On jets, extensions and characteristic classes I

Helge MAAKESTAD
Oslo, Norway
E-mail: h_maakestad@hotmail.com

Abstract

In this paper, we give general definitions of non-commutative jets in the local and global situation using square zero extensions and derivations. We study the functors $\operatorname{Exan}_{k}(A, I)$, where A is any k-algebra, and I is any left and right A-module and use this to construct affine non-commutative jets. We also study the Kodaira-Spencer class $\mathrm{KS}(\mathcal{L})$ and relate it to the Atiyah class.

2000 MSC: 14F10, 14F40

1 Introduction

In this paper, we give general definitions of non-commutative jets in the local and global situation using square zero extensions and derivations. We study the functors $\operatorname{Exan}_{k}(A, I)$, where A is any k-algebra, and I is any left and right A-module and use this to construct affine non-commutative jets. In the final section of the paper, we define and prove basic properties of the Kodaira-Spencer class $\operatorname{KS}(\mathcal{L})$ and relate it to the Atiyah class.

2 Jets, liftings, and small extensions

We give an elementary discussion of structural properties of square zero extensions of arbitrary associative unital k-algebras. We introduce for any k-algebra A and any left and right A-module I the set $\operatorname{Exan}_{k}(A, I)$ of isomorphism classes of square zero extensions of A by I and show it is a left and right module over the center $C(A)$ of A. This structure generalize the structure as left $C(A)$-module introduced in [3]. We also give an explicit construction of $\operatorname{Exan}_{k}(A, I)$ in terms of cocycles. Finally, we give a direct construction of non-commutative jets and generalized Atiyah sequences using derivations and square zero extensions.

Let in the following k be a fixed base field, and let

$$
0 \longrightarrow I \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be an exact sequence of associative unital k-algebras with $i(I)^{2}=0$. Assume s is a map of k-vector spaces with the following properties:

$$
s(1)=1,
$$

and

$$
p \circ s=\mathrm{id} .
$$

Such a section always exists since B and A are vector spaces over the field k. Note: s gives the ideal I a left and right A-action.

Lemma 2.1. There is an isomorphism:

$$
B \cong I \oplus A
$$

of k-vector spaces.
Proof. Define the following maps of vector spaces: $\phi: B \rightarrow I \oplus A$ by $\phi(x)=(x-s p(x), p(x))$ and $\psi: I \oplus A \rightarrow B$ by $\psi(u, x)=u+s(x)$. It follows that $\psi \circ \phi=\mathrm{id}$ and $\phi \circ \psi=\mathrm{id}$ and the claim of the proposition follows.

Define the following element:

$$
\tilde{C}: A \times A \longrightarrow I
$$

by

$$
\tilde{C}(x \times y)=s(x) s(y)-s(x y) .
$$

It follows that $\tilde{C}=0$ if and only if s is a ring homomorphism.
Lemma 2.2. The map \tilde{C} gives rise to an element $C \in \operatorname{Hom}_{k}\left(A \otimes_{k} A, I\right)$.
Proof. We easily see that $\tilde{C}(x+y, z)=\tilde{C}(x, z)+\tilde{C}(y, x)$ and $\tilde{C}(x, y+z)=\tilde{C}(x, y)+\tilde{C}(x, z)$ for all $x, y, z \in A$. Moreover, for any $a \in k$, it follows that

$$
\tilde{C}(a x, y)=\tilde{C}(x, a y)=a \tilde{C}(x, y) .
$$

Hence we get a well-defined element $C \in \operatorname{Hom}_{k}\left(A \otimes_{k} A, I\right)$ as claimed.
Define the following product on $I \oplus A$:

$$
\begin{equation*}
(u, x) \times(v, y)=(u y+x v+C(x, y), x y) . \tag{2.1}
\end{equation*}
$$

We let $I \oplus^{C} A$ denote the abelian group $I \oplus A$ with product defined by (2.1).
Proposition 2.3. The natural isomorphism:

$$
B \cong I \oplus A
$$

of vector spaces is a unital ring isomorphism if and only if the following holds:

$$
x C(y, z)-C(x y, z)+C(x, y z)-C(x, y) z=0
$$

for all $x, y, z \in A$.
Proof. We have defined two isomorphisms of vector spaces ϕ, ψ :

$$
\phi(x)=(x-s p(x), p(x)),
$$

and

$$
\psi(u, x)=u+s(x) .
$$

We define a product on the direct sum $I \oplus A$ using ϕ and ψ :

$$
(u, x) \times(v, y)=\phi(\psi(u, x) \psi(v, y))=\phi((u+s(x))(v+s(y)))
$$

$$
\begin{aligned}
& =\phi(u v+u s(y)+s(x) v+s(x) s(y)) \\
& =(u s(y)+s(x) v+s(x) s(y)-s(x y), x y) \\
& =(u y+x v+C(x, y), x y)
\end{aligned}
$$

Here, we define

$$
u y=u s(y)
$$

and

$$
x v=s(x) v
$$

One checks that

$$
\phi(1)=(1-\operatorname{sp}(1), 1)=(0,1)=\mathbf{1}
$$

and

$$
\mathbf{1}(u, x)=(u, x) \mathbf{1}=(u, x)
$$

for all $(u, x) \in I \oplus A$. It follows that the morphism ϕ is unital. Since $C(x+y, z)=C(x, z)+$ $C(y, z)$ and $C(x, y+z)=C(x, y)+C(x, z)$ the following holds:

$$
(u, x)((v, y)+(w, z))=(u, x)(v, y)+(u, x)(w, z)
$$

and

$$
((v, y)+(w, z))(u, x)=(v, y)(u, x)+(w, z)(u, x)
$$

Hence, the multiplication is distributive over addition. Hence for an arbitrary section s of p of vector spaces mapping the identity to the identity, it follows the multiplication defined above always has a left and right unit and is distributive. We check when the multiplication is associative:

$$
((u, x)(v, y))(w, z)=(u y z+x v z+x y w+C(x, y) z+C(x y, z), x y z)
$$

Also,

$$
(u, x)((v, y)(w, z))=(u y z+x v z+x y w+x C(y, z)+C(x, y z), x y z)
$$

It follows that the multiplication is associative if and only if the following equation holds for the element C :

$$
x C(y, z)-C(x y, z)+C(x, y z)-C(x, y) z=0
$$

for all $x, y, z \in A$. The claim follows.
Let

$$
\begin{equation*}
x C(y, z)-C(x y, z)+C(x, y z)-C(x, y) z=0 \tag{2.2}
\end{equation*}
$$

be the cocycle condition.

Definition 2.4. Let $\operatorname{exan}_{k}(A, I)$ be the set of elements $C \in \operatorname{Hom}_{k}\left(A \otimes_{k} A, I\right)$ satisfying the cocycle condition (2.2).

Proposition 2.5. Equation (2.2) holds for all $x, y, z \in A$:
Proof. We get,

$$
\begin{aligned}
& x C(y, z)=s(x) s(y) s(z)-s(x) s(y z), \\
& C(x y, z)=s(x y) s(z)-s(x y z), \\
& C(x, y z)=s(x) s(y z)-s(x y z),
\end{aligned}
$$

and

$$
C(x, y) z=s(x) s(y) s(z)-s(x y) s(z) .
$$

We get

$$
\begin{aligned}
& x C(y, z)-C(x y, z)+C(x, y z)-C(x, y) z \\
& =\quad s(x) s(y) s(z)-s(x) s(y z)-s(x y) s(z)+s(x y z) \\
& \quad+s(x) s(y z)-s(x y z)-s(x) s(y) s(z)+s(x y) s(z) \\
& \quad=0
\end{aligned}
$$

and the claim follows.
Corollary 2.6. The morphism $\phi: B \rightarrow I \oplus^{C} A$ is an isomorphism of unital associative k-algebras.

Proof. This follows from Proposition 2.5 and Proposition 2.3.
Hence, there is always a commutative diagram of exact sequences:

where the middle vertical morphism is an isomorphism associative unital k-algebras.
Define the following left and right A-action on the ideal I :

$$
x u=s(x) u, \quad u x=u s(x),
$$

where s is the section of p and $x \in A, u \in I$. Recall $I^{2}=0$.
Proposition 2.7. The actions defined above give the ideal I a left and right A-module structure. The structure is independent of choice of section s.

Proof. One checks that for any $x, y \in A$ and $u, v \in I$, the following holds:

$$
(x+y) u=x u+y u, \quad x(u+v)=x u+x v, \quad 1 u=1 .
$$

Also,

$$
(x y) u-x(y u)=s(x y) u-s(x) s(y) u=(s(x y)-s(x) s(y)) u=0,
$$

since $I^{2}=0$. It follows that $(x y) u=x(y u)$, hence I is a left A-module. A similar argument prove I is a right A-module. Assume t is another section of p. It follows that

$$
s(x) u-t(x) u=(s(x)-t(x)) u=0,
$$

since $I^{2}=0$. It follows that $s(x) u=t(x) u$. Similarly, $u s(x)=u t(x)$ hence s and t induce the same structure of A-module on I and the proposition is proved.

We have proved the following theorem: let A be any associative unital k-algebra and let I be a left and right A-module. Let $C: A \otimes_{k} A \rightarrow I$ be a morphism satisfying the cocycle condition (2.2).

Theorem 2.8. The exact sequence:

$$
0 \longrightarrow I \longrightarrow I \oplus^{C} A \longrightarrow A \longrightarrow 0
$$

is a square zero extension of A with the module I. Moreover, any square zero extension of A with I arise this way for some morphism $C \in \operatorname{Hom}_{k}\left(A \otimes_{k} A, I\right)$ satisfying equation (2.2).

Proof. The proof follows from the discussion above.
Let

$$
0 \longrightarrow I \longrightarrow E \longrightarrow A \longrightarrow 0
$$

with $i: I \rightarrow E$ and $p: E \rightarrow A$ and

$$
0 \longrightarrow J \longrightarrow F \longrightarrow B \longrightarrow 0
$$

with $j: J \rightarrow F$ and $q: F \rightarrow B$ be square zero extensions of associative k-algebras A, B with left and right modules I, J. This means the sequences are exact and the following holds $i(I)^{2}=j(J)^{2}=0$. A triple (w, u, v) of maps of k-vector spaces giving rise to a commutative diagram of exact sequences:

is a morphism of extensions if u and v are maps of k-algebras and w is a map of left and right modules. This means

$$
w(x+y)=w(x)+w(y), \quad w(a x)=v(a) w(x), \quad w(x a)=w(x) v(a)
$$

for all $x, y \in I$ and $a \in A$.
We say two square zero extensions:

$$
0 \longrightarrow I \longrightarrow E \longrightarrow A \longrightarrow 0
$$

and

$$
0 \longrightarrow I \longrightarrow F \longrightarrow A \longrightarrow 0
$$

are equivalent if there is an isomorphism $\phi: E \rightarrow F$ of k-algebras making all diagrams commute.

Definition 2.9. Let $\operatorname{Exan}_{k}(A, I)$ denote the set of all isomorphism classes of square zero extensions of A by I.

Theorem 2.10. Let $C(A)$ be the center of A. The set $\operatorname{exan}_{k}(A, I)$ is a left and right module over $C(A)$. Moreover, there is a bijection:

$$
\operatorname{Exan}_{k}(A, I) \cong \operatorname{exan}_{k}(A, I)
$$

of sets.
Proof. We first prove that $\operatorname{exan}_{k}(A, I)$ is a left and right $C(A)$-module. Let $C, D \in$ $\operatorname{exan}_{k}(A, I)$. This means $C, D \in \operatorname{Hom}_{k}\left(A \otimes_{k} A, I\right)$ are elements satisfying the cocycle condition (2.2). let $a, b \in C(A) \subseteq A$ be elements. Define $a C, C a$ as follows:

$$
(a C)(x, y)=a C(x, y),
$$

and

$$
(C a)(x, y)=C(x, y) a .
$$

We see

$$
\begin{aligned}
& x(a C)(y, x)-(a C)(x y, z)+(a C)(x, y z)-(a C)(x, y) z \\
& \quad=a(x C(y, z)-C(x y, z)+C(x, y z)-C(x, y) z)=a(0)=0,
\end{aligned}
$$

hence $a C \in \operatorname{exan}_{k}(A, I)$. Similarly, one proves $C a \in \operatorname{exan}_{k}(A, I)$ hence we have defined a left and right action of $C(A)$ on the set $\operatorname{exan}_{k}(A, I)$. Given $C, D \in \operatorname{exan}_{k}(A, I)$ define

$$
(C+D)(x, y)=C(x, y)+D(x, y) .
$$

One checks that $C+D \in \operatorname{exan}_{k}(A, I)$ hence $\operatorname{exan}_{k}(A, I)$ has an addition operation. One checks the following hold:

$$
\begin{aligned}
& a(C+D)=a C+a D, \quad(C+D) a=C a+D a \\
& (a+b) C=a C+b C, \quad C(a+b)=C a+C b \\
& a(b C)=(a b) C, \quad C(a b)=(C a) b, \quad 1 C=C 1=C,
\end{aligned}
$$

hence the set $\operatorname{exan}_{k}(A, I)$ is a left and right $C(A)$-module. Define the following map: let $[B]=\left[I \oplus^{C} A\right] \in \operatorname{Exan}_{k}(A, I)$ be an equivalence class of a square zero extension. Define

$$
\phi: \operatorname{Exan}_{k}(A, I) \longrightarrow \operatorname{exan}_{k}(A, I)
$$

by

$$
\phi[B]=\phi\left[I \oplus^{C} A\right]=C .
$$

We prove this gives a well-defined map of sets. Assume $\left[I \oplus^{C} A\right]$ and $\left[I \oplus^{D} A\right]$ are two elements in $\operatorname{Exan}_{k}(A, I)$. Note: we use brackets to denote isomorphism classes of extensions. The two extensions are equivalent if and only if there is an isomorphism:

$$
f: I \oplus^{C} A \longrightarrow I \oplus^{D} A
$$

of k-algebras such that all diagrams are commutative. This means that

$$
f(u, x)=(u, x)
$$

for all $(u, x) \in I \oplus^{C} A$. We get

$$
f((u, x)(v, y))=f(u, x) f(v, y) .
$$

This gives the equality:

$$
(u y+x v+C(x, y), x y)=(u y+x v+D(x, y), x y)
$$

for all $(u, x),(v, y) \in I \oplus^{C} A$. Hence, $\phi\left[I \oplus^{C} A\right]=C=D=\phi\left[I \oplus^{D} A\right]$, and the map ϕ is well defined. It is clearly an injective map. It is surjective by Theorem 2.8 and the claim of the theorem follows.

Theorem 2.10 shows that there is a structure of left and right $C(A)$-module on the set of equivalence classes of extensions $\operatorname{Exan}_{k}(A, I)$. The structure as left $C(A)$-module agrees with the one defined in [3].

Let $\phi \in \operatorname{Hom}_{k}(A, I)$. Let $C^{\phi} \in \operatorname{Hom}_{k}\left(A \otimes_{k} A, I\right)$ be defined by

$$
C^{\phi}(x, y)=x \phi(y)-\phi(x y)+\phi(x) y .
$$

One checks that $C^{\phi} \in \operatorname{exan}_{k}(A, I)$ for all $\phi \in \operatorname{Hom}_{k}(A, I)$.
Definition 2.11. Let $\operatorname{exan}_{k}^{\text {inn }}(A, I)$ be the subset of $\operatorname{exan}_{k}(A, I)$ of maps C^{ϕ} for $\phi \in$ $\operatorname{Hom}_{k}(A, I)$.

Lemma 2.12. The set $\operatorname{exan}_{k}^{i n n}(A, I) \subseteq \operatorname{exan}_{k}(A, I)$ is a left and right sub $C(A)$-module.
Proof. The proof is left to the reader as an exercise.
Definition 2.13. Let $\operatorname{Exan}_{k}^{i n n}(A, I) \subseteq \operatorname{Exan}_{k}(A, I)$ be the image of $\operatorname{exan}_{k}^{i n n}(A, I)$ under the bijection $\operatorname{exan}_{k}(A, I) \cong \operatorname{Exan}_{k}(A, I)$.

It follows that $\operatorname{Exan}_{k}^{i n n}(A, I) \subseteq \operatorname{Exan}_{k}(A, I)$ is a left and right sub $C(A)$-module.
Recall the definition of the Hochschild complex as follows.
Definition 2.14. Let A be an associative k-algebra, and let I be a left and right A-module. Let $C^{p}(A, I)=\operatorname{Hom}_{k}\left(A^{\otimes p}, I\right)$. Let $d^{p}: C^{p}(A, I) \rightarrow C^{p+1}(A, I)$ be defined as follows:

$$
\begin{aligned}
d^{p}(\phi)\left(a_{1} \otimes \cdots \otimes a_{p+1}\right)= & a_{1} \phi\left(a_{2} \otimes \cdots \otimes a_{p+1}\right) \\
& +\sum_{1 \leq i \leq p}(-1)^{i} \phi\left(a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{p+1}\right) \\
& +(-1)^{p+1} \phi\left(a_{1} \otimes \cdots \otimes a_{p}\right) a_{p+1} .
\end{aligned}
$$

We let $\mathrm{HH}^{i}(A, I)$ denote the i^{\prime} th cohomology of this complex. It is the i 'th Hochschild cohomology of A with values in I.

Proposition 2.15. There is an exact sequence:

$$
0 \longrightarrow \operatorname{Exan}_{k}^{i n n}(A, I) \longrightarrow \operatorname{Exan}_{k}(A, I) \longrightarrow \operatorname{HH}^{2}(A, I) \longrightarrow 0
$$

of left and right $C(A)$-modules.

Proof. The proof is left to the reader as an exercise.
Example 2.16. Characteristic classes of L-connections.
Let A be a commutative k-algebra and let $\alpha: L \rightarrow \operatorname{Der}_{k}(A)$ be a Lie-Rinehart algebra. Let W be a left A-module with an L-connection $\nabla: L \rightarrow \operatorname{End}_{k}(W)$. In [6], we define a characteristic class $c_{1}(E) \in \mathrm{H}^{2}\left(\left.L\right|_{U}, \mathcal{O}_{U}\right)$ when W is of finite presentation, $U \subseteq \operatorname{Spec}(A)$ is the open set, where W is locally free, and $\mathrm{H}^{2}\left(\left.L\right|_{U}, \mathcal{O}_{U}\right)$ is the Lie-Rinehart cohomology of $\left.L\right|_{U}$ with values in \mathcal{O}_{U}. If L is locally free, it follows that $\mathrm{H}^{2}(L, A) \cong \operatorname{Ext}_{U(L)}^{2}(A, A)$, where $U(L)$ is the generalized universal enveloping algebra of L. There is an obvious structure of left and right $U(L)$-module on $\operatorname{End}_{k}(A)$ and an isomorphism:

$$
\operatorname{HH}^{2}\left(U(L), \operatorname{End}_{k}(A)\right) \cong \operatorname{Ext}_{U(L)}^{2}(A, A)
$$

of abelian groups. The exact sequence 2.15 gives a sequence:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Exan}_{k}^{i n n}\left(U(L), \operatorname{End}_{k}(A)\right) \longrightarrow \operatorname{Exan}_{k}\left(U(L), \operatorname{End}_{k}(A)\right) \\
& \longrightarrow \operatorname{Ext}_{U(L)}^{2}(A, A) \longrightarrow 0
\end{aligned}
$$

with $A=U(L)$ and $I=\operatorname{End}_{k}(A)$. If we can construct a lifting:

$$
\tilde{c}_{1}(W) \in \operatorname{Exan}_{k}\left(U(L), \operatorname{End}_{k}(A)\right)
$$

of the class:

$$
c_{1}(W) \in \operatorname{Ext}_{U(L)}^{2}(A, A)=\operatorname{HH}^{2}\left(U(L), \operatorname{End}_{k}(A)\right)
$$

we get a generalization of the characteristic class from [6] to arbitrary Lie-Rinehart algebras L. This problem will be studied in a future paper on the subject (see [7]).

Example 2.17. Non-commutative Kodaira-Spencer maps.
Let A be an associative k-algebra, and let M be a left A-module. Let $D^{1}(A) \subseteq \operatorname{End}_{k}(A)$ be the module of first-order differential operators on A. It is defined as follows: an element $\partial \in \operatorname{End}_{k}(A)$ is in $D^{1}(A)$ if and only if $[\partial, a] \in D^{0}(A)=A \subseteq \operatorname{End}_{k}(A)$ for all $a \in A$. Define the following map:

$$
f: D^{1}(A) \longrightarrow \operatorname{Hom}_{k}\left(A, \operatorname{End}_{k}(M)\right)
$$

by

$$
f(\partial)(a, m)=[\partial, a] m=(\partial(a)-a \partial(1)) m .
$$

Here, $\partial \in D^{1}(A), a \in A$, and $m \in M$. Since $[\partial, a] \in A$, we get a well-defined map. Let for any $a \in A$ and $m \in M \phi_{a}(m)=a m$. It follows $\phi_{a} \in \operatorname{End}_{k}(M)$ is an endomorphism of M. We get

$$
\begin{aligned}
f(\partial)(a b, m) & =(\partial(a b)-a b \partial(1)) m=\left(\partial \phi_{a b}-\phi_{a b} \partial\right)(1) m \\
& =\left(\partial \phi_{a b}-\phi_{a} \partial \phi_{b}+\phi_{a} \partial \phi_{b}-\phi_{a b} \partial\right)(1) m \\
& =\left(\partial \phi_{a}-\phi_{a} \partial\right) \phi_{b}(1) m+\phi_{a}\left(\partial \phi_{b}-\phi_{b} \partial\right)(1) m \\
& =f(\partial)(a, b m)+a f(\partial)(b, m) .
\end{aligned}
$$

Hence,

$$
f(\partial)(a b)=a f(\partial)(b)+f(\partial)(a) b
$$

for all $\partial \in D^{1}(A)$ and $a, b \in A$. The Hochschild complex gives a map:

$$
d^{1}: \operatorname{Hom}_{k}\left(A, \operatorname{End}_{k}(M)\right) \longrightarrow \operatorname{Hom}_{k}\left(A \otimes A, \operatorname{End}_{k}(M)\right),
$$

and

$$
\operatorname{ker}\left(d^{1}\right)=\operatorname{Der}_{k}\left(A, \operatorname{End}_{k}(M)\right)
$$

It follows that we get a map:

$$
f: D^{1}(A) \longrightarrow \operatorname{Der}_{k}\left(A, \operatorname{End}_{k}(M)\right)
$$

We get an induced map:

$$
f: D^{1}(A) \longrightarrow \operatorname{HH}^{1}\left(A, \operatorname{End}_{k}(M)\right)=\operatorname{Ext}_{A}^{1}(M, M)
$$

Lemma 2.18. The following holds $f\left(D^{0}(A)\right)=f(A)=0$
Proof. The proof is left to the reader as an exercise.
One checks that $D^{1}(A) / D^{0}(A)=D^{1}(A) / A \cong \operatorname{Der}_{k}(A)$. It follows that we get an induced map:

$$
g: \operatorname{Der}_{k}(A)=D^{1}(A) / D^{0}(A) \longrightarrow \operatorname{Ext}_{A}^{1}(M, M)
$$

the non-commutative Kodaira-Spencer map.
Lemma 2.19. Assume A is commutative. The following hold:

$$
\begin{align*}
& \mathbb{V}_{M}=\operatorname{ker}(g) \subseteq \operatorname{Der}_{k}(A) \text { is a Lie-Rinehart algebra, } \tag{2.3}\\
& g(\delta)=0 \Longleftrightarrow \exists \phi \in \operatorname{End}_{k}(M), \phi(a m)=a \phi(m)+\delta(a) m, \tag{2.4}\\
& \exists \nabla \in \operatorname{Hom}_{k}\left(\mathbb{V}_{M}, \operatorname{End}_{k}(M)\right) \text { with } \nabla(\delta)(a m)=a \nabla(\delta)(m)+\delta(a) m, \tag{2.5}\\
& \mathbb{V}_{M} \text { is the maximal Lie-Rinehart algebra satisfying (2.5). } \tag{2.6}
\end{align*}
$$

Proof. We first prove (2.3): assume $g(\delta)=g(\eta)=0$. By definition, this is if and only if there are maps $\phi, \psi \in \operatorname{End}_{k}(M)$ such that the following hold:

$$
\begin{align*}
& d^{0} \phi=g(\delta), \tag{2.7}\\
& d^{0} \psi=g(\eta) . \tag{2.8}
\end{align*}
$$

One checks that conditions (2.7) and (2.8) hold if and only if the following hold:

$$
\phi(a m)=a \phi(m)+\delta(a) m
$$

and

$$
\psi(a m)=a \psi(m)+\eta(a) m .
$$

We claim $d^{0}[\delta, \eta]=g([\delta, \eta])$. We get

$$
\begin{aligned}
{[\phi, \psi](a m)=} & \phi \psi(a m)-\psi \phi(a m)=\phi(a \psi(m)+\eta(a) m)-\psi(a \phi(m)+\delta(a) m) \\
= & a \phi \psi(m)+\delta(a) \psi(m)+\eta(a) \phi(m)+\delta \eta(a) m-a \psi \phi(m)-\eta(a) \phi(m) \\
& -\delta(a) \psi(m)-\eta \delta(a) m=a[\phi, \psi](m)+[\delta, \eta](a) m
\end{aligned}
$$

Hence, $g([\delta, \eta])=0$ and $\mathbb{V}_{M} \subseteq \operatorname{Der}_{k}(A)$ is a k-Lie algebra. It is an A-module since g is A-linear, hence it is a Lie-Rinehart algebra. Claim (2.3) is proved. Claim (2.4) and (2.5) follows from the proof of (2.3). Claim (2.6) is obvious and the lemma is proved.

The Lie-Rinehart algebra \mathbb{V}_{M} is the linear Lie-Rinehart algebra of M.
Let in the following E be a left and right A-module.
Definition 2.20. Let

$$
\mathcal{J}_{I}^{1}(E)=I \otimes_{A} E \oplus E
$$

be the first-order I-jet bundle of E.
Pick a derivation $d \in \operatorname{Der}_{k}(A, I)$ of left and right modules. This means that

$$
d(x y)=x d(y)+d(x) y
$$

for all $x, y \in A$. Let $B^{C}=I \oplus^{C} A$ and define the following left B^{C}-action on $\mathcal{J}_{I}^{1}(E)$:

$$
(u, x)(w \otimes e, f)=(u \otimes f+x w \otimes e+d(x) \otimes f, x f)
$$

for any elements $(u, x) \in B^{C}$ and $(w \otimes e, f) \in \mathcal{J}_{I}^{1}(E)$.
Proposition 2.21. The abelian group $\mathcal{J}_{I}^{1}(E)$ is a left B^{C}-module if and only if $C(y, x) \otimes f=$ 0 for all $y, x \in A$ and $f \in E$.
Proof. One easily checks that for any $a, b \in B^{C}$ and $l, j \in \mathcal{J}_{I}^{1}(E)$ the following hold:

$$
\begin{aligned}
& (a+b) i=a i+b i, \\
& a(i+j)=a i+a j .
\end{aligned}
$$

Moreover,

$$
1 i=i .
$$

It remains to check that $a(b i)=(a b) i$. Let $a=(v, y) \in B^{C}$ and $b=(u, x) \in B^{C}$. Let also $i=(w \otimes e, f) \in \mathcal{J}_{I}^{1}(E)$. We get

$$
a(b i)=(v, y)((u, x)(w \otimes e, f))=(v x \otimes f+y u \otimes f+y x w \otimes e+d(y x) \otimes f, y x f) .
$$

We also get

$$
(a b) i=(v x \otimes f+y u \otimes f+y x w \otimes e+d(y x) \otimes f+C(y, x) \otimes f, y x f) .
$$

It follows that

$$
(a b) i-a(b i)=0,
$$

if and only if

$$
C(y, x) \otimes f=0,
$$

and the claim of the proposition follows.

Note the abelian group $\mathcal{J}_{I}^{1}(E)$ is always a left A-module and there is an exact sequence of left A-modules:

$$
0 \longrightarrow I \otimes E \longrightarrow \mathcal{J}_{I}^{1}(E) \longrightarrow E \longrightarrow 0
$$

defining a characteristic class:

$$
c_{I}(E) \in \operatorname{Ext}_{A}^{1}(E, E \otimes I)
$$

The class $c_{I}(E)$ has the property that $c_{I}(E)=0$ if and only if E has an I-connection:

$$
\nabla: E \longrightarrow I \otimes E
$$

with

$$
\nabla(x e)=x \nabla(e)+d(x) \otimes e
$$

Let $J \subseteq I \subseteq B^{C}$ be the smallest two-sided ideal containing $\operatorname{Im}(C)$, where $C: A \otimes_{k} A \rightarrow I$ is the cocycle defining B^{C}. Let $D^{C}=B^{C} / J$ and $I^{C}=I / J$. We get a square zero extension:

$$
0 \longrightarrow I^{C} \longrightarrow D^{C} \longrightarrow A \longrightarrow 0
$$

of A by the square zero ideal I^{C}. It follows that $D^{C}=I^{C} \oplus A$ as abelian group. Since $\overline{C(x, y)}=0$ in I^{C}, it follows that D^{C} has a well-defined associative multiplication defined by

$$
(u, x)(v, y)=(u y+x v, x y)
$$

Also D^{C} is the largest quotient of B^{C} such that the ring homomorphism $B^{C} \rightarrow D^{C}$ fits into a commutative diagram of square zero extensions:

Definition 2.22. Let

$$
\mathcal{J}_{I^{C}}^{1}(E)=I^{C} \otimes E \oplus E
$$

be the first-order I^{C}-jet bundle of E.
Example 2.23. First-order commutative jets.
Let $k \rightarrow A$ be a commutative k-algebra, and let $I \subseteq A \otimes_{k} A$ be the ideal of the diagonal. Let $\mathcal{J}_{A}^{1}=A \otimes A / I^{2}$ and $\Omega_{A}^{1}=I / I^{2}$. We get an exact sequence of left A-modules:

$$
\begin{equation*}
0 \longrightarrow \Omega_{A}^{1} \longrightarrow \mathcal{J}_{A}^{1} \longrightarrow A \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

It follows that $\mathcal{J}_{A}^{1} \cong \Omega_{A}^{1} \oplus A$ with the following product:

$$
(\omega, a)(\eta, b)=(\omega a+b \eta, a b)
$$

hence the sequence (2.9) splits. Let $\mathcal{J}_{A}^{1}(E)=\Omega_{A}^{1} \otimes E \oplus E$ be the first-order Ω_{A}^{1}-jet of E. We get an exact sequence of left A-modules:

$$
0 \longrightarrow \Omega_{A}^{1} \otimes E \longrightarrow \mathcal{J}_{A}^{1}(E) \longrightarrow E \longrightarrow 0
$$

Since the sequence (2.9) splits, it follows that $\mathcal{J}_{A}^{1}(E)$ is a lifting of E to the first-order jet \mathcal{J}_{A}^{1}.

3 Atiyah classes and Kodaira-Spencer classes

In this section, we define and prove some properties of Atiyah classes and Kodaira-Spencer classes.

Let X be any scheme defined over an arbitrary basefield F and let $\operatorname{Pic}(X)$ be the Picard group of X. Let $\mathcal{O}^{*} \subseteq \mathcal{O}_{X}$ be the following subsheaf of abelian groups: for any open set $U \subseteq X$, the group $\mathcal{O}(U)^{*}$ is the multiplicative group of units in $\mathcal{O}_{X}(U)$. Define for any open set $U \subseteq X$ the following morphism:

$$
\operatorname{dlog}: \mathcal{O}(U)^{*} \longrightarrow \Omega_{X}^{1}(U)
$$

defined by

$$
\operatorname{dlog}(x)=d(x) / x
$$

where d is the universal derivation and $x \in \mathcal{O}(U)^{*}$.
Lemma 3.1. The following holds:

$$
\mathrm{d} \log (x y)=\mathrm{d} \log (x)+\mathrm{d} \log (y)
$$

for $x, y \in \mathcal{O}(U)^{*}$
Proof. The proof is left to the reader as an exercise.
Hence, $\operatorname{dlog}: \mathcal{O}^{*} \rightarrow \Omega_{X}^{1}$ defines a map of sheaves of abelian groups. The map dlog induces a map on cohomology

$$
\operatorname{dlog}: \operatorname{Pic}(X)=\mathrm{H}^{1}\left(X, \mathcal{O}^{*}\right) \longrightarrow \mathrm{H}^{1}\left(X, \Omega_{X}^{1}\right)
$$

and by definition

$$
\operatorname{dlog}(\mathcal{L})=c_{1}(\mathcal{L}) \in \mathrm{H}^{1}\left(X, \Omega_{X}^{1}\right)
$$

Let $\mathcal{I} \subseteq \Omega_{X}^{1}$ be any $\operatorname{sub} \mathcal{O}_{X}$-module, and let $\mathcal{F}=\Omega_{X}^{1} / \mathcal{I}$ be the quotient sheaf. We get a derivation:

$$
d: \mathcal{O}_{X} \longrightarrow \mathcal{F}
$$

by composing with the universal derivation. We get a canonical map:

$$
\mathrm{H}^{1}\left(X, \Omega_{X}^{1}\right) \longrightarrow \mathrm{H}^{1}(X, \mathcal{F})
$$

and we let

$$
\bar{c}_{1}(\mathcal{L}) \in \mathrm{H}^{1}(X, \mathcal{F})
$$

be the image of $c_{1}(\mathcal{L})$ under this map.
Definition 3.2. The class $c_{1}(\mathcal{L}) \in \mathrm{H}^{1}\left(X, \Omega_{X}^{1}\right)$ is the first Chern class of the line bundle $\mathcal{L} \in \operatorname{Pic}(X)$. The class $\bar{c}_{1}(\mathcal{L}) \in \mathrm{H}^{1}(X, \mathcal{F})$ is the generalized first Chern class of \mathcal{L}.

Let \mathcal{E} be any \mathcal{O}_{X}-module and consider the following sequence of sheaves of abelian groups:

$$
0 \longrightarrow \mathcal{F} \otimes \mathcal{E} \longrightarrow \mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0
$$

where

$$
\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})=\mathcal{F} \otimes \mathcal{E} \oplus \mathcal{E}
$$

as sheaf of abelian groups. Let s be a local section of \mathcal{O}_{X}, and let $(x \otimes e, f)$ be a local section of $\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})$ over some open set U. Make the following definition:

$$
s(x \otimes e, f)=(s x \otimes e+d s \otimes f, s f) .
$$

It follows that the sequence

$$
0 \longrightarrow \mathcal{F} \otimes \mathcal{E} \longrightarrow \mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0
$$

is a short exact sequence of sheaves of abelian groups. It is called the Atiyah-Karoubi sequence.
Definition 3.3. An \mathcal{F}-connection ∇ is a map:

$$
\nabla: \mathcal{E} \longrightarrow \mathcal{F} \otimes \mathcal{E}
$$

of sheaves of abelian groups with

$$
\nabla(s e)=s \nabla(e)+d(s) \otimes e .
$$

Proposition 3.4. The Atiyah-Karoubi sequence is an exact sequence of left \mathcal{O}_{X}-modules. It is left split by an \mathcal{F}-connection.

Proof. We first show that it is an exact sequence of left \mathcal{O}_{X}-modules. The \mathcal{O}_{X}-module structure is twisted by the derivation d, hence we must verify that this gives a well-defined left \mathcal{O}_{X}-structure on $\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})$. Let $\omega=(x \otimes e, f)$ be a local section of $\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})$, and let s, t be local sections of \mathcal{O}_{X}. We get the following calculation:

$$
\begin{aligned}
(s t) \omega & =(s t)(x \otimes e, f)=((s t) x \otimes e+d(s t) \otimes f,(s t) f) \\
& =(s t x \otimes e+s d t \otimes f+(d s) t \otimes f, s t f)=(s(t x \otimes e+d t \otimes f)+d s \otimes t f, s(t f)) \\
& =s(t x \otimes e+d t \otimes f, t f)=s(t(x \otimes e, f))=s(t \omega) .
\end{aligned}
$$

It follows that $\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})$ is a left \mathcal{O}_{X}-module and the sequence is left exact. Assume that

$$
s: \mathcal{E} \longrightarrow \mathcal{J}_{\mathcal{F}}(\mathcal{E})=\mathcal{F} \otimes \mathcal{E} \oplus \mathcal{E}
$$

is a left splitting. It follows that $s(e)=(\nabla(e), e)$ for e a local section of \mathcal{E}. It follows that ∇ is a generalized connection and the theorem is proved.

Note: If $\mathcal{I}=0$, we get that $\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})=\mathcal{J}_{X}^{1}(\mathcal{E})$ is the first-order jet bundle of \mathcal{E} and the exact sequence above specializes to the well-known Atiyah sequence:

$$
0 \longrightarrow \Omega_{X}^{1} \otimes \mathcal{E} \longrightarrow \mathcal{J}_{X}^{1}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0 .
$$

The Atiyah sequence is left split by a connection:

$$
\nabla: \mathcal{E} \longrightarrow \Omega_{X}^{1} \otimes \mathcal{E}
$$

The \mathcal{O}_{X}-module $\mathcal{J}_{\mathcal{F}}^{1}(\mathcal{E})$ is the generalized first-order jet bundle of \mathcal{E}.

Definition 3.5. The characteristic class:

$$
\operatorname{AT}(\mathcal{E}) \in \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\mathcal{E}, \mathcal{F} \otimes \mathcal{E})
$$

is called the Atiyah class of \mathcal{E}.
The class $\operatorname{AT}(\mathcal{E})$ is defined for an arbitrary \mathcal{O}_{X}-module \mathcal{E} and an arbitrary sub module $\mathcal{I} \subseteq \Omega_{X}^{1}$.

Assume that $\mathcal{E}=\mathcal{L} \in \operatorname{Pic}(X)$ is a line bundle on X. We get isomorphisms:

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{O}_{X}}(\mathcal{L}, \mathcal{L} \otimes \mathcal{F}) & \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \mathcal{L}^{*} \otimes \mathcal{L} \otimes \mathcal{F}\right) \\
& \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \mathcal{F}\right) \longrightarrow \mathrm{H}^{1}(X, \mathcal{F})
\end{aligned}
$$

We get a morphism:

$$
\phi: \operatorname{Ext}_{\mathcal{O}_{X}}^{1}(\mathcal{L}, \mathcal{L} \otimes \mathcal{F}) \longrightarrow \mathrm{H}^{1}(X, \mathcal{F})
$$

Proposition 3.6. The following holds:

$$
\phi(\operatorname{AT}(\mathcal{L}))=\bar{c}_{1}(\mathcal{L})
$$

Hence, the Atiyah class calculates the generalized first Chern class of a line bundle.
Proof. Let $\mathcal{I}=0$. It is well known that $\operatorname{AT}(\mathcal{L})$ calculates the first Chern class $c_{1}(\mathcal{L})$. From this, the claim of the proposition follows.

Let T_{X} be the tangent sheaf of X. It has the property that for any open affine set $U=\operatorname{Spec}(A) \subseteq X$ the local sections $T_{X}(U)$ equal the module $\operatorname{Der}_{F}(A)$ of derivations of A. Let $\mathbb{V}_{\mathcal{E}} \subseteq T_{X}$ be the subsheaf of local sections ∂ of T_{X} with the following property: the section $\partial \in T_{X}(U)$ lifts to a local section $\nabla(\partial)$ of $\operatorname{End}_{F}\left(\left.\mathcal{E}\right|_{U}\right)$ with the following property:

$$
\nabla(\partial):\left.\left.\mathcal{E}\right|_{U} \longrightarrow \mathcal{E}\right|_{U}
$$

which satisfies

$$
\nabla(\partial)(s e)=s \nabla(\partial)(e)+\partial(s) e
$$

It follows that $\mathbb{V}_{\mathcal{E}} \subseteq T_{X}$ is a subsheaf of Lie algebras - the Kodaira-Spencer sheaf of \mathcal{E}. Define for any local sections a, b of $\mathcal{O}_{X}, \partial$ of $\mathbb{V}_{\mathcal{E}}$ and e of \mathcal{E} the following:

$$
L(a, \partial)(e)=a \nabla(\partial)(e)-\nabla(a \partial)(e)
$$

Lemma 3.7. It follows that $L(a, \partial) \in \operatorname{End}_{\mathcal{O}_{U}}\left(\left.\mathcal{E}\right|_{U}\right)$.
Proof. The following holds:

$$
\begin{aligned}
L(a, \partial)(b e) & =a \nabla(\partial)(b e)-\nabla(a \partial)(b e) \\
& =a(b \nabla(\partial)(e)+\partial(b) e)-b \nabla(a \partial)(e)-a \partial(b) e \\
& =a b \nabla(\partial)(e)+a \partial(b) e-b \nabla(a \partial)(e)-a \partial(b) e \\
& =b(a \nabla(\partial)(e)-\nabla(a \partial)(e))=b(a \nabla(\partial)-\nabla(a \partial))(e) \\
& =b L(a, \partial)(e),
\end{aligned}
$$

and the lemma is proved.

Lemma 3.8. The following formula holds:

$$
L(a b, \partial)=a L(b, \partial)+L(a, b \partial)
$$

for all local sections a, b, and ∂.
Proof. We get

$$
\begin{aligned}
L(a b, \partial) & =a b \nabla(\partial)-\nabla(a b \partial) \\
& =a b \nabla(\partial)-a \nabla(b \partial)+a \nabla(b \partial)-\nabla(a b \partial) \\
& =a(b \nabla(\partial)-\nabla(b \partial))+(a \nabla-\nabla a)(b \partial) \\
& =a L(b, \partial)+L(a, b \partial),
\end{aligned}
$$

and the lemma is proved.
Let $\operatorname{LR}\left(\mathbb{V}_{\mathcal{E}}\right)=\operatorname{End}_{\mathcal{O}_{X}}(\mathcal{E}) \oplus \mathbb{V}_{\mathcal{E}}$ be the linear Lie-Rinehart algebra of \mathcal{E}. Let $\operatorname{LR}\left(\mathbb{V}_{\mathcal{E}}\right)$ have the following left \mathcal{O}_{X}-module structure:

$$
a(\phi, \partial)=(a \phi+L(a, \partial), a \partial) .
$$

Here, a, ϕ, and ∂ are local sections of $\mathcal{O}_{X}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{E})$, and $\mathbb{V}_{\mathcal{E}}$. We twist the trivial \mathcal{O}_{X} structure on $\operatorname{End}_{\mathcal{O}_{X}}(\mathcal{E}) \oplus \mathbb{V}_{\mathcal{E}}$ with the element L. We get a sequence of sheaves of abelian groups:

$$
0 \longrightarrow \operatorname{End}_{\mathcal{O}_{\mathcal{X}}}(\mathcal{E}) \xrightarrow{i} \operatorname{LR}\left(\mathbb{V}_{\mathcal{E}}\right) \xrightarrow{p} \mathbb{V}_{\mathcal{E}} \longrightarrow 0,
$$

where i and p are the canonical maps. An \mathcal{O}_{X}-linear map:

$$
\nabla: \mathbb{V}_{\mathcal{E}} \longrightarrow \operatorname{End}_{F}(\mathcal{E})
$$

satisfying

$$
\nabla(\partial)(a e)=a \nabla(\partial)(e)+\partial(a) e
$$

is a $\mathbb{V}_{\mathcal{E}}$-connection on \mathcal{E}.
Proposition 3.9. The sequence defined above is an exact sequence of left \mathcal{O}_{X}-modules. It is left split by $a \mathbb{V}_{\mathcal{E}}$-connection ∇.

Proof. We need to check that $\operatorname{LR}\left(\mathbb{V}_{\mathcal{E}}\right)$ has a well-defined left \mathcal{O}_{X}-module structure. By definition,

$$
a(\phi, \partial)=(a \phi+L(a, \partial), a \partial) .
$$

We get

$$
\begin{aligned}
(a b) x & =(a b)(\phi, \partial)=((a b) \phi+L(a b, \partial),(a b) \partial) \\
& =(a b \phi+a L(b, \partial)+L(a, b \partial), a b \partial) \\
& =a(b \phi+L(b, \partial), b \partial)=a(b(\phi, \partial))=a(b x),
\end{aligned}
$$

and it follows that the sequence is a left exact sequence of \mathcal{O}_{X}-modules. If

$$
s: \mathbb{V}_{\mathcal{E}} \longrightarrow \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{E}) \oplus \mathbb{V}_{\mathcal{E}}=\operatorname{LR}\left(\mathbb{V}_{\mathcal{E}}\right)
$$

is a section, it follows that $s(e)=(\nabla(e), e)$. One checks that ∇ is a $\mathbb{V}_{\mathcal{E}}$-connection, and the theorem is proved.

Definition 3.10. We get a characteristic class:

$$
\operatorname{KS}(\mathcal{E}) \in \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathbb{V}_{\mathcal{E}}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{E})\right),
$$

the Kodaira-Spencer class of \mathcal{E}.
Assume that $\mathbb{V}_{\mathcal{E}}$ is locally free and $\mathcal{E}=\mathcal{L} \in \operatorname{Pic}(X)$ is a line bundle on X. Assume also that $\mathbb{V}_{\mathcal{E}}^{*}=\mathcal{F}=\Omega_{X}^{1} / \mathcal{I}$ for some submodule \mathcal{I}. We get the following calculation:

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathbb{V}_{\mathcal{E}}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L})\right) & \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L}) \otimes \mathbb{V}_{\mathcal{E}}^{*}\right) \\
& \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L}) \otimes \mathcal{F}\right) \longrightarrow \mathrm{H}^{1}(X, \mathcal{F}) .
\end{aligned}
$$

We get a map:

$$
\psi: \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathbb{V}_{\mathcal{E}}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L})\right) \longrightarrow \mathrm{H}^{1}(X, \mathcal{F})
$$

of sheaves.
Proposition 3.11. The following holds: there is an equality:

$$
\psi(\operatorname{KS}(\mathcal{L}))=\bar{c}_{1}(\mathcal{L})
$$

in $\mathrm{H}^{1}(X, \mathcal{F})$. Hence the Kodaira-Spencer class calculates the class $\bar{c}_{1}(\mathcal{L})$.
Proof. The proof is left to the reader as an exercise.
We get the following diagram expressing the relationship between the characteristic classes defined above:

The following equation holds in $\mathrm{H}^{1}(X, \mathcal{F})$:

$$
\phi(\operatorname{AT}(\mathcal{L}))=\psi(\operatorname{KS}(\mathcal{L}))=\bar{c}_{1}(\mathcal{L}) .
$$

References

[1] M. André. Homologie des algèbres commutatives. Die Grundlehren der mathematischen Wissenschaften, 206, Springer-Verlag, Berlin, 1974.
[2] M. Atiyah. Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc., 85 (1957), 181-207.
[3] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale de schémas et des morphismes de schémas. Inst. Hautes Études Sci. Publ. Math., 20 (1964), 101-355.
[4] M. Karoubi. Homologie cyclique et K-theorie. Astérisque, no. 149 (1987), 147.
[5] H. Maakestad. A note on principal parts on projective space and linear representations. Proc. Amer. Math. Soc., 133 (2005), 349-355.
[6] H. Maakestad. Chern classes and Lie-Rinehart algebras. Indag. Math. (N.S.), 18 (2007), 589-599.
[7] H. Maakestad. Chern classes and Exan functors. Preprint 2009.
[8] H. Maakestad. Principal parts on the projective line over arbitrary rings. Manuscripta Math., 126 (2008), 443-464.

Received November 09, 2009
Revised July 19, 2010

