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Abstract
Tail-biting-trellis representations of codes allow for iterative decoding algorithms, which are limited in effectiveness 

by the presence of pseudocodewords. We introduce a multivariate weight enumerator that keeps track of these 
pseudocodewords. This enumerator is invariant under many linear transformations, often enabling us to compute it 
exactly. The extended binary Golay code has a particularly nice tail-biting-trellis and a famous unsolved question is to 
determine its minimal AWGN pseudodistance. The new enumerator provides an inroad to this problem.

Keywords: Tail-biting trellis; Binary Golay code; Pseudocodewords; 
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Introduction
This paper makes headway into a longstanding problem, namely 

that of whether the Golay tail-biting trellis found by Calderbank, 
Forney, and Vardy [1] has any pseudocodewords of AWGN 
pseudoweight less than 8. This problem was addressed by many experts 
in the field before being abandoned as being computationally too hard. 
We circumvent this issue by introducing a new kind of multivariate 
weight enumerator that is invariant under the action of a large group 
of matrices. This enumerator is not covered by the encyclopedic work 
of Nebe, Rains, and Sloane [2], but the method, dating back to Gleason 
[3], of using invariant theory so as to constrain drastically the form 
of the enumerator polynomial, works well. In particular, we show that 
there are no Golay pseudocodewords of period less than 5 and AWGN 
pseudoweight less than 8. Deeper explorations of these techniques 
should permit us to extend this result to periods of 5 and higher.

Tail-biting Trellises
Definition: A tail-biting trellis T = (V, E, A) of depth n is a directed 

graph with vertex set V and edge set E such that each edge has a label 
taken from alphabet A and with the following property: the set V can be 
partitioned into n subsets V = V0 ∪ V1 ∪ ... ∪ Vn−1 such that every edge 
in T either begins at a vertex of Vi and ends at a vertex of Vi+1 for some i 
with 0 ≤ i ≤ n − 2 or begins at a vertex of Vn−1 and ends at a vertex of V0.

The set of edge labels along a cycle in T starting at a vertex in V0 is 
an n-tuple in An. We say that T represents a linear block code  over A 
if  is precisely the set of all edge-label sequences in T.

Conventional trellises, corresponding to the case where |V0 | = 1, 
have an older history dating back to the 60’s. Trellis representations 
of linear block codes provide efficient decoding algorithms such as 
the two-way, or BCJR, algorithm [4,5] and the Viterbi algorithm [6]. 
Their complexity depends on the state complexity σ:= maxi|Vi| and 
associated to each code is a minimal conventional trellis, unique up to 
isomorphism.

Tail-biting trellises date back to 1979 [7]. Their advantage is that 
they can have much lower state complexity (in fact ) than that, σ, 
of the minimal conventional trellis associated to the code. Also, they 
are the simplest kind of factor graph with cycles. On the other hand, 
there are different notions of minimality [8] and so no uniqueness for 
minimal tail-biting trellises associated to a given code. Additionally, 
their construction can be hard, as in one famous case given next.

The Extended Binary Golay Code
One of the most extraordinary binary linear codes is the [24, 

12, 8] extended binary Golay code. Muder [9] showed that the state 
complexity of its minimal conventional trellis is at least 256 and Forney 
[10] that this bound is met. It follows that any associated tail-biting 
trellis has state complexity at least 16 and in 1996 Forney issued the 
challenge of finding a tail-biting trellis meeting this bound. In 1999, 
Calderbank, Forney, and Vardy successfully answered this challenge 
[1].

The corresponding trellis-oriented generator matrix is

1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 




Pseudocodewords
Because of the local nature of iterative decoding algorithms they 

can decode to vectors that are not codewords of the original code 
but come from some ‘covering’ code instead. This is most commonly 
studied in the case of belief propagation algorithms on Tanner graphs 
of low density parity check codes, where since finite covers of Tanner 
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graphs are locally identical to the original graph, the algorithm can be 
misled by codewords associated to the cover. This leads to a theory 
of pseudocodewords for which advanced algebraic tools have already 
been developed by, for instance, Koetter, Li, Vontobel, and Walker [11]. 
Much work has also been carried out to define suitable pseudoweights 
for various channels and the minimum pseudoweight of a nonzero 
pseudocodeword becomes a better performance measure for the code 
than its minimum distance.

Tail-biting trellises also yield pseudocodewords. Namely, given T = 
(V, E, A) and any positive integer m, define tail-biting trellis Tm:= (Vm, 
Em, A) of depth mn by letting m

iV  be a copy of Vj where j=i (mod n) and 
letting the edges from m

iV  to 1+
m

iV be those from Vi (mod n) to V(i+1) (mod n). 
The edge-labels on cycles in Tm starting at 0

mV yield a code Cm such that 
C1 is the original code C represented by T.

Assume that C is binary. If (c0, ..., cmn−1) is in Cm, its associated 
pseudocodeword is defined to be p := (p0, ..., pn−1) where pj counts the 
number of nonzero ci for i (mod n) = j (note that sometimes this is 
normalized by dividing each entry by m). We say that p is of period 
m. There are different kinds of pseudoweight-for example, the AWGN 
pseudoweight of p is defined to be 2 2( ) /∑ ∑i ip p  [12].	

In the case where C is the extended Golay code, a trellis-oriented 
generator matrix for Cm is given as follows. Let M be the generator 
matrix given in section 2. Let A be the matrix obtained by zeroing out 
the ones in the bottom left hand corner of M and B = M − A, i.e. the 
matrix obtained by zeroing out everything but the bottom left hand 
corner. Let Z be the zero matrix of the same dimensions as M. Define 
Mm to be the 12m-by-24m block matrix

 
 
 
 
 
 
 
  
 

A B  Z Z ... Z Z
Z A  B Z ... Z Z
Z Z A B ... Z Z
... ... ... ... ... ... ...
Z Z  Z Z ... A B
B Z  Z Z ... Z A

Then Cm is the [24m, 12 m, 8] binary linear code with generator 
matrix Mm. Note that in the limit as m →∞ , Mm yields the infinite 
recurring generator matrix for the Golay convolutional code.

Much work has been done on pseudoweights of pseudocodewords 
in this case, notably in Aji et al. [13] and Forney et al. [14]. The 
question of whether there exist nonzero pseudocodewords of AWGN 
pseudoweight less than 8 apparently became a major challenge but 
remains open to this day. There are many nontrivial near-misses - for 
example, there are pseudocodewords of period 2 with 2 in 2 positions, 
1 in 8 positions, and 0 elsewhere, which therefore have AWGN 
pseudoweight 122/16=9, and pseudocodewords of period 3 with 3 in 
2 positions, 2 in 2 positions, 1 in 6 positions, and 0 elsewhere, which 
therefore have AWGN pseudo weight 162/32=8.

This question motivated the current work. It is feasible to find all 
224 codewords of C2 and hence all corresponding pseudocodewords but 
to do the same with C3 is already computationally intense. Resolving 
the question by brute force would require doing the same for all Cm for 
1 ≤ m ≤ 16 since cycles can go around up to 16 times before necessarily 
returning to the same vertex of V0.

Pseudocodeword Weight Enumerators
Let 0 1: ( ,..., )−= np pp be a pseudocodeword of period m. Attach 

to p the monomial 0 1
0 1 ... mr r r

mx x x where ri is the number of occurrences 

of i in p. Note that 0 1 ...+ + + =mr r r n . For example, the two 
pseudocodewords referred to in the penultimate paragraph of section 
3 yield monomials 14 8 2

0 1 2x x x  and 14 6 2 2
0 1 2 3x x x x  respectively. Note that 

the AWGN pseudoweight can be calculated from the corresponding 
monomial.

Next, define the pseudocodeword weight enumerator Wm associated 
to pseudocodewords of period m to be the sum of all these monomials 
as we run through the codewords of Cm. Note that Wm is a polynomial 
in m + 1 variables x0, ..., xm with non-negative integer coefficients. So, 
for example, W1 is the usual weight enumerator. For the extended 
Golay code,

24 16 8 12 12 8 16 24
1 0 0 1 0 1 0 1 1759 2576 759= + + + +W x x x x x x x x

As noted above, a brute force calculation of W2 for the extended 
Golay code is feasible. We thereby obtain:

24 16 8 16 8 14 8 2 12 12 12 8 4
2 0 0 1 0 2 0 1 2 0 1 0 1 2294 759 9792 5152 178248= + + + + +W x x x x x x x x x x x x x

12 12 10 12 2 10 8 6 8 16 8 12 4
0 2 0 1 2 0 1 2 0 1 0 1 22576 340032 748608 24288 2550240+ + + + +x x x x x x x x x x x x x

 8 8 8 8 16 16 12 6 8 10
0 1 0 0 1 2 0 1

6 2 6 6
2 2 22 0 11234980 759 680064 4760448 748608+ + + + +x x x x x x x x x x x x x x

4 16 4 4 12 8 4 8 12 2 16 6 2 12 10
0 1 2 0 1 2 0 1 2 0 1 2 0 1 21700160 2550240 178248 680064 340032+ + + + +x x x x x x x x x x x x x x x         

2 8 14 24 16 8 12 12 8 16 24
0 1 2 1 1 2 1 2 1 2 29792 4096 24288 5152 294+ + + + + +x x x x x x x x x x x

Knowing W2 is enough to establish that there are no nonzero 
pseudocodewords of period 2 with pseudoweight less than 8. Our 
strategy then will be to try to compute Wm for all m by using the fact 
that Wm has some very nice transformation properties.

Invariant Theory
In her 1962 Harvard PhD thesis [15], MacWilliams showed that 

the weight enumerator W of the dual of a binary linear code C is closely 
related to that of the code. In particular, W is invariant under the 
transformation

0 0

1 1

1 11
1 12

− 
 

   
   
    



x x
x x

If the weights of all code words are divisible by 4 (C is then called 
doubly even), then W is also invariant under the transformation

0 0

1 1

1 0

0 1
 
  −

   
   
  



x x
x x

Thus, W is invariant under all possible compositions of these two 
transformations, of which there are 192, forming what is called the 
Clifford-Weil group G1.

In 1970, Gleason [3] observed that this imposes a strong restriction 
on the structure of W , since every homogeneous polynomial in 
x0, x1 invariant under G1 is a polynomial in the weight enumerators 

8 4 4 8
0 0 1 1( 14 )= + +HW x x x x  of the extended [8, 4, 4] Hamming code and 

WG(= W1 given in the previous section) of the extended Golay code. 
This permits quick computation of weight enumerators of large self-
dual doubly even codes.

In the last four decades, hundreds of papers have appeared 
generalizing and applying Gleason’s results, culminating in the book 
[2] by Nebe, Rains, and Sloane unifying these theories. They define the 
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Type of a self-dual code such that the weight enumerator of any code 
of that Type lies in the invariant ring of a certain Clifford-Weil group 
associated with that Type, and furthermore such that this invariant 
ring is spanned by weight enumerators of that Type. There are also 
fascinating algebra isomorphisms due to Broué and Enguehard between 
various rings of modular forms and rings of weight enumerators [16].

We are guided by a similar philosophy below, in seeking to compute 
the multivariate weight enumerators Wm for the Golay case. This theory 
is new, not covered by the above book.

Symmetric Power Invariance
Let A be a 2-by-2 matrix. Then A acts on x0, x1 by linear 

transformations. Substituting these into 1 2 2
0 0 1 0 1 1, , ,...,− −m m m mx x x x x x , yields 

a linear transformation of those m + 1 terms and hence produces an m + 

1-by-m + 1 matrix, denoted ( )mSym A . For example, if 1 11
1 12

− 
=  

 
A then 

0 0 1
1( ) ( )
2

= −A x x x and so 2 2 2 2
0 0 1 0 0 1 1

1 1( ) ( ( )) ( 2 )
22

= − = − +A x x x x x x x . Similarly 

one computes that 2 2
0 1 0 1

1( ) ( )
2

= −A x x x x and 2 2 2
1 0 0 1 1

1( ) ( 2 )
2

= + +A x x x x x . It 
follows that A sends

2 2
0 0

0 1 0 1
2 2
1 1

1 2 1
1 1 0 1
2

1 2 1

   −       −              



x x
x x x x

x x

The above 3-by-3 matrix is then 2( )Sym A . Applying this to all 192 
matrices in the Clifford-Weil group G1 above yields 96 3-by-3 matrices 
(we say that the homomorphism Sym2 has a kernel of order 2). Each 
such matrix defines a linear transformation in x0, x1, x2. One can check 
using a computer algebra system such as Magma that W2 is invariant 
under all 96 of these transformations.

In fact W2 is also invariant under the transformation
0 0 1 1 2 2, , −  x x x x x x . Compositions formed from this and the 

96 transformations above yield a group G2 of 384 3-by-3 matrices, all 
leaving W2 invariant.

If we had known a priori that W2 is invariant under G2, then we 
could have used Magma to compute all homogeneous degree 24 
polynomials invariant under G2 (it turns out that they are spanned by 
6 such polynomials I1, ..., I6). The correct linear combination of those 
6 polynomials (in fact I1 + 294I6) could then be found by exploiting 
a computation of low weight codewords of C2. This is the strategy 
we employ in section 7 below to calculate W3 and W4, which would 
otherwise have been out of reach. The main (nontrivial) point, proven 
in David Conti’s upcoming University College Dublin PhD thesis, is 
that, for every m, Wm is invariant under every matrix Symm(A) where A 
is in G1 and under certain diagonal matrices. This produces a typically 
large group Gm of (m + 1)-by-(m + 1) matrices leaving Wm invariant.

The group G2 is the group of 3-by-3 quasipermutation matrices 
which have exactly one nonzero entry, a 4th root of unity, in every row 
and every column. This makes it isomorphic to the wreath product 

S4 3.C S  It is also a complex reflection group, which makes its invariant 
theory particularly nice, leading to the following pretty formula. Let

24 24 24 16 8 16 8 8 16 8 16 16 8 8 16
0 1 2 0 1 2 0 1 0 2 0 1 0 2 1 2 1 2( , , ) : 759( )= + + + + + + + +f x x x x x x x x x x x x x x x x x x

12 12 12 12 12 12 8 8 8
0 1 0 2 1 2 0 1 22576( ) 3186+ + + +x x x x x x x x x .

Then 12
2 0 1 2 0 2 1 0 2( , , ) 2 (( ) / 2, ,( ) / 2)= + −W x x x f x x x x x .

Golay Pseudocodeword Enumerators
We move first to computing W3. The above theory shows that W3 is 

invariant under 3( )Sym A  for A in G1. This yields 192 transformations. 
In addition, W3 is invariant under the transformation

0 0 1 1 2 2 3 3, , ,− −   x x x x x x x x . All possible compositions 
of the above transformations yield a group G3  of 1152 4-by-4 matrices 
leaving W3 invariant.

Next, using Magma, we compute all homogeneous degree 24 
polynomials in x0, x1, x2, x3 invariant under G3. Magma produces 26 
polynomials I1, ..., I26 that span this space. Using low weight codewords 
in C3 yields a simple linear combination of them that must equal W3. 
Namely, I1 +441I14 +513I18 +7560I22 +288I23 + 11520I25 + 4608I26, which 
gives:

24 16 8 16 8 16 8 14 8 2 14 6 2 2
3 0 0 1 0 2 0 3 0 1 2 0 1 2 3441 513 759 7560 288= + + + + +W x x x x x x x x x x x x x x

14 10 13 7 3 13 5 3 3 12 12 12 10 2
0 2 0 1 2 3 0 1 2 3 0 1 0 1 214112 11520 2304 4608 792 ...+ + + + + +x x x x x x x x x x x x x x x

2 8 14 24 16 8 12 12 8 16 24
1 2 3 2 2 3 2 3 2 3 3... 7560 33291 16371 4608 441+ + + + + +x x x x x x x x x x x .

There are 212 terms in W3, too many to list here, but note that each 
monomial that appears corresponds to pseudocodewords that have 
pseudoweight at least 8.

As for W4, we similarly obtain a group G4 of 384 5-by-5 matrices that 
leave W4 invariant. The space of homogeneous degree 24 polynomials in 
x0, ..., x4 invariant under G4 is spanned by 153 very lengthy polynomials 
which Magma gives explicitly. Of these 153 polynomials, 87 have 
the property that every monomial occurring in them corresponds to 
pseudocodewords of pseudoweight at least 8. We show that W4 is a 
span of these 87 polynomials by excluding the other 66 polynomials 
as follows. Every such polynomial contains a monomial that occurs 
in it and none of the remaining 152 polynomials. Examining these 
special monomials, we see that, for those 66 polynomials, if the special 
monomial were present, it would come from a codeword of C4 of weight 
at most 24. By analyzing low weight codewords of C4, we can show that 
this does not happen. Thus, there are no nonzero pseudocodewords of 
period ≤ 4 of pseudoweight less than 8.

Likewise, for m ≥ 5, there is an explicitly given group Gm of m 
+ 1-by-m + 1 matrices leaving Wm invariant. Unfortunately, both 
the computation of homogeneous degree 24 polynomials invariant 
under Gm and the analysis of low weight code words of Cm become 
computationally too expensive. It is clear that there are 147m 
code words of Cm of weight 8, but beyond that patterns are hard to 
spot. For example, the codewords of Cm of weight 12 correspond to 
pseudocodewords either consisting of 12 ones and 12 zeros or 2 twos, 8 
ones, and 14 zeros, but there is no clear, even conjectural, formula for 
the number of either kind.

Conclusions and Further Work
We have introduced new and useful multivariate polynomials 

attached to a tail-biting trellis. These keep track of what kinds of 
pseudocodewords exist and indeed how many there are of each kind. 
This can in turn be used to measure how good the code is as regards 
iterative decoding, with various formulae for pseudoweight being 
used, depending on the channel. It has been a longstanding question 
to determine whether the AWGN pseudo weight of a nonzero 
pseudocodeword for the tail-biting trellis of the extended binary Golay 
code is ever less than 8. Our new invariant theory methods allow us to 
answer this question in the negative for all pseudocodewords of period ≤ 4.
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Pseudocodeword weight enumerators Wm are defined for any 
tail-biting trellis. It is not true, however, that they are invariant under 
the same group Gm as for the Golay code above. For example, for tail-
biting trellises attached to the extended [8, 4, 4] Hamming code, the 
polynomials Wm are invariant under slightly smaller groups than Gm. 
The author’s PhD student, David Conti, is developing a theory that 
should hopefully clarify the notion of Type for a tail-biting trellis and 
allow one to define an analogue of the Clifford-Weil group for each 
Type.
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