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Abstract
It is well known that given a differential module E with a differential d we can measure the non-exactness of this 

differential module by its homologies which are based on the key relation d2=0. This relation is a basis for several 
important structures in modern mathematics and theoretical physics to point out only two of them which are the theory 
of de Rham cohomologies on smooth manifolds and the apparatus of BRST-quantization in gauge field theories.

Keywords: N-differential module; N-cochain complex; 
Cohomologies of N-cochain complex; Graded q-differential 
algebra; Algebra of connection form; N-connection form; Covariant 
N-differential; N-curvature Form; N-connection on module; Curvature 
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Introduction
An idea to generalize the concept of a differential module and 

to elaborate the corresponding structures by giving the mentioned 
above key relation d2 = 0 a more general form dN = 0, N ≥ 2 seems 
to be very natural. This idea has been proposed and studied in the 
series of papers [1-4] giving rise to the structures such as differential 
N-complex, N-cochain complex, generalized cohomologies of 
N-cochain complex and graded q-differential algebra, where q is a 
primitive Nth root of unity. The graded q-differential algebra can be 
viewed as a generalization of a graded differential algebra and can be 
used to develop the applications of structures based on relation dN = 0 
in non-commutative geometry. It is well known that the concepts of 
connection and its curvature are basic elements of the theory of fiber 
bundles and play an important role not only in a modern differential 
geometry but also in a modern theoretical physics namely in a gauge 
field theory. The development of a theory of connections has been 
closely related to the development of a theoretical physics. The advent 
of supersymmetric field theories in the 70’s of the previous century gave 
rise to interest towards 2-graded structures which became known in 
theoretical physics under the name of super structures. This direction of 
development has led to a concept of super connection which appeared 
in [5]. The emergence of non-commutative geometry in the 80’s of the 
previous century was a powerful spur to the development of a theory 
of connections on modules [6-9]. A basic concept used in a theory of 
connections on modules is a concept of a graded differential algebra. 
Consequently using a concept of a graded q-differential algebra we can 
develop a more general theory of connections. The aim of this paper is 
to give a survey of several algebraic structures based on the relation dN 
= 0 and to show the possible applications of these structures in non-
commutative geometry.

In the Section 2 we give a short overview of N-structures such as 
N-differential module, generalized homologies of the N-differential 
module, N-cochain complex. At the end of this section we give an 
example of a positive N-complex proposed in [3]. In the Section 3 
making use of the notion of N-complex we give a generalization of a 
concept of a graded differential algebra, which will be referred to as 
a graded q-differential algebra and was introduced and studied [2,4]. 
As it was investigated [10,11] it is possible to construct a realization 
of N-differential calculus of exterior forms on a smooth finite 
dimensional manifold. A construction of an analog of exterior calculus 

with N-differential d on a non-commutative space was proposed [12]. 
The space we consider is a reduced quantum plane. Our approach is 
based on a generalized Clifford algebra with four generators equipped 
with the N-differential d. We study the structure of the algebra 
of q-differential forms on a reduce quantum plane and show that 
the first order calculus induced by the differential d is a first order 
calculus. In the Section 4 we introduce a generalization of a concept 
of a connection form by means of a notion of graded q-differential 
algebra and covariant N-differential which can be viewed as analogs 
of a connection form in a graded differential algebra described [13]. 
We begin this section with an algebra of polynomials in the variables 
d,a1,a2,... and prove the power expansion formula for an n th power of 
the operator 1

ˆ ˆ
a a= +d d . Applying this formula we show that the N th 

power of the covariant N-differential is the operator of multiplication 
by an element ( )N

AF , which we then define as the N-curvature form of a 
N-connection form A [14]. In the Section 5 we make use of a notion of 
a graded q-differential algebra to construct a N-connection on module 
introduced in [14-17], which may be viewed as a generalization of a 
classical connection. We define the notions such as dual N-connection, 
N-connection consistent with the Hermitian structure of a module. 
Assuming module to be a finitely generated free module we study the 
local structure of N-connection, define a curvature of N-connection.

N-complex
Let K be a commutative ring with a unit and E be a left K -module.

Definition 2.1: A module E endowed with an endomorphism d: E→ 
E is said to be a differential module with differential d if endomorphism 
d satisfies d2 = 0. In the case when K is a field a differential module E will 
be referred to as a differential vector space.

It is well known that the property d2=0 of differential d: E→E 
implies Im Ker⊂ ⊂d d E , and this relation allows to measure the 

non-exactness of the sequence → →
d d

E E E considering the homology 
H(E)=Ker d/Im d of a differential module E which has the structure of 
a quotient module.

http://dx.doi.org/10.4172/1736-4337.S1-006
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Let E, F be differential modules respectively with differentials
: , :′→ →d E E d F F .

Definition 2.2: A homomorphism of modules φ : E→ F is said to be 
a homomorphism of differential modules E, F if it satisfiesφ φ′° = °d d .

It is easy to show that if φ is a homomorphism of differential 
modules then (Im ) Imφ ′⊂d d , ( ) '    φ ⊂Ker d Ker d which means that a 
homomorphism of differential modules φ induces the homomorphism 
of homologies : ( ) ( )φ∗ →H E H F of differential modules E, F. It can be 
proved [4]

Proposition 2.3: For an exact sequence of differential modules

0 0
φ ψ

→ → → →E F G
,

i.e. ψ ψIm f = Ker ,Ker f = 0,Im = G , there exists a homomorphism of 
homologies : ( ) ( )∂ →H G H E  such that the triangle

 **

( )

( ) ( )

ψϕ

∂
→

 

H F

H E H G

 				                  (1)

is exact.

Let us remind that a -graded module E is a direct sum of sub 
modules Ei ⊂ E labeled by integers i∈, i.e. E = ⊕i∈Ei, where an 
element ∈ iu E is said to be a homogeneous element of -graded 
module of degree i.

Definition 2.4: A differential module E with differential d is said 
to be a cochain complex if E is a -graded module E = ⊕i∈Ei and its 
differential d has degree 1 with respect to a   -graded structure of E, i.e. 
d: Ei → Ei+1.

A -graded structure of a cochain complex E = ⊕i∈Ei induces the 
 -graded structure of its homology H(E), i.e. H(E) = ⊕i∈Hi(E), where 

( ) Ker / Im= ∩ ∩i i iH E d E d E . A homology H(E) is usually referred to 
as a cohomology of a cochain complex E. It can be proved

Proposition 2.5: For an exact sequence of cochain complexes

 0 0
φ ψ

→ → → →E F G
there exists a homomorphism of homologies 1: ( ) ( )+∂ →i iH G H E  

such that the sequence

1( ) ( ) ( ) ( )
φ ψ∗ ∗∂ ∂ +…→ → → → →…n n n nH E H F H G H E

is exact.

Let us remind that a positive cochain complex is E = ⊕i∈Ei with 
Ei = 0 for i < 0 or equivalently E = ⊕i∈Ei. The well-known way of 
constructing this kind of complexes is based on a notion of a pre-
cosimplicial module.

Definition 2.6: A sequence of modules (En)n∈= (E0,E1,…,En,…) 
together with homomorphisms f0,f1,…,fn+1 such that each fi determines 
a sequence

0 1 2 1 ,+→ → …→ → →…
i i i i if f f f f

n nE E E E E
where fi :E

n→En+1is a homomorphism of modules called a coface 
homomorphism, is said to be a pre-cosimplicial module if

1−° = °j i i jf f f f ,				                      (2)

where  i, j ∈{0,1,…,n +1} and i< j.

Given a pre-cosimplicial module ((En)n∈ ; f0,f1,…,fn+1) we can 

construct a positive cochain complex E with differential d by setting E 
= ⊕n∈En and 1

0 ( 1)+
== −∑n i

iid f . It is easy to check that d2 = 0 follows 

immediately from (2). We shall call this positive cochain complex the 
pre-cosimplicial complex and its differential d the simplicial differential.

It is clear that the basic relation which determines the structure of 
a differential module and allows to define the important characteristics 
of a non-exactness of a differential module such as homologies is d2 = 
0. This basic relation can be given a more general form dN=0, where N 
is an integer greater or equal to two. This generalization was proposed 
and considered in the framework of non-commutative geometry 
almost at the same time in the papers [1-3]. Now we turn to a theory 
which can be developed if one replaces the basic relation d2 = 0 of a 
differential module by a more general one dN = 0.

Let N ≥ 2 be a positive integer and E be a left K -module.

Definition 2.7: A left K -module E is said to be a N-differential 
module with N-differential d if d: E→ E is an endomorphism of E 
satisfying dN = 0. In the case when K is a field a N-differential module E 
will be referred to as a N-differential vector space.

Obviously N-differential module can be viewed as a generalization 
of a concept of differential module to any integer N ≥ 2. Now for each 
integer 1 ≤ m ≤ N − 1 we can define the sub modules Zm(E)=Ker(dm)⊂E 
and Bm(E) =Im(dN-m)⊂ E. From the relation dN = 0 it follows that Bm(E) 
⊂ Zm(E).

Definition 2.8: The quotient modules ( ) : ( ) / ( )=m m mH E Z E B E are 
called the generalized homology of the N-differential module E.

 It can be proved [4] that in the case of a N-differential module E we 
have the statement analogous to Proposition 2.3 which is 

Proposition 2.9: If 0 0
φ ψ

→ → → →E F G  is an exact sequence 
of N-differential modules then for every m ∈{1,2,…,N-1} there are 
homomorphisms : ( ) ( )−∂ →m N mH G H E such that for every n ∈{1,2,…,N-1} 
the following hexagons of homomorphisms are exact.

( ) ( )

*

( ) ( )

*

(N ) (N )

( )

( ) ( )

( )

)

)

(

(

ψ

ψ

ϕ

ϕ

∗

∂

∗

−

∂

− −

→

←

 

 

n n

n N n

n n

H H G

H E H E

H G

F

H F

Definition 2.10: A N-differential module E with N-differential d is 
said to be a N-cochain complex or simply a N-complex if E is a -graded 
module ∈= ⊕



k
kE E and its N-differential d has degree 1, i.e. d : Ek → 

Ek+1.

If E is an N-complex then its cohomologies Hm(E) are -graded 
modules, i.e. ( ) ( )∈= ⊕



n
m n mH E H E , where

( ) Ker( : ) / ( )+ − + −= →n m n n m N m n m N
mH E d E E d E .

It should be noted that many notions related to N-complexes 
depend only on the underlying N -graduation, and for this purpose 
we define a N -complex to be a N-graded N-differential module with 
N-differential d of degree 1.We end this section by giving an example of 
a positive N-complex [3]. Let q ∈  be a Nth root of unity and ((En)n∈ 

; f0,f1,…,fn+1) be a pre-cosimplicial module, where f0,f1,…,fn+1 are coface 
homomorphisms. This pre-cosimplicial module induces the positive 
N-complexes if we construct then positively graded or -graded module 
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E = ⊕n∈En and equip it with the endomorphism dm : E→E, i ≤ n+1 of 
degree 1 defining it by

1
1 1

0
( 1)δ − +

+ − + +
=

= + −∑
m

n m r
m m n m r

r
d q f , 		                (3)

where

1

0
δ

− +

=
= ∑

n m
i

m i
i

q f  . 				                   (4)

For m = 0, 1 we get

1
0 1 1

0 0
,

+

+
= =

= = −∑ ∑
n n

i i n
i i n

i i
d q f d q f q f . 		                (5)

It can be verified that dm : En → En+1 , 0=N
md which means that dm 

is the N-differential, and we obtain the N-complexes (E,d0), (E,d1),…, 
(E,dn+1).

Graded q-differential algebra
It is well known that if we endow a cochain complex with an 

additional structure which is an associative unital law of multiplication 
in such a way that a differential of a cochain complex satisfies the graded 
Leibniz rule with respect to this multiplication then we obtain a concept 
of a graded differential algebra. Analogously if we equip a N-complex 
with an associative unital law of multiplication in such a way that a 
N-differential of a N-complex satisfies the q-graded Leibniz rule, where 
q is a primitive Nth root of unity, then we obtain a generalization of a 
graded differential algebra which is called graded q-differential algebra. 
The aims of this section are to remind a concept of a graded differential 
algebra, to give a definition of a graded q-differential algebra, to show 
in what a way an associative graded algebra can be endowed with a 
structure of a graded q-differential algebra and finally to show a relation 
of a graded q-differential algebra with noncommutative geometry by 
giving a construction based on a generalized Clifford algebra which 
leads to a realization of a graded q-differential algebra by analogs of 
differential forms on a reduced quantum plane. 

 Let Ω = ⊕n∈Ωn be an associative unital graded -algebra. The 
subspace of elements of degree zero Ω0 Ω is the subalgebra of Ω and 
we denote this subalgebra by A, i.e. A = Ω0. Any subspace Ωk ⊂ Ω of 
elements of degree k ∈  is the (A, A) -bimodule.

Definition 3.1: A graded differential algebra (GDA) is an associative 
unital graded -algebra equipped with a linear mapping d of degree 1 
such that the sequence

 1 1− +…→Ω →Ω →Ω →…
d d d dk k k

is a cochain complex, and d is an antiderivation, i.e. it satisfies the 
graded Leibniz rule

 ( ) ( 1)ω θ ω θ ω θ⋅ = ⋅ + − ⋅kd d d ,

where ω ∈ Ωk, θ ∈ Ω. 

Let us mention that if Ω is a GDA then Ker d is the graded unital 
subalgebra of Ω whereas Im d is the graded two-sided ideal of Ker d. 
Hence the cohomology H(Ω) is the unital associative graded algebra.

Definition 3.2: Let A be an associative unital algebra and M  be a 
(A, A) - bimodule. The triple ( ,d, )A M is said to be a first order differential 
calculus over an algebra A if :  →d A M  is a homomorphism of (A, A) 
-bimodules satisfying the Leibniz rule

d(ab) =d(a)b+ad(b),

where a, b ∈ A. A homomorphism d is referred to as a differential of a 
first order differential calculus.

 If Ω is a GDA with differential d then clearly the triple A, d, Ωq is a 
first order differential calculus over the algebra A.

Definition 3.3: If Ω is a GDA with differential d and A is its 
subalgebra of elements of degree zero then the triple (A, d, Ωq) will be 
referred to as the differential calculus over the algebra A.

Now we are going to describe a generalization of a GDA introduced 
and studied [2,4] by giving the basic condition d2 = 0 of a GDA a more 
general form dN = 0, N ≥ 2. In the following of this section, K is the field 
of complex numbers  and q is a primitive N th root of unity, where 
N ≥ 2.

Definition 3.4: A graded q-differential algebra (q-GDA) is an 
associative unital -graded (N-graded) -algebra Ωq = ⊕k∈Ωk

q endowed 
with a linear mapping d of degree one such that the sequence

1 1− +…→Ω →Ω →Ω →…
d d d dk k k

q q q

is a N-complex with N-differential d satisfying the graded q-Leibniz rule

( )ω θ ω θ ω θ⋅ = ⋅ + ⋅kd d q d ,	  		                 (6)

where ω∈Ωk
q , θ ∈Ωq .

Obviously the subspace of elements of degree zero 0= Ω ⊂ ΩA q q  
is the subalgebra of a q-GDA Ωq. Clearly the triple 1( , , )ΩA qd  is the 
first order differential calculus over the algebra A. The triple (A, d, Ωq) 
will be referred to as a N-differential calculus over the algebra A.

Let us remind that a graded q-center of an associative unital graded 
-algebra  = ⊕k∈

k is the graded subspace  Z() = ⊕k∈Zk()of A 
generated by the homogeneous elements v∈k, where k ∈ , satisfying

vw = qkmwv for any w∈m, m∈ . It is easy to verify that the graded 
q-center Z() is the graded subalgebra of .

Definition 3.5: A graded q-derivation of degree k ∈  of A is 
a homogeneous linear mapping D  : → m+k  satisfying the graded 
q-Leibniz rule

 ( ) ( ) ( )= + kmD vw D v w q vD w ,

where v ∈ Am, w ∈ A.

It is well known that given a homogeneous element v∈k of  we 
can associate to it the graded q-derivation of degree k by means of a 
graded q-commutator [ , ]q as follows

ad ( ) [ , ]= = −

km
q qv v w v w vw q wv , 		                  (7) 

where w∈m. Clearly adq(v)  : → m+k, and the graded q-derivation 
adq(v)associated to a homogeneous element v is referred to as an inner 
graded q-derivation of degree k of A. Let v ∈ A1 be a homogeneous 
element of degree one and dv = adq(v) : →  m+k be the inner graded 
q-derivation associated to v. The kth power of this inner graded 
q-derivation can be expanded as follows:

Lemma 3.6: For any integer k ≥ 2 it holds

( )

0

kk k k i i
v i

i
d w p v wv−

=
= ∑ , 			                  (8)

where w is a homogeneous element of  and

( ) | | | |[ ] !
( 1) ( 1)

[ ] ![ ] !
 

= − = −  −  
i iqk w wi i

i
q q

k k
p q q

ii k i
.	               (9)
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( 1)| | | |
2i

i iw i w −
= +  		    	              (10)

Making use of this Lemma we can prove [18]

Theorem 3.7: If  is an associative unital -graded -algebra and 
1∈v A is an element of degree one satisfying ( )∈Nv Z A , where N ≥ 2, 

then the inner graded q-derivation dv = adq(v) : k→k+1 associated to v 
is the N-differential of an algebra A. Hence an algebra A regarded with 
respect to the N-differential dv is the q-GDA.

We can apply this theorem to a generalized Clifford algebra in 
order to construct a q-GDA.

Definition 3.8: A generalized Clifford algebra is an algebra over the 
complex numbers  generated by a set of canonical generators{ξ1, ξ2,…, ξp} 
which are subjected to the relations

sg( ) , 1, , 1,2, ,ξ ξ ξ ξ ξ−= = = …j i N
i j j i iq i j p  	              (11)

where sg(k) is the usual sign function, and 1 is the identity element of 
an algebra.

Since our aim in this section is to construct the analogs of 
differential forms on a reduced quantum plane we shall consider the 
generalized Clifford algebra with four generators, i.e. p = 4. Let us 
denote the generalized Clifford algebra with four generators by NC
. We split the set of generators of this algebra into two pairs ξ1, ξ3 and 
ξ2, ξ4 denoting the generators of the first pair by x, y, i.e. x = ξ1, y = ξ3, 
and the generators of the second pair by u, v, i.e. u = ξ2, v = ξ4. From 
(11) it follows

, 1= = =N Nx y q yx x y ,	  		                (12)

,= =xu q ux xv q vx,				                 (13)

1 ,−= =yu q u y yv q v y ,				                  (14)

, 1= = =N Nuv q vu u v .			                  (15)

Let NP be the subalgebra of the algebra NC  generated by x, y. 
The relations (12) show that the generators x, y can be interpreted as 
coordinates of a reduced quantum plane [19], and correspondingly the 
subalgebra NP  can be interpreted as the algebra of polynomial functions 
on a reduced quantum plane. Keeping in mind this interpretation we 
shall call an element  ∈ Nf P a polynomial function on a reduced 
quantum plane. Our next step is to construct a N-differential calculus 
on a reduced quantum plane. For this purpose we take the generalized 
Clifford algebra NC  and applying the Theorem 3.7 equip it with 
the structure of a q-GDA in such a way that the subalgebra NP of 
polynomial functions will be the subalgebra of elements of degree zero 
of this q-GDA. We define the N-graded structure of NC as follows: we 
assign the degree zero to the generators x, y and the degree one to the 
generators u, v. Hence denoting the degree of an element w by |w| we 
can write

| | | | 0, | | | | 1= = = =x y u v ,				                  (16)

where 0, 1 are the residue classes of 0, 1 modulo N. As usual the degree 
of any monomial composed of generators x, y, u, v equals to the sum 
of degrees of its components. Obviously ∈= ⊕

N
i

N i NC C , where i
NC

is the subspace of homogeneous elements of degree i, and 0 =N NC P .

Proposition 3.9: For any λ,µ ∈  an element 1  ω λ= + ∈ Nu µ v C  
satisfies ( ) ω ∈N

NZ C .

Proof: For any 2 ≤ k ≤ N we have 1

0
ω λ µ− −

=

 
=  

 
∑
k

k k l l l k l

l q

k
v u

l
 .			              (17)

Since q is a primitive N th root of unity we have 0 
= 

 q

N
l for 1 ≤ l 

≤ N −1.

Thus taking k = N in (17) we obtain

( )1 ( )ω λ µ λ µ= + = + ∈N N N N N N N
Nu v Z C .

Now it follows from the Theorem 3.7 that the inner graded 
q-derivation dω = adq(ω) associated to an element 1ω λ µ= + ∈ Nu v C is 
the N –differential of the N-graded algebra NC . Hence the generalized 
Clifford algebra with four generators NC  regarded with respect to 
the N-graded structure defined by (16) and to N-differential dω is the 
q-GDA, and the triple ( ),  ,  ωN NdP C is the N-differential calculus 
over the algebra of polynomial functions NP of the reduced quantum 
plane. In what follows of this section we consider ω as a fixed element, 
and keeping this in mind we simplify the symbol for N- differential dω 
omitting ω and writing d instead of dω:

It should be mention that the structure of the q-GDA NC  depends 
on a choice of element ω, and consequently the numbers λ, µ can be 
considered as the parameters of this structure.

The N-differential d induces the differentials of coordinates 

→dx dx , →dy dy  and later in this section we will show that any 

element of degree 0>k of the q-GDA NC can be expressed in terms of 
the differentials of coordinates dx, dy. Since N-differential d satisfies dN 
= 0 it can be viewed as an analog of exterior differentiation of higher 
order on the reduced quantum plane. Proceeding with this analogy 
we will call the q-GDA NC  the algebra of q-differential forms on the 
reduced quantum plane and its elements of degree 0>k  expressed in 
terms of the differentials dx,dy the q-differential k-forms. Let us mention 
that in the particular case of N = 2 the above construction yields an 
analog of exterior calculus with exterior differential d satisfying d2 = 0 
on the reduced quantum plane with coordinates x, y which obey

 2 2 1,= = = −x y x y yx .

In analogy with exterior calculus we shall call a q-differential form 
θ a m-closed q-differential form, where 1 1≤ ≤ −m N , if 0θ =md , and 
we shall call a q-differential n-form θ a q-differential l-exact form if 
there exists a q-differential (n − l)-form ρ such that d1 = θ. It follows 
from dN = 0 that each q-differential (N − m)-exact form is m-closed.

Our next aim is to describe the structure of the algebra of 
q-differential forms in terms of the differentials of coordinate’s dx, dy. 
We begin with the first order differential calculus which is the triple

( )1,  ,  N NdP C , where NP  is the algebra of polynomial functions, d is 

the N-differential and 1
NC is the ( )N NP ,P -bimodule of q-differential 

1-forms. Evidently 1, ∈ Ndx dy C . Let us express the differentials dx, dy 
in terms of the generators of NC . It is worth mentioning that in what 
follows we shall use the structure of the right NP -module of 1

NC  have 
the relations to write q-differential 1-forms in terms of differentials. We

 1,ω ω ω ω= =x q x y y ,			           (18) 

where 1
1,ω λ µ ω λ µ−= + = +u v q u q v . Using these relations we obtain 

 1[ , ] (1 ) , [ , ] ( )ω ω ω ω ω= = − = = −q qdx x q x dy y y,	                (19)

where

 1
1 (1 ) (1 )ω ω λ µ−− = − + −q u q v  			               (20)
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It is evident that the right NP  -module 1
NC  is a free right module 

and {u, v} is the basis for this right module.

Proposition 3.10: For any integer N ≥ 3 the right NP  -module 
of q-differential 1-forms 1

NC is freely generated by the differentials of 
coordinates dx, dy.

Proof: Let , ∈ Nf h P  be polynomial functions on the reduced 
quantum plane. Using (19),(20) and the fact that {u, v} is the basis for 
the right NP –module 1

NC we can show that the equality dx f + dy h = 0 
is equivalent to the system of equations

1(1 ) (1 ) 0−− + − =q x f q yh ,

0+ =x f yh .

Multiplying the second equation by q − 1 and adding it to the first 
equation we obtain (q–q-1)h = 0. As q–q-1≠ 0 for N ≥ 3 we conclude 
that h = 0. In the same way we show that f = 0, and this proves that 
the differentials dx, dy are linearly independent q-differential 1-forms.

In order to prove that any q-differential 1-form is a linear 
combination of differentials we find the transition matrix from the 
basis {u, v} to the basis {dx, dy}. Let us denote the algebra of square 
matrices of order 2 whose entries are the elements of the algebra NP  
by 2 )NM (P . Then (dx dy) = (u v) • A, where 2 )∈ NA M (P , and from 
(19) we find

1(1 ) (1 )
(1 ) (1 )

λ λ
µ µ

− − −=   − − 

q x q yA
q x q y

,

It should be noted that the transition matrix depends on the 
coordinates of a point of a reduced quantum plane. As the coordinates 
of a reduced quantum plane obey the relations xN = 1, yN = 1 they are 
invertible elements of the algebra NP  and x−1 = xN −1, y−1 = yN −1. If N ≥ 
3 then the matrix A is an invertible matrix and

1 1 1 1
1

2 1 1 1 1
1

(1 )

λ µ

λ µ

− − − −
−

− − − −

 
 =
 − − 

qx x
A

q qy qy
.

Consequently we have

1 1
2 ( )

(1 )λ
− −= −

−

qu dxx dy y
q

, 			               (21)

1 1
2

1 ( )
(1 )µ

− −= +
−

v dxx qdy y
q

. 			                (22)

Now any q-differential 1-form 1     θ = + ∈ Nu f v h C , where
, ∈ Nf h P , can be expressed in terms of the differentials, and this ends 

the proof.

From the Proposition 3.10 it follows that the first order differential 

calculus ( )1,  ,  N NdP C is the coordinate calculus with coordinate 

differential d [20]. If we have a coordinate calculus then a coordinate 
differential of this calculus induces the partial derivatives which 
satisfy the twisted Leibniz rule. The second term in the right hand 
side of the twisted Leibniz rule for a partial derivative depends on 
the homomorphism from the algebra NP to the algebra of (2 × 
2)-matrices with entries from NP , which we denote by 2 )NM (P , and 
this homomorphism is determined by the relation between the right 
and left module structures of the bimodule of q-differential 1-forms 

1
NC . Let us denote this homomorphism by 2: )→N NR P M (P , i.e. for 

∈ Nf P we have

11 12

21 22

( ) ( )
( )

( ) ( )
 

=  
 

r f r f
R f

r f r f
and

11 21( ) ( )= +f dx dxr f dyr f , 	  		                 (24)

12 22( ) ( )= +f dy dxr f dyr f . 	  		               (25)

Since NP is the algebra of polynomial functions in two variables 
x, y which are subjected to the commutation relation xy = q yx and the 
relations xN = 1, yn = 1 it is sufficient to find the explicit formula for the 
homomorphism R applied to coordinates x, y. Taking firstly f = x and 
then f = y in (24), (25) we find

1 1 1 2

2 1 2

0 ( 1)
( ) , ( )

0 ( 1) ( 1)

− − −

−

   − = =    − − +   

qx q y q q x y
R x R y

q x q x q q q y
.	              (26)

Putting the entries of these matrices into the relations (24), (25) 
we get

1, ( 1)= = + −xdx q dxx ydx dx y q dyx
q

, 	                                  (27)

2
2 1 21 1, −− − +

= = +
q q qxdy q dyx ydy dxx y dy y

q q
.	              (28)

The partial derivatives induced by the N-differential d are defined by

∂ ∂
= +

∂ ∂
f fdf dx dy
x y

.

It can be shown [20] that the partial derivatives satisfy the twisted 
Leibniz rule

11 12
( ) ( ) ( )∂ ∂ ∂ ∂

+ +
∂ ∂

=
∂ ∂

fh f f fh r f r f
x x x x

 ,

21 22
( ) ( ) ( )∂ ∂ ∂

= + +
∂ ∂ ∂
fh f fh r f r f
y y y

.

Using the twisted Leibniz rule and (26) we calculate

1[ ] , 0−∂ ∂
= =

∂ ∂

k k
k

q
x xk x
x y

1
1 1

1 1
[ ] ( 1) [ ] ( 1)

,
( 1) ( 1)

−
− −

− −

− +∂ ∂
= =

∂ ∂+ +

l ll l
q ql l
l l

l q l qy yx y y
x yq q q q

Using these formulae we can calculate the partial derivatives 
of any polynomial function ∈ Nf P  which can be written as

1
, 0ζ
−
==∑N k l

klk lf x y . For instant the derivative with respect to x of f is

11
1 1

, 0

1([ ] [ ] )
1

ζ
−−

− + −

=

∂ −
= +

∂ +
∑

lN
k l k l

q q kl
k l

f qk q l x y
x q

.

We remind that the set of generators {x,u,y,v} of the generalized 
Clifford algebra NC  has been split into two parts, where the first 
part {x, y} generates the algebra of polynomial functions NP , and the 
second part {u, v} generates the N-differential calculus ( ),  ,N NdP C . 
We already have proved that any 1- form θ = u f + v h can be uniquely 
expressed in terms of the differentials dx, dy. Now if we take x, y, dx, dy 
as the generators for the algebra NC then we may divide the algebraic 
relations between the new generators into three parts. The first part 
contains the relations
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, 1= = =N Nxy q yx x y ,

which determine the structure of the algebra NP  of polynomial 
functions on the reduced quantum plane. The second part consists of 
the relations (27),(28) between coordinates x, y and their differentials

1, ( 1)= = + −xdx q dxx ydx dx y q dyx
q

,

2
2 1 21 1, −− − +

= = +
q q qxdy q dyx ydy dxx y dy y

q q
.

The third part will contain the relations between the differentials 
dx, dxy. It is evident that the commutation relation uv = qvu will give 
us a quadratic relation for the differentials dx, dy, and the relations 
uN = vN = 1will give rise to two relations of degree N with respect to 
differentials.

Proposition 3.11: The commutation relation uv = qvu for the 
generators u, v written in terms of the differentials dx, dy takes on the 
form

2 1 2 1
1 2 3( ) ( )γ γ γ− −= + +dxdy dydx dx x y dy y x , 	              (29)

where
4 3

1 2 3
1 1 (1 ), ,

2 2 2
γ γ γ+ − −

= = =
q q q q

q
.		              (30)

This proposition can be proved by straightforward computation 
with the help of the formulae (21), (22) and the relations (27), (28).

The relation (29) allows us to choose the ordered set of monomials B,

where
1 1{( ) , ( ) , ,( ) ,( ) }, 2 1− −= … ≤ ≤ −k k k kdx dy dx dy dx dy k N ,

as the basis for the right NP -module of q-differential k-forms k
NC . For 

example the right NP -module of q-differential 2-forms 2
NC  is spanned 

by the monomials 2 2( ) , ,( )dx dydx dy . Hence any q-differential k-form θ 
on the reduced quantum plane can be uniquely expressed as follows:

1 1
0 1 1( ) ( ) ( ) ( ) ,θ − −

−= + +… +k k k k
k kdx f dy dx f dy dx f dy f

where 0 1, , ,… ∈k Nf f f P are polynomial functions. The peculiar 
property of the q-analog of exterior calculus on a reduced quantum 
plane is an appearance of the higher order differentials of coordinates, 
and this gives us a possibility to construct one more basis for the 
module of 2-forms. Indeed as dk ≠ 0for k running integers from 2 to 
N − 1 we have the set of higher order differentials of coordinates d2x, 
d2y,….,dN-1x, dN-1y, and we can use these higher order differentials to 
construct a basis for k

NC . In this paper we shall describe a case of the 
module of q-differential 2-forms. The elements ω, ω1, ω − ω1 can be 
written as q-differential 1-forms as follows:

1 1 1 1
1 1

1 1, ,
1 1

ω ω ω ω− − − −= = − − =
− −

dxx dxx dy y dy y
q q

. (31)

Differentiating ω we obtain

2 21[ , ] ( )
(1 )

ω ω ω −= =
−qd dx x

q q
.	  		                 (32)

where dω is the q-differential 2-form. Now we can write the second 
order differential d2x as a q-differential 2-form as follows:

2 2 11(1 ) ( ) (1 )( ( ) ) ( )ω ω ω −+
= − = − + =

qd x q d x q d x q dx dx x
q

.(33)

Expressing the second order differential d2y in terms of (dx)2, dy dx, 

(dy)2 we prove the following proposition:

Proposition 3.12: The second order differential d2y can be written 
as follows:

2 1
2

1 1( )
1

−= −
−

d y dxdy q dydx x
q q

. 	                                 (34)

Proof: As 1 1( ) ,dy y y yω ω ω ω= − =  we have

2
1 1 1 1[ ,( ) ] ( ( ) ( ) )ω ω ω ω ω ω ω ω ω= − = − − −d y y q y . 

Now applying the formula (31) and the multiplication rules (27), 
(28) we get the expression (34).

The Propositions 3.11, 3.12 show that we can change the basis 2 

by the basis '
2  in the right NP -module of q-differential 2-forms

2
NC , where

 2 2
2 {( ) , ,( ) }= dx dydx dy , 2 2

2' { , , }= d x dydx d y .

We point out that from the Proposition 3.12 it follows that the 
relation (29) can be written by means of the second order differential 
d2y in a more symmetric form

 3 2 2(1 )= + −dxdy q dydx q q d y x . 			                 (35) 

We end this section by considering the structure of algebra of 
q-differential forms on a reduced quantum plane at cubic root of unity, 
i.e in the case of N = 3. In this case we have the algebra of q-differentials 
forms on a reduced quantum plane at cubic root of unity with 
differential d satisfying d3 = 0. It can be verified that now the right hand 
sides of the formulae (33), (34) are the 1-closed q-differential 2-forms, 
i.e.

2 1 1 1
2

1( ) 0, ( ) 0( )− − −= − =d dx x d dxdy x q dydx x
q

.

The last term in the relation (29) vanishes because q is a primitive 
cube root of unity and satisfies q3 − 1 = 0. Making use of the relation 1 
+ q + q2 = 0 we can write the coefficient γ1 as follows:

4 2

1
1 1

2 2 2
γ + +

= = = −
q q q .

Hence the relation for the differentials (29) with respect to the basis 
2 takes on the form

2 2
2 2(1 ) ( )

2 2
−

= − +
q q qdxdy dydx dx x y .		                (36)

The above relation is similar to the anticommutativity of differentials 
in a classical algebra of differential forms on a plane and meaning this 
analogy we can say that the algebra of q-differential forms on a reduced 
quantum plane at cubic root of unity with differential satisfying d3 = 0 
may be viewed as a deformation of the classical algebra of differential 

forms with parameter 
2

2
q  and the additional term proportional to the 

form (dx)2x2y.

N-connection form and its curvature
In this section we propose a generalization of a concept of 

connection form by means of a notion of q-GDA [15-17]. We begin 
this section with an algebra of polynomials in two variables which 
we will use later in this section to prove propositions describing the 
structure of the curvature of a connection form.

Let d, a1, a2,..., an,... be the set of variables.
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Definition 4.1: The algebra of polynomials [ ],  aP d with coefficients 
in  generated by the variables d, a1, a2, . . . , an, . . . is said to be the 
algebra of connection form if the variables are subjected to the relations

 1, 1,2,+= + = …i i ia qa a id d 			                    (37)

 where 0≠q is a complex number.

Let [ ]P d be the subalgebra of [ ],  aP d generated by the variable 
d and [ ]P d be the subalgebra of [ ],  aP d freely generated by the 
variables a1, a2, . . . , an, . . .. We define the -graduation of the algebra 
of connection form [ ],  aP d by assigning degree one to the generator 
d and degree i to a generator ai. It should be mentioned that this 

-graded structure of [ ],  aP d induces the -graded structures of the 
subalgebras [ ] [ ]aP d ,P .

Definition 4.2: The algebra of connection form [ ],  N aP d is said to 
be the algebra of N-connection form if q is a primitive N th root of unity, 
and the variable d obeys the additional relation dN = 0. The algebra of 
N-connection form will be denoted by [ ],  N aP d .

Proposition 4.3: The algebra of N-connection form [ ],  N aP d  is 
an algebra of polynomials over  generated by finite set of variables d 
a1,a2,…,aN-1 which are subjected to the relations.

1 1 2
2

2 2 3

1
2 2 1

1 1

..

,

,

,

0.

..
−

− − −

− −

= +

= +

= +

=

=

N
N N N

N N
N

a qa a

a q a a

a q a a
a a

d d

d d

d d

d d,

d

 			                 (38)

Proof: It is suffice to show that in the case of the algebra of 
N-connection form we have an = 0 for any integer n ≥ N. Indeed making 
use of the commutation relations (37) we can express any variable an, n 
≥ 2 in the terms of d, a1 as polynomial

 
( 1)

2
1( 1)

+

+ =

 
= −  

 
∑

m m
m k m

n
k m n q

n
a q a

m
d d .	                                (39)

Now assuming n = N we see that the first and last terms in (39) 
vanish because of dN = 0, other terms are zero because of vanishing 
of q-binomial coefficients provided q is a primitive Nth root of unity. 
Hence for any integer n ≥ N we have an = 0. In what follows we will 
denote by [ ]N aP the subalgebra of [ ],  N aP d generated by  a1,a2,…, 
aN-1.

Let us consider the algebra of connection form [ ],  N aP d and its 
subalgebra [ ]N aP generated by the set of variables {ai}i≥ 1. Let [ ]ξ ∈ aP

be a polynomial in variables a1,a2,…,an,….. The commutation relations 
of the algebra of connection form (37) show that for any polynomial 
( ) [ ]ξ ∈a aP the product [ ]9 0 ,  ξ ∈a aPd d can be represented in the 

form

( ) ( ) ( )ξ ξ ξ= +a a add d ,

where ( ), ( ) [ ]ξ ξ ∈ a a ad P the uniquely determined polynomials. We 
define the linear operator [ ]ˆ [b]→a: Pd P  associated to the variable 
d by the formula

 ( )ˆ ξ ξ= dd ,

where ξ any polynomial of [ ]aP .

Theorem 4.4: The linear operator [ ]ˆ [b]→a: Pd P  is the graded 
q-differential of the algebra [ ]aP , i.e. d̂  satisfies the graded q-Leibniz 
rule with respect to N-graded structure of [ ]aP . Particularly

1 1 1(1) 0, ( ) , (ˆ ˆ ˆ )+ + += = = + i
i i i j i j i ja a a a a a q a ad d d .

In the case of the algebra of N-connection form [ ],  N aP d the graded 

q-differential [ ]ˆ [b]→a: Pd P  is the N-differential, i.e. Nˆ 0d = , and the 
algebra N[ ]aP is the q-GDA.

Now for any integer n ≥ 1 we define the polynomials 
[ ]( ) ( ),  , [ ]∈ ∈n n

ap a f adP P  and the operator : [ ] [b]ˆ →a aP Pd  of 

degree one by

( ) ( 1)
1 1 1( ) , ( ), ( ) ( ) , [ ]+= + = = + ∀ ∈  

kn n k
a aap a f a p p a p p ad d d Pd . (40)

For the first values of k the straightforward computation of 
polynomials ( )k

af by means of recurrent relation f ( 1) ( )ˆ ( )+ =k k
a a af fd  

gives

(2) 2
2 1= +af a a ,	(41)

(3) 3
3 2 1 1 2 1[2]+ += +a qf a a a a a a ,			                  (42)

(4) 2
4 3 1 1 3 2[3] [3]= + + +a q qf a a a a a a

2 2 4
2 1 1 2 1 2 1 1[3] [2]+ + + +q qa a a a a a a a ,		               (43)

(5)
5 4 1 1 4 3 2[4] [4]= + + +a q qf a a a a a a a

2 2
3 3 2 1 2 1 22 1

4
[3] [4]

2
+ +

 
+ + 
 

q q
q

a a a aa a a a a .

2 2
1 2 11 3 1 3

4
[2] [4] [3]

2
 

++  


+


q q q
q

a a a a a a a

3 3 5
2 1 1 2

2
2 1 1 2 1

2
1 1[2] [3] [4]+ + + + +q q qa a a a a a a a a aa .               (44)

We associate the linear operator ( )ˆ : [ ] [ ]→np a aP P  to the 
polynomial ( )np replacing the variable d in p(n) by the associated 
graded q-differential d̂ . Evidently ( ) ˆˆ = n n

ap d  and ( ) ( 1)
1ˆ ( )+ = nn

af p a . 
Our aim now is to find a power expansion for polynomials p(n) with 
respect to variables d, a1,a2,…,an. It is obvious that making use of 
the commutation relations (37) we can rearrange the factors in each 
summand of this expansion by removing all d’s to the right.

Lemma 4.5: Each polynomial p(n)can be expanded with respect to 
variables of the algebra of connection form [ ],  aP d as follows

( ) ( ) (1) 1 ( 1) ( )[ ] [ ]− −

+ =

 
= = + +…+ + 

 
∑n m k n n n n

a q a q a a
qk m n

n
p f n f n f f

k
d d d d  ,

where ( ) ( 1)
1ˆ ( )−=n n

af p a . In the case of the algebra of N-connection 

form [ ],  N aP d the operator ( )ˆ : [ ] [ ]= →

NN
a N Np a aP Pd  induced by the 

polynomial p(n) is the operator of multiplication by ( )N
af .

Let Ωq be a N -graded q-differential algebra with N-differential d, 
where q is a Nth primitive root of unity, and 0= ΩqA be the subalgebra 
of elements of degree zero.
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Definition 4.6: We will call an element of degree one 1= ΩqA  a 
N-connection form in a q-GDA Ωq. The linear operator of degree one 

1    :    += + Ω →ΩA i id d A will be referred to as a covariant N-differential 
induced by a N-connection form A.

Since d is a N-differential which means that dn ≠ 0 for 1 ≤ n ≤ N 
− 1 if we successively apply it to a N-connection form A we get the 
sequence of elements A, dA, d2A, . . . , dN −1A, where. Let us denote 
by Ωq[A] the graded subalgebra of Ωq generated by these elements A, 
dA, d2A, . . . , dN −1A. For any integer n = 1, 2, . . . , N we define the 
polynomial [ ](n) ∈ΩqAF A by the formula (n) 1(A)−∈ n

AAF d .

Now we will use the algebra of N-connection form [ ],  N aP d  to 
study the structure of a kth power of the covariant N-differential dA. 
Indeed it is easy to see that we can identify a N-differential d in Ωq with 
the N-differential d̂ in [ ]N aP , a N-connection form A in Ωq with the 
variable a1 in [ ]N aP and dnA ∈ Ωq with [ ]1 + ∈n Na aP . Consequently 
from Theorem 4.5 we obtain

Theorem 4.7: For any integer 1 ≤ n ≤ N the nth power of the 
covariant N-differential dA can be expanded as follows

( ) (1) ( 1) ( )1( ) [ ] [ ] −−

+ =

 
= = + +…+ + 

 
∑ m n nn k n n

A q qA A A A
qk m n

n
d F d d n F d n F d F

k
,

where ( ) 1( ) ( )−=n n
AAF d A . Particularly if n = N then the Nth power 

of the covariant N-differential dA is the operator of multiplication by the 
element ( )N

AF of degree zero.

The Theorem 4.7 allows us to define the curvature of a N-connection 
form A as follows

Definition 4.8: The N-curvature form of a N-connection form A is 
the element of degree zero ( ) ∈N

AF A .

 It is easy to see that in the particular case of a graded differential 
algebra (N = 2, q = −1) with differential d satisfying d2 = 0 the above 
definition yields a connection form A and its curvature (2) 2= +AF dA A  
as elements of degree respectively one and two of a graded differential 
algebra [13].

Proposition 4.9: For any N-connection form A in a q-GDA Ωq the 
N- curvature form ( )N

AF  satisfies the Bianchi identity
)

q
( ( )[ , ] 0+ =N N
A AdF A F .				                   (45)

Proof: Indeed we have
( ) ( ) ( ) ( ) ( )

( ) ( )

( )1

( ) ( ) ( )

q

( )

( ) ( ) )

(

,

) 0.

[ ]

( )−

+ = ++

= −

= −

= − = − =

N N N N NN
A A A A A

N N
A A A

NN
A A A

N N NN
A A A A

dF A F dF AF q F

d F F A

d d A F A

d A F A F A F A

A

 

From (41)–(44) we obtain the expressions for N-curvature form

(2) 2= +AF dA A ,	  			                 (46)

(3) 2 3[2]= + + +qAF d A dAA AdA A ,			                 (47)

(4) 3 2 2 2

2 2 4

( ) [3] ( ) [3] ( )

[3] [2]

= + + +

+ + + +

q qA

q q

F d A d A A A d A dA

dAA A dA AdAA A
, 	                 (48)

(5) 4 3 3 2( ) [4] ( ) [4] ( )= + + +q qAF d A d A A A d A d A dA

2 2 2 24
( ) ( ) [3] ( )

2
 

+ + + 
 

q
q

dA d A d A A dA A

2 2 24
[4] [2] [4] ( )

2
 

+ + +  
 

q q q
q

dAAdA A dA A d A

2 2 2[3] [2] [3]+ + +q q qAd AA AdAA A dAA

3 3 5[4]+ + +qdAA A dA A . 	  		                (49)

N-connection on Modules
This section is devoted to the definition and the study of a 

connection in non-commutative geometry. Our main purpose is 
to describe a concept of N-connection on a module which may be 
considered as a generalization of a classical connection [15-17]. In 
our approach we generalize a concept of Ω-connection on modules 
proposed in reference [9]. In order to have an algebraic model of 
differential forms with values in vector bundle we introduce a left 
module over the subalgebra of elements of degree zero of a q-GDA. We 
study the structure of a N-connection, define its curvature and prove 
the Bianchi identity. We show that every projective module admits a 
N-connection. In a last part of this section we study the local structure 
of a N-connection. Assuming that left module is a finitely generated 
free module we introduce a matrix of N-connection and the curvature 
matrix. Finally we find the expressions for components of the curvature 
in terms of the components of a N-connection.

Let A be an unital associative -algebra and Ωq be an N-differential 
calculus over A, i.e. Ωq is a q-GDA with N-differential d and 0= ΩqA . Let 
ε be a left A -module. Considering algebra Ωq as the (A, A)-bimodule 
we take the tensor product ε= Ω ⊗q AF of modules which clearly has 
the structure of left A -module. Taking into account that an algebra 
Ωq can be viewed as the direct sum of (A, A)-bimodules Ωi

q  we can 
split the left A -module F into the direct sum of the left A -modules 

ε= Ω ⊗i i
q AF  [21], i.e. = ⊕ i

iF F , which means that F inherits the 
graded structure of algebra Ωq, and F  is the graded left A -module. It 
is worth noting that the left A submodule 0 ε= ⊗AF A of elements of 
degree zero is isomorphic to a left A -module ε, where isomorphism 

0:ϕ ε → F  can be defined by ( )ϕ ξ ξ= ⊗e A , where e is the identity 
element of algebra A. Since an algebra Ωq can be considered as the 

( ),  Ωq A -bimodule the left A -module F  can be also viewed as the 

left Ωq-module [21] and we will use this structure to describe a concept 
of N- connection. 

The tensor product F is also the vector space over  where 
this vector space is the tensor product of the vector spaces Ωq and 
ε. It is evident that F is a graded vector space, i.e. = ⊕ i

iF F , where 
ε= Ω ⊗



i i
qF . Let us denote the F  by ( )L F . The structure of the 

graded vector space of F  induces the structure of a graded vector 
space on ( )L F , and we shall denote the subspace of homogeneous 
linear operators of degree i by ( )iL F . 

Definition 5.1: A N-connection on the left Ωq-module F is a linear 
operator :∇ →q F F of degree one satisfying the condition

 | |( ) ( )ωω ξ ω ξ ω ξ∇ ⊗ = ⊗ + ∇q qd qA A , 	                                 (50)

whereω∈Ωk
q , ξ ε∈ , and |ω| is the degree of the homogeneous element 

of algebra Ωq .

Similarly one can define a N-connection on right modules. If Rε  
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is a right A-module, a N-connection on ε= ⊗ ΩR
qAG  is a linear map 

:∇ →q G G of degree one such that  ( ) ( )ωξ ω ξ ω ξ ω∇ ⊗ = ⊗ + ∇q qd q
AA

for any Rξ ε∈  and homogeneous element ω ∈ Ωq.

Making use of the previously introduced notations we can write 
1( )∇ ∈q L F . Let us note that if N = 2 then q = −1, and in this particular 

case the Definition 5.1 gives us the notion of a classical connection. 
Hence a concept

of a N-connection can be viewed as a generalization of a classical 
connection. Let ε be a left A -module. The set of all homomorphisms of 
ε into A has the structure of the dual module of the left A -module ε and 
is denoted by ε*. It is evident that ε* is a right A -module. 

Definition 5.2: A linear map 1:ε ε∗ ∗ ∗∇ → ⊗ Ωq qA  defined as follows

( )( ) ( ( )) ( ( ))η ξ η ξ η ξ∗∇ = − ∇q qd ,

where ξ ε∈ , η ε∗∈ and ∇q is a N-connection on ε, is said to be the dual 

connection of ∇q. 

It is easy to verify that ∇*
q has a structure of N-connection on the 

right module ε∗ . Indeed, for any , ,η ε ξ ε∗∈ ∈ ∈f A  we have

( )( ) ( ( )) ( )( ) ( ( ) ) ( )η ξ η ξ η ξ η ξ η ξ∗∇ = − ∇ = − ∇q q qf d f f d f f  

( ( )) ( ) ( ) ( ) ( ( ))η ξ η ξ η ξ η ξ η ξ∗= + ⊗ − ∇ = ⊗ +∇q qd f df f df fA A . 

In order to define a Hermitian structure on a right A -module ε we 
assume A to be a graded q-differential algebra with involution* such that 
the largest linear subset contained in the convex cone ∈C A  generated 
by a*a is equal to zero, i.e. ( ) 0∩ − =C C c . The right A -module ε is 
called a Hermitian module if ε is endowed with a sesquilinear map 

:ε ε× →h A  which satises

 ( , ) ( , ) , , , ,ξω ξω ω ξ ξ ω ω ω ξ ξ ε′ ′ ′ ′ ′= ∀ ∈ ∀ ∈h h ,

 ( , ) , and ( , ) 0 0ξ ξ ξ ε ξ ξ ξ∈ ∀ ∈ = ⇒ =h C h .

We have used the convention for sesquilinear map to take the 
second argument to be linear, therefore we define a Hermitian structure 
on right modules. In a similar manner one can define a Hermitian 
structure on left modules. 

Definition 5.3: A N-connection ∇q on a Hermitian right A -module 
ε is said to be consistent with a Hermitian structure of ε if it satisfies

( , ) ( ( ), ) ( , ( ))ξ ξ ξ ξ ξ ξ′ ′ ′= ∇ + ∇q qdh h h . 

where ,ξ ξ ε′∈ .

Our next aim to define a notion of a curvature of N-connection. We 
start with the following

Proposition 5.4: The N-th power of any N-connection ∇q is the 
endomorphism of degree N of the left Ωq-module F . 

Proof. It suffices to verify that for any homogeneous element ω ∈ 

Ωq an endomorphism 1( )∇ ∈q L F  satisfies ( ) ( )ω ξ ω ξ∇ ⊗ = ∇N N
q qA . 

Let us expand the k-th power of ∇q as follows

 | |

0
( ) ( )ωω ξ ω ξ−

=

 
∇ ⊗ = ∇ 

 
∑
k

k m k m m
q q

qm

k
q d

mA , 		               (51)

where
 
 
 q

k
m are the q-binomial coefficients. Since d is the N-differential 

of a graded q-differential algebra Ωq we have 0ω =Nd . Taking into 

account that 0 
= 

 q

N
m for 1 ≤ m ≤ N − 1 we see that in the case of k = N 

the expansion (51) takes the following

| |( ) ( ) ( )ωω ξ ω ξ ω ξ∇ ⊗ = ∇ = ∇N N N N
q q qqA  		                 (52)

and this proves that ∇N
q  is the endomorphism of the left Ωq -module 

F . 

This proposition allows us to define the curvature of N-connection 
as follows

Definition 5.5: The endomorphism = ∇N
qF of degree N of the left 

Ωq- module F  is said to be the curvature of a N-connection ∇q.

The graded vector space L(F) can be endowed with the structure of 
a graded algebra if one takes the product A ○ B of two linear operators 
A, B of the vector space F  as an algebra multiplication. We can extend 

a N- connection ∇q to the linear operator on the vector space L(F) by 
means of the graded q-commutator as follows

 | |( ) [ , ]∇ = ∇ = ∇ ° − °∇A
q q q q qA A A q A ,	                              (53)

where A is a homogeneous linear operator. Obviously ∇q is the 
linear operator of degree one on the vector space L(F) , i.e. 

1: ( ) ( )+∇ →i i
q L F L F , and ∇q satisfies the graded q-Leibniz rule with 

respect to the algebra structure of L(F) . It follows from the definition 
of the curvature of a N-connection that F can be viewed as the 
linear operator of degree N on the vector space F , i.e. ( )∈ NF L F . 
Consequently one can act on F by∇q, and it holds that

Proposition 5.6 : For any N-connection ∇∇q the curvature F of this 
connec- tion satisfies the Bianchi identity ∇q(F)=0.

Proof : We have
1 1( ) [ , ] 0+ +∇ = ∇ = ∇ ° − °∇ = ∇ −∇ =N N N

q q q q q q qF F F q F .

The following theorem shows that not every left A-module admits a 
N-connection [14]. In analogy with the theory of Ω-connection [9] we 
can prove that there is an N-connection on every projective module, 
and for this we need the following proposition.

Proposition 5.7  : If  ε = A⊗V is a free A-module, where V is a 
-vector space, then ∇q =d ⊗ Iv is N-connection on ε and this connection 
is flat, i.e. its curvature vanishes.

Proof : Indeed, 1: ( )∇ ⊗ →Ω ⊗ ⊗q qV VA A  and

( ( )) ( )( ( )) ( ) ( ) ( ) ( ) ( )∇ ⊗ = ⊗ ⊗ = ⊗ = ⊗ + ⊗ = ⊗ ⊗ + ∇ ⊗q V A qf g v d I f g v d fg v dfg v f dg v df g v f g v ,

Where f,g ∈ A, v ∈V. Because of dN = 0 and q is the primitive N th 
root of unity, we get 

( ( )) ( ) 0
+ =

 
∇ ⊗ = ⊗ = 

 
∑

k m N

N k m
q

q

N
f g v d f d g v

m
, i. e. the curvature of 

such a N-connection vanishes. 

Theorem 5.8 : Every projective module admits a N-connection.

Proof : Let  be a projective module. From the theory of modules 
it is known that a module  is projective if and only if there exists a 
module  such that ε =  ⊗  is a free module. It is well known that free 
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left A-module ε can be represented as the tensor product  A⊗V, where 
V is a  -vector space. A linear map 1( ) :π∇ = ° ⊗ →Ω ⊗q V qd I P PA  is a 
N-connection on a projective module , where d ⊗ Iv  is a N-connection 
on a left A-module ε, π is the projection on the first sum and in the 
direct sum  ⊗  and ( ( )) ( )π ω ω π ω⊗ ⊗ = ⊗ ⊗ = ⊗g v g v mA A A , where 

1ω∈Ωq , g ∈A, v ∈ V, m ∈. Taking into account Proposition 5.7 we 
get

( ) (( )( )) ( )π π∇ = ⊗ = ⊗ + =q Vfm d I fm df m fdmA

( ) ( ) ( )π= ⊗ + ∇ = ⊗ + ∇q qdf m f m df m f mA A

where f ∈ A, m ∈

It is well known that a connection on the vector bundle of finite 
rank over a finite dimensional smooth manifold can be studied locally 
by choosing a local trivialization of the vector bundle and this leads 
to the basis for the module of sections of this vector bundle. Let us 
concentrate now on an algebraic analog of the local structure of a 

N-connection ∇q . For this purpose we assume ε to be a finitely generated 

free left A-module. Let 1{ }µ µ== re e  be a basis for a left module ε. For 

any element ξ ε∈  we have µ
µξ ξ= e .

As mentioned above 0ε ≅ F  and the basis for a module ε induces 
the basis 1{ }r

µ µ==f f , where µ µ= ⊗e Af e , for the left A-module 
0F . For any 0ξ ∈F we have µ

µξ ξ= f . Taking into account that 0 ⊂F F

and F is the left Ωq –module we can multiply the elements of the basis 
f by elements of Ωq. It is easy to see that if ω∈Ωi

q  then for any µ we 
have µω ∈ if F . Consequently we can express any element of the iF

as a linear combination of µf  with coefficients from Ωi
q . Indeed let 

ω ξ⊗A be an element of ε= Ω ⊗i i
AF . Then

( ) ( ) ( )µ µ
µ µω ξ ω ξ ω ξ⊗ = ⊗ = ⊗e eA A Ae e

( ) (e )µ µ µ
µ µ µωξ ωξ ω= ⊗ = ⊗ =e fA Ae e  

where µ µω ωξ= ∈Ωi
q .

Let 0µ
µξ ξ= ∈f F . Obviously 1( )ξ∇ ∈q F , and making use of (50) 

we can express the element ( )ξ∇q as follows

( ) ( ) ( )µ µ µ
µ µ µξ ξ ξ ξ∇ = ∇ = ⊗ + ∇q q qd Af f f . 	            (54) 

Let ( )Ωr qW be the vector space of the r x r-matrices whose entries 
are the elements of a q-GDA Ωq. If each entry of a matrix ( )ν

µθΘ =

is an element of a homogeneous subspace Ωi
q , i.e. ν

µθ ∈Ωi
q then 

Θ will be refered to as a homogeneous matrix of degree i and shall 
denote the vector space of such matrices by ( )Ωi

r qW . Obviously 
( ) ( )Ω = ⊕ Ωi

r q i r qW W . The vector space ( )Ωr qW of r x r-matrices 
becomes the associative unital graded algebra if we define the product 
of two matrices ( ), ( ) ( )ν ν

µ µθ θ′ ′Θ = Θ = ∈ Ωr qW as follows

 ( )ν σ ν
µ µ σθ θ′ ′ΘΘ =  .	  			                    (55)

If , ( )′Θ Θ ∈ Ωr qW are homogeneous matrices then we define the 
graded q-commutator by | || |[ , ] ′Θ Θ′ ′ ′Θ Θ = ΘΘ − Θ Θq q . We extend the 
N –differential d of a q-GDA Ωq to the algebra ( )Ωr qW as follows 

( ) ( )ν ν
µ µθ θΘ = =d d d . 

Since any element of a left A-module 1F  can be expressed in terms 
of the basis 1{ }µ µ== rf f with coefficients from 1Ωq  we have

( ) ν
µ µ νθ∇ =q f f ,	 				                   (56)

where 1ν
µθ ∈Ωq . In analogy with the classical theory of connections in 

differential geometry of fibre bundles we introduce a notion of a matrix 
of N-connection.

Definition 5.9: A r × r-matrix ( )ν
µθΘ = , whose entries ν

µθ  are 
the elements of 1Ωq  i.e. 1( )Θ∈ Ωr qW , is said to be a matrix of a 
N-connection ∇q with respect to the basis f of the left A-module 0F .

Using (54) and (56) we obtain

( ) ( )µ ν µ
ν µξ ξ ξ θ∇ = +q d f . 	  		                 (57)

In order to express the curvature F of a N-connection ∇q in the 
terms of the entries of the matrix Θ of a N-connection ∇q we should 
express the kth power of a N-connection ∇q, where 1 ≤ k ≤ N , in the 
terms of the entries of the matrix Θ. It can be calculated that the kth 
power of ∇q has the following form

( , )

0

µ ν
µ νξ ξ ψ−

=

 
∇ =  

 
∑
k

k k l l k
q

l q

k
d

l
f

(0, ) 1 (1, ) ( , )( [ ] )µ ν µ ν µ ν
µ µ µ νξ ψ ξ ψ ξ ψ−+ +…= +k k k k k k

qd k d f ,     (58)

where ( , )ν
µψ ∈Ωl k l

q are polynomials on the entries µ
νθ of the matrix 

Θ of a N-connection ∇q and their differentials. We can calculate the 

polynomials ( , )l k ν
µψ by means of the following recursion formula

( , ) ( 1, ) 1 ( 1, )ν ν σ ν
µ µ µ σψ ψ ψ θ− − −= +l k l k l l kd q ,	  	               (59)

or in the matrix form

( , ) ( 1, ) 1 ( 1, )− − −Ψ = Ψ + Ψ Θl k l k l l kd q ,		                 (60)

where we begin with the polynomial (0, )ν ν
µ µψ δ= ∈k e A , and e is the 

identity element of A ⊂ Ωq. For example the first four polynomials in 
the expansion (58) obtained with the help of the recursion formula (59) 
have the form

(1, )ν ν
µ µψ θ=k ,					                  (61)

(2, )ν ν σ ν
µ µ µ σψ θ θ θ+=k d q ,				                 (62) 

(3, ) 2 2 2 3( )ν ν σ ν σ ν τ σ ν
µ µ µ σ µ σ µ τ σψ θ θ θ θ θ θ θ θ= + + + +k d q q d q d q .     (63)

(4, ) 3 2 3 2 3 2( )ν ν σ ν σ ν
µ µ µ σ µ σψ θ θ θ θ θ= + + + +k d q q q d q d 		

3 4 5 4 5( ) ( )τ σ ν τ σ ν
µ τ σ µ τ σθ θ θ θ θ θ+ + + + +q q q d q q d

5 2 3 4 6( )τ σ ν σ ν τ σ ρ ν
µ τ σ µ σ µ τ σ ρθ θ θ θ θ θ θ θ θ+ + + + +q d q q q d d q .              (64)

From (58) it follows that if k = N then the first term (0, )µ ν
µξ ψN Nd

in this expansion vanishes because of the N-nilpotency of the 
N-differential d, and the next terms corresponding to the l values from 
1 to N − 1 also vanish because of the well known property of q-binomial 

coefficients 0 
= 

 q

N
l provided q is a primitive Nth root of unity. Hence 

if k = N then the formula (58) takes on the form
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 ( , )( ) µ ν
µ νξ ξ ψ∇ =N N N

q f .				               (65)

In order to simplify the notations and assuming that N is fixed we 
shall denote ( , )ν ν

µ µψ ψ= N N .

Definition 5.10  : A ( )×r r  -matrix ( )ν
µψΨ = , whose entries are 

the elements of degree N of a q-GDA Ωq, is said to be the curvature 

matrix of a N- connection ∇q .

Obviously ( )Ψ∈ ΩN
r qW . In new notations the formula (65) can 

be written as follows ( ) µ ν
µ νξ ξ ψ∇ =N

q f , and it clearly demonstrates that 
∇N

q  is the endomorphism of degree N of the left Ωq -module F .

Let us consider the form of the curvature matrix of a N-connection 
in three special cases when N = 2, N = 3 and N = 4. If N = 2 then q 
= −1, and Ωq is a GDA with differential d satisfying d2 = 0. This is a 
classical case, and if we assume that Ωq is the algebra of differential 
forms on a smooth manifold M with exterior differential d and exterior 
multiplication ,∧ E  is the module of smooth sections of a vector bundle 

π : EM over M , ∇q is a connection on E, e is a local frame of a vector 

bundle E then Θ is the matrix of 1-forms of a connection ∇q and the 
formula (62) gives the expression for the curvature 2-form

 ν ν σ ν ν σ ν ν ν σ
µ µ µ σ µ µ σ µ σ µψ θ θ θ θ θ θ θ θ θ= + = − ∧ = + ∧d q d d , 

in which we immediately recognize the classical expression for the 
curvature.

If N = 3 then 
2exp( )
3
π

=
iq is the cubic root of unity satisfying 

the relations q3=1, 1+q+q2=0. This is a first non-classical case of a 
q-connection, and the formula (63) gives the following expression for 
the curvature of a N-connection

2 2 2 3( )ν ν σ ν σ ν τ σ ν
µ µ µ σ µ σ µ τ σψ θ θ θ θ θ θ θ θ= + + + +d q q d q d q

2 2ν σ ν σ ν τ σ ν
µ µ σ µ σ µ τ σθ θ θ θ θ θ θ θ− += +d d q d

2 2( )ν σ ν σ ν τ σ ν
µ µ σ µ σ µ τ σθ θ θ θ θ θ θ θ− −= +d d q d

It is useful to write the above expression for the curvature in a 
matrix form

2 3[ , ]Ψ = Θ − Θ Θ +Θqd d .	  		                 (66)

If N = 4 then q = i is the fourth root of unity satisfying relations1+q2 

= 0, q2= -1. The expression (64) for curvature in this case takes on the 
form

3 2 3 2( )ν ν σ ν σ ν τ σ ν
µ µ µ σ µ σ µ τ σψ θ θ θ θ θ θ θ θ= − − +d d q d d

2 3( ) τ σ ν τ σ ν σ ν τ σ ρ ν
µ τ σ µ τ σ µ σ µ τ σ ρθ θ θ θ θ θ θ θ θ θ θ θ− + + − −q q d q d qd d .    (67)

This expression can be put into a matrix form as follows

[ ] ( )23 2 4 ,    ,  ,Ψ = Θ − Θ Θ + Θ  
    

Θ Θ − Θ −Θqq q
d d d q d .   (68) 

It should be mentioned that in the case of N = 4 it holds that

[ ] [ ]2 ,         ,  Θ Θ = ΘΘ − Θ Θ = ΘΘ +Θ Θ = Θ Θq qd d q d d d d , (69)

and the graded q-commutator degenerates in the case of dΘ, i.e. [dΘ, 
dΘ]q= dΘ dΘ - q4dΘ dΘ = 0.

From the proposition 5.6 it follows that the curvature of a N –
connection satisfies the Bianchi identity. Straight forward computation 
shows that in both cases of (66) and (68) this identity in terms of the 
matrices of the curvature and a connection takes on the form

 [ ],  Ψ = Ψ Θ qd .				                  (70)
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