
Research Article Open Access

Journal of Generalized Lie 
Theory and Applications

Everaert and Gran, J Generalized Lie Theory Appl 2015, 9:2
http://dx.doi.org/10.4172/1736-4337.1000238

Volume 9 • Issue 2 • 1000238J Generalized Lie Theory Appl
ISSN: 1736-4337 GLTA, an open access journal

Some Aspects of Semi-Abelian Homology and Protoadditive Functors
Everaert T and Gran M*

Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Chemin du Cyclotron 2, Louvain-la-Neuve, 1348, Belgium

*Corresponding author: Gran M, Institut de Recherche en Mathématique et 
Physique, Université catholique de Louvain, Chemin du Cyclotron 2, Louvain-la-
Neuve, 1348, Belgium, Tel: +3210472111; E-mail: marino.gran@uclouvain.be 

Received October 11, 2015; Accepted November  20, 2015; Published November 
27, 2015

Citation: Everaert T, Gran M (2015) Some Aspects of Semi-Abelian Homology and 
Protoadditive Functors. J Generalized Lie Theory Appl 9: 238. doi:10.4172/1736-
4337.1000238

Copyright: © 2015 Everaert T, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
In this note some recent developments in the study of homology in semi-abelian categories are briefly presented. 

In particular the role of protoadditive functors in the study of Hopf formulae for homology is explained.
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Introduction
The discovery of higher Hopf formulae for the homology of a group, 

due to Ronald Brown and Graham Ellis [1], has naturally led to some 
new perspectives in non-abelian homological algebra. An important 
advance in this area was made by George Janelidze, who found a 
connection between group homology and categorical Galois theory [2-
5], the latter being a wide extension of Alexander Grothendieck’s theory 
[6]. Among other things, this cleared the path for the discovery of 
higher Hopf formulae for the homology of general algebraic structures 
[7-14]. Here, a crucial role is played by the so-called higher order central 
extensions, which are the covering morphisms with respect to certain 
Galois structures induced by a reflection 


U

,⊥

I
                    (1)

whose left adjoint I:  →  is sometimes called the “coefficient functor”. 
Here,  could, for instance, be the variety of groups,  its subvariety 
of abelian groups, and I the abelianisation functor. In this case, the 
induced higher order central extensions are related to the Brown-
Ellis Hopf-formulae, as explained below. More generally, higher 
order central extensions can be defined for any semi-abelian category 
 ([15] e.g., the varieties of groups, rings, Lie algebras, (pre)crossed 
modules, compact groups, or any abelian category) and any Birkhoff 
subcategory (i.e., a reflective subcategory closed under subobjects and 
regular quotients)  of . When, moreover,  has enough projectives, 
one obtains higher Hopf formulae for the homology induced by the 
reflector (or, coefficient functor) I:  → .

In order to explicitly determine of the Hopf-Brown-Ellis formulae 
for homology in specific algebraic contexts, it is crucial to find suitable 
descriptions of the higher central extensions, as for instance in terms 
of algebraic conditions using “generalised commutators”. In general, 
this is a non-trivial problem, about which we are going to say more in 
what follows.

Note that, in fact, different approaches to obtaining higher Hopf 
formulae exist, which can be used in different categorical contexts, 
based on the comonadic homology theory of Barr and Beck [7,8,10,16], 
on the abstract notion of Galois group [13,17,18], or on the theory 
of satellites [19]. These methods essentially coincide in the situation 
described above, namely for  a semi-abelian category with enough 
projectives and  a Birkhoff subcategory of .

Assume that we are in this situation. In this case, the reflector I:  
→  induces a first “centralisation functor” I1 from the category Ext() 
of extensions (i.e., regular epimorphisms) in  to the full subcategory 

CExt() of extensions that are central with respect to : 

CExt()
U1

Ext(A).⊥

I 1
                 (2)

This functor I1 is the left adjoint of the inclusion functor U1. The 
notion of centrality comes from categorical Galois theory and depends 
on the choice of the Birkhoff subcategory . It is defined in purely 
categorical terms [10,20].

The centralisation I1(f) of an extension f is given by a quotient 

A
ηf

f

A/ [Ker ( f ) , A ]

I 1 (f )

B,

 

where [Ker(f), A] may be thought of as a commutator of Ker(f) and A, 
defined relatively to . For instance, in the classical case of the reflection 

Ab
U

Gp⊥

ab

this relative commutator is simply the group-theoretical commutator 
of normal subgroups: 

[Ker(f), A]Ab = [Ker(f), A].

Hence, in this case I1 is the usual centralisation functor from the 
category of group extensions to its full subcategory of central extensions 
in the classical sense.

Remark that the commutator [Ker(f), A] appears as the denominator 
in the Hopf formula for the second integral homology group: given a 
free presentation 

0         K         F         G         0,
of a group G, Hopf’s formula tells us that the second homology group 
is given by the quotient 
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This is not a coincidence: a similar phenomenon occurs for the 
higher-order homology groups, where the subgroups appearing as 
denominator of the Brown-Ellis Hopf formulae are exactly what is 
required to transform higher-order extensions into a higher-order 
central extensions, universally.

To illustrate this idea, consider the case of the third homology 
group. For this, let 

F F/K2

F/K1 G F/K1 · K2≅

                                      (3)

be a double presentation of a group G so that F, F/K1 and F/K2 are free 
groups and the square is a double extension: a pushout of surjective 
homomorphisms. As shown by Brown and Ellis, the third integral 
homology group H3(G,) (=H3(G,Ab)) of G is given by 

1 2
3

1 2 1 2

[ , ]( , ) = .
[ , ] [ , ]

F F K KH G
K K F K K

∩ ∩
∩ ⋅

                   (4)

Once more, the denominator gives precisely the normal subgroup 
by which one has to “quotient out” the group F in order to make this 
double extension a double central extension, universally: 

F
η2

f

F
[K1 K2, F ][K1 ,K2 ] F/K2

F/K1 G.

⋂

Once again, the notion of centrality comes from categorical Galois 
theory, and this time depends on the induced reflection (2).

Now, the formula (4) is a special case of the general Hopf formula 
for the third homology corresponding to a reflection (1), with  an 
arbitrary semi-abelian category with enough projectives, and  any 
Birkhoff subcategory of  [10]: starting from a double presentation f 
of the form (3), with F, F / K1 and F / K2 regular projective objects of , 
the third homology object is given by a quotient 

1 2
3

2

[ , ]( , ) = .
[ ]

F F K KH G
L f
∩ ∩



                  (5)

As in the case of groups, also in a general semi-abelian category 
 the denominator L2[ f] of this generalised Hopf formula relative 
to  is the normal subobject of F that has to be “quotiented out” in 
order to universally turn the double extension (3) into a double central 
extension. Hence, in particular, for  = Gp and  = Ab, we have the 
equality 

2 Ab 1 2 1 2[ ] = [ , ] [ , ],L f K K F K K∩ ⋅

and the formula (4) appears as a special case of (5). In general, for a 
given Birkhoff reflection (1) in a semi-abelian category, L2[ f] may be 
difficult to compute.

Similar formulae exist for the higher homology objects, again 
valid in any semi-abelian category  with enough projectives and 
for any Birkhoff subcategory  of . This yields, at least in principle, 
a description of all homology objects Hn(A, )(n ≥ 2). In practice, a 
suitable characterisation of the higher-order central extensions is 
required.

In some cases it has been possible to compute these formulae 
explicitly. For example, this has been done in [10] for  the variety of 
precrossed modules and  its subvariety of crossed modules, or for  
the variety of groups and  its subvariety of nilpotent groups of a fixed 
class k ≥ 1 [21], or the variety of solvable groups of a fixed class k ≥ 1. 
Similar results have been obtained in the categories of Leibniz and of 
Lie n-algebras in [22].

However, in general, computing the Hopf formulae explicitly is a 
non-trivial task. One possible strategy is to look for suitable conditions 
on the coefficient functor I:  →  that facilitate such computations. In 
[12,14] we have shown that a natural such condition is the requirement 
that the reflector I is a protoadditive functor. This notion extends 
the one of additive functor to the non-additive context of pointed 
protomodular categories [23]: when  and  are pointed protomodular 
categories (for instance,  and  could be semi-abelian), a functor I:  
→  is protoadditive if, for any split short exact sequence 

0 0→→ → →←
sk

f
K A B

in  (i.e., = 1Bf s  and k = Ker(f)), its image 

( )( )

( )
0 ( ) ( ) ( ) 0→→ → →←

I sI k

I f
I K I A I B

under I is a split short exact sequence in . Whenever the coefficient 
functor I:  →  is protoadditive, explicit Hopf formulae can be 
established in different algebraic and topological contexts. In particular, 
the protoadditivity condition is fundamental to explore some new 
Galois theories induced by torsion theories [24-26].

We refer the interested reader to the articles [12,14] for a thorough 
study of the theory of protoadditive functors and their use in semi-
abelian homological algebra. In the first article we study the homology 
of n-fold internal groupoids in a semi-abelian category: these results 
apply in particular to the so-called catn-groups in the sense of Loday 
[27]. The crucial point there is that the connected components functor 
π0: Grpd() →  is protoadditive whenever  is semi-abelian. In [14] 
the general theory of protoadditive functors is investigated, as well as 
the so-called derived torsion theories of a torsion theory having the 
reflector to its torsion-free subcategory protoadditive. These derived 
torsion theories induce a chain of Galois structures in the categories of 
higher order extensions. The results concerning the homology objects 
can be applied in particular to some new torsion theories in the category 
of compact groups and, more generally, in any category of compact 
semi-abelian algebras introduced in [28]. Further developments in this 
direction, including some new results in the categories of commutative 
rings and of topological groups, for instance, can be found in [13,18]. 
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