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Abstract
In group theory the chief factors allow a group to be studied by its representation theory on particularly natural 

irreducible modules. It is to be expected, therefore, that they will play an important role in the study of Lie algebras. In 
this article we survey a few of their properties. 
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Introduction
 Throughout L will denote a finite-dimensional Lie algebra over a 

field F. We call a subalgebra I a subideal of a Lie algebra L if there is a 
chain of subalgebras 

0 1= < < < = ,nI I I I L

where Ij is an ideal of Ij+1 for each 0 1j n≤ ≤ − . 

Put 1 1= , = [ , ]k kL L L L L+  for k ≥ 1. These are the terms of the lower 
central series for L. We say that L has  nilpotency class n if 0nL ≠  but 

1 = 0nL + . Let U be a subalgebra of L. If F has characteristic p>0 we call U  
nilregular if the nilradical of U, N(U), has nilpotency class less than p − 
1. If F has characteristic zero we regard every subalgebra of L as being 
nilregular. We say that U is  characteristic in L if it is invariant under 
all derivations of L. Nilregular ideals of L have the property that their 
nilradicals are characteristic in L. Details of the results in this section 
can be found in studies of Towers [1].

Theorem 1.1.   

(i) If I is a nilregular ideal of L then ( ) ( )N I N L⊆ . 

(ii) If I is a nilregular subideal of L and every subideal of L containing 
I is nilregular, then ( ) ( )N I N L⊆ . 

This result was proved by Schenkman [2] for fields of characteristic 
zero; in characteristic p it follows from a more recent result of 
Maksimenko [3]. Similarly, we will call the subalgebra U  solregular if 
the underlying field F has characteristic zero, or if it has characteristic p 
and the (solvable) radical of U, R(U), has derived length less than log2p. 
Then we have the following corresponding theorem, which uses a result 
of Petravchuk [4].

Theorem 1.2.   

(i) If I is a solregular ideal of L then ( ) ( )R I R L⊆ . 

(ii) If I is a solregular subideal of L and every subideal of L containing 
I is solregular, then ( ) ( )R I R L⊆ .

These enable us to determine what the minimal ideals of L look like.

Theorem 1.3. Let L be a Lie algebra over a field F, and let I be a 
minimal non-abelian ideal of L. Then either  

(i) I is simple or 

(ii) F has characteristic p, N(I) has nilpotency class greater than or 
equal to p − 1, and R(I) has derived length greater than or equal to log2p. 

 As a result of the above we will call the subalgebra U regular if it is 
either nilregular or solregular; otherwise we say that it is irregular. Then 

we have the following corollary.

Corollary 1.4. Let L be a Lie algebra over a field F. Then every 
minimal ideal of L is abelian, simple or irregular. 

Block’s Theorem on differentiably simple rings [5] describes the 
irregular minimal ideals as follows.

Theorem 1.5. Let L be a Lie algebra over a field of characteristic p>0 
and let I be an irregular minimal ideal of L. Then nI S≅ ⊗ , where S is 
simple and n is the truncated polynomial algebra in n indeterminates. 
Moreover, N(I) has nilpotency class p − 1 and R(I) has derived length 
[log2p]. 

Primitive Lie algebras
Next we introduce the concept of a primitive Lie algebra. Details 

of the results in this section can be found in literature of Towers [6]. 
A word of warning - this terminology has been used for a different 
concept elsewhere. If U is a subalgebra of L we define UL, the core 
(with respect to L) of U to be the largest ideal of L contained in U. 
We say that U is core-free in L if UL = 0. We shall call L primitive if 
it has a core-free maximal subalgebra. The centraliser of U in L is 

( ) = { :[ , ] = 0}LC U x L x U∈ . 

There are three types of primitive Lie algebra:  primitive of type 1 if 
it has a unique minimal ideal that is abelian; primitive of type 2 if it has 
a unique minimal ideal that is non-abelian; and primitive of type 3 if it 
has precisely two distinct minimal ideals each of which is non-abelian. 

Of course, primitive Lie algebras of types 2 and 3 are semisimple, 
and those of types 1 and 2 are monolithic. (A Lie algebra L is called 
monolithic if it has a unique minimal ideal W, the monolith of L.)

Example 2.1. Examples of each type are easy to find.  

Clearly every primitive solvable Lie algebra is of type 1. Every simple 
Lie algebra is primitive of type 2. 

If S is a simple Lie algebra then =L S S⊕  is primitive of type 3 with 
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core-free maximal subalgebra = { : }D s s s S+ ∈ the diagonal subalgebra 
of L. 

Let M be a maximal subalgebra of L. Then M/ML is a core-free 
maximal subalgebra of L/ML. We say that M is  

1. a maximal subalgebra of type 1 if L/ML is primitive of type 1; 

2. a maximal subalgebra of type 2 if L/ML is primitive of type 2; 
and 

3. a maximal subalgebra of type 3 if L/ML is primitive of type 3. 

We say that an ideal A is complemented in L if there is a subalgebra 
U of L such that L = A + U and A ∩ U = 0. For primitive solvable Lie 
algebras we have the following analogue of Galois’ Theorem for groups.

Theorem 2.2.   

1. If L is a solvable primitive Lie algebra then all core-free maximal 
subalgebras are conjugate. 

2. If A is a self-centralising minimal ideal of a solvable Lie algebra L, 
then L is primitive, A is complemented in L, and all complements 
are conjugate. 

The Frattini ideal of L, φ(L), is the core of intersection of the 
maximal subalgebras of L. We say that L is φ-free if φ(L) = 0. Then we 
have the following characterisation of primitive Lie algebras of type 1.

Theorem 2.3.  Let L be a Lie algebra over a field F.  

1. L is primitive of type 1 if and only if L is monolithic, with abelian 
monolith W, and φ-free. 

If F has characteristic zero, then L is primitive of type 1 if and only if 
= ( )L W C S⊕  (semi-direct sum), where W is the abelian monolith of L, 

C is an abelian subalgebra of L, every element of which acts semisimply 
on W, and S is a Levi subalgebra of L. 

If L is solvable, then L is primitive if and only if it has a self-
centralising minimal ideal A. 

For type 2 we have

Theorem 2.4.   

L is primitive of type 2 if and only if ( )nL U S≅ + ⊗ , where nS ⊗  
is an ideal of L and S is simple. 

If F has characteristic zero, then L is primitive of type 2 if and only 
if L is simple. 

L is primitive of type 2 if and only if there is a primitive Lie algebra X 
of type 3 such that /L X B≅  for a minimal ideal B of L. 

For type 3 we have

Theorem 2.5.   

L is primitive of type 3 if and only if L has two distinct minimal ideals 
B1 and B1 with a common complement and such that the factor algebras 
L/B1 are primitive of type 2 for i = 1, 2. Moreover, B1 and B1 are both 
isomorphic to nS ⊗ , where S is simple. 

If F has characteristic zero, then L is primitive of type 3 if and only if 
=L S S⊕ , where S is simple. 

Chief Factors
The factor algebra A/B is called a chief factor of L if B is an ideal of 

L and A/B is a minimal ideal of L/B. So chief factors are as described in 

Corollary 1.4 and Theorem 1.5. We can identify different types of chief 
factor; details for this section can be found in studies of Towers [6]. A 
chief factor A/B is called Frattini if ( )/ / .A B L Bφ⊆  This concept was 
first introduced in literature of Towers [7]. 

If there is a subalgebra, M such that L = A + M and ,B A M⊆ ∩  
we say that A/B is a supplemented chief factor of L and that M is a 
supplement of A/B in L Also, if A/B is a non-Frattini chief factor of L, 
then A/B is supplemented by a maximal subalgebra M of L 

If A/B is a chief factor of L supplemented by a subalgebra M of L, 
and =A M B∩  then we say that A/B is complemented chief factor of L, 
and M is a complement of A/B in L. When L is solvable, it is easy to see 
that a chief factor is Frattini if and only if it is not complemented. Then 
we have the following generalisation of the Jordan-Hölder Theorem.

Theorem 3.1. Let 

10 < < < =nA A L

                                                           (1)

10 < < < =nB B L

                                (2)

be chief series for the Lie algebra L. Then there is a bijection between 
the chief factors of these two series such that corresponding factors are 
isomorphic as L-modules and such that the Frattini chief factors in the 
two series correspond. 

The number of Frattini chief factors or of chief factors which are 
complemented by a maximal subalgebra of a finite-dimensional Lie 
algebra L is the same in every chief series for L. However, this is not the 
case for the number of chief factors which are simply complemented in 
L; in framework of Towers [8] we determine the possible variation in 
that number. 

Note that if L is a primitive Lie algebra of type 3, its two minimal 
ideals are not L-isomorphic, so we introduce the following concept. 
We say that two chief factors of L are L-connected if either they are 
L-isomorphic, or there exists an epimorphic image L  of L which is 
primitive of type 3 and whose minimal ideals are L-isomorphic, 
respectively, to the given factors. (It is clear that, if two chief factors of 
L are L-connected and are not L-isomorphic, then they are nonabelian 
and there is a single epimorphic image of L which is primitive of type 3 
and which connects them.) Then, as we would hope,

Theorem 3.2. The relation ‘is L-connected to’ is an equivalence 
relation on the set of chief factors. 

Let A/B be a supplemented chief factor of L and put  = {ML : M is 
a maximal subalgebra of L supplementing a chief factor L-connected 
to A/B}. Let = { : }R N N∩ ∈  and = ( / )LC A C A B+ . Then we call C/R 
the crown of L associated with A/B. This object gives much information 
about the supplemented chief factors of L.

Theorem 3.3. Let C/R be the crown associated with the supplemented 
chief factor A/B of L. Then C/R = Soc(L/R). Furthermore  

(i) every minimal ideal of L/R is a supplemented chief factor of L 
which is L-connected to A/B, and 

(ii) no supplemented chief factor of L above C or below R is 
L-connected to A/B. 

In other words, there are r ideals A1,…, Ar of L such that 

1/ = / /rC R A R A R⊕ ⊕

where Ai/R is a supplemented chief factor of L which is L-connected to 
A/B for i = 1,…, r and r is the number of supplemented chief factors 

http://dx.doi.org/10.4172/1736-4337.S2-e002


Citation: Towers DA (2016) Chief Factors of Lie Algebras. J Generalized Lie Theory Appl S2: e002. doi:10.4172/1736-4337.S2-e002

Page 3 of 3

J Generalized Lie Theory Appl Algebra, Combinatorics and Dynamics ISSN: 1736-4337 GLTA, an open access journal

of L which are L-connected to A/B in each chief series for L. Moreover, 
( / ) = 0L Rφ . 

Corollary 3.4. Two supplemented chief factors of L define the same 
crown if and only if they are L-connected. 

Theorem 3.5. Let L be a solvable Lie algebra, and let / =C R C be 
the crown associated with a supplemented chief factor of L. Then C  is 
complemented in L , and any two complements are conjugate by an 
automorphism of the form 1 + ad a for some a C∈ . 

Finally, in [9], Barnes determined for a solvable Lie algebra which 
irreducible L-modules A have the property that 1( , ) = 0H L A .

Theorem 3.6. Let L be a solvable Lie algebra and let A be an 
irreducible L-module. Then 1( , ) = 0H L A  if and only if L has no 
complemented chief factor isomrphic to A. 

Covering and Avoidance
 The subalgebra U avoids the factor algebra 1/i iA A −  if 

1=i iU A U A −∩ ∩ ; likewise, U covers 1/i iA A −  if 1=i iU A U A −+ + . We say 
that U has the covering and avoidance property of L if U either covers 
or avoids every chief factor of L. We also say that U is a CAP-subalgebra 
of L. Then these subalgebras give characterisations of solvable and 
supersolvable Lie algebras; details can be found in studies of Towers 
[10]. 

There are a number of ways in which CAP-subalgebras arise. For a 
subalgebra B of L we denote by [B : L] the set of all subalgebras S of L 
with B S L⊆ ⊆ , and by [B : L]max the set of maximal subalgebras in [B : 
L]; that is, the set of maximal subalgebras of L containing B. We define 
the set  by i∈ if and only if 1/i iA A −  is not a Frattini chief factor of L. 
For each i∈ put 

1= { [ , ] : }.i i max iM A L A M−∈ ⊆

Then U is a prefrattini subalgebra of L if 

= .i i i
i

U M for some M
∈

∈






It was shown in [8] that, when L is solvable, this definition does not 
depend on the choice of chief series, and that the prefrattini subalgebras 
of L cover the Frattini chief factors and avoid the rest; that is, they are 
CAP-subalgebras of L. 

Further examples were given by Stitzinger [11], where he proved 
the following result [11] for definitions of the terminology used).

Theorem 4.1. ([11], Theorem 2) Let  be a saturated formation of 
solvable Lie algebras, and let U be an  -normaliser of L. Then U covers 
every -central chief factor of L and avoids every -eccentric chief factor 
of L. 

The chief factor 1/i iA A −  is called central if 1[ , ]i iL A A −⊆ and  eccentric 
otherwise. A particular case of the above result is the following theorem, 
due to Hallahan and Overbeck.

Theorem 4.2. ([12], Theorem 1) Let L be a metanilpotent Lie 
algebra. Then C is a Cartan subalgebra of L if and only if it covers the 
central chief factors and avoids the eccentric ones. 

A subalgebra U of L will be called  ideally embedded in L if IL(U) 
contains a Cartan subalgebra of L, where ( ) = { :[ , ] }LI U x L x U U∈ ⊆  is 
the  idealiser of U in L . Clearly, any subalgebra containing a Cartan 
subalgebra of L and any ideal of L is ideally embedded in L. Then we 
have the following extension of Theorem 4.2.

Theorem 4.3. Let L be a metanilpotent Lie algebra and let U be 
ideally embedded in L. Then U is a CAP-subalgebra of L. 

Corollary 4.4. Let L be any solvable Lie algebra and let U be an 
ideally embedded subalgebra of L with 2= ( )K N L U⊆ . Then U is a CAP-
subalgebra of L. 

Another set of examples of CAP-subalgebras, which don’t require L 
to be solvable, is given by the next result.

Theorem 4.5. Let L be any Lie algebra, let U be a supplement to an 
ideal B in L, and suppose that kB U⊆  for some k ∈ . Then U is a CAP-
subalgebra of L. 

We can calculate the dimension of CAP-subalgebras in terms of the 
chief factors that they cover.

Lemma 4.6. Let U be a CAP-subalgebra of L, let 0 10 = < < < =nA A A L  
be a chief series for L and let 1= { :1 , / }i ii i n U covers A A −≤ ≤ . Then 

1dim = (dim dim )i ii
U A A −∈

−∑ 
. 

We have the following characterisations of solvable and 
supersolvable Lie algebras.

Theorem 4.7. Every one-dimensional subalgebra of L is a CAP-
subalgebra of L if and only if L is supersolvable. 

Theorem 4.8. Let L be a Lie algebra over any field F. Then L is solvable 
if and only if all of its maximal subalgebras are CAP-subalgebras. 

Theorem 4.9. Let L be a Lie algebra over a field F which has 
characteristic zero, or is algebraically closed field and of characteristic 
greater than 5. Then L is solvable if and only if there is a maximal 
subalgebra M of L such that M is a solvable CAP-subalgebra of L. 
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