On jets, extensions and characteristic classes I

Helge MAAKESTAD

Oslo, Norway E-mail: h_maakestad@hotmail.com

Abstract

In this paper, we give general definitions of non-commutative jets in the local and global situation using square zero extensions and derivations. We study the functors $\operatorname{Exan}_k(A, I)$, where A is any k-algebra, and I is any left and right A-module and use this to construct affine non-commutative jets. We also study the Kodaira-Spencer class $\operatorname{KS}(\mathcal{L})$ and relate it to the Atiyah class.

2000 MSC: 14F10, 14F40

1 Introduction

In this paper, we give general definitions of non-commutative jets in the local and global situation using square zero extensions and derivations. We study the functors $\operatorname{Exan}_k(A, I)$, where A is any k-algebra, and I is any left and right A-module and use this to construct affine non-commutative jets. In the final section of the paper, we define and prove basic properties of the Kodaira-Spencer class $\operatorname{KS}(\mathcal{L})$ and relate it to the Atiyah class.

2 Jets, liftings, and small extensions

We give an elementary discussion of structural properties of square zero extensions of arbitrary associative unital k-algebras. We introduce for any k-algebra A and any left and right A-module I the set $\operatorname{Exan}_k(A, I)$ of isomorphism classes of square zero extensions of A by I and show it is a left and right module over the center C(A) of A. This structure generalize the structure as left C(A)-module introduced in [3]. We also give an explicit construction of $\operatorname{Exan}_k(A, I)$ in terms of cocycles. Finally, we give a direct construction of non-commutative jets and generalized Atiyah sequences using derivations and square zero extensions.

Let in the following k be a fixed base field, and let

 $0 \longrightarrow I \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0$

be an exact sequence of associative unital k-algebras with $i(I)^2 = 0$. Assume s is a map of k-vector spaces with the following properties:

s(1) = 1,

and

$$p \circ s = \mathrm{id}.$$

Such a section always exists since B and A are vector spaces over the field k. Note: s gives the ideal I a left and right A-action.

Lemma 2.1. There is an isomorphism:

 $B \cong I \oplus A$

of k-vector spaces.

Proof. Define the following maps of vector spaces: $\phi : B \to I \oplus A$ by $\phi(x) = (x - sp(x), p(x))$ and $\psi : I \oplus A \to B$ by $\psi(u, x) = u + s(x)$. It follows that $\psi \circ \phi = \text{id}$ and $\phi \circ \psi = \text{id}$ and the claim of the proposition follows.

Define the following element:

$$\tilde{C}: A \times A \longrightarrow I,$$

by

 $\tilde{C}(x \times y) = s(x)s(y) - s(xy).$

It follows that $\tilde{C} = 0$ if and only if s is a ring homomorphism.

Lemma 2.2. The map \tilde{C} gives rise to an element $C \in \operatorname{Hom}_k(A \otimes_k A, I)$.

Proof. We easily see that $\tilde{C}(x+y,z) = \tilde{C}(x,z) + \tilde{C}(y,x)$ and $\tilde{C}(x,y+z) = \tilde{C}(x,y) + \tilde{C}(x,z)$ for all $x, y, z \in A$. Moreover, for any $a \in k$, it follows that

 $\tilde{C}(ax, y) = \tilde{C}(x, ay) = a\tilde{C}(x, y).$

Hence we get a well-defined element $C \in \operatorname{Hom}_k(A \otimes_k A, I)$ as claimed.

Define the following product on $I \oplus A$:

$$(u,x) \times (v,y) = (uy + xv + C(x,y), xy).$$
(2.1)

We let $I \oplus^C A$ denote the abelian group $I \oplus A$ with product defined by (2.1).

Proposition 2.3. The natural isomorphism:

$$B \cong I \oplus A$$

of vector spaces is a unital ring isomorphism if and only if the following holds:

$$xC(y,z) - C(xy,z) + C(x,yz) - C(x,y)z = 0$$

for all $x, y, z \in A$.

Proof. We have defined two isomorphisms of vector spaces ϕ , ψ :

 $\phi(x) = (x - sp(x), p(x)),$

and

$$\psi(u, x) = u + s(x).$$

We define a product on the direct sum $I \oplus A$ using ϕ and ψ :

$$(u,x) \times (v,y) = \phi\big(\psi(u,x)\psi(v,y)\big) = \phi\big(\big(u+s(x)\big)\big(v+s(y)\big)\big)$$

$$= \phi (uv + us(y) + s(x)v + s(x)s(y)) = (us(y) + s(x)v + s(x)s(y) - s(xy), xy) = (uy + xv + C(x, y), xy).$$

Here, we define

$$uy = us(y)$$

and

$$xv = s(x)v.$$

One checks that

$$\phi(1) = (1 - sp(1), 1) = (0, 1) = \mathbf{1},$$

and

$$\mathbf{1}(u,x) = (u,x)\mathbf{1} = (u,x)$$

for all $(u, x) \in I \oplus A$. It follows that the morphism ϕ is unital. Since C(x + y, z) = C(x, z) + C(y, z) and C(x, y + z) = C(x, y) + C(x, z) the following holds:

$$(u,x)\big((v,y) + (w,z)\big) = (u,x)(v,y) + (u,x)(w,z),$$

and

$$((v, y) + (w, z))(u, x) = (v, y)(u, x) + (w, z)(u, x).$$

Hence, the multiplication is distributive over addition. Hence for an arbitrary section s of p of vector spaces mapping the identity to the identity, it follows the multiplication defined above always has a left and right unit and is distributive. We check when the multiplication is associative:

$$((u,x)(v,y))(w,z) = (uyz + xvz + xyw + C(x,y)z + C(xy,z), xyz).$$

Also,

$$(u,x)((v,y)(w,z)) = (uyz + xvz + xyw + xC(y,z) + C(x,yz), xyz).$$

It follows that the multiplication is associative if and only if the following equation holds for the element C:

$$xC(y,z) - C(xy,z) + C(x,yz) - C(x,y)z = 0$$

for all $x, y, z \in A$. The claim follows.

Let

$$xC(y,z) - C(xy,z) + C(x,yz) - C(x,y)z = 0$$
(2.2)

be the *cocycle condition*.

Definition 2.4. Let $exan_k(A, I)$ be the set of elements $C \in Hom_k(A \otimes_k A, I)$ satisfying the cocycle condition (2.2).

Proposition 2.5. Equation (2.2) holds for all $x, y, z \in A$:

Proof. We get,

 $\begin{aligned} xC(y,z) &= s(x)s(y)s(z) - s(x)s(yz),\\ C(xy,z) &= s(xy)s(z) - s(xyz),\\ C(x,yz) &= s(x)s(yz) - s(xyz), \end{aligned}$

and

$$C(x, y)z = s(x)s(y)s(z) - s(xy)s(z).$$

We get

$$\begin{aligned} xC(y,z) - C(xy,z) + C(x,yz) - C(x,y)z \\ &= s(x)s(y)s(z) - s(x)s(yz) - s(xy)s(z) + s(xyz) \\ &+ s(x)s(yz) - s(xyz) - s(x)s(y)s(z) + s(xy)s(z) \\ &= 0, \end{aligned}$$

and the claim follows.

Corollary 2.6. The morphism $\phi : B \to I \oplus^C A$ is an isomorphism of unital associative k-algebras.

Proof. This follows from Proposition 2.5 and Proposition 2.3.

Hence, there is always a commutative diagram of exact sequences:

where the middle vertical morphism is an isomorphism associative unital k-algebras.

Define the following left and right A-action on the ideal I:

 $xu = s(x)u, \quad ux = us(x),$

where s is the section of p and $x \in A$, $u \in I$. Recall $I^2 = 0$.

Proposition 2.7. The actions defined above give the ideal I a left and right A-module structure. The structure is independent of choice of section s.

Proof. One checks that for any $x, y \in A$ and $u, v \in I$, the following holds:

$$(x+y)u = xu + yu, \quad x(u+v) = xu + xv, \quad 1u = 1$$

Also,

$$(xy)u - x(yu) = s(xy)u - s(x)s(y)u = (s(xy) - s(x)s(y))u = 0,$$

since $I^2 = 0$. It follows that (xy)u = x(yu), hence I is a left A-module. A similar argument prove I is a right A-module. Assume t is another section of p. It follows that

$$s(x)u - t(x)u = (s(x) - t(x))u = 0,$$

since $I^2 = 0$. It follows that s(x)u = t(x)u. Similarly, us(x) = ut(x) hence s and t induce the same structure of A-module on I and the proposition is proved.

We have proved the following theorem: let A be any associative unital k-algebra and let I be a left and right A-module. Let $C : A \otimes_k A \to I$ be a morphism satisfying the cocycle condition (2.2).

Theorem 2.8. The exact sequence:

 $0 \longrightarrow I \longrightarrow I \oplus^C A \longrightarrow A \longrightarrow 0$

is a square zero extension of A with the module I. Moreover, any square zero extension of A with I arise this way for some morphism $C \in \text{Hom}_k(A \otimes_k A, I)$ satisfying equation (2.2).

Proof. The proof follows from the discussion above.

Let

$$0 \longrightarrow I \longrightarrow E \longrightarrow A \longrightarrow 0$$

with $i: I \to E$ and $p: E \to A$ and

 $0 \longrightarrow J \longrightarrow F \longrightarrow B \longrightarrow 0$

with $j: J \to F$ and $q: F \to B$ be square zero extensions of associative k-algebras A, Bwith left and right modules I, J. This means the sequences are exact and the following holds $i(I)^2 = j(J)^2 = 0$. A triple (w, u, v) of maps of k-vector spaces giving rise to a commutative diagram of exact sequences:

$$0 \longrightarrow I \xrightarrow{i} E \xrightarrow{p} A \longrightarrow 0$$
$$\downarrow w \qquad \qquad \downarrow u \qquad \qquad \downarrow v$$
$$0 \longrightarrow J \xrightarrow{j} F \xrightarrow{q} B \longrightarrow 0$$

is a morphism of extensions if u and v are maps of k-algebras and w is a map of left and right modules. This means

$$w(x+y) = w(x) + w(y), \quad w(ax) = v(a)w(x), \quad w(xa) = w(x)v(a)$$

for all $x, y \in I$ and $a \in A$.

We say two square zero extensions:

$$0 \longrightarrow I \longrightarrow E \longrightarrow A \longrightarrow 0$$

and

 $0 \longrightarrow I \longrightarrow F \longrightarrow A \longrightarrow 0$

are *equivalent* if there is an isomorphism $\phi : E \to F$ of k-algebras making all diagrams commute.

Definition 2.9. Let $\operatorname{Exan}_k(A, I)$ denote the set of all isomorphism classes of square zero extensions of A by I.

Theorem 2.10. Let C(A) be the center of A. The set $exan_k(A, I)$ is a left and right module over C(A). Moreover, there is a bijection:

 $\operatorname{Exan}_k(A, I) \cong \operatorname{exan}_k(A, I)$

of sets.

Proof. We first prove that $\exp(A, I)$ is a left and right C(A)-module. Let $C, D \in \exp_k(A, I)$. This means $C, D \in \operatorname{Hom}_k(A \otimes_k A, I)$ are elements satisfying the cocycle condition (2.2). let $a, b \in C(A) \subseteq A$ be elements. Define aC, Ca as follows:

$$(aC)(x,y) = aC(x,y),$$

and

(Ca)(x,y) = C(x,y)a.

We see

$$\begin{aligned} x(aC)(y,x) &- (aC)(xy,z) + (aC)(x,yz) - (aC)(x,y)z \\ &= a\big(xC(y,z) - C(xy,z) + C(x,yz) - C(x,y)z\big) = a(0) = 0, \end{aligned}$$

hence $aC \in \exp_k(A, I)$. Similarly, one proves $Ca \in \exp_k(A, I)$ hence we have defined a left and right action of C(A) on the set $\exp_k(A, I)$. Given $C, D \in \exp_k(A, I)$ define

$$(C+D)(x,y) = C(x,y) + D(x,y).$$

One checks that $C + D \in exan_k(A, I)$ hence $exan_k(A, I)$ has an addition operation. One checks the following hold:

$$a(C+D) = aC + aD, \quad (C+D)a = Ca + Da,$$

 $(a+b)C = aC + bC, \quad C(a+b) = Ca + Cb,$
 $a(bC) = (ab)C, \quad C(ab) = (Ca)b, \quad 1C = C1 = C,$

hence the set $\exp(A, I)$ is a left and right C(A)-module. Define the following map: let $[B] = [I \oplus^C A] \in \operatorname{Exan}_k(A, I)$ be an equivalence class of a square zero extension. Define

$$\phi : \operatorname{Exan}_k(A, I) \longrightarrow \operatorname{exan}_k(A, I)$$

by

$$\phi[B] = \phi[I \oplus^C A] = C$$

We prove this gives a well-defined map of sets. Assume $[I \oplus^C A]$ and $[I \oplus^D A]$ are two elements in $\operatorname{Exan}_k(A, I)$. Note: we use brackets to denote isomorphism classes of extensions. The two extensions are equivalent if and only if there is an isomorphism:

$$f:I\oplus^C A\longrightarrow I\oplus^D A$$

of k-algebras such that all diagrams are commutative. This means that

$$f(u,x) = (u,x)$$

for all $(u, x) \in I \oplus^C A$. We get

$$f((u,x)(v,y)) = f(u,x)f(v,y).$$

This gives the equality:

$$(uy + xv + C(x, y), xy) = (uy + xv + D(x, y), xy)$$

for all $(u, x), (v, y) \in I \oplus^C A$. Hence, $\phi[I \oplus^C A] = C = D = \phi[I \oplus^D A]$, and the map ϕ is well defined. It is clearly an injective map. It is surjective by Theorem 2.8 and the claim of the theorem follows.

Theorem 2.10 shows that there is a structure of left and right C(A)-module on the set of equivalence classes of extensions $\operatorname{Exan}_k(A, I)$. The structure as left C(A)-module agrees with the one defined in [3].

Let $\phi \in \operatorname{Hom}_k(A, I)$. Let $C^{\phi} \in \operatorname{Hom}_k(A \otimes_k A, I)$ be defined by

$$C^{\phi}(x,y) = x\phi(y) - \phi(xy) + \phi(x)y.$$

One checks that $C^{\phi} \in \exp_k(A, I)$ for all $\phi \in \operatorname{Hom}_k(A, I)$.

Definition 2.11. Let $\operatorname{exan}_{k}^{inn}(A, I)$ be the subset of $\operatorname{exan}_{k}(A, I)$ of maps C^{ϕ} for $\phi \in \operatorname{Hom}_{k}(A, I)$.

Lemma 2.12. The set $\exp_k(A, I) \subseteq \exp_k(A, I)$ is a left and right sub C(A)-module.

Proof. The proof is left to the reader as an exercise.

Definition 2.13. Let $\operatorname{Exan}_{k}^{inn}(A, I) \subseteq \operatorname{Exan}_{k}(A, I)$ be the image of $\operatorname{exan}_{k}^{inn}(A, I)$ under the bijection $\operatorname{exan}_{k}(A, I) \cong \operatorname{Exan}_{k}(A, I)$.

It follows that $\operatorname{Exan}_{k}^{inn}(A, I) \subseteq \operatorname{Exan}_{k}(A, I)$ is a left and right sub C(A)-module. Recall the definition of the *Hochschild complex* as follows.

Definition 2.14. Let A be an associative k-algebra, and let I be a left and right A-module. Let $C^p(A, I) = \operatorname{Hom}_k(A^{\otimes p}, I)$. Let $d^p : C^p(A, I) \to C^{p+1}(A, I)$ be defined as follows:

$$d^{p}(\phi)(a_{1}\otimes\cdots\otimes a_{p+1}) = a_{1}\phi(a_{2}\otimes\cdots\otimes a_{p+1}) + \sum_{1\leq i\leq p} (-1)^{i}\phi(a_{1}\otimes\cdots\otimes a_{i}a_{i+1}\otimes\cdots\otimes a_{p+1}) + (-1)^{p+1}\phi(a_{1}\otimes\cdots\otimes a_{p})a_{p+1}.$$

We let $HH^{i}(A, I)$ denote the *i*'th cohomology of this complex. It is the *i*'th Hochschild cohomology of A with values in I.

Proposition 2.15. There is an exact sequence:

 $0 \longrightarrow \operatorname{Exan}_{k}^{inn}(A, I) \longrightarrow \operatorname{Exan}_{k}(A, I) \longrightarrow \operatorname{HH}^{2}(A, I) \longrightarrow 0$

of left and right C(A)-modules.

Proof. The proof is left to the reader as an exercise.

Example 2.16. Characteristic classes of *L*-connections.

Let A be a commutative k-algebra and let $\alpha : L \to \text{Der}_k(A)$ be a Lie-Rinehart algebra. Let W be a left A-module with an L-connection $\nabla : L \to \text{End}_k(W)$. In [6], we define a characteristic class $c_1(E) \in H^2(L|_U, \mathcal{O}_U)$ when W is of finite presentation, $U \subseteq \text{Spec}(A)$ is the open set, where W is locally free, and $H^2(L|_U, \mathcal{O}_U)$ is the Lie-Rinehart cohomology of $L|_U$ with values in \mathcal{O}_U . If L is locally free, it follows that $H^2(L, A) \cong \text{Ext}^2_{U(L)}(A, A)$, where U(L) is the generalized universal enveloping algebra of L. There is an obvious structure of left and right U(L)-module on $\text{End}_k(A)$ and an isomorphism:

$$\operatorname{HH}^{2}\left(U(L), \operatorname{End}_{k}(A)\right) \cong \operatorname{Ext}^{2}_{U(L)}(A, A)$$

of abelian groups. The exact sequence 2.15 gives a sequence:

$$0 \longrightarrow \operatorname{Exan}_{k}^{inn} \left(U(L), \operatorname{End}_{k}(A) \right) \longrightarrow \operatorname{Exan}_{k} \left(U(L), \operatorname{End}_{k}(A) \right) \\ \longrightarrow \operatorname{Ext}_{U(L)}^{2}(A, A) \longrightarrow 0$$

with A = U(L) and $I = \text{End}_k(A)$. If we can construct a lifting:

 $\tilde{c}_1(W) \in \operatorname{Exan}_k(U(L), \operatorname{End}_k(A))$

of the class:

$$c_1(W) \in \operatorname{Ext}^2_{U(L)}(A, A) = \operatorname{HH}^2(U(L), \operatorname{End}_k(A)),$$

we get a generalization of the characteristic class from [6] to arbitrary Lie-Rinehart algebras L. This problem will be studied in a future paper on the subject (see [7]).

Example 2.17. Non-commutative Kodaira-Spencer maps.

Let A be an associative k-algebra, and let M be a left A-module. Let $D^1(A) \subseteq \operatorname{End}_k(A)$ be the module of first-order differential operators on A. It is defined as follows: an element $\partial \in \operatorname{End}_k(A)$ is in $D^1(A)$ if and only if $[\partial, a] \in D^0(A) = A \subseteq \operatorname{End}_k(A)$ for all $a \in A$. Define the following map:

$$f: D^1(A) \longrightarrow \operatorname{Hom}_k(A, \operatorname{End}_k(M))$$

by

$$f(\partial)(a,m) = [\partial,a]m = (\partial(a) - a\partial(1))m.$$

Here, $\partial \in D^1(A)$, $a \in A$, and $m \in M$. Since $[\partial, a] \in A$, we get a well-defined map. Let for any $a \in A$ and $m \in M$ $\phi_a(m) = am$. It follows $\phi_a \in \operatorname{End}_k(M)$ is an endomorphism of M. We get

$$f(\partial)(ab,m) = (\partial(ab) - ab\partial(1))m = (\partial\phi_{ab} - \phi_{ab}\partial)(1)m$$

= $(\partial\phi_{ab} - \phi_a\partial\phi_b + \phi_a\partial\phi_b - \phi_{ab}\partial)(1)m$
= $(\partial\phi_a - \phi_a\partial)\phi_b(1)m + \phi_a(\partial\phi_b - \phi_b\partial)(1)m$
= $f(\partial)(a,bm) + af(\partial)(b,m).$

Hence,

 $f(\partial)(ab) = af(\partial)(b) + f(\partial)(a)b$

for all $\partial \in D^1(A)$ and $a, b \in A$. The Hochschild complex gives a map:

$$d^1$$
: Hom_k $(A, \operatorname{End}_k(M)) \longrightarrow$ Hom_k $(A \otimes A, \operatorname{End}_k(M)),$

and

 $\ker (d^1) = \operatorname{Der}_k (A, \operatorname{End}_k(M)).$

It follows that we get a map:

$$f: D^1(A) \longrightarrow \operatorname{Der}_k (A, \operatorname{End}_k(M)).$$

We get an induced map:

$$f: D^1(A) \longrightarrow \operatorname{HH}^1(A, \operatorname{End}_k(M)) = \operatorname{Ext}^1_A(M, M).$$

Lemma 2.18. The following holds $f(D^0(A)) = f(A) = 0$

Proof. The proof is left to the reader as an exercise.

One checks that $D^1(A)/D^0(A) = D^1(A)/A \cong \text{Der}_k(A)$. It follows that we get an induced map:

$$g: \operatorname{Der}_k(A) = D^1(A)/D^0(A) \longrightarrow \operatorname{Ext}_A^1(M, M),$$

the non-commutative Kodaira-Spencer map.

Lemma 2.19. Assume A is commutative. The following hold:

$$\mathbb{V}_M = \ker(g) \subseteq \operatorname{Der}_k(A) \text{ is a Lie-Rinehart algebra},$$

$$(2.3)$$

$$g(\delta) = 0 \iff \exists \phi \in \operatorname{End}_k(M), \ \phi(am) = a\phi(m) + \delta(a)m, \tag{2.4}$$

$$\exists \nabla \in \operatorname{Hom}_k\left(\mathbb{V}_M, \operatorname{End}_k(M)\right) \text{ with } \nabla(\delta)(am) = a\nabla(\delta)(m) + \delta(a)m, \tag{2.5}$$

$$\mathbb{V}_M$$
 is the maximal Lie-Rinehart algebra satisfying (2.5). (2.6)

Proof. We first prove (2.3): assume $g(\delta) = g(\eta) = 0$. By definition, this is if and only if there are maps $\phi, \psi \in \text{End}_k(M)$ such that the following hold:

$$d^0\phi = g(\delta), \tag{2.7}$$

$$d^0\psi = g(\eta). \tag{2.8}$$

One checks that conditions (2.7) and (2.8) hold if and only if the following hold:

$$\phi(am) = a\phi(m) + \delta(a)m,$$

and

$$\psi(am) = a\psi(m) + \eta(a)m.$$

We claim $d^0[\delta, \eta] = g([\delta, \eta])$. We get

$$\begin{split} [\phi,\psi](am) &= \phi\psi(am) - \psi\phi(am) = \phi\left(a\psi(m) + \eta(a)m\right) - \psi\left(a\phi(m) + \delta(a)m\right) \\ &= a\phi\psi(m) + \delta(a)\psi(m) + \eta(a)\phi(m) + \delta\eta(a)m - a\psi\phi(m) - \eta(a)\phi(m) \\ &- \delta(a)\psi(m) - \eta\delta(a)m = a[\phi,\psi](m) + [\delta,\eta](a)m. \end{split}$$

Hence, $g([\delta, \eta]) = 0$ and $\mathbb{V}_M \subseteq \text{Der}_k(A)$ is a k-Lie algebra. It is an A-module since g is A-linear, hence it is a Lie-Rinehart algebra. Claim (2.3) is proved. Claim (2.4) and (2.5) follows from the proof of (2.3). Claim (2.6) is obvious and the lemma is proved. \Box

The Lie-Rinehart algebra \mathbb{V}_M is the *linear Lie-Rinehart algebra* of M. Let in the following E be a left and right A-module.

Definition 2.20. Let

 $\mathcal{J}_I^1(E) = I \otimes_A E \oplus E$

be the first-order I-jet bundle of E.

Pick a derivation $d \in \text{Der}_k(A, I)$ of left and right modules. This means that

d(xy) = xd(y) + d(x)y

for all $x, y \in A$. Let $B^C = I \oplus^C A$ and define the following left B^C -action on $\mathcal{J}^1_I(E)$:

$$(u,x)(w \otimes e, f) = (u \otimes f + xw \otimes e + d(x) \otimes f, xf)$$

for any elements $(u, x) \in B^C$ and $(w \otimes e, f) \in \mathcal{J}^1_I(E)$.

Proposition 2.21. The abelian group $\mathcal{J}_{I}^{1}(E)$ is a left B^{C} -module if and only if $C(y, x) \otimes f = 0$ for all $y, x \in A$ and $f \in E$.

Proof. One easily checks that for any $a, b \in B^C$ and $l, j \in \mathcal{J}^1_I(E)$ the following hold:

$$(a+b)i = ai + bi,$$

$$a(i+j) = ai + aj.$$

Moreover,

 $\mathbf{1}i = i.$

It remains to check that a(bi) = (ab)i. Let $a = (v, y) \in B^C$ and $b = (u, x) \in B^C$. Let also $i = (w \otimes e, f) \in \mathcal{J}^1_I(E)$. We get

$$a(bi) = (v, y)\big((u, x)(w \otimes e, f)\big) = \big(vx \otimes f + yu \otimes f + yxw \otimes e + d(yx) \otimes f, yxf\big).$$

We also get

$$(ab)i = (vx \otimes f + yu \otimes f + yxw \otimes e + d(yx) \otimes f + C(y,x) \otimes f, yxf).$$

It follows that

$$(ab)i - a(bi) = 0,$$

if and only if

$$C(y,x) \otimes f = 0,$$

and the claim of the proposition follows.

Note the abelian group $\mathcal{J}_{I}^{1}(E)$ is always a left A-module and there is an exact sequence of left A-modules:

$$0 \longrightarrow I \otimes E \longrightarrow \mathcal{J}_{I}^{1}(E) \longrightarrow E \longrightarrow 0,$$

defining a characteristic class:

$$c_I(E) \in \operatorname{Ext}^1_A(E, E \otimes I).$$

The class $c_I(E)$ has the property that $c_I(E) = 0$ if and only if E has an I-connection:

$$\nabla: E \longrightarrow I \otimes E$$

with

$$\nabla(xe) = x\nabla(e) + d(x) \otimes e.$$

Let $J \subseteq I \subseteq B^C$ be the smallest two-sided ideal containing Im(C), where $C : A \otimes_k A \to I$ is the cocycle defining B^C . Let $D^C = B^C/J$ and $I^C = I/J$. We get a square zero extension:

$$0 \longrightarrow I^C \longrightarrow D^C \longrightarrow A \longrightarrow 0$$

of A by the square zero ideal I^C . It follows that $D^C = I^C \oplus A$ as abelian group. Since $\overline{C(x,y)} = 0$ in I^C , it follows that D^C has a well-defined associative multiplication defined by

$$(u, x)(v, y) = (uy + xv, xy).$$

Also D^C is the largest quotient of B^C such that the ring homomorphism $B^C \to D^C$ fits into a commutative diagram of square zero extensions:

Definition 2.22. Let

 $\mathcal{J}^1_{I^C}(E) = I^C \otimes E \oplus E$

be the first-order I^C -jet bundle of E.

Example 2.23. First-order commutative jets.

Let $k \to A$ be a commutative k-algebra, and let $I \subseteq A \otimes_k A$ be the ideal of the diagonal. Let $\mathcal{J}_A^1 = A \otimes A/I^2$ and $\Omega_A^1 = I/I^2$. We get an exact sequence of left A-modules:

$$0 \longrightarrow \Omega^1_A \longrightarrow \mathcal{J}^1_A \longrightarrow A \longrightarrow 0.$$
(2.9)

It follows that $\mathcal{J}_A^1 \cong \Omega_A^1 \oplus A$ with the following product:

$$(\omega, a)(\eta, b) = (\omega a + b\eta, ab),$$

hence the sequence (2.9) splits. Let $\mathcal{J}_A^1(E) = \Omega_A^1 \otimes E \oplus E$ be the first-order Ω_A^1 -jet of E. We get an exact sequence of left A-modules:

$$0 \longrightarrow \Omega^1_A \otimes E \longrightarrow \mathcal{J}^1_A(E) \longrightarrow E \longrightarrow 0.$$

Since the sequence (2.9) splits, it follows that $\mathcal{J}_A^1(E)$ is a lifting of E to the first-order jet \mathcal{J}_A^1 .

3 Atiyah classes and Kodaira-Spencer classes

In this section, we define and prove some properties of Atiyah classes and Kodaira-Spencer classes.

Let X be any scheme defined over an arbitrary basefield F and let Pic(X) be the *Picard* group of X. Let $\mathcal{O}^* \subseteq \mathcal{O}_X$ be the following subsheaf of abelian groups: for any open set $U \subseteq X$, the group $\mathcal{O}(U)^*$ is the multiplicative group of units in $\mathcal{O}_X(U)$. Define for any open set $U \subseteq X$ the following morphism:

dlog : $\mathcal{O}(U)^* \longrightarrow \Omega^1_X(U)$,

defined by

$$d\log(x) = d(x)/x,$$

where d is the universal derivation and $x \in \mathcal{O}(U)^*$.

Lemma 3.1. The following holds:

 $d\log(xy) = d\log(x) + d\log(y)$

for $x, y \in \mathcal{O}(U)^*$

Proof. The proof is left to the reader as an exercise.

Hence, dlog : $\mathcal{O}^* \to \Omega^1_X$ defines a map of sheaves of abelian groups. The map dlog induces a map on cohomology

dlog :
$$\operatorname{Pic}(X) = \operatorname{H}^{1}(X, \mathcal{O}^{*}) \longrightarrow \operatorname{H}^{1}(X, \Omega^{1}_{X}),$$

and by definition

$$\operatorname{dlog}(\mathcal{L}) = c_1(\mathcal{L}) \in \operatorname{H}^1(X, \Omega^1_X).$$

Let $\mathcal{I} \subseteq \Omega^1_X$ be any sub \mathcal{O}_X -module, and let $\mathcal{F} = \Omega^1_X / \mathcal{I}$ be the quotient sheaf. We get a derivation:

 $d: \mathcal{O}_X \longrightarrow \mathcal{F}$

by composing with the universal derivation. We get a canonical map:

 $\mathrm{H}^{1}\left(X, \Omega^{1}_{X}\right) \longrightarrow \mathrm{H}^{1}(X, \mathcal{F}),$

and we let

$$\overline{c}_1(\mathcal{L}) \in \mathrm{H}^1(X, \mathcal{F})$$

be the image of $c_1(\mathcal{L})$ under this map.

Definition 3.2. The class $c_1(\mathcal{L}) \in \mathrm{H}^1(X, \Omega^1_X)$ is the first Chern class of the line bundle $\mathcal{L} \in \mathrm{Pic}(X)$. The class $\overline{c}_1(\mathcal{L}) \in \mathrm{H}^1(X, \mathcal{F})$ is the generalized first Chern class of \mathcal{L} .

Let \mathcal{E} be any \mathcal{O}_X -module and consider the following sequence of sheaves of abelian groups:

$$0 \longrightarrow \mathcal{F} \otimes \mathcal{E} \longrightarrow \mathcal{J}^{1}_{\mathcal{F}}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0,$$

where

 $\mathcal{J}^1_\mathcal{F}(\mathcal{E}) = \mathcal{F} \otimes \mathcal{E} \oplus \mathcal{E}$

as sheaf of abelian groups. Let s be a local section of \mathcal{O}_X , and let $(x \otimes e, f)$ be a local section of $\mathcal{J}^1_{\mathcal{F}}(\mathcal{E})$ over some open set U. Make the following definition:

 $s(x \otimes e, f) = (sx \otimes e + ds \otimes f, sf).$

It follows that the sequence

$$0 \longrightarrow \mathcal{F} \otimes \mathcal{E} \longrightarrow \mathcal{J}^1_{\mathcal{F}}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0$$

is a short exact sequence of sheaves of abelian groups. It is called the *Atiyah-Karoubi sequence*.

Definition 3.3. An \mathcal{F} -connection ∇ is a map:

 $\nabla: \mathcal{E} \longrightarrow \mathcal{F} \otimes \mathcal{E}$

of sheaves of abelian groups with

$$\nabla(se) = s\nabla(e) + d(s) \otimes e.$$

Proposition 3.4. The Atiyah-Karoubi sequence is an exact sequence of left \mathcal{O}_X -modules. It is left split by an \mathcal{F} -connection.

Proof. We first show that it is an exact sequence of left \mathcal{O}_X -modules. The \mathcal{O}_X -module structure is twisted by the derivation d, hence we must verify that this gives a well-defined left \mathcal{O}_X -structure on $\mathcal{J}^1_{\mathcal{F}}(\mathcal{E})$. Let $\omega = (x \otimes e, f)$ be a local section of $\mathcal{J}^1_{\mathcal{F}}(\mathcal{E})$, and let s, t be local sections of \mathcal{O}_X . We get the following calculation:

$$(st)\omega = (st)(x \otimes e, f) = ((st)x \otimes e + d(st) \otimes f, (st)f)$$

= $(stx \otimes e + sdt \otimes f + (ds)t \otimes f, stf) = (s(tx \otimes e + dt \otimes f) + ds \otimes tf, s(tf))$
= $s(tx \otimes e + dt \otimes f, tf) = s(t(x \otimes e, f)) = s(t\omega).$

It follows that $\mathcal{J}^1_{\mathcal{F}}(\mathcal{E})$ is a left \mathcal{O}_X -module and the sequence is left exact. Assume that

$$s: \mathcal{E} \longrightarrow \mathcal{J}_{\mathcal{F}}(\mathcal{E}) = \mathcal{F} \otimes \mathcal{E} \oplus \mathcal{E}$$

is a left splitting. It follows that $s(e) = (\nabla(e), e)$ for e a local section of \mathcal{E} . It follows that ∇ is a generalized connection and the theorem is proved.

Note: If $\mathcal{I} = 0$, we get that $\mathcal{J}_{\mathcal{F}}^1(\mathcal{E}) = \mathcal{J}_X^1(\mathcal{E})$ is the first-order jet bundle of \mathcal{E} and the exact sequence above specializes to the well-known *Atiyah sequence*:

 $0 \longrightarrow \Omega^1_X \otimes \mathcal{E} \longrightarrow \mathcal{J}^1_X(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0.$

The Atiyah sequence is left split by a connection:

$$\nabla: \mathcal{E} \longrightarrow \Omega^1_X \otimes \mathcal{E}.$$

The \mathcal{O}_X -module $\mathcal{J}^1_{\mathcal{F}}(\mathcal{E})$ is the generalized first-order jet bundle of \mathcal{E} .

Definition 3.5. The characteristic class:

 $\operatorname{AT}(\mathcal{E}) \in \operatorname{Ext}^{1}_{\mathcal{O}_{\mathbf{Y}}}(\mathcal{E}, \mathcal{F} \otimes \mathcal{E})$

is called the *Atiyah class* of \mathcal{E} .

The class $\operatorname{AT}(\mathcal{E})$ is defined for an arbitrary \mathcal{O}_X -module \mathcal{E} and an arbitrary sub module $\mathcal{I} \subseteq \Omega^1_X$.

Assume that $\mathcal{E} = \mathcal{L} \in \operatorname{Pic}(X)$ is a line bundle on X. We get isomorphisms:

$$\operatorname{Ext}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{L} \otimes \mathcal{F}) \cong \operatorname{Ext}^1_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{L}^* \otimes \mathcal{L} \otimes \mathcal{F})$$
$$\cong \operatorname{Ext}^1_{\mathcal{O}_Y}(\mathcal{O}_X, \mathcal{F}) \longrightarrow \operatorname{H}^1(X, \mathcal{F}).$$

We get a morphism:

 $\phi: \operatorname{Ext}^{1}_{\mathcal{O}_{\mathbf{Y}}}(\mathcal{L}, \mathcal{L} \otimes \mathcal{F}) \longrightarrow \operatorname{H}^{1}(X, \mathcal{F}).$

Proposition 3.6. The following holds:

 $\phi\big(\operatorname{AT}(\mathcal{L})\big) = \overline{c}_1(\mathcal{L}).$

Hence, the Atiyah class calculates the generalized first Chern class of a line bundle.

Proof. Let $\mathcal{I} = 0$. It is well known that $AT(\mathcal{L})$ calculates the first Chern class $c_1(\mathcal{L})$. From this, the claim of the proposition follows.

Let T_X be the tangent sheaf of X. It has the property that for any open affine set $U = \operatorname{Spec}(A) \subseteq X$ the local sections $T_X(U)$ equal the module $\operatorname{Der}_F(A)$ of derivations of A. Let $\mathbb{V}_{\mathcal{E}} \subseteq T_X$ be the subsheaf of local sections ∂ of T_X with the following property: the section $\partial \in T_X(U)$ lifts to a local section $\nabla(\partial)$ of $\operatorname{End}_F(\mathcal{E}|_U)$ with the following property:

 $\nabla(\partial): \mathcal{E}|_U \longrightarrow \mathcal{E}|_U$

which satisfies

$$\nabla(\partial)(se) = s\nabla(\partial)(e) + \partial(s)e$$

It follows that $\mathbb{V}_{\mathcal{E}} \subseteq T_X$ is a subsheaf of Lie algebras – the *Kodaira-Spencer sheaf* of \mathcal{E} . Define for any local sections a, b of \mathcal{O}_X, ∂ of $\mathbb{V}_{\mathcal{E}}$ and e of \mathcal{E} the following:

 $L(a,\partial)(e) = a\nabla(\partial)(e) - \nabla(a\partial)(e).$

Lemma 3.7. It follows that $L(a, \partial) \in \operatorname{End}_{\mathcal{O}_U}(\mathcal{E}|_U)$.

Proof. The following holds:

$$\begin{split} L(a,\partial)(be) &= a\nabla(\partial)(be) - \nabla(a\partial)(be) \\ &= a\big(b\nabla(\partial)(e) + \partial(b)e\big) - b\nabla(a\partial)(e) - a\partial(b)e \\ &= ab\nabla(\partial)(e) + a\partial(b)e - b\nabla(a\partial)(e) - a\partial(b)e \\ &= b\big(a\nabla(\partial)(e) - \nabla(a\partial)(e)\big) = b\big(a\nabla(\partial) - \nabla(a\partial)\big)(e) \\ &= bL(a,\partial)(e), \end{split}$$

and the lemma is proved.

Lemma 3.8. The following formula holds:

 $L(ab,\partial) = aL(b,\partial) + L(a,b\partial)$

for all local sections $a, b, and \partial$.

Proof. We get

$$\begin{split} L(ab,\partial) &= ab\nabla(\partial) - \nabla(ab\partial) \\ &= ab\nabla(\partial) - a\nabla(b\partial) + a\nabla(b\partial) - \nabla(ab\partial) \\ &= a\big(b\nabla(\partial) - \nabla(b\partial)\big) + (a\nabla - \nabla a)(b\partial) \\ &= aL(b,\partial) + L(a,b\partial), \end{split}$$

and the lemma is proved.

Let $LR(\mathbb{V}_{\mathcal{E}}) = End_{\mathcal{O}_X}(\mathcal{E}) \oplus \mathbb{V}_{\mathcal{E}}$ be the *linear Lie-Rinehart algebra* of \mathcal{E} . Let $LR(\mathbb{V}_{\mathcal{E}})$ have the following left \mathcal{O}_X -module structure:

 $a(\phi,\partial) = (a\phi + L(a,\partial), a\partial).$

Here, a, ϕ , and ∂ are local sections of \mathcal{O}_X , $\operatorname{End}_{\mathcal{O}_X}(\mathcal{E})$, and $\mathbb{V}_{\mathcal{E}}$. We twist the trivial \mathcal{O}_X structure on $\operatorname{End}_{\mathcal{O}_X}(\mathcal{E}) \oplus \mathbb{V}_{\mathcal{E}}$ with the element L. We get a sequence of sheaves of abelian groups:

$$0 \longrightarrow \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{E}) \xrightarrow{i} \operatorname{LR}(\mathbb{V}_{\mathcal{E}}) \xrightarrow{p} \mathbb{V}_{\mathcal{E}} \longrightarrow 0,$$

where i and p are the canonical maps. An \mathcal{O}_X -linear map:

 $\nabla: \mathbb{V}_{\mathcal{E}} \longrightarrow \operatorname{End}_{F}(\mathcal{E}),$

satisfying

$$\nabla(\partial)(ae) = a\nabla(\partial)(e) + \partial(a)e$$

is a $\mathbb{V}_{\mathcal{E}}$ -connection on \mathcal{E} .

Proposition 3.9. The sequence defined above is an exact sequence of left \mathcal{O}_X -modules. It is left split by a $\mathbb{V}_{\mathcal{E}}$ -connection ∇ .

Proof. We need to check that $LR(\mathbb{V}_{\mathcal{E}})$ has a well-defined left \mathcal{O}_X -module structure. By definition,

$$a(\phi,\partial) = (a\phi + L(a,\partial), a\partial).$$

We get

$$(ab)x = (ab)(\phi, \partial) = ((ab)\phi + L(ab, \partial), (ab)\partial)$$

= $(ab\phi + aL(b, \partial) + L(a, b\partial), ab\partial)$
= $a(b\phi + L(b, \partial), b\partial) = a(b(\phi, \partial)) = a(bx),$

and it follows that the sequence is a left exact sequence of \mathcal{O}_X -modules. If

$$s: \mathbb{V}_{\mathcal{E}} \longrightarrow \operatorname{End}_{\mathcal{O}_X}(\mathcal{E}) \oplus \mathbb{V}_{\mathcal{E}} = \operatorname{LR}(\mathbb{V}_{\mathcal{E}})$$

is a section, it follows that $s(e) = (\nabla(e), e)$. One checks that ∇ is a $\mathbb{V}_{\mathcal{E}}$ -connection, and the theorem is proved.

Definition 3.10. We get a characteristic class:

 $\mathrm{KS}(\mathcal{E}) \in \mathrm{Ext}^{1}_{\mathcal{O}_{X}}(\mathbb{V}_{\mathcal{E}}, \mathrm{End}_{\mathcal{O}_{X}}(\mathcal{E})),$

the Kodaira-Spencer class of \mathcal{E} .

Assume that $\mathbb{V}_{\mathcal{E}}$ is locally free and $\mathcal{E} = \mathcal{L} \in \operatorname{Pic}(X)$ is a line bundle on X. Assume also that $\mathbb{V}_{\mathcal{E}}^* = \mathcal{F} = \Omega_X^1/\mathcal{I}$ for some submodule \mathcal{I} . We get the following calculation:

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathbb{V}_{\mathcal{E}}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L})\right) \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L}) \otimes \mathbb{V}_{\mathcal{E}}^{*}\right)$$
$$\cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L}) \otimes \mathcal{F}\right) \longrightarrow \operatorname{H}^{1}(X, \mathcal{F}).$$

We get a map:

$$\psi : \operatorname{Ext}^{1}_{\mathcal{O}_{X}} \left(\mathbb{V}_{\mathcal{E}}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L}) \right) \longrightarrow \operatorname{H}^{1}(X, \mathcal{F})$$

of sheaves.

Proposition 3.11. The following holds: there is an equality:

 $\psi\big(\operatorname{KS}(\mathcal{L})\big) = \overline{c}_1(\mathcal{L})$

in $\mathrm{H}^{1}(X, \mathcal{F})$. Hence the Kodaira-Spencer class calculates the class $\overline{c}_{1}(\mathcal{L})$.

Proof. The proof is left to the reader as an exercise.

We get the following diagram expressing the relationship between the characteristic classes defined above:

$$\operatorname{Ext}^{1}_{\mathcal{O}_{X}}\left(\mathbb{V}_{\mathcal{L}}, \operatorname{End}_{\mathcal{O}_{X}}(\mathcal{L})\right) \xrightarrow{\psi} \operatorname{H}^{1}(X, \mathcal{F}) \xrightarrow{\overline{c}_{1}(-)} \operatorname{Pic}(X) .$$

$$\overset{\phi}{\underset{\operatorname{Ext}^{1}_{\mathcal{O}_{X}}}{\overset{\varphi}{\longleftarrow}} \left(\mathcal{L}, \mathcal{F} \otimes \mathcal{L}\right)$$

The following equation holds in $H^1(X, \mathcal{F})$:

 $\phi(\operatorname{AT}(\mathcal{L})) = \psi(\operatorname{KS}(\mathcal{L})) = \overline{c}_1(\mathcal{L}).$

References

- M. André. Homologie des algèbres commutatives. Die Grundlehren der mathematischen Wissenschaften, 206, Springer-Verlag, Berlin, 1974.
- [2] M. Atiyah. Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc., 85 (1957), 181–207.
- [3] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale de schémas et des morphismes de schémas. Inst. Hautes Études Sci. Publ. Math., 20 (1964), 101–355.
- [4] M. Karoubi. Homologie cyclique et K-theorie. Astérisque, no. 149 (1987), 147.
- [5] H. Maakestad. A note on principal parts on projective space and linear representations. Proc. Amer. Math. Soc., 133 (2005), 349–355.

- [6] H. Maakestad. Chern classes and Lie-Rinehart algebras. Indag. Math. (N.S.), 18 (2007), 589–599.
- [7] H. Maakestad. Chern classes and Exan functors. Preprint 2009.
- [8] H. Maakestad. Principal parts on the projective line over arbitrary rings. Manuscripta Math., 126 (2008), 443–464.

Received November 09, 2009 Revised July 19, 2010