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Abstract. We generalize the notion of biquandles to psyquandles and use these to define invariants of oriented
singular links and pseudolinks. In addition to psyquandle counting invariants, we introduce Alexander psyquandles
and corresponding invariants such as Alexander psyquandle polynomials and Alexander-Gröbner psyquandle invari-
ants of oriented singular knots and links. We consider the relationship between Alexander psyquandle colorings of
pseudolinks and p-colorings of pseudolinks. As a special case we define a generalization of the Alexander poly-
nomial for oriented singular links and pseudolinks we call the Jablan polynomial and compute the invariant for all
pseudoknots with up to five crossings and all 2-bouquet graphs with up to 6 classical crossings.

1. Introduction

Biquandles are algebraic structures whose axioms are motivated by the oriented Reide-
meister moves in knot theory. First suggested in the mid 1990s [6] and later developed in the
2000s [12, 5, 4], biquandles have been used since their introduction to define invariants of
classical and virtual oriented knots and links, [2, 4, 5, 14, 15, 17, 16].

Singular knots and links are 4-valent spatial graphs considered up to rigid vertex isotopy,
where we may regard a vertex as the result of two strands of a knot or link getting stuck
together in a fixed position. Singular knots and links are important in the study of Vassiliev
invariants; see [7, 20, 21]. In particular, a singular knot or link with exactly one singular
crossing is a 2-bouquet graph.

Pseudoknots are knots whose diagrams consist of usual crossings and precrossings –
classical crossings where we cannot tell which strand goes on top. This definition, statistical
in nature, is motivated by applications in molecular biology, such as modeling knotted DNA,
where data often comes inconclusive with respect to which crossing it represents, [9, 10, 11].

Motivated by effectiveness of biquandles in distinguishing oriented knots and links, we
introduce psyquandles and use them to define invariants of oriented singular knots and links
and oriented pseudoknots and pseudolinks. A psyquandle is a biquandle with additional struc-
ture in the form of operations at singular crossings or precrossings.
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The paper is organized as follows. In Section 2 we review the basic combinatorics of
oriented singular knots and links and pseudoknots and pseudolinks. In Section 3 we intro-
duce psyquandles and prove that psyquandle colorings of singular knots and links and of
pseudoknots and pseudolinks define invariants. In Section 4 we introduce a particular type
of psyquandle we call Alexander psyquandles and use these to define analogs of the Alexan-
der polynomials and Alexander-Gröbner invariants for oriented singular knots and links and
for oriented pseudoknots and pseudolinks. We consider the relationship between Alexander
psyquandle colorings and p-colorings of pseudolinks as defined in [9]. We introduce the
Jablan polynomial which generalizes the Alexander polynomial to the case of pseudolinks
and singular links. We end in Section 5 with some questions for future work.

2. Singular Knots and Pseudoknots

Singular knots and links are rigid vertex isotopy classes of 4-valent spatial graphs. That
is, a singular link diagram has classical crossings and 4-valent vertices which are required to
maintain a fixed cyclic ordering around the vertices. Geometrically, we can think of singular
links as links with transverse self-intersections, each of which is fixed inside a small neigh-
borhood. An oriented singular knot or link has oriented strands which pass through at each
crossing and vertex; that is, the orientations are as pictured below.

Singular knot theory finds applications in the study of Vassiliev invariants, integer-valued
invariants of singular knots and links which satisfy the Vassiliev skein relation:
See [7, 20, 21] for more about singular knots.

EXAMPLE 1. A 2-bouquet graph is a singular knot with exactly one singular cross-
ing. 2-Bouquet graphs come in two types: K-type 2-bouquet graphs form knots if the sin-
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gular crossing is replaced with a classical crossing, while L-type 2-bouquet graphs form 2-
component links when the singular crossing is replaced with a classical crossing. The second
listed author classified 2-bouquet graphs with up to six classical crossings in [18].

In [1] a generating set of three oriented singular moves is identified and shown to generate
the remaining oriented singular moves:

THEOREM 1 (BEHY). In the presence of the oriented classical Reidemeister moves,
the three moves below generate the complete set of oriented singular moves.

For our purposes it will be easier to use an alternative generating set of singular moves.

PROPOSITION 1. In the presence of classical Reidemeister moves, the three moves
below generate the complete set of oriented singular moves.

PROOF. It suffices to show that the moves in Theorem 1 can be obtained using our
preferred moves and the oriented classical Reidemeister moves. Since move sII is the same
as move Ω5a, we need only to show that moves Ω4a and Ω4e can be obtained using the
classical Reidemeister moves and moves sII, sIII and sIII′. Then consider the case of Ω4a;
we will obtain it using sIII and two classical Reidemeister II moves.
The case of sIII′ ⇒ Ω4e is similar. �
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Pseudoknots are knots and links whose diagrams in addition to classical crossings in-
clude some precrossings, classical crossings in which it is unknown which strand goes over
and which strand goes under. While the concept originated in biology where limited reso-
lution in pictures of knotted molecules makes it difficult to tell which strand in on top, the
current mathematical study of pseudoknots was initiated in [8] and continued in papers such
as [9, 10, 11]. A precrossing is drawn as an undecorated self-intersection:

The Reidemeister moves for pseudoknots (see [11] etc.) are, conveniently, very similar
to our preferred set of Reidemeister moves for oriented singular knots:
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Indeed, after replacing singular crossings with precrossings, the only difference is the addition
of a Reidemeister I-style move with a precrossing, no analog of which exists for singular
knots.

A resolution of a pseudolink diagram is an assignment of classical crossing type to each
of the precrossings in the diagram. A powerful invariant of pseudolinks is the weighted reso-
lution set or WeRe set, the discrete probability distribution consisting of the set of resolution
link types and their associated probabilities with the assumption that both crossing resolutions
are equally probable.

EXAMPLE 2. The pseudolink below has the listed WeRe set where 02 is the unlink of
two components and L2a1 is the Hopf link.

3. Psyquandles

The similarity of the singular Reidemeister moves with the pseudoknot Reidemeister
moves suggests introducing a single algebraic structure for coloring these objects with new
operations at the singular crossings or precrossings.

Recall (see [4] for example) that a biquandle is a set X with operations � , � : X×X →
X satisfying

(i) For all x ∈ X, x � x = x � x,
(ii) For all x, y ∈ X, the maps αy, β, y : X → X and S : X ×X → X ×X defined by

αy(x) = x � y, βy(x) = x � y and S(x, y) = (S1(x, y), S2(x, y)) = (y � x, x � y)

are invertible, and
(iii) For all x, y, z ∈ X the exchange laws are satisfied:

(x � y) � (z � y) = (x � z) � (y � z)

(x � y) � (z � y) = (x � z) � (y � z)

(x � y) � (z � y) = (x � z) � (y � z) .

The biquandle axioms are motivated by the classical Reidemeister moves where we label the
semiarcs in a knot diagram (the edges in the graph obtained from the diagram by making each
crossing a 4-valent vertex) as shown:
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Axiom (ii) is equivalent to the adjacent labels rule, which says that the colors of any two
adjacent semiarcs determine the colors of the other two.

DEFINITION 1. A psyquandle is a biquandle X with two additional binary operations
• , • : X × X → X satisfying the conditions

(p/si) For all x, y ∈ X, the maps α′
y, β ′

y : X → X and S′ : X × X → X × X defined by

α′
y(x) = x • y, β ′

y(x) = x • y and S′(x, y) = (S′
1(x, y), S′

2(x, y)) = (y • x, x • y)

are invertible,
(p/sii) For all x, y ∈ X there exist unique w, z ∈ X such that

x � y = z • y

y � x = w • x

w � z = y • z

z � w = x • w

and
(p/siii) For all x, y, z ∈ X we have the mixed exchange laws:

(x � y) � (z • y) = (x � z) � (y • z)

(x � y) � (z • y) = (x � z) � (y • z)

(x � y) • (z � y) = (x • z) � (y � z)

(x � y) • (z � y) = (x • z) � (y � z)

(x � y) • (z � y) = (x • z) � (y � z)

(x � y) • (z � y) = (x • z) � (y � z)

A psyquandle is pI-adequate if it additionally satisfies for all x ∈ X

x • x = x • x .

DEFINITION 2. Let X be a psyquandle (respectively, a pI-adequate psyquandle) and
L an oriented singular link (respectively, oriented pseudolink) diagram. Then an X-coloring
of L is an assignment of elements of Xto the semiarcs in L such that every crossing we have
the following:
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The psyquandle axioms are motivated by the moves {p/sII, p/sIII, p/sIII′} (and in the
case of pI-adequate psyquandles, move pI) using the coloring rule in Definition 2 at singular
crossings and precrossings. In particular, we have:

THEOREM 2. Let L be an oriented singular link (respectively, pseudolink) diagram.
For any finite psyquandle X, the number of X-colorings of L is preserved by Reidemeister

moves and hence defines an invariant ΦZ
X(L) called the psyquandle counting invariant.

PROOF. We verify for each of the moves pI, p/sII, p/sIII and p/sIII′. First, move pI
requires x • x = x • x for all x ∈ X:

Next, let us consider the p/sII move.

We want each X-coloring of the diagram on the left to correspond to exactly one X-coloring of
the diagram on the right. The fact that � , � , • and • satisfy the adjacent labels rule implies
that the colors x, y determine all the semiarc colors in the left diagram and the requirement
that colors agree on the boundary of the neighborhood of the move the implies that x, y also
determine the colors in the right diagram. Then for each pair x, y ∈ X there should be unique
z,w satisfying the pictured conditions.
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Finally, for the p/sIII and p/sIII′ moves, we compare semiarc labels on both sides of the
moves. �

EXAMPLE 3. Let X be a biquandle. Replacing the singular/precrossing with a positive
crossing shows that that setting • = � and • = � yields a pI-adequate psyquandle, and
replacing it with a negative crossing shows that setting • = � and • = � yields a pI-
adequate psyquandle.

DEFINITION 3. A pure psyquandle is a psyquandle with trivial classical operations,
i.e. a psyquandle X such that

x � y = x � y = x

for all x, y ∈ X. We note that the mixed exchange laws are automatically satisfied in this
case, so every pair of operations x • y, x • y satisfying (p/si) and (p/sii) is a pure psyquandle.

EXAMPLE 4. Let X be a set and σ, τ : X → X bijections. Then x � y = x � y = τ (x)

defines a biquandle operation called a constant action biquandle. Defining x • y = x • y =
σ(x) makes this a pI-adequate psyquandle we call a constant action psyquandle provided

σ−1τ = τ−1σ and στ = τσ .

We verify the axioms:
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(p/si) α′ = β ′ = σ is invertible and S′−1(x, y) = (τ−1(y), τ−1(x)),

(p/sii) Given x, y ∈ X, define z = τ−1σ(x) and w = τ−1σ(y). Then we have

x � y = σ(x) = τ (τ−1(σ (x))) = z � y

y � x = σ(y) = τ (τ−1(σ (y))) = w � x

w � z = σ(τ−1(σ (y))) = τ (y) = y • z

z �w = σ(τ−1(σ (x))) = τ (x) = x •w

and
(p/siii) For all x, y, z ∈ X we have

(x � y) � (z • y) = σ 2(x) = σ 2(x) = (x � z) � (y • z)

(x � y) � (z • y) = σ 2(x) = σ 2(x) = (x � z) � (y • z)

(x � y) • (z � y) = σ(τ(x)) = τ (σ (x)) = (x • z) � (y � z)

(x � y) • (z � y) = σ(τ(x)) = τ (σ (x)) = (x • z) � (y � z)

(x � y) • (z � y) = σ(τ(x)) = τ (σ (x)) = (x • z) � (y � z)

(x � y) • (z � y) = σ(τ(x)) = τ (σ (x)) = (x • z) � (y � z)

as required.

EXAMPLE 5. We can express a psyquandle structure on a finite set X = {x1, . . . , xn}
with an n × 4n matrix encoding the operation tables of � , � , • , • where the (j, k) entry m

in the matrix satisfies

xm =

⎧⎪⎪⎨
⎪⎪⎩

xj � xk 1 ≤ k ≤ n

xj � xk n + 1 ≤ k ≤ 2n

xj • xk 2n + 1 ≤ k ≤ 3n

xj • xk 3n + 1 ≤ k ≤ 4n

For instance, the constant action psyquandle on X = {x1, x2, x3, x4} where σ = (12) and
τ = (34) has operation matrix

⎡
⎢⎢⎣

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3

⎤
⎥⎥⎦

EXAMPLE 6. Let X = {1, 2, 3}. The operation matrix
⎡
⎣ 1 1 1 1 1 1 2 2 2 3 2 2

2 2 2 2 2 2 1 3 1 1 1 1
3 3 3 3 3 3 3 1 3 2 3 3

⎤
⎦

defines a pure psyquandle which is not pI-adequate.

DEFINITION 4. Let D be an oriented singular or pseudolink diagram representing an
oriented singular or pseudolink L and let G = {g1, . . . , gn} be a set of symbols corresponding
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to the semiarcs in D. We define the fundamental psyquandle of D is the usual universal
algebraic way, namely:

• The set W(G) of psyquandle words in G is defined recursively by the rules

(i) G ⊂ W(G) and

(ii) x, y ∈ W(G) implies

x � y, x � y, x • y, x • y, α−1
y (x), α′−1

y (x), β−1
y (x), β ′−1

y (x) ,

S1(x, y), S2(x, y), S′
1(x, y), S′

2(x, y),w(x, y), z(x, y) ∈ W(G) ,

• We introduce an equivalence relation on W(G) generated by relations representing
the psyquandle axioms, e.g.

(x � y) � (z • y) ∼ (x � z) � (y • z), x � y ∼ z(x, y) • y, etc.,

• The free psyquandle on G is the set of equivalence classes of W(G) modulo this
equivalence relation; if we include axiom (pi) we obtain the free pI-adequate psyquan-
dle, and

• Including the crossing relations form Definition 2 in our equivalence relation yields
the fundamental psyquandle of D, denoted P(D) or PI (D) for the fundamental pI-
adequate psyquandle.

THEOREM 3. The isomorphism class P(L) of P(D) is an invariant of oriented singu-
lar links, and the isomorphism class PI (L) of PI (D) is an invariant of oriented pseudolinks.

PROOF. By construction, Reidemeister moves on diagrams induce Tietze moves on
presentations of P(D) and PI (D) respectively, resulting in isomorphic psyquandles. �

Psyquandles form a category with psyquandles as objects and psyquandle homomor-
phisms, maps f : X → Y satisfying

f (x � y) = f (x) � f (y) , f (x � y) = f (x) � f (y) ,

f (x • y) = f (x) • f (y) and f (x • y) = f (x) •f (y)

as morphisms.
Let D be an oriented singular link or pseudolink diagram and let X be a finite psyquan-

dle. An assignment of elements of X to the semiarcs in D defines a homomorphism
f : P(D) → X if and only if the coloring conditions in Definition 2 are satisfied at ev-
ery crossing; we will refer to such an assignment as an X-coloring of D. Thus, we can
compute the set of psyquandle homomorphisms Hom(P(L),X) for an oriented singular link
or pseudolink L by computing the set of X-colorings of a diagram D representing L. More
precisely, fixing an ordering of the semiarcs in D gives us a way to represent homomorphisms



PSYQUANDLES, SINGULAR KNOTS AND PSEUDOKNOTS 415

f ∈ Hom(P(L),X) concretely as ordered tuples of elements of X. The number of such col-
orings is an integer-valued invariant of singular links and pseudolinks we call the psyquandle

counting invariant, denoted ΦZ
X(L) = |Hom(P(L),X)|.

EXAMPLE 7. Consider the psyquandle X with operation matrix
[

2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1

]
.

The 2-bouquet graph 1l
1 below

has 4 X-colorings, each of which we can identify explicitly as a 4-tuple
(f (x1), f (x2), f (x3), f (x4)):

Hom(P(1l
1),X) = {(1, 1, 2, 2), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 1, 1)} .

This distinguishes this link from the 2-bouquet graph 0k
1

which has only two X-colorings

Hom(P(0k
1),X) = {(1, 2), (2, 1)} .
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EXAMPLE 8. Using our custom Python code, we computed the counting invariant
for the 2-bouquet graphs (with choices of orientation) in [18] using the psyquandle with op-
eration matrix⎡
⎢⎢⎢⎢⎢⎣

2 4 4 6 6 2 2 6 2 6 2 6 2 4 2 6 2 2 2 6 4 6 6 6
3 5 5 1 1 3 1 5 1 5 1 5 3 5 5 5 1 5 1 5 1 1 1 3
4 6 6 2 2 4 6 4 6 4 6 4 6 6 6 2 6 4 4 4 6 4 2 4
5 1 1 3 3 5 5 3 5 3 5 3 5 3 1 3 3 3 5 1 5 3 5 5
6 2 2 4 4 6 4 2 4 2 4 2 4 2 4 4 4 6 6 2 2 2 4 2
1 3 3 5 5 1 3 1 3 1 3 1 1 1 3 1 5 1 3 3 3 5 3 1

⎤
⎥⎥⎥⎥⎥⎦

.

The results are collected in the table.

ΦZ
X(L) L

6 1k
1, 3k

1, 4k
1, 4k

2, 5k
1, 5k

4, 5k
5, 5k

6, 5k
7, 5k

8, 6k
1, 6k

2, 6k
3, 6k

4, 6k
5, 6k

6, 6k
8, 6k

9, 6k
10, 6k

11,

6k
12, 6k

13, 6k
14, 6k

15, 6k
18

8 5l
3, 6l

5
12 3l

1, 4l
1, 5l

2, 5l
3, 6l

1, 6l
2, 6l

6
18 2k

1, 5k
2, 5k

3, 6k
7, 6k

16, 6k
17, 6k

19
24 1l

1, 5l
1, 6l

3, 6l
5, 6l

7, 6l
8, 6l

9, 6l
10, 6l

11
36 6l

4, 6l
12.

EXAMPLE 9. Noticing that the psyquandle in example 8 is pI-adequate since the two
right blocks have the same diagonal, we computed the counting invariant for a choice of
orientations for the pseudoknots in [9]. The results are collected in the table.

ΦZ
X(L) L

6 31.2, 31.3, 41.4, 41.3, 41.4, 41.5, 51.1, 51.3, 51.4, 52.1, 52.2, 52.3, 52.4,

52.5, 52.6, 52.7, 52.8, 52.9, 52.10
18 31.1, 41.1, 51.2, 51.5.

4. Alexander Psyquandles

Let Λ = Z[t±1, s±1]. Any Λ-module X is a biquandle under the operations

x � y = tx + (s − t)y and x � y = sx

known as an Alexander biquandle (see [4] or [12]). Interpreting the fundamental biquandle of
a knot or link as an Alexander biquandle yields invariants including the Alexander polynomi-
als and generalizations such as the Sawollek polynomials [12, 19] and the Alexander-Gröbner
invariants [3]. In this section we will extend this definition to the case of psyquandles and as
an application define notions of Alexander polynomials, Alexander-Gröbner invariants and a
special case we call Jablan polynomials for singular and pseudoknots and links.

PROPOSITION 2. Let Λ′ = Z[t±1, s±1, a±1, b±1]/(s + t − a − b) and let X be a
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Λ′-module. The operations

x � y = tx + (s − t)y

x � y = sx

x • y = ax + (s − a)y

x • y = bx + (s − b)y

make X a pI-adequate psyquandle called an Alexander psyquandle.

PROOF. We verify the axioms. First, checking pI-adequacy, we have

x • x = bx + (s − b)x = sx = ax + (s − a)x = x • x .

Next, for axiom (p/si) if we define

α′
y(x) = bx + (s − b)y ,

β ′
y(x) = ax + (s − a)y ,

S′(x, y) = ((s − b)x + by, ax + (s − a)y)

then setting

α′−1
y (x) = b−1(x − (s − b)y),

β ′−1
y (x) = a−1(x − (s − a)y),

S′−1(x, y) = ((s−1 − bs−1t−1)x + bs−1t−1y, as−1t−1x + (s−1 − as−1t−1)y)

yields the inverse maps. Let us verify:

α′
y(bx + (s − b)y) = b−1(bx + (s − b)y − (s − b)y)) = x

β ′−1
y (ax + (s − a)y) = a−1(ax + (s − a)y − (s − a)y) = x

and writing

S′−1((s − b)x + by, ax + (s − a)y) = (Ax + By,Cx + Dy)

we compute

A = (s−1 − bs−1t−1)(s − b) + abs−1t−1

= 1 − bs−1 − bt−1 + b2s−1t−1 + abs−1t−1

= 1 − bs−1 − bt−1 + (s + t − a)bs−1t−1 + abs−1t−1

= 1 − bs−1 − bt−1 + bt−1 + bs−1 − abs−1t−1 + abs−1t−1

= 1,

B = (s−1 − bs−1t−1)b + bs−1t−1(s − a)
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= bs−1 − b2s−1t−1 + bt−1 − abs−1t−1

= bs−1 − (s + t − a)bs−1t−1 + bt−1 − abs−1t−1

= bs−1 − bt−1 + bs−1 + abs−1t−1 + bt−1 − abs−1t−1

= 0,

C = as−1t−1(s − b) + (s−1 − as−1t−1)a

= at−1 − abs−1t−1 + (s−1 − (s + t − b)s−1t−1)a

= at−1 − abs−1t−1 + as−1 − at−1 − as−1 + abs−1t−1

= 0 and

D = abs−1t−1 + (s−1 − as−1t−1)(s − a)

= abs−1t−1 + 1 − at−1 − as−1 + a2s−1t−1)

= abs−1t−1 + 1 − at−1 − as−1 + a(s + t − b)s−1t−1)

= abs−1t−1 + 1 − at−1 − as−1 + at−1 + as−1 − abs−1t−1

= 1

and axiom (p/si) is satisfied.
To verify axiom (p/sii), we observe that given x, y we can define

w = b−1(b − s)x + b−1sy

z = b−1tx + b−1(s − a)y

and then we have

bw + (s − b)x = b(b−1(b − s)x + b−1sy) + (s − b)x

= (b − s)x + (s − b)x + sy

= sy,

tw + (s − t)z = t (b−1(b − s)x + b−1sy) + (s − t)(b−1tx + b−1(s − a)y)

= b−1(tb − ts + ts − t2)x + b−1(st + s2 − st − as + at)y

= b−1t (b − t)x + b−1(s2 − as + at)y

= (s − a)b−1tx + b−1(s2 − 2as + a2 + as + at − a2)y

= (s − a)b−1tx + b−1(s2 − 2as + a2 + a(s + t − a))y

= (s − a)b−1tx + (b−1(s − a)2 + a)y

= ay + (s − a)(b−1tx + b−1(s − a)y)

= ay + (s − a)z,

bz + (s − b)y = b(b−1tx + b−1(s − a)y) + (s − b)y
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= tx + (s − a)y + (a − t)y

= tx + (s − t)y ,

ax + (s − a)w = ax + (s − a)(b−1(b − s)x + b−1sy)

= b−1(ab + (s − a)(b − s))x + b−1(s − a)sy

= b−1(ab + sb − ab − s2 + as)x + b−1(s − a)sy

= b−1(s(b − s + a)x + b−1(s − a)sy

= sb−1tx + b−1(s − a)y

= sz

as required.
Finally, for axiom (p/siii) we verify each of the mixed exchange laws:

(x � y) � (z • y) = s(sx)

= (x � z) � (y • z),

(x � y) � (z • y) = t (tx + (s − t)y) + (s − t)((s + t − a)z + (a − t)y)

= t2x + (t (s − t) + (s − t)(a − t))y + (s − t)(s + t − a)z

= t (tx + (s − t)z) + (s − t)(ay + (s − a)z)

= (x � z) � (y • z),

(x � y) • (z � y) = b(sx) + (s − b)(sz)

= s(bx + (s − b)z)

= (x • z) � (y � z),

(x � y) • (z � y) = a(tx + (s − t)y) + (s − a)(tz + (s − t)y)

= t (ax + (s − a)z + (s − t)(sy)

= (x • z) � (y � z),

(x � y) • (z � y) = a(sx) + (s − a)(sz)

= s(ax + (s − a)z)

= (x • z) � (y � z) and

(x � y) • (z � y) = b(tx + (s − t)y) + (s − b)(tz + (s − t)y)

= t (bx + (s − b)z) + (s − t)(sy)

= (x • z) � (y � z)



420 SAM NELSON, NATSUMI OYAMAGUCHI AND RADMILA SAZDANOVIC

as required. �

EXAMPLE 10. We can define finite psyquandles by selecting units s, t, a, b ∈ Zn such
that s + t = a + b. For instance, in Z5 we can select s = 2, t = 3, a = 4 and b = 1; then
s + t = 2 + 3 = 0 = 1 + 4 and we have an Alexander psyquandle with operations

x � y = 3x + 4y

x � y = 2x

x • y = 4x + 4y

x • y = x + y

and operation matrix
⎡
⎢⎢⎢⎢⎢⎣

2 1 5 4 3 2 2 2 2 2 3 2 1 5 4 2 3 4 5 1
5 4 3 2 1 4 4 4 4 4 2 1 5 4 3 3 4 5 1 2
3 2 1 5 4 1 1 1 1 1 1 5 4 3 2 4 5 1 2 3
1 5 4 3 2 3 3 3 3 3 5 4 3 2 1 5 1 2 3 4
4 3 2 1 5 5 5 5 5 5 4 3 2 1 5 1 2 3 4 5

⎤
⎥⎥⎥⎥⎥⎦

where we use 5 as the class of zero in Z5.

EXAMPLE 11. If X is a commutative ring with identity in which 2 is invertible, we
can set a = b = s+t

2 to get pI-adequate psyquandle operations

x • y = s + t

2
x + s − t

2
y = x • y .

We can interpret these operations as averaging the two possible classical resolutions of an ori-
ented precrossing. We call this type of psyquandle a Jablan psyquandle since it was originally
inspired by Slavik Jablan’s notion of precrossings as averages of two classical crossings. For
instance, in X = Z5 choosing s = 2 and t = 4 yields

x • y = 3x + y = x • y .

EXAMPLE 12. We can compute ΦZ
X for a singular link or pseudolink using linear al-

gebra when X is an Alexander psyquandle. For example, the pseudoknot



PSYQUANDLES, SINGULAR KNOTS AND PSEUDOKNOTS 421

has system of coloring equations given by

sx1 = x2

tx4 + (s − t)x1 = x5

sx3 = x4

tx6 + (s − t)x3 = x1

ax5 + (s − a)x3 = x6

(s + t − a)x3 + (a − t)x5 = x2.

Choosing as a coloring psyquandle X = Z5 with s = 3, t = 1, a = 2 and b = 2, this becomes

3x1 + 4x2 = 0
2x1 + x4 + 4x5 = 0

3x3 + 4x4 = 0
4x1 + 2x3 + x6 = 0
x3 + 2x5 + 4x6 = 0
4x2 + 2x3 + x5 = 0

which we can solve by row-reduction over Z5 :⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 4 0 0 0 0
2 0 0 1 4 0
0 0 3 4 0 0
4 0 2 0 0 1
0 0 1 0 2 4
0 4 2 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0 4 1 0
0 1 0 4 1 0
0 0 1 0 2 4
0 0 0 1 1 2
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

so dim(ker(A)) = 0 and ΦZ
X(L) = 1. Since the unknot has ΦZ

X(01) = 5 
= 1, this invariant
detects the (pseudo)knottedness of L.

Let X = Zp and set s = 1 and t = −1 so we have

x � y = −x + (1 − (−1))y = 2y − x and x � y = x .

Colorings of classical knots and links by this type of biquandle are known as p-colorings.
Let us denote by Xp and X′

p respectively the Alexander psyquandle structures on X with

s = 1, t = −1, a = 1 and b = −1 and s = 1, t = −1, a = −1 and b = 1 respectively.
Observe that Xp satisfies x � y = x • y and x � y = x • y while X′

p satisfies x � y = x • y and

x � y = x • y. In particular, we have the following observation:

OBSERVATION 1. An Xp-coloring of a pseudolink diagram D coincides with a p-
coloring of the positive resolution of D, while an X′

p-coloring coincides with a p-coloring of

the negative resolution of D.

In [10], two notions of p-colorability of pseudolinks were introduced. More precisely, a
pseudolink L is p-colorable if every resolution of L is p-colorable. A strong p-coloring is
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a p-coloring at classical crossings such that at every precrossing, all four semiarcs have the
same color.

LEMMA 1. Let p ∈ Z be odd. A coloring of a pseudolink diagram which is both an
Xp-coloring and an X′

p-coloring is a strong p-coloring.

PROOF. At precrossings we have

so a coloring which satisfies both Xp and X′
p must satisfy 2x = 2y at every precrossing.

Since p is odd, 2 is invertible in Zp and we have x = y = 2x − y = 2y − x as required. �

COROLLARY 1. Let p ∈ Z be odd. A pseudolink L is strongly p-colorable if and only
if

Hom(P(L),Xp)) ∩ Hom(P(L),X′
p)) 
= ∅ .

Finally, we conclude with generalizations of the Alexander polynomial to the cases of
singular links and pseudolinks.

Let D be an oriented singular link diagram or pseudolink diagram. We obtain a ho-
mogeneous system of linear equations over Λ′ from the crossing relations of D, describ-
ing a presentation of the fundamental Alexander psyquandle of L. In fact, using our cross-
ing labelings this presentation is given by a matrix A with entries in the polynomial ring

Λ̂ = Z[t, s, a, b, t−1, s−1, a−1, b−1] where t−1, s−1, a−1, b−1 are independent variables and

which has Λ′ = Λ̂/(tt−1 − 1, ss−1 − 1, aa−1 − 1, bb−1 − 1, s + t − a − b) as a quotient.
Following the same procedure described in [3] (see also Chapter 6 in [13] for a nice summary
of the classical case, and note that our matrix A is the transpose of the analogous matrix in

[13]), we obtain a sequence of ideals Ik ⊂ Λ̂ which are invariants of L by setting Ik to be

the ideal in Λ̂ generated by the codimension k minors Mk of A together with the polynomials
{t t−1 − 1, ss−1 − 1, aa−1 − 1, bb−1, s + t − a − b}.

DEFINITION 5. Let L be an oriented singular link or pseudolink. Any generator of the

smallest principal ideal Pk containing the ideal Ik ⊂ Λ̂ generated by the codimension k minors
of a presentation matrix A and the polynomials {t t−1 − 1, ss−1 − 1, aa−1 − 1, bb−1, s + t −
a−b} is the kth Alexander psyquandle polynomial of L, and fixing a monomial ordering ≺ on
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{t, s, a, b, t−1, s−1, a−1, b−1}, the reduced Gröbner basis for Ik is the kth Alexander-Gröbner
invariant of L.

A useful special case is to use the Jablan psyquandle, i.e. set a = b = s+t
2 with coeffi-

cients in Z[ 1
2 ]. More precisely, we have:

DEFINITION 6. The Jablan Polynomial ΔJ (L) of an oriented pseudolink or singular

link L is any generator of the smallest principal ideal in ΛJ = Z[ 1
2 , s±1, t±1, 1

s+t
] containing

the ideal generated by the codimension 1 minors of the Jablan psyquandle matrix of L with
a = b = s+t

2 .

As in the case of the Alexander polynomial, the codimension 1 elementary ideal in the
Jablan module is principal, so we can simply take any codimension 1 minor to compute ΔJ

up to units. First, we have

LEMMA 2. Let L be a classical link considered as a pseudolink without precrossings.
Then ΔJ (L) is a homogeneous polynomial in s and t which specializes to the Alexander
polynomial up to powers of 2 by setting s = 1.

PROOF. The Jablan matrix of a classical link is equivalent by row and column moves
to the block matrix [

A′ 0
0 I

]

where A′ is the matrix obtained from the presentation matrix A of the Alexander quandle of
L by replacing every 1 with s. Then the codimension 1 minors of J equal the codimension 1
minors of A′; these are homogeneous since every entry is either ±s, t or s − t . �

We have the following standard lemma, sometimes given as an exercise in commutative
algebra courses:

LEMMA 3. Let R be a commutative ring with identity. Then the units in R[x±1] have
the form rxn where r is a unit in R.

PROOF. Any Laurent polynomial p(x) = ∑b
k=a rkx

k can be rewritten as

p(x) = xa
b∑

k=a

rkx
k−a = xaq(x)

where q(0) = ra 
= 0. Then if p(x) is a unit with inverse p′(x) = xa′
q ′(x) where q ′(0) =

r ′
a′ 
= 0, we have

1 = pp′ = qq ′xa−a′
.
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Evaluating at x = 0 yields a contradiction unless a = a′, so we have pp′ = qq ′ = 1; then q

is an invertible (non-Laurent) polynomial in x, that is to say, a unit in the ring R, and we have
p = rxn as required. �

Applying the lemma 3 with x = 2, s, t , we see that units in Z[2−1, s, t] are of the

form ±2j sktn; then in the case of adjoining (s + t)−1, after factoring out the minimal power
of (s + t) and the minimal power of sj tk in lexicographical ordering on (j, k), evaluation
at (0, 0) yields the analogous result and we see that that the units in ΛJ are of the form
±2isj tk(s + t)l . Hence, we can normalize a Jablan polynomial up to sign by clearing the
denominator and canceling any common factors of 2, s, t and (s + t).

EXAMPLE 13. The 2-bouquet graph 1l
1 in example 7 has Jablan psyquandle matrix

⎡
⎢⎢⎣

s+t
2

s−t
2 −1 0

s−t
2

s+t
2 0 −1

s − t t 0 −1
s 0 −1 0

⎤
⎥⎥⎦

which has codimension 1 minors{
− s − t

2
,

s − t

2
,

−s(s − t)

2
,

s(s − t)

2

}

which have gcd s − t up to units in ΛJ (indeed, are equal up to units in ΛJ ), so we have

ΔJ (1l
1) = s − t .

EXAMPLE 14. We computed the Jablan polynomials of a choice of orientation for
each of the pseudoknots and 2-bouquet graphs in [9] and [18] respectively. The results are
collected in the tables.

ΔJ (L) L

1 31.1, 31.2, 41.1, 41.2, 41.3,

51.1, 51.2, 52.1, 52.2, 52.6, 52.9
s2 + t2 31.3, 52.3, 52.4

s2 − st + t2 52.5, 52.10
s2 − 4st + t2 41.5
s2 − 6st + t2 41.4

3s2 − 2st + 3t2 52.7
3s2 − 4st + 3t2 52.8

s4 + 2s3t + 2s2t2 + 2st3 + t4 51.3
s4 + s3t + st3 + t4 51.4

s4 + t4 51.5
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ΔJ (L) L

1 0k
1

s2 + t2 2k
1

s2 − 4st + t2 3k
1

s2 − st + t2 4k
2

s2 − 3st + t2 5k
1

2s2 − 5st + 2t2 6k
19

3s2 − 4st + 3t2 6k
2

3s2 − 5st + 3t2 6k
6

3s2 − 8st + 3t2 5k
2

5s2 − 8st + 5t2 6k
3, 6k

7
s4 + t4 4k

1, 4k
3

s4 + s3t − 2s2t2 + st3 + t4 5k
8

s4 − s3t + s2t2 − st3 + t4 6k
10, 6k

13
s4 − s3t − 2s2t2 − st3 + t4 6k

18
s4 − 4s3t + 4s2t2 − 4st3 + t4 5k

3

ΔJ (L) L

s4 − 3s3t + 2s2t2 − 3st3 + t4 5k
4

s4 − 2s3t − 2st3 + t4 5k
5

s4 − 2s3t + 4s2t2 − 2st3 + t4 5k
6

s4 − 3s3t + 6s2t2 − 3st3 + t4 5k
7

s4 − 4s3t + 8s2t2 − 4st3 + t4 6k
16

s4 − 5s3t + 6s2t2 − 5st3 + t4 6k
14

s4 − 5s3t + 10s2t2 − 5st3 + t4 6k
17

s4 − 6s3t + 8s2t2 − 6st3 + t4 6k
11

s4 − 6s3t + 12s2t2 − 6st3 + t4 6k
15

s4 − 7s3t + 10s2t2 − 7st3 + t4 6k
12

2s4 − s3t − st3 + 2t4 6k
5

2s4 − 3s3t + 4s2t2 − 3st3 + 2t4 6k
8

3s4 − 4s3t + 4s2t2 − 4st3 + 3t4 6k
4

3s4 − 5s3t + 6s2t2 − 5st3 + 3t4 6k
9

s6 + t6 6k
1
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ΔJ (L) L

s − t 1l
1, 6l

11
5s − 5t 5l

1
s3 − t3 3l

1
s3 − 2s2t + 2st2 − t3 4l

1, 5l
3

s3 − 4s2t + 4st2 − t3 6l
2

s3 − 8s2t + 8st2 − t3 6l
12

2s3 − s2t + st2 − 2t3 5l
2

2s3 − 3s2t + 3st2 − 2t3 6l
1

2s3 − 5s2t + 5st2 − 2t3 6l
6

s5 − 2s3t2 + 2s2t3 − t5 6l
10

s5 − 2s4t + 2s3t2 − 2s2t3 + 2st4 − t5 6l
5

s5 − 2s4t + 4s3t2 − 4s2t3 + 2st4 − t5 6l
3, 6l

4
s5 − 3s4t + 5s3t2 − 5s2t3 + 3st4 − t5 6l

4
s5 − 4s4t + 6s3t2 − 6s2t3 + 4st4 − t5 6l

7
s5 − 4s4t + 8s3t2 − 8s2t3 + 4st4 − t5 6l

9

In light of example 14, we make a few observations in the following remarks:

REMARK 1. The polynomials in Example 14 are all homogeneous as previously noted
and symmetric in the sense that the coefficients of sn−ktk and sktn−k are equal. In the case
of classical knots and links, symmetry in t and s follows from the fact that the upper and
lower biquandles are isomorphic and in our notation, the resulting polynomials are related by
switching s and t .

REMARK 2. One alternative idea for an Alexander-style polynomial for a pseudoknot
or pseudolink would be to take a weighted average of Alexander polynomials of the classical
resolutions of the pseudoknot or pseudolink with weights from the WeRe set. Indeed, at the
level of Jablan matrix this is effectively what we are doing.

However, it is not clear in general how to take a weighted average of Alexander polyno-
mials since the Alexander polynomial is only defined up to multiplication by units: should an

average of t and t be t+t
2 = t or t+(−1)t

2 = 0 or even (t−1)t+(t)t
2 = 1+t2

2 ? We observe that in
the cases above, the s = 1 specialization of the Jablan polynomial of a pseudolink does in fact
agree with a weighted sum of some choice of normalizations of Alexander polynomials of

the classical resolutions: for example, pseudoknot 31.1 has Jablan polynomial s2 + 2st + t2,

specializing to 1 + 2t + t2. If we symmetrize this in t , we obtain t−1 + 2 + t . Then 31.1 has
WeRe set {(

01,
3

4

)
,

(
31,

1

4

)}

and taking a weighted sum of symmetric normalizations with positive leading coefficient of
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the Alexander polynomials of 01 and 31 and clearing the denominator, we have

3(1) + 1(t−1 − 1 + t) = t−1 + 2 + t .

However, the pseudoknot 41.4 has Jablan polynomial ΔJ (41.4) = s2 − 6st + t2 and
WeRe set {(

01,
3

4

)
,

(
41

1

4

)}

with positive symmetric normalized Alexander polynomials

Δ(01) = 1 Δ(41) = t−1 − 3 + t;
taking the weighted sum and clearing the denominator, we have

3Δ(01) + 1Δ(41) = 3 + (t−1 − 3 + t) = t−1 + t 
= t−1 − 6 + t .

But, if we multiply the first polynomial by the unit −1, we obtain

3(−1)Δ(01) + 1Δ(41) = −3 + (t−1 − 3 + t) = t−1 − 6 + t,

coinciding with the specialization of ΔJ (41.4) as desired.

In light of these remarks, we propose the following conjecture:

CONJECTURE 1. There exists a choice of normalization rule for the Jablan polynomial
such that for every pseudoknot K with WeRe set S = {(α1,K1), . . . , (αn,Kn)} we have

ΔJ (K) =
n∑

j=1

αjΔJ (Kj ).

5. Questions

We conclude with some questions for future research.
The main question, of course, is conjecture 1 true? More precisely, what normalization

rule makes

ΔJ (K) =
n∑

j=1

αjΔJ (Kj )

for pseudoknots with WeRe set S = {(α1,K1), . . . , (αn,Kn)}?
What enhancements of psyquandle counting invariants can be defined? Enhancements

of psyquandle counting invariants will be the topics of future papers.
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