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Abstract. We compute the principal curvatures of homogeneous hypersurfaces in a Grassmann manifold

G̃r3(ImO) by the G2-action. As applications, we show that there is a unique orbit which is an austere submani-
fold, and that there are just two orbits which are proper biharmonic homogeneous hypersurfaces. We also show that
the austere orbit is a weakly reflective submanifold.

1. Introduction

It is an interesting and important subject to compute the principal curvatures of homoge-
neous hypersurfaces in symmetric spaces. Such calculations are given by many researchers. In
1970’s, regarding homogeneous hypersurfaces in the simply connected, compact Riemannian
symmetric spaces of rank one, except for the Cayley projective plane, their principal curva-
tures were obtained in [14], [15] and [4]. Later Verhóczki got the result in the case of the
Cayley projective plane in [16] and [3]. As for the higher rank cases, the computations have
been progressed recently. Homogeneous hypersurfaces are given as orbits by the cohomo-
geneity one actions. Kollross classified cohomogeneity one actions on irreducible Riemann-
ian symmetric spaces of compact type in [12]. By his classification, in the higher rank cases,
it is known that most of the cohomogeneity one actions are the Hermann actions. Then the
principal curvatures of homogeneous hypersurfaces by the Hermann actions of cohomogene-
ity one are obtained ([1], [2], [3], [5], [17], [19]). Among homogeneous hypersurfaces by
the “exceptional" cohomogeneity one actions, that is, non-Hermann type, the principal cur-
vatures of homogeneous hypersurfaces in G2/SO(4) by the SU(3)-action and those in G2

by the SU(3) × SU(3)-action are computed, respectively ([18]). In this paper, we compute
the principal curvatures of homogeneous hypersurfaces in a Grassmann manifold G̃r3(ImO)

by the G2-action, which is an “exceptional" cohomogeneity one action (Theorem 1). Here
the Lie group G2 is defined as the automorphism group of the algebra O of octonions which
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is 14-dimensional and simple. We denote by ImO the seven-dimensional Euclidean space

of all imaginary part of octonions and by G̃r3(ImO) the Grassmann manifold of all three-
dimensional oriented subspaces in ImO.

Next we summarize our computation method. Let Ñ be an irreducible Riemannian sym-

metric space of compact type and N a singular orbit of Ñ by an isometric action of coho-
mogeneity one. Principal curvatures have been calculated by making use of the fact that
homogeneous hypersurfaces by this action are tubular hypersurfaces around N . In particular,
they can be obtained by applying the formula in [17] under the following assumption:

1. The singular orbit N is totally geodesic.
2. The tangent space TpN at a point p ∈ N is invariant by the Jacobi operator Ru for a

unit normal vector u of N at p. Here Ru is defined by Ru(v) = R(v, u)u for v ∈ TpÑ
with respect to the curvature tensor R of Ñ .

This method is used in the cases of the Hermann actions on Ñ of rank bigger than one.
On the other hand, we remark that we cannot apply it in our case. Actually, the singular

orbit G2/SO(4) of G̃r3(ImO) by the G2-action is totally geodesic, but the tangent space of
G2/SO(4) at the base point o is not invariant by the Jacobi operator (Remark 1). So we focus
on the decomposition of the Lie algebra g2 of G2. Let H be the subgroup of SO(4) whose
adjoint representation fixes an element of the normal space ofG2/SO(4) at o. We decompose
g2 into the invariant subspaces by the adjoint representation of H , which is described in the
equation (2) in Section 4. Depending on the decomposition, we compute the eigenvalues of
the shape operator.

The study of homogeneous hypersurfaces contributes to the progress in the research of
various geometric properties through construction of interesting examples. In this paper, we
show examples of austerity, proper biharmonicity and weakly reflectiveness. Austerity is a
condition related to the symmetrical arrangement of eigenvalues of the shape operator. Since
austere submanifolds form a special class of minimal submanifolds, it is fascinating to study
them ([7], [8], [10]). Proper biharmonicity is the concept introduced as critical maps of the
geometric variational problem regarding the tension fields of maps between Riemannian man-
ifolds. The classification of biharmonic homogeneous hypersurfaces in Riemannian symmet-
ric spaces has been made progress in recent years ([9], [13]). The computation results of the
principal curvatures and the multiplicities are used especially in [9]. The notion of weakly
reflective submanifolds is a generalization of that of reflective submanifolds ([8]). Weakly
reflective submanifolds have interesting properties such as austerity. We provide the new
examples concerning those three properties in Section 5 and 6.

This paper is organized as follows. In Section 2, we recall some basic facts about the
algebra O of octonions and the exceptional Lie group G2, and give our main theorem (The-
orem 1). Then, in Section 3, we describe the Riemannian symmetric pairs of G̃r3(ImO) and
G2/SO(4) explicitly to investigate the structure of g2. In Section 4, we obtain the decompo-

sition of g2 and compute the principal curvatures of homogeneous hypersurfaces in G̃r3(ImO)
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by theG2-action. As applications, we prove that the orbit ofΦ = 0 is an austere submanifold

(Corollary 1), and the orbits of Φ = ± 1√
10

are the only proper biharmonic homogeneous hy-

persurfaces of G̃r3(ImO) by theG2-action (Corollary 2) in Section 5. Further, in Section 6, we

show that the orbit of Φ = 0 is a weakly reflective submanifold of G̃r3(ImO) (Proposition 4).

2. Preliminaries and the main theorem

First of all, we review some necessary basic facts to state the main theorem. Let H =
{x+yi+zj+wk | x, y, z,w ∈ R} ∼= R4 (i2 = j2 = k2 = −1, ij = −j i = k) be the algebra
of quaternions and ImH be the subspace of imaginary quaternions. We denote the group of
unit quaternions by Sp(1) ⊂ H. The algebraO of octonions is a normed algebra given byO =
H⊕Hε, where the multiplication on O is given by (a+bε)(c+dε) = (ac− d̄b)+(da+bc̄)ε
([7]). Here ā is the quaternionic conjugation for a ∈ H. Let ImO = ImH⊕Hε be the subspace
of all imaginary part of octonions. We define the alternating trilinear form ϕ on ImO by

ϕ(x, y, z) = 〈x, yz〉 ,
where 〈, 〉 is the natural inner product on O ∼= R

8. The 3-form ϕ is called the associative
calibration on ImO ([7] p.113 Definition 1.5). The Lie groupG2 is defined by

G2 = Aut(O) = {g ∈ GL8(R)| g(xy) = g(x)g(y), for any x, y ∈ O} .
It is well known that the Lie group G2 is 14-dimensional and simple ([7]). Every automor-
phism of O fixes the subspace R ·1 ⊂ O and leaves the subspace ImO invariant. We also have
the facts that G2 is a subgroup of SO(ImO) ∼= SO(7), and that the following holds:

G2 = {g ∈ O(7)| g∗ϕ = ϕ} .
Let G̃r3(ImO) be the Grassmann manifold of all three-dimensional oriented subspaces in

ImO. G̃r3(ImO) is isomorphic to the Riemannian symmetric space SO(7)/SO(3)× SO(4).

We equip G̃r3(ImO) with the Riemannian metric defined by the Killing form on the Lie al-
gebra so(7). Since the value of ϕ does not depend on the choice of orthonormal basis of a

three-dimensional oriented subspace, ϕ may be considered as a function on G̃r3(ImO). More-
over, we have |ϕ(ζ )| ≤ 1 for all ζ ∈ G̃r3(ImO) ([7] p.113 Theorem 1.4). Then we define

level sets M(Φ) of G̃r3(ImO) for −1 ≤ Φ ≤ 1 by

M(Φ) = {ζ ∈ G̃r3(ImO) | ϕ(ζ ) = Φ} .
If ζ ∈ G̃r3(ImO) is the canonically oriented imaginary part of some quaternion subalge-

bra of O, then the oriented three-plane ζ is said to be an associative subspace. The set of all
associative subspaces is called the associative Grassmann manifold denoted by G̃rass(ImO).

The Lie group G2 acts transitively on each M(Φ) (−1 ≤ Φ ≤ 1) and G̃rass(ImO), respec-

tively. The level setM(1) coincides with G̃rass(ImO). Reversing the orientation of subspaces
in M(−1), we see that M(−1) is isometric to M(1) = G̃rass(ImO). M(1) and M(−1) are
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totally geodesic singular orbits. For −1 < Φ < 1, M(Φ) are principal orbits of codimension
one and diffeomorphic to G2/SO(3). In particular, ϕ is an isoparametric function. If we

take the normal vector field − gradϕ
||gradϕ|| for the hypersurfaces M(Φ), we obtain the following

theorem.

THEOREM 1. The principal curvatures of homogeneous hypersurfacesM(Φ) (−1 <
Φ < 1) are

μ1(Φ) = 0 ,

μ2(Φ) = 1

2
√

30(1 − Φ2)

(−3Φ +
√

8 +Φ2
)
,

μ3(Φ) = 1

2
√

30(1 −Φ2)

(−3Φ −
√

8 +Φ2
)

with multiplicities ν1 = 5, ν2 = 3, ν3 = 3, respectively.

3. The Riemannian symmetric pairs of G̃r3(ImO) and G̃rass(ImO)

In Section 3 and 4, we denote G̃r3(ImO) and G̃rass(ImO) by M̃ and M , respectively.
Concerning the Killing form B of the Lie algebra so(7) of SO(7), we have B(X, Y ) =
5tr(XY ) for X,Y ∈ so(7), where tr(XY ) denotes the trace of the 7 × 7 matrix XY . Then
B is negative definite on so(7). Thus −B is an Ad(SO(7))-invariant inner product on so(7).

The Lie group SO(7) acts transitively on G̃r3(ImO). We take o = ImH as the base point.

Then the isotropy subgroup at o is SO(3) × SO(4). The tangent space ToM̃ of M̃ at o is

identified with the orthogonal complement m̃ of the Lie algebra k̃ of SO(3)× SO(4) in so(7)
with respect to the Killing form B, where

k̃ =
{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ so(3),X2 ∈ so(4)

}
,

m̃ =
{(

0 −tX

X 0

) ∣∣∣∣ X ∈ M4,3(R)

}
.

The orthogonal decomposition so(7) = k̃ + m̃ is a reductive decomposition of so(7), that

is, m̃ satisfies ad(k̃)m̃ ⊂ m̃. The restriction −B|m̃ of −B to m̃ induces an SO(7)-invariant

Riemannian metric g̃ on M̃. We define an inner automorphism σ̃ of SO(7) by σ̃ (g) = sgs−1

for g ∈ SO(7), where

s =
(
E3 0
0 −E4

)
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and Ei is the i × i unit matrix. Then σ̃ is involutive, and the standard decomposition with

respect to σ̃ coincides with so(7) = k̃ + m̃. Hence (SO(7), SO(3)× SO(4), σ̃ ,−B|m̃) is a

Riemannian symmetric pair of M̃ . We denote the Riemannian connection of M̃ by ∇̃.
Now we consider the associative Grassmann manifold M = G̃rass(ImO). First, we

define an action of Sp(1)×Sp(1) on O as follows: For the pair of unit quaternions (q1, q2) ∈
Sp(1)× Sp(1) and a + bε ∈ O = H ⊕ Hε, we set

ρ(q1, q2)(a + bε) = q1aq
−1
1 + (q2bq

−1
1 )ε .

Then we can see that ρ(q1, q2) belongs to G2 and ρ is an action of Sp(1) × Sp(1)/Z2 ∼=
SO(4) on O. The action of G2 on M is transitive, and the isotropy subgroup of G2 at o is
ρ(Sp(1) × Sp(1)). Thus M is diffeomorphic to G2/SO(4) ([7] p.114 Theorem 1.8). The
involutive linear transformation s in the above is given by s = ρ(1,−1) ∈ G2. Therefore
σ̃ (G2) = G2 and the restriction σ = σ̃ |G2 is an involutive automorphism of G2. The Lie
algebra g2 of G2 is the Lie subalgebra of so(7) and σ(g2) = g2. We have the standard

decomposition g2 = k + m. Then k and m satisfy k ⊂ k̃ and m ⊂ m̃. The restriction g̃ |m
induces a G2-invariant Riemannian metric on M . Thus (G2, SO(4), σ, g̃ |m) is a Riemannian

symmetric pair ofM , andM is a totally geodesic submanifold of M̃.
We describe k and m explicitly. Let {i, j, k, ε, iε, jε, kε} be the standard basis of ImO,

and sp(1) = ImH be the Lie algebra of Sp(1). We give an action of sp(1)⊕ sp(1) on ImO as
follows: For (q1, q2) ∈ sp(1)⊕ sp(1) and a + bε ∈ ImH ⊕ Hε,

dρ(q1, q2)(a + bε) = q1a − aq1 + (q2b − bq1)ε .

Let Eij (i, j = 1, . . . , 7) be the 7 × 7 matrix, where the entry in i-th row and j -th column
equals 1 and all the other entries vanish. Furthermore, let us define the matrices Aij =
Eij − Eji(i �= j), which are elements of so(7). The matrices

k1 = A54 + A76 , k2 = A57 + A64 , k3 = A65 + A74

are derived from the action of dρ(0, i), dρ(0, j) and dρ(0, k), respectively. Similarly, the
matrices

k4 = 2A32 + A45 + A76 , k5 = 2A13 + A46 + A57 , k6 = 2A21 + A47 + A65

are derived from the action of dρ(i, 0), dρ(j, 0) and dρ(k, 0), respectively. It can be seen that
{k1, k2, k3} and {k4, k5, k6} generate ideals dρ({0}⊕sp(1)) and dρ(sp(1)⊕{0}) of dρ(sp(1)⊕
sp(1)) = k, respectively.

Since

g(xy) = g(x)g(y)

for g ∈ G2 and x, y ∈ ImO, it holds that

X̃(xy) = X̃(x)y + xX̃(y)
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for X̃ ∈ g2. Putting x = i and y = j , we have

X̃(ij) = X̃(k) = X̃(i)j + iX̃(j) . (1)

Let Bij (i = 1, 2, 3, 4, j = 1, 2, 3) be the 4 × 3 matrix, where the entry in i-th row and j -th

column equals 1 and all the other entries vanish. Let X̃ be an element of m, where

X̃ =
(

0 −tX

X 0

)
, X =

∑
i=1,2,3,4,
j=1,2,3

xijBij (xij ∈ R) .

Then the both sides of the equation (1) can be expressed as follows:

X̃(k) = x13ε + x23iε + x33jε + x43kε ,

X̃(i)j + iX̃(j) = (x31 − x22)ε + (x41 + x12)iε + (−x11 + x42)jε + (−x21 − x32)kε .

Thus we have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x13 = x31 − x22 ,

x23 = x41 + x12 ,

x33 = −x11 + x42 ,

x43 = −x21 − x32 .

Therefore we obtain eight elements generating m as follows:

m1 = A37 + A51 , m2 = A53 + A71 ,

m3 = A52 + A61 , m4 = A37 + A62 ,

m5 = A63 + A72 , m6 = A41 + 1

2
A72 − 1

2
A63 ,

m7 = A42 + 1

2
A53 − 1

2
A71 , m8 = A43 + 1

2
A61 − 1

2
A52 .

4. Computation of the principal curvatures

In this section, we compute the principal curvatures of homogeneous hypersurfaces
M(Φ). First, we describe the normal space T ⊥

o M at o = ImH. We denote by HomR(ImH,H)

the space of linear homomorphisms of ImH to H. We can naturally identify the tangent space

ToM̃ = m̃ with HomR(ImH,H). We define an inner product 〈, 〉 on HomR(ImH,H) as fol-
lows: For φ,ψ ∈ HomR(ImH,H), 〈φ,ψ〉 = 〈φ(i), ψ(i)〉 + 〈φ(j), ψ(j)〉 + 〈φ(k), ψ(k)〉.
Then it is related with the Killing metric g̃ by the equation 〈, 〉 = 1

10 g̃ . It is known that for
φ ∈ HomR(ImH,H), φ is a tangent vector of M if and only if φ(i)i + φ(j)j + φ(k)k = 0.
The following statement holds for the normal space T ⊥

o M:
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PROPOSITION 1. For ψ ∈ HomR(ImH,H), ψ is an element of T ⊥
o M if and only if

there exists λ ∈ H such that ψ(x) = λx for x ∈ ImH.

PROOF. Suppose that for ψ ∈ HomR(ImH,H), there exists λ ∈ H such that ψ(x) =
λx for x ∈ ImH, which is denoted by ψλ. Then we have for any φ ∈ ToM ,

〈φ,ψλ〉 = 〈φ(i), ψλ(i)〉 + 〈φ(j), ψλ(j)〉 + 〈φ(k), ψλ(k)〉
= 〈φ(i), λi〉 + 〈φ(j), λj 〉 + 〈φ(k), λk〉
= −〈φ(i)i + φ(j)j + φ(k)k, λ〉 = 0 .

Therefore ψλ is an element of T ⊥
o M . The map λ �→ ψλ of H into T ⊥

o M is an injective real

linear homomorphism. Since dimR H = dimT ⊥
o M , it is surjective. �

Let ψλ be an element of T ⊥
o M for λ ∈ H. For x ∈ ImH and (q1, q2) ∈ Sp(1)× Sp(1),

we have

(Ad(ρ(q1, q2))ψλ)(x) = ρ(q1, q2)ψλ(ρ(q1, q2)
−1(x))

= ρ(q1, q2)(λ(q
−1
1 xq1))

= q2(λq
−1
1 xq1)q

−1
1

= (q2λq
−1
1 )x .

Therefore the map λ �→ ψλ is equivariant with respect to Sp(1) × Sp(1)/Z2 = SO(4).
In particular, the isotropy subgroup ρ(Sp(1) × Sp(1)) acts transitively on the unit sphere of
T ⊥
o M . Hence we see that tubular hypersurfaces aroundM are homogeneous by theG2-action.

Take a normal vector Z̃ ∈ m̃ which corresponds to ψ1. Then we have Z̃ = A51 +A62 +
A73. Let us consider the geodesic γ : R → M̃ defined by γ (t) = (exp tZ̃) · o. We denote
byMt theG2-orbits through γ (t). Then the geodesic γ intersects orthogonally all the tubular
hypersurfacesMt . Therefore the tangent vector γ̇ (t) is a normal vector to Mt . We denote by

Aγ̇ (t) the shape operator of Mt with respect to γ̇ (t). Putting g(t) = exp tZ̃, we can express
g(t) by the following matrix:

g(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos t 0 0 0 − sin t 0 0
0 cos t 0 0 0 − sin t 0
0 0 cos t 0 0 0 − sin t
0 0 0 1 0 0 0

sin t 0 0 0 cos t 0 0
0 sin t 0 0 0 cos t 0
0 0 sin t 0 0 0 cos t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let g1(t), g2(t) and g3(t) be the first, second and third columns of g(t), respectively. Then
γ (t) is spanned by g1(t), g2(t) and g3(t). The value of ϕ for γ (t) is

ϕ(γ (t)) = 〈(cos t)i + (sin t)iε, {(cos t)j + (sin t)jε}{(cos t)k + (sin t)kε}〉 = cos 3t .
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Hence we haveMt = M(cos 3t).
Now we compute the principal curvatures of Mt (0 < t < π

3 ). We denote by H

the subgroup of ρ(Sp(1) × Sp(1)) whose adjoint representation fixes Z̃. Then we have
H = {ρ(q, q) | q ∈ Sp(1)} which is isomorphic to SO(3), and it coincides with the
isotropy subgroup of G2-action at γ (t) (0 < t < π

3 ). The Lie algebra h of H is given by

{dρ(q, q) | q ∈ ImH}. We define the subspace k′′ of k by k′′ = {dρ(−q, q) | q ∈ ImH}.
Clearly, k′′ is an invariant subspace in k by the adjoint representation of H . We put
k′

4 = k1 − k4 = dρ(−i, i), k′
5 = k2 − k5 = dρ(−j, j), and k′

6 = k3 − k6 = dρ(−k, k),
where ki are defined in Section 2. Then the subspace k′′ is spanned by k′

4, k′
5 and k′

6. We

define the subspace m′ of m by m′ = {X̃ ∈ m | adZ̃(X̃) = [Z̃, X̃] = 0} and denote by m′′ the
orthogonal complement of m′ in m. We remark that the subspace m′ is invariant by the Jacobi

operator RZ̃ = −(adZ̃)2, however the subspace m′′ is not. It is easily seen that m′ and m′′ are
invariant subspaces of m by the adjoint representation of H . Thus we obtain the direct sum
decomposition:

g2 = h + k′′ + m′ + m′′ . (2)

By the straightforward computation, we see that m′ is spanned by m1, m2, m3, m4 and m5,
and m′′ is spanned by m6, m7 and m8, where mi are defined in Section 2.

Instead of the homogeneous hypersurfacesMt , we considerNt = g(t)−1Mt which is the

orbit through o by the action of g(t)−1G2g(t). Since g(t)−1∗γ̇ (t) = γ̇ (0), γ̇ (0) is a normal
vector to Nt at o, and the principal curvatures of the shape operator Aγ̇ (t) coincide with those

of Aγ̇ (0). Under the identification of ToM̃ with m̃, we have γ̇ (0) = Z̃. We compute the
principal curvatures of the shape operatorAZ̃ using the result of Takagi and Takahashi ([14]).

Let G be a Lie transformation group of a manifold Ñ with the Lie algebra g. For X ∈ g, we

denote byX∗ the vector field on Ñ induced by the action of the 1-parameter subgroup exp tX.

PROPOSITION 2 ([14] Proposition 1). Let Ñ be a Riemannian manifold with the Rie-

mannian connection∇ andN an orbit in Ñ under a Lie transformation groupG of isometries

of Ñ . The shape operator Az of N for a normal vector z ∈ T ⊥
p N at p ∈ N is expressed as

Az(x) = −(∇zX∗)N for x ∈ TpN ,
where X is an element of the Lie algebra g of G such that X∗

p = x and (∇zX∗)N is the

tangential component of ∇zX∗ to the submanifold N at p.

We also use the following fact:

PROPOSITION 3 (cf. [11] p.185 Theorem 2.4). Let (G̃, K̃, σ̃ , g̃) be a Riemannian

symmetric pair with the Riemannian symmetric Lie algebra (g̃, σ̃ , g̃) and (M̃, g̃) the cor-

responding Riemannian symmetric space. For the standard decompostion g̃ = k̃ + m̃ and the



PRINCIPAL CURVATURES OF HOMOGENEOUS HYPERSURFACES 579

Riemannian connection ∇̃, the following holds: For Y ∈ m̃,

(∇̃YX∗)o =
{

[X,Y ] (X ∈ k̃) ,

0 (X ∈ m̃) .

We consider a Lie transformation group G(t) = g(t)−1G2g(t). Since g(t) commutes
with any k ∈ H , H is a subgroup of G(t) and is the isotropy subgroup of G(t) at o. By the
equation (2), we have the direct sum decomposition of the Lie algebra g(t) of G(t):

g(t) = Ad(g(t)−1)g2 = h + Ad(g(t)−1)(k′′ + m′ + m′′) . (3)

We abbreviate Ad(g(t)−1)(k′′ + m′ + m′′) to n(t). The tangent space ToNt at o is generated

by X̃∗
o for X̃ ∈ n(t). Let X̃k̃ and X̃m̃ be the components of k̃ and m̃ for X̃ ∈ n(t), respec-

tively. Then we note that X̃∗ = (X̃k̃)
∗ + (X̃m̃)

∗ and (X̃∗)o = (X̃m̃)
∗
o. Therefore under the

identification of ToM̃ with m̃, we have X̃∗
o = X̃m̃. We define the subspace ñ(t) of m̃ by

ñ(t) = {X̃m̃ | X̃ ∈ n(t)}. In fact, ñ(t) does not depend on t as it is the orthogonal comple-

ment of Z̃ in m̃. So we simply denote it by ñ. We describe the shape operator AZ̃ as a linear

transformation of ñ. Since adZ̃(X̃) = 0 for X̃ ∈ m′, we have Ad(g(t)−1)X̃ = X̃. Hence

Ad(g(t)−1)m′ = m′ ⊂ m ⊂ m̃. Applying Propositions 2 and 3 for X̃ ∈ m′, we have

AZ̃(X̃m̃) = AZ̃(X̃
∗
o) = −((∇̃Z̃(X̃∗))o)Nt = 0 .

Similarly, we compute Ad(g(t)−1) on k′′ + m′′ and get the followings:

X̃1 = g−1(t)m6g(t)

= (sin t)A54 + 1

2
sin 2t (A32 − A76)+ (cos t)A41 + 1

2
cos 2t (A72 − A63) ,

X̃2 = g−1(t)m7g(t)

= (sin t)A64 + 1

2
sin 2t (A13 − A57)+ (cos t)A42 + 1

2
cos 2t (A53 − A71) ,

X̃3 = g−1(t)m8g(t)

= (sin t)A74 + 1

2
sin 2t (A21 − A65)+ (cos t)A43 + 1

2
cos 2t (A61 − A52) ,

X̃4 = g−1(t)k′
4g(t)

= (2 cos2 t)A23 + (2 sin2 t)A67 + (2 cos t)A54 + (2 sin t)A14 + sin 2t (A72 − A63) ,

X̃5 = g−1(t)k′
5g(t)

= (2 cos2 t)A31 + (2 sin2 t)A75 + (2 cos t)A64 + (2 sin t)A24 + sin 2t (A53 − A71) ,

X̃6 = g−1(t)k′
6g(t)

= (2 cos2 t)A12 + (2 sin2 t)A56 + (2 cos t)A74 + (2 sin t)A34 + sin 2t (A61 − A52) .
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By using Propositions 2 and 3, we can express the shape operators AZ̃((X̃i)m̃) for X̃i (i =
1, . . . , 6) as follows:

AZ̃((X̃i)m̃) = AZ̃((X̃
∗
i )o)

= −((∇̃Z̃(X̃∗
i ))o)Nt

= −({∇̃Z̃(X̃i)∗k̃ + ∇̃Z̃(X̃i)∗m̃}o)Nt
= −[(X̃i)k̃, Z̃]ñ
= −[(X̃i)k̃, Z̃] .

Here ([(X̃i )k̃, Z̃])ñ = [(X̃i)k̃, Z̃] holds, since g̃([(X̃i)k̃, Z̃], Z̃) = 0. Then we obtain

AZ̃(X̃1)m̃ = (sin t)A41 + sin 2t (A72 − A63) ,

AZ̃(X̃2)m̃ = (sin t)A42 + sin 2t (A53 − A71) ,

AZ̃(X̃3)m̃ = (sin t)A43 + sin 2t (A61 − A52) ,

AZ̃(X̃4)m̃ = 2{(cos t)A41 + cos 2t (A63 − A72)} ,
AZ̃(X̃5)m̃ = 2{(cos t)A42 + cos 2t (A71 − A53)} ,
AZ̃(X̃6)m̃ = 2{(cos t)A43 + cos 2t (A52 − A61)} .

Putting T1 =
(

cos t −2 sin t
1
2 cos 2t sin 2t

)
and T2 =

(
sin t 2 cos t
sin 2t −2 cos 2t

)
, we have

((X̃1)m̃, (X̃4)m̃) = (A41, (A72 − A63))T1 ,

AZ̃((X̃1)m̃, (X̃4)m̃) = (A41, (A72 − A63))T2 .

It follows that AZ̃(A41, (A72 − A63)) = (A41, (A72 − A63))T2T
−1
1 . By changing the choice

of bases for the pairs ((X̃2)m̃, (X̃5)m̃) and ((X̃3)m̃, (X̃6)m̃), the same equations hold. The
eigenvalues of the matrix

T2T
−1

1 = 1

sin 3t

(− cos 3t 2
1 −2 cos 3t

)
are 1

2
√
(1−Φ2)

(−3Φ±√
8 +Φ2), whereΦ = cos 3t (0 < t < π

3 ). We have ||γ̇ (t)|| = ||Z̃|| =
√

30 and (gradϕ)γ (t) = −cγ̇ (t) for some c > 0 with respect to the Riemannian metric g̃ on

M̃ . Then the eigenvalues of the shape operator with respect to the unit normal vector field
1√
30
γ̇ (t) = − gradϕ

||gradϕ|| are given in Theorem 1.

REMARK 1. The tangent space ToM = m is not invariant by the Jacobi operatorRZ̃ =
−(adZ̃)2. It means that the second condition we mention in Introduction is not satisfied.
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5. Applications

Austere submanifolds in Euclidean space were introduced by Harvey and Lawson ([7]).
First, we give the precise definition of austerity which is found in the paper [10]. Let Mm be
an m-dimensional immersed submanifold of an n-dimensional Riemannian manifold (Nn, g̃)
with the second fundamental form II . ThenM is austere if for any normal vector field υ, the
eigenvalues of the quadratic form IIυ(X, Y ) = g̃(II (X, Y ), υ) are symmetrically arranged
around zero on the real line at each point. By using the result of Theorem 1, we have the
following corollary.

COROLLARY 1. The orbit of Φ = 0 is an austere submanifold of G̃r3(ImO).

PROOF. The principal curvatures of M(0) are

μ2(0) = 1√
15
, μ3(0) = − 1√

15

with the multiplicities ν2 = 3, ν3 = 3, respectively. Since they are in oppositely signed pairs,

M(0) is an austere submanifold of G̃r3(ImO). �

In 1983, J. Eells and L. Lemaire extended the notion of harmonic maps to biharmonic
maps ([6]). It is an interesting subject to classify the biharmonic hypersurfaces in Riemannian
symmetric spaces. Those hypersurfaces have been studied by many researchers so far. For
example, see the papers [9] and [13]. In Corollary 2, we give the new example of proper bihar-
monic hypersurfaces in compact Riemannian symmetric spaces. We recall some basic facts
concerning the biharmonic hypersurfaces in Riemannian symmetric spaces. For details and
proofs, see the paper [9]. Let (Mm, g) and (Nn, g̃) be Riemannian manifolds and φ : M → N

be a smooth map with the tension field τ (φ). A smooth map φ is said to be harmonic if it is a
critical point of the energy functional

E(φ) =
∫

1

2
|dφ|2dv

under compactly supported variations. More generally, a smooth map φ is said to be bihar-
monic if it is a critical point of the bienergy functional

E2(φ) =
∫

1

2
|τ (φ)|2dv

under compactly supported variations. Non-harmonic biharmonic maps are called proper
biharmonic maps.

THEOREM 2 ([9] Theorem 3). Let N = G/K be an irreducible compact semi-simple
Riemannian symmetric space equipped with the Killing metric. Then a hypersurface φ : M →
G/K with constant mean curvature is proper biharmonic if and only if its shape operator A
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has constant square norm

|A|2 = 1

2
.

Applying Theorem 2 and the result of Theorem 1, we obtain the following corollary.

COROLLARY 2. The only proper biharmonic homogeneous hypersurfaces of
G̃r3(ImO) by the G2-action are the orbits of

Φ = ± 1√
10
.

PROOF. The square norm |A|2 is computed as

|A|2 = 3{μ2(Φ)}2 + 3{μ3(Φ)}2 = 5Φ2 + 4

10(1 −Φ2)
.

Thus the biharmonic equation |A|2 = 1
2 is rewritten as 10Φ2 = 1. Hence Φ = ± 1√

10
. �

REMARK 2. The Lie group SO(6) also acts on G̃r3(ImO) as the cohomogeneity one
action. It is known that there exists a unique proper biharmonic homogeneous hypersurface
by the SO(6)-action ([9]).

6. Weakly reflective submanifolds

In this section, we show that the orbit of Φ = 0 is a weakly reflective submanifold of

G̃r3(ImO). The notion of weakly reflective submanifolds was introduced by Ikawa, Sakai
and Tasaki in 2009 ([8]). It is an austere submanifold with a reflection for each normal di-
rection. We give the precise definition of weakly reflective submanifolds. Let Mm be an
m-dimensional submanifold of an n-dimensional Riemannian manifold Nn. For each normal
vector ξ ∈ T ⊥

p M at each point p ∈ M , if there exists an isometry σξ of N which satisfies

σξ (p) = p , (dσξ )pξ = −ξ , σξ (M) = M ,

then we call M a weakly reflective submanifold and σξ a reflection of M with respect to ξ .
In the case where M is a hypersurface, σξ is independent of the choice of ξ at each point p.
We also note that if M is an extrinsic homogeneous submanifold in N , that is, an orbit of an
isometric action of a Lie group onN , then it suffices to check that the condition to be a weakly
reflective submanifold only at one point of M is satisfied.

PROPOSITION 4. The orbit of Φ = 0 is a weakly reflective submanifold of G̃r3(ImO).

PROOF. Since the orbit M(0) is a homogeneous submanifold of G̃r3(ImO), it suffices
to check the condition to be a weakly reflective submanifold only at one point p ∈ M(0),
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whose positively oriented orthonormal basis is {i, j, ε}. We take a normal vector ξ = gradϕ ∈
T ⊥
p M(0) at p ∈ M(0). Let σξ be an isometry of G̃r3(ImO) defined by

σξ = −s =
(−E3 0

0 E4

)
,

where s is defined in Section 2, and Ei is the i × i unit matrix. Then we have

σξ (p) = σξ {i, j, ε} = {−i,−j, ε} = {i, j, ε} = p .

Since s = ρ(1,−1) is an element of G2 and the degree of ϕ is odd, it holds that σ ∗
ξ ϕ =

(−s)∗ϕ = ((−E7)s)
∗ϕ = s∗(−E7)

∗ϕ = s∗(−ϕ) = −s∗ϕ = −ϕ. As it can be seen that the
isometry σξ satisfies (dσξ )p(grad(σ ∗

ξ ϕ)p) = (gradϕ)p, the second equation (dσξ )pξ = −ξ
holds. We also see that σξ (M(Φ)) = M(−Φ). In particular, we have σξ (M(0)) = M(0).

Therefore the orbitM(0) is a weakly reflective submanifold of G̃r3(ImO). �

REMARK 3. It is known that a weakly reflective submanifold is an austere submanifold
(cf. [8] p.440 Proposition 2.5). Thus the austerity ofM(0) follows from Proposition 4.
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