introduction of distinct hopping parameters for
each lattice link. To explore these features, we use the hyperplane decoupling method (see [40]). This is done by
introducing a family of new lattice link variables zaµ , μ = 0, 1, . . . , d, where a0 ∈ Z 1

2
, and ai ∈ Z, i = 1, . . . , d,

by changing the hopping parameter from κ to zaµ , in all action terms that connect lattice point pairs such that
(x, x + eμ) and (x + eμ, x), with xμ = a. Thus, taking zaµ = 0 separates the model in two disconnected regions,
whose frontier is given by the aμ hyperplane. The application of the hyperplane decoupling method corresponds to
Taylor expanding the interpolated CFs up to first order in each interpolating variable zaµ . By construction, we have
G(x, y, zai , κ) = 0, for zai = 0 and all xi � ai < yi. On the other hand, the polymer expansion allows us to extend
the interpolated CFs to complex zaµ , so from the Taylor expansion, we can write

G
(
x, y, zaµ , κ

)
=

1

2π

∫ zaµ

0

∫

C

G
(
x, y, zaµ , κ

)

z2ai
dzai ,

where C is a circle with center in zai = 0 and radius given by the convergence radius of the polymer expansion.
This integral representation allows us to apply a Cauchy estimate and shows that G(x, y) satisfies the global bound

∣
∣G(x, y)

∣
∣ < O(1)|κ|‖x−y‖,

where ‖x‖ =
∑d+1
μ=0 ‖x

μ‖. Next, by a generalized Paley-Wiener theorem, this global bound implies that G̃(p) is
analytic in a strip of width [−(1−ε) lnκ], 0 < ε� 1. Moreover, we note that the zaµ derivative of G has the product
formula

∂G

∂zai

∣
∣
∣
∣
zai

=0

=
∑

g:gi=ai

G(x, g)G
(
g ± ei, y

)
, (3.1)

which is an instrumental property in what follows.
With the introduction of the hyperplane variables, CFs are no longer invariant under translations but, by Holm-

gren’s lemma (see [39]) and (3.1), we can show that the modified G defines a bounded operator in the space
�2(Zd+1

0 ). Thus, taking the decomposition

G = Gd +Gn = Gd
[
1 +G−1

d Gn
]−1

,

where Gd collects only local contributions to G, as a matrix operator on �2(Zd+1
0 ), with G(x, x) �= 0, and thus

we can define the convolution inverse correlation Γ through a convergent Neumann series applied to the factor
[1+G−1

d Gn]
−1. Using the hyperplane decoupling method again and the product formula of the zai derivative of G,

we see that

∂Γ

∂zai

∣
∣
∣
∣
zai

=0

= 0, for ‖x− y‖ > 1.

Also, a straightforward application of the hyperplane decoupling method allows us to show that Γ (x, y) = 0 and
∂2Γ
∂z2ai

= 0 for zai = 0 and all xi � ai < yi. So, by a Cauchy estimate, we also get that the improved global bound

∣
∣Γ (x, y)

∣
∣ < O(1) |κ|3‖x−y‖, (3.2)

which holds for ‖x − y‖ > 1. This bound shows that Γ (x, y) has a faster decay than G(x, y). Using again the
Paley-Wiener theorem, this faster decay implies that the Fourier transform Γ̃ (p) =

∑
x Γ (x)e

−ip·x is analytic up to
close to the three-particle threshold, which is approximately −(3− ε) lnκ. This strip of analyticity is larger than the
one for G̃(p). Hence, Γ̃−1 provides an analytic continuation for G̃ on this enlarged strip. This property is important
either to prove the upper mass gap property or for the analysis of the two-particle spectrum given below.

From (2.6), the one-particle E-M spectrum is determined by the zeroes of det Γ̃ . Using (3.2) and a Taylor
expansion of G in κ = 0 allows us to write

Γ (x) = g−1
2 δ(x)− κ

[
δ
(∣∣x0 − e0

∣
∣)δ(�x) +

κ

2
δ
(
x0

)
δ
(
|�x| − 1

)]
+Ω(x), (3.3)

with |Ω(x)| � O(1)|κ|3|x|.
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Next, let Γ̃0(p0, �p) be the Fourier transform of Γ (x) − Ω(x). We see that, for �p ∈ Td, det Γ̃0(p0, �p) has exactly
one root E(�p) = ln ζ0, with

ζ0 = g−1
2 κ−1 −

d∑

μ=1

cos pμ +O(κ).

So, by applying the analytic implicit function theorem (see [18]) and Rouché’s theorem (i.e. the principle of
the argument, see [4]), we can show that, since κ is small, the zeroes of det Γ̃ (ω(p0, �p)) are close enough to
E(�p). Therefore, we see that there is a lower mass gap of multiplicity sN

2 (due to spin and flavor symmetries),
corresponding to the isolated one-particle dispersion curves

ω(�p) = − ln g2κ− g2κ
∑

j=1,...,d

cos pj +O
(
κ2

)
. (3.4)

The one-particle mass ω(�p = �0) is given by

m(κ) = − ln g2κ− dg2κ+O
(
κ2

)
, (3.5)

where g2 = 〈ψ̄αa(x)ψαa(x)〉|κ=0. Above the one-particle spectrum there are two-, three-, . . . free particle bands,
with finite width, and eventually overlapping for a large particle number.

In the next section, we inspect for the existence of two-particle bound states near the free two-particle band.

4 Bethe-Salpeter equation and ladder approximation

To perform our bound state analysis, we use a lattice version of the B-S equation for this model which, in operator
form, reads

D = D0 +DKD0. (4.1)

In terms of its operator kernel, D0 is given by

Dab0,αβ(x, y) = Ga1b2α1β2

(
x1, y2

)
Ga2b1α2β1

(
x2, y1

)
−Ga1b1α1β1

(
x1, y1

)
Ga2b2α2β2

(
x2, y2

)
. (4.2)

and corresponds to the Gaussianly evaluated (i.e. applying Wick’s theorem) four-point function with the corrected
propagator, having the above determined mass. With these definitions, we write the B-S operator

K = D−1
0 −D−1. (4.3)

Using the exponential decay of the two-point CFs, we see that D0 decays and has a finite norm. On the other
hand, the polymer expansion implies that DT = D − D0, the connected (truncated) four-point function, has an
exponential tree decay, so also D has a finite norm. Therefore, both operators exist as bounded operators in �2(A),

A = {(x, y) ∈ Z
d+1
0 |x0 = y0}4N

2

. Decomposing D and D0 into diagonal and non-diagonal contributions, we can
use again Holmgren’s lemma and a Neumann series argument to show thatD−1

0 ,D−1 and B-S operatorK also exist
as bounded operators in �2(A). With this, (4.3) is validated starting from the B-S equation (4.1).

In this paper, we restrict our analysis of the two-particle bound state spectrum to the leading approximation of
the B-S operator, which we call a ladder approximation. By computingK to the leading nonvanishing κ contribution
K ≡ L, and using L to solve (4.1) for D, we then look for the singularities of D̃(�ξ, �η, k), the τ Fourier transform of
D(�ξ, �η, τ), to determine the two-particle bound states.

We now show that L is local and O(κ0). To do this, we write

D = D0 +DT ,

where DT is the connected (truncated) four-point function. At κ = 0, DT vanishes for non-coincident points
(see [8]), as seen by writing it in terms of source derivatives of the logarithm of the generating function. Using a
simple Taylor expansion in κ = 0, we find

Dabαβ(x, y) = −2g4Pxy
(
1− Sabαβ

)
Ia − 2g22

(
1− Pxy

)
Ia +O(κ), Dab0,αβ(x, y) = −2g22Ia +O(κ),

where

Pxy = δx1x2δy1y2δy1x2 , Sabαβ = δα1α2δβ1β2
δβ1α2

δa1a2δb1b2δb1a2 ,
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Ia is the identity on the anti-symmetric subspace of �2(A), and g4 is a function of m,λ,N defined by

g4 =
〈
ψ̄αa(x)ψ̄βa(x)ψαa(x)ψβa(x)

〉∣∣
κ=0

.

With all this, we have K = L+O(κ), where

Labαβ(x, y) = −ℵPxy
[
I
ab
αβ − Sabαβ

]
,

where ℵ is defined in (1.3) and with I being the 4N2 × 4N2 identity matrix.
In order to proceed, it is worth mentioning that the B-S equation (4.1) has the same structure as an opera-

tor Schrödinger equation in the resolvent form, with D0 being similar to the resolvent (H0 − z)−1 for the free
Schrödinger Hamiltonian operator (kinetic energy) H0, D the interacting resolvent (H − z)−1 for the Hamiltonian
H = H0 + V and, modulo a multiplicative constant, K is the potential V . We refer to [10] for more details.
In view of this similarity, consider a Schrödinger Hamiltonian for two interacting particles with mass m > 0 in
(�2(Zd)× �2(Zd)), given by

H2 = − 1

2m

(
Δ1 +Δ2

)
+ V2

(
�x1 − �x2

)
≡ H0 + V2, (4.4)

where Δ1=Δ⊗ I, Δ2=I ⊗Δ and −Δ is minus the lattice Laplacian. The action of −Δ on f ∈�2(Zd) is given by

−Δf(�x) = 2df(�x)−
d∑

i=1

[
f
(
�x+ ei

)
+ f

(
�x− ei

)]
.

The interaction potential V2(x− y) has the form

V2(x− y) = λδ(x− y) +W12(x− y),

where, by hypothesis, the W term collects all non-local contributions to the potential V2, and has exponential decay
of order m−2. Thus, for λ > 0, the first term is a repulsive hardcore potential.

The corresponding resolvent Schrödinger equation is given by
(
H2 − z

)−1
=

(
H0

)−1 −
(
H0 − z

)−1
V2

(
H2 − z

)−1
. (4.5)

By identifying L to −V2, the resolvent equation (4.5) is analogous to our B-S equation in the ladder approximation.
Using the above decomposition of V2, we find

(
H2 − z

)−1
=

(
Hl − z

)−1 −
(
Hl − z

)−1
W

(
H2 − z

)−1
, (4.6)

where
(
Hl − z

)−1
=

(
H0 − z

)−1 −
(
H0 − z

)−1
L
(
Hl − z

)−1
, (4.7)

with

L(�x, �y) = λδ(�x− �y).

Hence, restricting our attention to the dominant contribution to the potential, we obtain the spectral properties of
Hl = H0 + λδ. Let σ(O) denote the spectrum of the operator O. If z �∈ σ(Hl) ∪ σ(H0), then (4.7) yields to

(
Hl − z

)−1
(�x, �y) =

(
H0 − z

)−1
(�x, �y)−

λ
(
H0 − z

)−1(
�x,�0

)(
Hl − z

)−1(
�x,�0

)

1− λ
(
H0 − z

)−1(�0,�0
) . (4.8)

For z �∈ [0, 4d], σ(Hl) coincides with the z singularities of (4.7), that is the zeroes of the denominator of (4.8).
Hence, taking �k = �0, we have the bound state equation

λ
(
H0 + Eb

)−1
(�0,�0) =

λ

(2π)d

∫

Td

d�p

−Δ̃(�p) + Eb
= −1. (4.9)

Consider the attractive case (λ < 0). For small momenta, −Δ̃(�p) ≈ |�p|2. Thus, for d = 1, 2, (4.9) diverges as
Eb → 0, and since the integrand is strictly monotone in the binding energy Eb > 0, we can find a unique bound state
solution for any λ < 0. For d � 3, the integral in (4.9) converges absolutely and remains finite as Eb → 0, therefore
there is a critical value λc < 0 that allows bound states to exist. This is a consequence of the Birman-Schwinger
bounds given for example in [31]. Also, (4.6) and a perturbation argument can be used to show that the singularities
of (H2 − z)−1 are close to the singularities of (Hl − z)−1.

In the next section, we rigorously determine bound states in the ladder approximation.
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5 Bound states

In the ladder approximation, the B-S equation reads

Dabαβ(x, y) = Dab0,αβ(x, y) +Dacαζ(x, z)L
cd
ζε(z, w)D

db
0,εβ(w, y),

where we sum over repeated indices. Changing to relative coordinates and letting f̃(�ξ, �η, k) =
∑
τ f(

�ξ, �η, τ)e−ik
0τ0

denote the Fourier transform in τ only. At zero spatial momentum (�k = �0), we find

D̃abαβ
(
�ξ, �η, k

)
= D̃ab0,αβ

(
�ξ, �η, k0

)
− D̃ac0,αζ

(
�ξ,�0, k0

)
ℵ
[
I
dc
εζ − Sdcεζ

]
D̃dbεβ

(
�0, �η, k0

)
. (5.1)

Therefore, we obtain from (5.1)

D̃abαβ
(
�ξ, �η, k0

)
= D̃ab0,αβ

(
�ξ, �η, k0

)
+ D̃ac0,αζ

(
�ξ,�0, k0

){[
I+ ℵ[I− S]D̃0

(
�0,�0, k0

)]−1
}cd

ζ,ε
D̃db0,εβ

(
�0, �η, k0

)
. (5.2)

From the analysis of the two-point CFs G, D̃ab0,αβ(�ξ, �η, k) is analytic in [0, 2m(κ)) ∪ (2m(κ) +W, 3m), where

W = 2
[
w(�π)− w(�0)

]
= 8κg2d+O

(
β2

)

is the free two-particle band width.
Hence, from (5.2), we see that there is no bound state for ℵ = 0 since this condition implies D̃ = D̃0. On the

other hand, bound states do occur wherever

det
(
I+ ℵ[I− S]D̃0(�0,�0, k)

)
= 0.

The operator (I+ ℵ[I− S]D̃0(�0,�0, k)) has 4N2 eigenvalues, which we denote by μi(k), i = 1, . . . , 4N2. With this
definition, we see that a bound state is identified with zeroes of at least one of the eigenvalues μi(k) of

I+ ℵ[I− S]D̃0(�0,�0, k).

From (4.2), by an expansion up to the leading order in κ, we see that

D0(�0,�0, τ) = −2G2(�0, τ)(I− S),

where G is the two-point CFs given by (2.2). Thus, we just need to obtain the zeroes of the eigenvalues of

I− 2ℵR
(
k0

)
(I− S),

where

R
(
k0

)
=

∫ 〈
ψ̄1a(0)ψ1a(τ)

〉2
e−k

0τ0 d�τ dτ0.

By inspection, there are only two distinct eigenvalues. First, for i = 1, . . . , 2N2+N , we have μi(k
0) = 1. Thus,

this eigenvalue cannot satisfy the bound state condition. Also, note that the corresponding eigenvectors lie in the
symmetric subspace of R4N2

. Second, for i = 2N2 +N, . . . , 4N2, we have the eigenvalue μi(k
0) = 1− 2ℵR(k0),

and the corresponding eigenvectors lie in the antisymmetric subspace of R4N2

. These states, in principle, can satisfy
our bound state condition. For them, the bound state condition is described byR(k0) = (2ℵ)−1. We now analyze this
equation, using the spectral representation established in (2.3) and the conclusions of the analysis of the two-point
CFs performed in Section 3, to obtain the spectral representation (see [34,39])

G(0, x) =

∫ ∞

0

∫

Td

ei�p·�x−E|x0|dσ�p(E)d�p, (5.3)

where, for ω(�p) given in (3.4), we use the measure decomposition

dσ�p(E) = Z(�p, κ)δ
(
E − ω(�p)

)
dE + dσ̂�p(E), (5.4)

with Z(�p, κ) = ∂Γ̃
∂χ (p

0 = iχ, �p)|χ=ω(�p), and where Γ̃ (p) = [G̃(p)]−1. Both dσ�p(E) and dσ̂�p(E) are positive
measures. The measure dσ̂�p(E) has support in (m̄,∞), where m̄ ≈ −3 lnκ approaches from below the onset of the
free three-particle spectrum. The decomposition in (5.4) of dσ�p(E)d�p separates the one-particle contribution from
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the contributions involving three or more particles which are left in dσ̂�p(E). Also, from the analysis in Section 3, it
follows that Z(�p, κ) is positive for any �p and κ > 0.

Using the representation (5.3), and holding in (5.4) only the product of one-particle contributions associated
with Z(�p, κ)δ(E − ω(�p))dE, we obtain (see [36] for more details)

R
(
k0

)
= 2(2π)d+1

∫

Td

sinh
(
2ω(�p)

)[
Z(�p, κ)

]2

cosh
(
2ω(�p)

)
− cos k0

d�p+O(κ),

where

Z(�p, κ) = (2π)−dg2 +O(κ).

From the last expression, we can directly check that, for 0 < �(k0) < 2m (i.e. below the two-particle threshold),
we have R(k0) > 0. Hence, there is no bound state below the two-particle band for ℵ < 0 (Gaussian domination).
Also, for 2m+W < �(k0) < 3m, we have R(k0) < 0 and no bound state appears above the two-particle band for
ℵ > 0 (Gaussian subjugation). The only k0 singularities of D̃(�ξ, �η, k0) in (5.1), for �(k0) ∈ (0, 2m)∪(2m+W, 3m),
are solutions of

2ℵ
∑

τ

G2(0, τ)e2mτ0e−δετ0 = 1, (5.5)

where m is the one-particle mass and δε is the bound state energy measured from the two-particle threshold (i.e. we
set −ik0 = 2m(κ)− δε).

Next, we give an intuitive argument for the bound state formation based on the behavior of 〈ψ̄1a(0)ψ1a(x)〉.
A rigorous argument using the convolution form in momentum space of the above condition and the spectral
representation of two-point CFs can be established. Expanding 〈ψ̄1a(0)ψ1a(x)〉 to the leading order in κ, we obtain

〈
ψ̄1a(0)ψ1a(x)

〉
≈ κ|τ

0|+|�τ |g|τ
0|+|�τ |+1

2 .

This leading behavior follows from expanding the numerator of the two-point function. In order to get nonvanishing
fermionic integration, there must be a chain of overlapping bonds (propagators) connecting the points 0 to x. Taking
the chains of minimal length, the right side of the above approximation to 〈ψ̄1a(0)ψ1a(x)〉 follows. A polymer
expansion can be used to rigourously control all contributions. Using in (5.5) m(κ) from (3.5), we obtain the bound
state condition to the leading order in κ, 2g2ℵ(1− e−δε) = 1.

Let εA = δε (εR = −δε−W ) denote the bound state binding energy for the attractive (repulsive) case. For the
attractive case, we find

εA = − ln
[
1−

(
2ℵg2

)−1
]
,

where ℵ > 0 (Gaussian subjugation), meaning that this spectral point appears below the free two-particle threshold.
Similarly, for the repulsive case, the binding energy is given by

εR = ln
[
1−

(
2ℵg2

)−1
]
+W.

Since now ℵ < 0 (Gaussian domination), this spectral point appears above the free two-particle band.

6 Conclusions

In closing, we point out that the low-lying E-M spectra of other GN models in d = 1 have been obtained (at least
approximately) by other methods in the continuum massless case. For instance, the Bethe-Yang ansatz was employed
in the chiral invariant version of the GN Hamiltonian (see [1]), as well as Hartree approximations (see [22]) and
semiclassical approaches (as in [6]). Our results agree qualitatively with those. Contrarily to what happens in pure
bosonic models, where one may claim that the dependence of the appearance of bound states on the signs of the
interaction is expected, here the fact that we are dealing with a purely fermionic model makes the situation different
(and we cannot make a direct prediction!) since we cannot read the sign of the interacting potentials in the expression
of the model action. Besides, the results presented here are obtained in a precise mathematical setting which includes
the derivation of the upper gap property that is absent in the Hamiltonian formulations. Furthermore, our method
can be easily exported to other models, and our results can be extended beyond the ladder approximation using the
methods, for example, of [35,36]. To do this, a fast decay of the B-S kernel is crucial. This decay can be derived using
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the hyperplane decoupling method. In terms of the lattice relative coordinates of Section 2, we show the global bound

∣
∣Kab

αβ(�ξ, �η, τ)
∣
∣ � O(1)|κ|4|τ

0|+ 1
2 (‖�ξ+�η+2�τ‖+‖�ξ‖+‖�η‖),

revealing a decay with a rate greater than the two-particle one. Whether or not the degeneracy of the bound states is
preserved in the complete model is an open question. Finally, we remark that the spectral pattern obtained here for
the U(N) GN model is similar to the one found for the O(2N) spin model in [8], except that the latter has also a
bound state of a different multiplicity, 2N .
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