Abstract

It is proved that the Hilbert class field of a real quadratic field $(\mathcal{Q}(f))$ modulo a power m of the conductor f is generated by the Fourier coefficients of the Hecke eigenform for a congruence subgroup of level f.

Keywords: Class field; Real multiplication

Introduction

The Kronecker’s *Jugendtraum* is a conjecture that the maximal unramified abelian extension (The Hilbert class field) of any algebraic number field is generated by the special values of modular functions attached to an abelian variety. The conjecture is true for the rational field and imaginary quadratic fields with the modular functions being an exponent and the j-invariant, respectively. In the case of an arbitrary number field, a description of the abelian extensions is given by class field theory, but an explicit formula for the generators of these abelian extensions, in the sense sought by Kronecker, is unknown even for the real quadratic fields.

The problem was first studied by Hecke [1]. A description of abelian extensions of real quadratic number fields in terms of coordinates of points of finite order on abelian varieties associated with certain modular curves was obtained in studies of Shimura [2]. Stark formulated a number of conjectures on abelian extension of arbitrary number fields, which in the real quadratic case amount to specifying generators of these extensions using special values of Artin L-functions [3]. Based on an analogy with complex multiplication, Manin suggested to use the so-called “pseudo-lattices” $\mathbb{Z} + \mathbb{Z} \theta$ in \mathbb{R} having non-trivial real multiplications to produce abelian extensions of real quadratic fields [4]. Similar to the case of complex multiplication, the endomorphism ring $\mathcal{O}_k = \mathbb{Z} + \mathbb{Z} \theta$ of pseudo-lattice $\mathbb{Z} + \mathbb{Z} \theta$ is an order in the real quadratic field $\mathbb{Q}(\theta)$, where \mathcal{O}_k is the ring of integers of \mathbb{Q} and θ is the conductor of \mathcal{O}_k. Manin calls these pseudo-lattices with real multiplication.

The aim of our note is a formula for generators of the Hilbert class field of real quadratic fields based on a modularity and a symmetry of complex and real multiplication. To give an idea, let

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}_2(\mathbb{Z}) | a \equiv d \equiv 1 \mod N, c \equiv 0 \mod N \right\}$$

be a congruence subgroup of level $N \geq 1$ and \mathbb{H} be the Lobachevsky half-plane; let $\text{SL}_2(\mathbb{Z}) = \mathbb{H} / \Gamma_0(N)$ be the corresponding modular curve and $S_2(\Gamma_0(N))$ the space of all cusp forms on $\Gamma_0(N)$ of weight 2. Let $\zeta_{n,\theta}(\mathbb{Z})$ be elliptic curve with complex multiplication by an order $\mathcal{O}_k = \mathbb{Z} + \mathbb{Z} \theta$ in the field $\mathbb{Q}(\sqrt{-D})$ [5]. Denote by $K_n(k) = k(j(\zeta_{n,\theta}(\mathbb{Z})))$ the Hilbert class field of k modulo conductor $f \geq 1$ and let $N = fD$; then $\text{Jac}(X(f))$ is the Jacobian of modular curve $X(f)$. There exists an abelian subvariety $A_j \subset \text{Jac}(X(f))$, such that its points of finite order generate $K_n(k)$, [6,7], Section 8. The $K_n(k)$ is a CM-field, i.e., a totally imaginary quadratic extension of the totally real field \mathbb{K}_n generated by the Fourier coefficients of the Hecke eigenform $\phi(z) \in S_2(\Gamma_0(f))$ [2]. In particular, there exists a holomorphic map $X_n(f) \to \mathbb{K}_n$, where $X_n(f)$ is a Riemann surface such that $\text{Jac}(X_n(f)) \cong A_j$; we refer to the above as a modularity of complex multiplication.

Recall that (twisted homogeneous) coordinate ring of an elliptic curve \mathbb{C} is isomorphic to a Sklyanin algebra, [8]; the norm-closure of a self-adjoint representation of the Sklyanin algebra by the linear operators on a Hilbert space \mathcal{H} is isomorphic to a noncommutative torus \mathcal{A}_ϕ [9] for the definition.

Whenever elliptic curve $\mathcal{E}(\mathbb{C}) \cong \mathbb{C}^2$ has complex multiplication, the noncommutative torus \mathcal{A}_ϕ has real multiplication by an order $\mathcal{O}_k = \mathbb{Z} + \mathbb{Z} \theta$ in the field $\mathbb{R} \supset \mathbb{Q}(\sqrt{-D})$; moreover, it is known that $f = m^2$ for the minimal power m satisfying an isomorphism:

$$\text{Cl}(\mathcal{O}_k) \cong \mathcal{A}_\phi(\mathbb{R})$$

where $\text{Cl}(\mathcal{O})$ and $\text{Cl}(\mathcal{O}_k)$ are the ideal class groups of orders \mathcal{O} and \mathcal{O}_k, respectively. We shall refer to (2) as a symmetry of complex and real multiplication. The noncommutative torus with real multiplication by \mathcal{O}_k will be denoted by $\mathcal{A}_\phi(\mathbb{R})$.

Remark 1: The isomorphism (2) can be calculated using the well-known formula for the class number of a non-maximal order $\mathcal{O} = \mathbb{Z} + \mathbb{Z} \theta$ of a quadratic field $\mathbb{Q}(\sqrt{-D})$.

$$h_{\mathcal{O}_k} = \frac{h_{\mathcal{O}_k}}{\epsilon} \prod_{p} \left(1 - \frac{1}{p} \right)$$

where $h_{\mathcal{O}_k}$ is the class number of the maximal order \mathcal{O}_k, ϵ is the index of the group of units of $\mathbb{Z} + \mathbb{Z} \theta$ in the group of units of \mathcal{O}_k, p is a prime number and $\frac{h_{\mathcal{O}_k}}{\epsilon} \prod_{p}$ is the Legendre symbol [10,11].

The (twisted homogeneous) coordinate ring of the Riemann surface $X(\mathbb{Z})$ is an AF-algebra $\mathbb{C}(\mathbb{Z})$ linked to a holomorphic differential $\phi(z) dz$ on $X(\mathbb{Z})$, see Section 2.2, Definition 1 and Remark 5 for the details; the Grothendieck semigroup $K_n(\mathbb{Z})$ is a pseudo-lattice $\mathbb{Z} + \mathbb{Z} \theta_1 + \ldots + \mathbb{Z} \theta_n$ in the number field \mathbb{K}_n, where n equals the genus of X_n. Moreover, a holomorphic map $X(\mathbb{Z}) \to \mathbb{K}_n$ induces the \mathbb{C}-algebra homomorphism $\mathcal{A}_\phi(\mathbb{R}) \to \mathbb{K}_n$ between the corresponding coordinate rings, so that the following diagram commutes:

*Corresponding authors: Nikolaev IV, Professor, Department of Mathematical Sciences, The Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto, Ontario, Canada, Tel: 416-348-9710; E-mail: igor.v.nikolaev@gmail.com

Received December 22, 2015; Accepted January 25, 2016; Published January 28, 2016

Copyright: © 2016 Nikolaev IV. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The Sklyanin algebra $S_{\theta}(C)$ is a free C-algebra on four generators and six relations:

$$
\begin{align*}
\theta x_1 - x_1 & = \alpha (x_1 x_3 + x_4 x_1), \\
\theta x_2 + x_1 & = x_1 x_3 - x_1, \\
\theta x_2 - x_1 & = \beta (x_1 x_3 + x_4 x_1), \\
x_1 x_3 + x_4 x_1 & = x_2 x_3 - x_1, \\
x_1 x_3 - x_1 & = \gamma (x_1 x_3 + x_4 x_1), \\
x_1 x_3 + x_4 x_1 & = x_1 x_3 - x_1,
\end{align*}
$$

where $\alpha + \beta + \gamma = 0$; such an algebra corresponds to a twisted homogeneous coordinate ring of an elliptic curve in the complex projective space $\mathbb{C}P^2$ given by the intersection of two quadratic surfaces of the form $E_{\theta}(C) = \{ (u,v,w,z) \in \mathbb{C}P^2 | u^2 + v^2 + w^2 + z^2 - 1 = 0 \}$.

Being such a ring means that the algebra $S_{\theta,\nu}$ satisfies an isomorphism

$$
\text{Mod}(S_{\theta,\nu}(C)) \cong \text{Tors} \text{ Coh}(S_{\theta,\nu}(C)),
$$

where Coh is the category of quasi-coherent sheaves on $E_{\theta}(C)$, Mod the category of graded left modules over the graded ring $S_{\theta,\nu}(C)$ and Tors the full sub-category of Mod consisting of the torsion modules, [8].

If one sets $x_i = u, x_i = u, x_i = v, x_i = v$, there exists a self-adjoint representation of the Sklyanin $*$-algebra $S_{\theta,\nu}(C)$ by linear operators on a Hilbert space \mathcal{H}, such that its norm-closure is isomorphic to A_ν, namely, $A_\nu \cong S_{\theta,\nu}(C) / I_\nu$, where A_ν is a dense sub-algebra of A_ν and I_ν is an ideal generated by the "scaled unit" relations $x_i x_i = x_i x_i = 1$, where $\nu > 0$ is a constant. Thus the algebra A_ν is a coordinate ring of elliptic curve $E(\mathcal{C})$, such that isomorphic elliptic curves correspond to the stably isomorphic (Morita equivalent) noncommutative tori; this fact explains the modular transformation law in (4). In particular, if $\{ C \}$ is complex multiplication by an order $\Omega = \mathbb{Z} + i \mathbb{Q}$, in a quadratic field $t = \sqrt{-d}$, then A_ν has real multiplication by an order $\mathcal{O} = \mathbb{Z} + i \mathbb{Q}$ in the quadratic field $t = \sqrt{-d}$, where \mathcal{O} is the smallest integer satisfying an isomorphism $\mathbb{Z}[r] \cong \mathbb{Z}[r]$, [16]; the isomorphism is a necessary and sufficient condition for A_ν to have the same endomorphism ring \mathcal{O}. For the constraint $|f| = n$, see remark 6.

AF-algebra of the Hecke eigenform

An AF-algebra (Approximately Finite C*-algebras) is defined to be the norm closure of an ascending sequence of finite dimensional C*-algebras M_0, where M_0 is the C*-algebra of the $n \times n$ matrices with entries in \mathbb{C}. Here the index $n = (n_1, \ldots, n_k)$ represents the semi-simple matrix algebra $M_n = M_{n_1} \otimes \cdots \otimes M_{n_k}$. The ascending sequence mentioned above can be written as $M_0 = \mathbb{C} \rightarrow M_1 \rightarrow \cdots$, where M_0 are the finite dimensional C*-algebras and $\phi : M_0 \rightarrow M_0$ the homomorphisms. One has two sets of vertices V_1, \ldots, V_1 and V_2, \ldots, V_2, joined by b_1 edges whenever the summand M_i contains b_1 copies of the summand M_i under the embedding ϕ. As i varies, one obtains an infinite graph called the Bratteli diagram of the AF-algebra. The matrix $B = (b_1)$ is known as a partial multiplicity matrix; an infinite sequence of B defines a unique AF-algebra. An AF-algebra is called stationary if $B = \text{const} = B$, [14], when two non-similar matrices B and B' have the same characteristic polynomial, the corresponding stationary AF-algebras will be called companion AF-algebras.
Let $N \geq 1$ be a natural number and consider a (finite index) subgroup of the modular group given by the formula:

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \mid a = d = 1 \mod N, c = 0 \mod N \right\}. \quad (7)$$

Let $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the upper half-plane and let $\Gamma(N)$ act on \mathbb{H} by the linear fractional transformations; consider an orbifold $\mathbb{H}/\Gamma(N)$. To compactify the orbifold at the cusps, one adds a boundary to \mathbb{H}, so that $\overline{\mathbb{H}} = \mathbb{H} \cup \{(x,0)\mid x \in \mathbb{R}\}$ and the compact Riemann surface $X(N) = \overline{\mathbb{H}}/\Gamma(N)$ is called a modular curve. The meromorphic functions $\{z\}$ on \mathbb{H} that vanish at the cusps and such that

$$\phi \left(\frac{az + b}{cz + d} \right) = (cz + d)^k \phi(z), \forall \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma(N), \quad (8)$$

are called cusp forms of weight two; the (complex linear) space of such forms will be denoted by $S_2(\Gamma(N))$. The formula $\phi(z) \mapsto \phi(z)dz$ defines an isomorphism $S_2(\Gamma(N)) \cong \Omega_{\text{even}}(X(N))$, where $\Omega_{\text{even}}(X(N))$ is the space of all holomorphic differentials on the Riemann surface $X(N)$. Note that $\dim(S_2(\Gamma(N))) = \dim(\Omega_{\text{even}}(X(N))) = g$, where $g = \text{genus}(N)$ is the genus of the surface $X(N)$. A Hecke operator, T_ν, acts on $S_2(\Gamma(N))$ by the formula $T_\nu \phi = \sum_{\gamma \in \Gamma(N)} \lambda(\gamma) \phi(\gamma z)$, where $\lambda(\gamma) = \sum_{\gamma(z) = z} \gamma \in \Gamma(N)$ and $\phi(z) \mapsto \phi(z + q)$. The T_ν are the Fourier series of the cusp form ϕ at $q = e^{2\pi i}$. Further, T_ν is a self-adjoint linear operator on the vector space $S_2(\Gamma(N))$ endowed with the Petersson inner product; the algebra $\mathcal{A}_1 = \mathbb{Z}[T_0, T_1, \ldots]$ is a commutative algebra. Any cusp form $\phi \in S_2(\Gamma(N))$ that is an eigenvector for one (and hence all) of T_ν is referred to as a Hecke eigenform. The Fourier coefficients $c(n)$ of ϕ are algebraic integers, and we denote by $K_\phi = \mathbb{Q}(c(n))$ an extension of \mathbb{Q} by the coefficients of ϕ. Then K_ϕ is a real algebraic number field of degree $1 \leq \text{deg}(K_\phi) \leq g$, where g is the genus of the surface $X(N)$.

It is known that $\text{deg}(K_\phi) = 2g - 2$, where g is the genus of the Riemann surface $X(N)$. The Jacobian $J(X(N))$ is the Jacobian that coincides with A_0 and is defined over \mathbb{Q}.

Proof of Theorem 1

Definition 1. Let $A \subseteq \text{Jac}(X(N))$ be an abelian variety associated to the Hecke eigenform $\phi(z) \in S_2(\Gamma(N))$. [Definition 6.6.3. By $X^1(N)$ we shall understand the Riemann surface of genus g, such that $\text{Jac}(X^1(N)) \cong A$.]

By $\phi(z)dz \in \Omega_{\text{even}}(X^1(N))$ we denote the image of the Hecke eigenform $\phi(z)dz \in \Omega_{\text{even}}(X^1(N))$ under the holomorphic map $X(N) \to X^1(N)$.

Remark 3. The surface $X^1(N)$ is correctly defined. Indeed, since the abelian variety A_0 is the product of g copies of an elliptic curve with the complex multiplication, there exists a holomorphic map from A_0 to the elliptic curve. For a Riemann surface X of genus g covering the elliptic curve E_{CM} by a holomorphic map (such a surface and a map always exist), one gets a period map $X \to E_{CM}$ by closing the arrows of a commutative diagram $A_0 \to E_{CM} \to X$. It is easy to see that the Jacobian of X coincides with A_0 and we set $X^1(N) = X_0$.

Lemma 1. $g(X^1(N)) = \text{deg}(K_\phi)$. [Proof. By definition, abelian variety A_0 is the quotient of C^g by a lattice of periods of the Hecke eigenform $\phi(z) \in S_2(\Gamma(N))$ and all its conjugates $\phi'(z)$ on the Riemann surface $X^1(N)$. These periods are complex algebraic numbers generating the Hilbert class field K^0 over imaginary quadratic field $k = \sqrt{-D}$ modulo conductor $f = 2, 6, 7$, Section 8. The number of linearly independent periods equals the total number of the conjugate eigenforms $\phi'(z)$, i.e., $|\sigma| = n = \dim(A_0)$. Since real dimension $\dim(A_0) = 2n$, we conclude that $\text{deg}(K^0) = 2n$ and, therefore, $\text{deg}(K_\phi) = n$. But $\text{dim}(A_0) = 2g - 2$ and one gets $g(X^1(N)) = (\text{deg}(K_\phi) + 1)$. Lemma 1 follows.]

Corollary 1. $g(X^1(N)) = |\text{Cl}(R)|$. [Proof. Because K_ϕ is the Hilbert class field over k modulo conductor f, we must have $\text{Gal}(K^0/k) \cong \text{Cl}(R)$, (11) where $\text{Gal}(K^0/k)$ is the Galois group of the extension K^0/k and $\text{Cl}(R)$ is the class group of ring R_f. But $|\text{Gal}(K^0/k)| = \text{deg}(K^0/k)$ and by lemma 1 we have $\text{deg}(K_\phi/k) = g(X^1(N))$. In view of this and isomorphism (11), one gets $|\text{Cl}(R)| = |\text{Gal}(K_\phi/k)| = g(X^1(N))$. Corollary 1 follows.]

Lemma 2. $g(f_\phi(N)) = \text{deg}(K_\phi).$ [Proof. It is known that $\dim(A_0) = \dim(K_\phi)$. [15], Proposition 6.6.4. But abelian variety $A_0 \subseteq \text{Jac}(X^1(N))$ and, therefore, $\dim(A_0) = \dim(\text{Jac}(X^1(N))) = g(X^1(N))$], hence the lemma.]

Corollary 2. $\text{deg}(K_\phi) = |\text{Cl}(R)|$. [Proof. From lemma 2 and corollary 1 one gets $\text{deg}(K_\phi) = |\text{Cl}(R)|$. In view of this and equality (2), one gets the conclusion of corollary 2.]

Lemma 3. [Basic lemma] $\text{Gal}(K_\phi/k) \cong \text{Cl}(R_f)$. [Proof. Let us outline the proof. In view of lemma 2 and corollaries 1-2, we denote by h the single integer $g(f_\phi(N)) = |\text{Cl}(R_f)| = |\text{Cl}(R)| = \text{deg}(K_\phi).$ Since $\text{deg}(K_\phi) = h$, there exist (ϕ_0, \ldots, ϕ_h) conjugate Hecke eigenforms $\phi(z) \in S_2(\Gamma(N))$. [15], Theorem 6.5.4; thus one gets h holomorphic forms ϕ_0, \ldots, ϕ_h on the Riemann surface $X^1(N)$. Let A_0, A_1, \ldots, A_h be the corresponding stationary AF-algebras; the A_0 are companions AF-algebras, see Section 1.2. Recall that the characteristic polynomial for the partial multiplicity matrices B_0 is B_h of companions AF-algebras A_0. The A_0 is the simplest; it is a minimal polynomial of degree h and let $\lambda_i, \ldots, \lambda_h$ be the roots of such a polynomial, compare with studies of Effros [14], Corollary 6.3. Since $|\text{det}(R_f) - 1|$, the numbers λ_i are algebraic units of the field K_ϕ. Moreover, λ_i are algebraically conjugate and can be taken for generators of the extension K_ϕ/k; since $\text{deg}(K_\phi/k) = h = |\text{Cl}(R_f)|$ there exists a natural action of group $\text{Cl}(R_f)$ on these generators. The...
In the case of elliptic curves with complex multiplication, the number of points on the curve over a finite field F_q is equal to $q + 1 - a_q$, where a_q is the q-th Fourier coefficient of the modular form associated to the curve.

Remark 4. Any isomorphism ϕ between two number fields K_1 and K_2 is induced by an automorphism of the ring of integers \mathcal{O}_K. In the particular case of p-adic fields, there are only finitely many possibilities up to \mathbb{C}-isomorphism. This is a consequence of the theory of Lubin-Tate formal groups.

Remark 5. A Hecke algebra is a ring of operators on the space of modular forms. The operators are defined as integrals against a fixed test function. A Hecke operator T_n is defined as $T_n(f) = \sum_{m|n} \mu(n/m) f(mn)$. The operators satisfy the Hecke commutation relations $T_m T_n = T_{mn}$ for $(m,n) = 1$.

Examples

Example 1. Let $K = \mathbb{Q}(\sqrt{15})$. The class field theory says that K has a subfield $L = \mathbb{Q}(\sqrt{-5})$. The Galois group of the extension K/L is isomorphic to the group of units of the ring of integers of K. The unit group of K is generated by a single element, the norm of which is 2.

Example 2. Let $K = \mathbb{Q}(\sqrt{-2})$. The class field theory says that K has a subfield $L = K(\sqrt{5})$. The Galois group of the extension K/L is isomorphic to the group of units of the ring of integers of K. The unit group of K is generated by a single element, the norm of which is 2. The extension K/L is an example of a non-abelian extension.
and one finds a generator of \(K(\sqrt{D}) \) modulo conductor \(f \) is the Hilbert class over \(\mathbb{Q}(\sqrt{D}) \).

Thus the field \(\mathbb{Q}(\sqrt{19}) \) is the Hilbert class field of \(\mathbb{Q}(\sqrt{432}) \).

table 1:

<table>
<thead>
<tr>
<th>D</th>
<th>f</th>
<th>(CI(\mathbb{Q}(\sqrt{D})))</th>
<th>(\mathbb{Q}(\sqrt{D})) modulo conductor</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{2}))</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{3}))</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{7}))</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{11}))</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>(\mathbb{Z}/4\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{-2+8\sqrt{14}}))</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{-1+\sqrt{15}}))</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{15}))</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>(\mathbb{Z}/4\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{-3+2\sqrt{11}}))</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{7+\sqrt{35}}))</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{43}))</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{7+\sqrt{51}}))</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{-1+\sqrt{58}}))</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>trivial</td>
<td>(\mathbb{Q}(\sqrt{67}))</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{-3+\sqrt{81}}))</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>(\mathbb{Q}(\sqrt{-3+\sqrt{91}}))</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Square-free discriminants \(2 \leq D \leq 101 \).

\[3x^2 + 9y^2 - 4 \times 14 = 0. \] The bi-quadratic equation \(x^2 + 3x^2 + 9 - 2\sqrt{14} = 0 \) has discriminant \(-27 + 8\sqrt{14} \) and one finds a generator of \(K_2 \) to be \(\sqrt{-27 + 8\sqrt{14}} \). Thus the field \(\mathbb{Q}(\sqrt{-27 + 8\sqrt{14}}) \) is the Hilbert class over \(\mathbb{Q}(\sqrt{14}) \).

Remark 7. Table 1 above lists quadratic fields for some square-free discriminants \(2 \leq D \leq 101 \). The conductors \(f \) and \(f \) satisfying equation (2) were calculated using tables for the class number of non-maximal orders in quadratic fields posted at www.numbertheory.org; the site is maintained by Keith Matthews. We focused on small conductors; the interested reader can compute the higher conductors using a pocket calculator. In contrast, computation of generator \(\alpha \) of the Hilbert class field require the online program SAGE created by William A. Stein. We write an explicit formula for \(x \) or its minimal polynomial \(p(x) \) over \(f \).

Acknowledgment

I thank Yu. I. Manin for helpful correspondence.

References

OMICS International: Publication Benefits & Features

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700 Open Access Journals
- 50,000 editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc.
- Special issues on the current trends of scientific research
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission