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Abstract
Let G be a Lie group with Lie algebra g. On the trivial principal G-bundle over g

there is a natural connection whose curvature is the Lie bracket of g. The exponential
map of G is given by parallel transport of this connection. If G is the diffeomorphism
group of a manifold M , the curvature of the natural connection is the Lie bracket of
vectorfields on M . In the case that G = SO(3) the motion of a sphere rolling on a plane
is given by parallel transport of a pullback of the natural connection by a map from
the plane to so(3). The motion of a sphere rolling on an oriented surface in R3 can be
described by a similar connection.

2000 MSC: 53C05, 53C29

1 A natural connection and its curvature

Samelson [6] has shown that the covariant derivative of a connection can be expressed as a
Lie bracket. It is the purpose of this article to show that the Lie bracket of a Lie algebra can
be expressed as the curvature form of a natural connection. Although it is plausible that this
natural connection has been described before or is known as mathematical folklore, it does
not appear in the standard references (e.g., Kobayashi and Nomizu [4, 5] or Sharpe [7]).

The setting for this result is the following. Let π : P → X be a right principal G-bundle
with the Lie group G as the structure group. A connection on P is a smooth G-equivariant
distribution of horizontal spaces in the tangent bundle TP complementary to the vertical
tangent spaces of the fibers. The curvature of a connection is a g-valued 2-form on the total
space P . A good reference is Bleecker’s book [2].

Let G be a Lie group and g its Lie algebra. Let P = g×G be the total space of the trivial
right principal G-bundle with projection P → g : (x, g) 7→ x. The right action of G on P is
given by (x, h) · g = (x, hg) and let Rg denote the action of g on P ; that is, Rg : P → P :
(x, h) 7→ (x, hg). Let 1 ∈ G be the identity element and let ι : g→ g×G : x 7→ (x, 1) be the
identity section of the bundle.

Let Lg : G → G : h 7→ gh and Rg : G → G : h 7→ hg be the left and right multiplication
by g. The context should make it clear whether Rg is acting on P or on G. The adjoint action
of G on g is the derivative at the identity of the conjugation action of G on itself. That is,

Adg : g −→ g : v 7−→ T1

(
Lg ◦Rg−1

)
(v)

Finally, we recall the definition of a fundamental vectorfield on a principal G-bundle P .
For ξ ∈ g, let ξ̃ be the vectorfield on P whose value at p is given by

ξ̃(p) =
d

dt

(
p · exp(tξ)

)∣∣
t=0

The vectorfield ξ̃ is called a fundamental vectorfield. In the case that P is the trivial bundle
g×G, it is routine to check that

ξ̃(x, g) =
(
0, T1Lg(ξ)

)
∈ g× TgG
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Theorem 1.1. There is a natural connection on the trivial bundle P = g × G whose local
curvature 2-form (with respect to the identity section ι) is the constant g-valued 2-form on g

whose value on a pair of tangent vectors ξ, η ∈ g is the Lie bracket [ξ, η].

Proof. We define the connection on P by choosing the horizontal spaces. For (x, g) ∈ P let
H(x,g) be the subspace of T(x,g)P defined by

H(x,g) :=
{(
v, T1Rg(v)

)
| v ∈ g

}
It is easy to check that the distribution is right equivariant and that H(x,g) is complementary
to the vertical tangent space at (x, g).

Let α be the g-valued 1-form on P defining this connection. It is characterized by having
the horizontal space H(x,g) as the kernel of α(x,g) and by satisfying the conditions

(i) α(x,g)(ξ̃(x, g)) = ξ,

(ii) Rg
∗α = Adg−1 ◦ α.

From these properties one can check that α is defined by

α(x,g)(v, ξ) = TgLg−1(ξ)−Adg−1(v)

The curvature of a connection is the g-valued 2-form on the total space P defined by

dα+
1
2

[α, α]

Pulling α back to g by ι gives the local connection 1-form ω = ι∗α.
The local curvature form Ω is then

Ω = dω +
1
2

[ω, ω]

Computing ω we see that

ωx(v) = α(x,1)(v, 0) = −v

Hence, ω is a constant form, and dω = 0. We evaluate [ω, ω] on a pair of tangent vectors
ξ, η ∈ Txg ∼= g as follows:

[ω, ω](ξ, η) =
[
ω(ξ), ω(η)

]
−
[
ω(η), ω(ξ)

]
= [−ξ,−η]− [−η,−ξ] = 2[ξ, η]

Therefore, the local curvature form Ω is the constant g-valued 2-form that maps a pair of
tangent vectors ξ, η, which are just elements of g, to the Lie bracket of ξ and η.

Ω(ξ, η) =
(
dω +

1
2

[ω, ω]
)

(ξ, η) = [ξ, η]

For a Lie group homomorphism φ : G1 → G2, let Lφ : g1 → g2 be the associated Lie
algebra homomorphism. (Note that Lφ is T1φ when the Lie algebras are viewed as the tangent
spaces at the identities of the groups.) Then the map

φ̃ : g1 ×G1 −→ g2 ×G2 : (x, g) 7−→
(
Lφ(x), φ(g)

)
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is a morphism of principal bundles, which means that it commutes with the right actions of
G1 and G2:

φ̃(x, hg) =
(
Lφ(x), φ(hg)

)
=
(
Lφ(x), φ(h)φ(g)

)
Furthermore, it is a morphism that preserves the horizontal spaces of the natural connections
defined in Theorem 1.1. More precisely, T φ̃maps the horizontal subspaces in T (g1×G1) to the
horizontal subspaces in T (g2×G2) as follows. Let (v, T1Rg(v)) be in H(x,g) ⊂ T(x,g)(g×TgG1).

T φ̃
(
v, T1Rg(v)

)
=
(
TxLφ(v), Tgφ

(
T1Rg(v)

))
=
(
Lφ(v), T1

(
φ ◦Rg

)
(v)
)

=
(
Lφ(v), T1

(
Rg ◦ φ

)
(v)
)

=
(
Lφ(v), T1Rφ(g)

(
T1φ(v)

))
which is an element of the horizontal space at (Lφ(x), φ(g)) in T (g2 ×G2).

We also note that for a composition of Lie group homomorphisms φ ◦ ψ, the principal
bundle map φ̃ ◦ ψ = φ̃ ◦ ψ̃, and that Ĩ is the identity on the principal bundle for the identity
I : G→ G. Hence, we have proved the following theorem.

Theorem 1.2. There is a covariant functor F from the category of Lie groups to the category
of principal bundles with connection, which is defined on objects so that F(G) is the trivial
principal bundle g×G with its natural connection and defined on morphisms by F(φ) = φ̃.

Next we consider the relationship between the connection 1-forms of the two bundles.

Proposition 1.3. The following diagram commutes:

T
(
g1 ×G1

) T φ̃−−−−→ T
(
g2 ×G2

)
α1

y yα2

g1
Lφ−−−−→ g2

Equivalently, φ̃∗α2 = Lφ ◦ α1.

Proof. Starting with the composition α2 ◦ T φ̃ we have(
α2

)
φ̃(x,g)

T φ̃(v, ξ) =
(
α2

)
(Lφ(x),φ(g))

(
Lφ(v), Tgφ(ξ)

)
= Tφ(g)Lφ(g)−1

(
Tgφ(ξ)

)
−Adφ(g)−1

(
Lφ(v)

)
= Tg

(
Lφ(g)−1 ◦ φ

)
(ξ)−Adφ(g)−1

(
Lφ(v)

)
= Tg

(
φ ◦ Lg−1

)
(ξ)−Adφ(g)−1

(
Lφ(v)

)
= T1φ

(
TgLg−1(ξ)

)
− Lφ

(
Adg−1(v)

)
= Lφ

(
TgLg−1(ξ)

)
− Lφ

(
Adg−1(v)

)
= Lφ

(
TgLg−1(ξ)

)
−Adg−1(v)

= Lφ
((
α1

)
(x,g)

(v, ξ)
)

Proposition 1.4. The following diagram commutes:

Tg1
T (Lφ)−−−−→ Tg2

ω1

y yω2

g1
Lφ−−−−→ g2

Equivalently, (Lφ)∗ω2 = Lφ ◦ ω1.
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Proof. Because Lφ is linear, Tx(Lφ) = Lφ for all x ∈ g1. Thus, for v ∈ Txg1 = g1,

ω2

(
Tx(Lφ)(v)

)
= ω2

(
Lφ(v)

)
= −Lφ(v) = Lφ(−v) = Lφ

(
ω1(v)

)
Also, the local curvature forms commute with the Lie algebra homomorphism Lφ.

Proposition 1.5. Let Ωi, i = 1, 2, be the local curvature 2-form for the natural connection
on gi ×Gi. Then Lφ ◦ Ω1 = Ω2 ◦ Lφ.

Proof. This is simply restating the fact that Lφ is a homomorphism of Lie algebras:
Lφ([ξ, η]) = [Lφ(ξ),Lφ(η)].

Remark 1.6. Let G be the diffeomorphism group of a manifold M with g being the space of
vectorfields on M . Although G is not, strictly speaking, a Lie group, the natural connection
on g×G still makes sense, and so the curvature of this connection is given by the Lie bracket
of vectorfields.

Given a smooth curve c : [0, 1]→ g, parallel transport along c is horizontal lift (c(t), g(t))
with initial condition g(0) = 1. Therefore, g is a solution of the differential equation

g′(t) = T1Rg(t)
(
c′(t)

)
which simply says that (c′(t), g′(t)) is in the horizontal subspace at the point (c(t), g(t)).

Theorem 1.7. Let ξ be an element of the Lie algebra g and define c(t) = tξ. Then parallel
transport along c is given by g(t) = exp(tξ).

Proof. It suffices to show that g(t) = exp(tξ) satisfies the differential equation g′(t) =
T1Rg(t)(c′(t)) with initial condition g(0) = 1. The derivative of exp(tξ) is given by

d

dt
exp(tξ) =

d

ds
exp

(
(t+ s)ξ

)∣∣
s=0

=
d

ds

(
exp(sξ) exp(tξ)

)
|s=0

=
d

ds

(
Rexp(tξ) exp(sξ)

)
|s=0 = T1Rexp(tξ)(ξ)

= T1Rg(t)
(
c′(t)

)
Remark 1.8. With this result there is another way to see that the Lie bracket is the
curvature, since

[ξ, η] =
1
2
d2

dt2
exp(tξ) exp(tη) exp(−tξ) exp(−tη)

∣∣∣
t=0

is the infinitesimal parallel transport around the parallelogram spanned by ξ and η, which,
in turn, is the curvature tensor applied to ξ and η.

Corollary 1.9. Let η and ξ be elements of g and define c(t) = η + tξ. Let g(t) be the
horizontal lift of c with g(0) = g0 ∈ G. Then g(t) = exp(tξ)g0.

Proof. Since c′(t) = ξ, the value of η does not matter. Therefore, let η = 0. By the theorem
γ(t) = exp(tξ) is the horizontal lift of c with γ(0) = 1. The right-invariance of the horizontal
spaces implies that g(t) = γ(t)g0.
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Remark 1.10. Parallel transport along c is also known as the time-ordered (or path-ordered)
exponential of c′. One of the equivalent ways to define the time-ordered exponential of a curve
a(t) ∈ g is to define it as the solution of the differential equation g′(t) = T1Rg(t)(a(t)) with
g(0) = 1. For a(t) = c′(t) this is the differential equation defining parallel transport along c.
To understand the use of the phrase “time-ordered exponential,” we use a piecewise linear
approximation to c starting at c(0) and consisting of the line segments connecting c(ti−1) and
c(ti) where ti = (i/n)t, i = 0, 1, . . . , n. Let ∆t = t/n. Then by repeated use of the corollary
g(t) is approximated by

g(t) ≈ exp
(
c
(
tn
)
− c
(
tn−1

))
exp

(
c
(
tn−1

)
− c
(
tn−2

))
· · · exp

(
c
(
t1
)
− c
(
t0
))

≈ exp
(
∆tc′

(
tn−1

))
exp

(
∆tc′

(
tn−2

))
· · · exp

(
∆tc′

(
t0
))

Therefore, g(t) is the limit as n goes to infinity of this product of exponentials, which are
ordered according the parameter value.

Remark 1.11. The holonomy subgroup (at a point x0 in the base space) of a connection on
a principal G-bundle is the subgroup of G consisting of the results of parallel transporting
around closed curves starting and ending at x0. The null holonomy group is the subgroup
resulting from transporting around null-homotopic curves. By the Ambrose-Singer theorem
[1] the Lie algebra of the null holonomy group is generated by the values of the curvature
tensor. Now g is simply connected and so the null holonomy group is the holonomy group
and its Lie algebra is the derived algebra [g, g]. Assuming G is connected, the holonomy
group is the derived group of G.

2 Examples

2.1 The special orthogonal group

Let G be the rotation group SO(3) with g = so(3), the Lie algebra of infinitesimal rotations.
We identify so(3) with R3 in the standard way so that the vector v in R3 corresponds to
the infinitesimal rotation with axis v that goes counterclockwise with respect to an observer
with v pointing towards him. The angular velocity is the magnitude of v. If v = (v1, v2, v3),
then the corresponding matrix ρv in so(3) is

ρv =

 0 −v3 v2

v3 0 −v1
−v2 v1 0


Then ρv×w = [ρv, ρw], so that the map ρ is an isomorphism of Lie algebras (R3,×) →
(so(3), [ , ]).

Given a curve c : [0, 1]→ R3, parallel transport along c is given by the curve g : [0, 1]→
SO(3), which is the unique solution to the differential equation

g′(t) = ρc′(t)g(t), g(0) = I

In other words, the infinitesimal rotation at t has for its axis of rotation the vector c′(t). One
can visualize this as a sphere of radius 1 rotating at the head of a screw (with right-hand
threads) that is tunneling through space following the trajectory given by the curve c. Note
that the spherical head is not rigidly attached to the screw because the axis of rotation must
be free to vary.
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2.2 A rolling sphere on a plane

A variation of this natural connection can be used to describe the geometry of a sphere
rolling without slipping on a horizontal plane. The plane is R2 embedded in R3 as the set
of points {(x1, x2, 0)} and a sphere of radius 1 sits on top of the plane. Let c : [0, 1] → R2

be a smooth curve with initial point c(0) = (x1(0), x2(0)). Roll the sphere along the curve
c until it reaches the endpoint c(1) = (x1(1), x2(1)). As the sphere rolls along, the point of
contact is c(t) and the configuration of the sphere is given by a curve g(t) in SO(3). At each
point c(t) the infinitesimal rotation is about the axis J(c′(t)), where J : R2 → R2 is π/2
rotation counterclockwise defined by J(x1, x2) = (x2,−x1). We can formulate the differential
equation satisfied by g(t) as

g′(t) = ρJ(c′(t))g(t), g(0) = I

(Briefly, g(t + dt) = (I + ρJ(c′(t)))g(t)dt, from which the differential equation follows.) In
order to see this differential equation as the parallel transport equation for the curve c with
initial condition g(0) = I, we define a connection on R2 × SO(3) with horizontal space at
the point (x, g) in R2 × SO(3) given by

H(x,g) =
{(
v, ρJ(v)g

)
| v ∈ R2

}
⊂ R2 × Tg SO(3)

The connection 1-form α is defined by

α(x,g)(v, ξ) = g−1ξ − g−1ρJ(v)g

Let ω = ι∗α be the local connection 1-form. Since

ωx(v) = α(x,I)(v, 0) = −ρJ(v)

we see that ω is constant, i.e., dω = 0. Then the local curvature 2-form acts on a pair of
tangent vectors u, v ∈ TxR2 = R2 ⊂ R3 by(

dω +
1
2

[ω, ω]
)

(u, v) = 0 +
1
2

[ω, ω](u, v) =
1
2
([
ω(u), ω(v)

]
−
[
ω(v), ω(u)

])
=
[
ω(u), ω(v)

]
=
[
− ρJ(u),−ρJ(v)

]
=
[
ρJ(u), ρJ(v)

]
=
[
ρu, ρv

]
For the last step note that [ρJ(u), ρJ(v)] = ρJ(u)×J(v) because ρ is an isomorphism of Lie
algebras. Also, J(u) × J(v) = u × v from the geometric properties of the cross product.
Finally, ρu×v = [ρu, ρv].

The derived algebra of so(3) is so(3) because each of the basis elements e1, e2, e3 in R3 is
a cross product. The group SO(3) is connected, and so, by the Ambrose-Singer theorem, the
holonomy subgroup is all of SO(3). In other words, any rotation of a sphere can be achieved
by rolling the sphere around some closed path in the plane. An elementary proof (without
the apparatus of modern differential geometry) of this old result has recently appeared [3].

The connection just defined is actually just a pullback of the natural connection on so(3)×
SO(3).

Theorem 2.1. Define

f : R2 −→ so(3) : x 7−→ ρJ(x) =

 0 0 x1

0 0 x2

−x1 x2 0


Then the connection on R2 × SO(3) associated to the rolling sphere is the pullback by ρJ of
the natural connection on so(3)× SO(3).
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Proof. The pullback bundle of the trivial bundle is also trivial. Let f̂ denote the bundle
map R2 × SO(3)→ so(3)× SO(3) : (x, g) 7→ (f(x), g). Then it suffices to compute f̂∗α, the
pullback of the connection 1-form α on so(3)×SO(3), to see that it is the connection 1-form
of the rolling sphere. At a point (x, g) ∈ R2 × SO(3) we have(

f̂∗α
)
(x,g)

(v, ξ) = α(f(x),g)

(
Df(x)(v), ξ

)
= α(f(x),g)

(
f(v), ξ

)
(since f is linear)

= g−1ξ − g−1f(v)g = g−1ξ − g−1ρJ(v)g

2.3 A rolling sphere on a surface

Now more generally, we consider a sphere rolling on a surface in R3. We will construct a
connection on the trivial SO(3)-bundle over the surface whose parallel transport describes the
rotation of the sphere. However, in this generality, the connection need not be a pullback of
the natural connection on so(3)×SO(3). Let X be a smooth orientable surface in R3 and let
n be the unit normal vectorfield pointing to the side on which the sphere rolls. Let J be the
automorphism of the tangent bundle TX that rotates each tangent space counterclockwise
π/2 with axis of rotation given by the unit normal n. With the natural identification of TxX
with R2, Jx(v) = n(x)× v. As compared with the planar surface it is now more complicated
to describe the infinitesimal rotation at a point x ∈ X in the direction v ∈ TxX because of
the twisting and turning of the tangent spaces of the surface.

The unit normal vectorfield is a map n : X → R3. The derivative of n at x is a linear
map Dn(x) : TxX → R3. Differentiating the constant function 〈n(x),n(x)〉 = 1 shows that
〈n(x), Dn(x)(v)〉 = 0. Therefore, Dn(x)(v) ∈ TxX and hence v+Dn(x)(v) also lies in TxX.
Then the vector J(v +Dn(x)(v)) is the axis of the infinitesimal rotation of the sphere at x
in the direction v. We define a connection on the trivial bundle X × SO(3) whose horizontal
space at (x, g) is

H(x,g) =
{(
v, ρJ(v+Dn(x)(v))g

)
| v ∈ TxX

}
⊂ TxX × Tg SO(3)

The connection 1-form α is given by

α(x,g)(v, ξ) = g−1ξ − g−1ρJ(v+Dn(x)(v))g

Let ω = ι∗α be the local connection 1-form. Thus,

ωx(v) = α(x,I)(v, 0) = −ρJ(v+Dn(x)(v))

2.4 A rolling sphere on a sphere

When the surface X is itself a sphere, it is possible to explicitly compute the local curvature
form. Let X be the sphere of radius r centered at the origin. Then n(x) = x/r, Dn(x)(v) =
v/r, and v +Dn(x)(v) = (1 + 1/r)v. Recall that Jx(v) = n(x)× v, and so

J
(
v +Dn(x)(v)

)
=
x

r
×
(
v +

v

r

)
=

1
r

(
1 +

1
r

)
(x× v)

In order to compute the local curvature form dω+ 1
2 [ω, ω] in coordinates we use the isomor-

phism ρ between R3 and so(3) in order to treat ω as an R3-valued 1-form. Hence,

ωx(v) = −1
r

(
1 +

1
r

)
(x× v)
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With coordinates x = (x1, x2, x3) and v = (v1, v2, v3),

ωx(v) = −1
r

(
1 +

1
r

)(
x2v3 − x3v2, x3v1 − x1v3, x1v2 − x2v1

)
Hence,

ω = −1
r

(
1 +

1
r

)(
x2dx3 − x3dx2, x3dx1 − x1dx3, x1dx2 − x2dx1

)
dω = −2

r

(
1 +

1
r

)(
dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2

)
Evaluating dω on a pair of tangent vectors u, v gives

dω(u, v) = −2
r

(
1 +

1
r

)
u× v

Next we evaluate 1
2 [ω, ω]. Recall that [ω, ω] is defined so that its value on a pair of tangent

vectors u and v is

[ω, ω](u, v) =
[
ω(u), ω(v)

]
−
[
ω(v), ω(u)

]
= 2
[
ω(u), ω(v)

]
Therefore, 1

2 [ω, ω](u, v) = [ω(u), ω(v)]. In this case the bracket operation is the cross product
and so

1
2

[ω, ω]x(u, v) = ωx(u)× ωx(v) =
(

1 +
1
r

)2(x
r
× u
)
×
(
x

r
× v
)

=
(

1 +
1
r

)2

(u× v)

For the last step above we use the geometry of the cross product with x/r being a unit vector
normal to both u and v to conclude that (x/r × u)× (x/r × v) = u× v. Putting the pieces
together we see that(

dω +
1
2

[ω, ω]
)

(u, v) =
(

1− 1
r2

)
u× v

As the radius goes to infinity, the curvature form approaches the curvature form for the
sphere rolling on a plane—as one would expect. For the sphere rolling on the outside of a
sphere of radius 1, the curvature vanishes and so the connection is flat and the holonomy
is trivial around any null-homotopic path and hence around any closed path because S2 is
simply connected. Fix a basepoint x0 ∈ S2. There is a global section of the trivial bundle
S2 × SO(3)→ S2 mapping x ∈ S2 to the holonomy along any path from x0 to x. Antipodal
points take the same value as can be seen by rolling the sphere along a great circle from
the north to south pole. This section is an integral surface for the horizontal distribution
of the connection. It is possible to describe this map in coordinates explicitly and it is
especially nice using unit quaternions, i.e., S3, to represent rotations. The quaternion q
defines a rotation by mapping v = (v1, v2, v3) ∈ R3 to q(iv1 + jv2 + kv3)q−1. The Lie group
homomorphism S3 → SO(3) has kernel {±1}. In fact, S3 is the universal cover of SO(3)
and this homomorphism is the projection. Using (0, 0, 1) for the basepoint, the holonomy
map from S2 to SO(3) lifts to a map to S3 given by (x, y, z)→ z − iy + xj. This represents
the counterclockwise rotation through the angle 2 cos−1 z about the axis (−y, x, 0). One can
easily check that rolling the unit sphere from the north pole (0, 0, 1) to (x, y, z) does indeed
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turn the sphere through twice the angle between the two points and with axis that is normal
to (x, y, 0).

To roll the sphere on the inside of a sphere of radius r simply change the unit normal to
−x/r and follow the same calculations. The local curvature form dω + 1

2 [ω, ω] turns out to
be exactly the same(

dω +
1
2

[ω, ω]
)

(u, v) =
(

1− 1
r2

)
u× v

Although the curvature forms are equal, the connections are not the same and parallel
transport is not the same. This can be seen easily for r = 1. Rolling inside the sphere
produces no movement at all; the rolling sphere stays fixed. Rolling the sphere on the outside
does change the configuration along nonconstant paths.
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