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Abstract. Let R = k[[X1, . . . , Xn+1]] be a formal power series ring over a perfect field k of characteristic
p > 0, and let m = (X1, . . . , Xn+1) be the maximal ideal of R. Suppose 0 �= f ∈ m. In this paper, we introduce
a function ξf (x) associated with a hypersurface R/(f ) defined on the closed interval [0, 1] in R. The Hilbert-Kunz

multiplicity and the F-signature of R/(f ) appear as the values of our function ξf (x) on the interval’s endpoints. The

F-signature of the pair, denoted by s(R, f t ), was defined by Blickle, Schwede and Tucker. Our function ξf (x) is

integrable, and the integral
∫ 1
t ξf (x)dx is just s(R, f t ) for any t ∈ [0, 1].

1. Introduction

For Noetherian local rings of characteristic p > 0, some important invariants can be
defined using the Frobenius endomorphism as follows.

The Hibert-Kunz multiplicity eHK(R) of a d-dimensional Noetherian local ring (R, n, k)

of characteristic p > 0 is defined by Kunz [9] to be

eHK(R) = lim
e→∞

�(R/n[pe])
ped

,

where �(R/n[pe]) is the length of R/n[pe], and n[pe] is the ideal generated by all the pe-th
powers of elements of n. Monsky [11] showed that this limit always exists. The Hibert-Kunz
multiplicity eHK(R) gives a measure of the singularity of R. In fact, for an unmixed local
ring of characteristic p > 0, Watanabe and Yoshida [14] proved that eHK(R) = 1 if and only
if R is regular.

Huneke and Leuschke [7] defined the F-signature s(R) of a d-dimensional reduced Noe-
therian local ring of characteristic p > 0 to be

s(R) = lim
e→∞

ae

ped
,
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where ae is the e-th Frobenius splitting number of R, that is the largest integer such that R⊕ae

is a direct summand of R
1

pe . Tucker [13] proved that this limit always exists. Huneke and
Leuschke [7] proved that 0 ≤ s(R) ≤ 1, and s(R) = 1 if and only if R is regular. Therefore,
F-signature s(R) gives a measure of the singularity of R, as well as Hibert-Kunz multiplicity.
Aberbach and Leuschke [2] proved that s(R) > 0 if and only if R is strongly F-regular.

The F-pure threshold fpt(f ) for an element f in R was defined by Takagi and Watanabe
[12] to be

fpt(f ) = lim
e→∞

μf (pe)

pe
,

where μf (pe) = min{t ≥ 1 | f t ∈ m[pe]} for each integer e > 0. This limit exists because

the sequence
{

μf (pe)

pe

}

e>0
is decreasing and μf (pe)

pe ≥ 0 for any e > 0.

Blickle, Schwede and Tucker [4] defined the F-signature

s(R, f t ) = lim
e→∞

1

pe(n+1)
�R

(
R

n[pe] : f 	t (pe−1)


)

of a pair (R, f t ) for an F-finite regular local ring (R, n), 0 �= f ∈ n and a real number
t ∈ [0, 1]. They proved the following. The right derivative of s(R, f t ) exists at t = 0
and equals to the negative of the Hilbert-Kunz multiplicity of R/(f ). The left derivative of
s(R, f t ) exists at t = 1 and equals to the negative of the F-signature of R/(f ).

The purpose of this paper is to introduce a function ξf (x) associated with a hypersur-
face R/(f ) defined on the closed interval [0, 1] in R. The function ξf (x) is decreasing and
Riemann integrable. Important invariants for Noetherian local rings of characteristic p > 0
appears in this function ξf (x). In fact, the Hilbert-Kunz multiplicity eHK(R/(f )) equals to
ξf (0), and the F-signature s(R/(f )) equals to ξf (1). We shall prove that ξ ′

f (0) = 0 if R/(f )

is normal. The F-pure threshold fpt(f ) satisfies ξf (fpt(f ) + δ) = 0 and ξf (fpt(f ) − δ) > 0
for any small real number δ > 0. We show

∫ 1

t

ξf (x)dx = s(R, f t )

for t ∈ [0, 1], and
∫ 1

0
ξf (x)dx = 1 .

In Section 2, we define this function ξf (x) and state our main theorem. We investigate
the basic behavior of ξf (x) here. Considering this function, we prove

eHK(R/(f )) × fpt(f ) ≥ 1

in Corollary 1. In Section 3, we calculate this function ξf (x) for a monomial f . We obtain
an example of ξf (x) which is continuous on [0, 1]. Furthermore, we know that ξf (x) is
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discontinuous in almost all cases.

2. The main theorem

The aim of this section is to state the main theorem and prove it.
In the rest of this paper, let n ≥ 1 be an integer. Let R = k[[X1, . . . , Xn+1]] be a formal

power series ring over a perfect field k of characteristic p > 0, and let m = (X1, . . . , Xn+1)

be the maximal ideal of R. Suppose 0 �= f ∈ m. Rings of the form R/(f ) are called
“n-dimensional hypersurfaces”.

DEFINITION 1. We define

Me, t = (f t ) + m[pe]

(f t+1) + m[pe] � R
(
(f t+1) + m[pe]) : f t

= R

(f ) + (m[pe] : f t )
,

where e ≥ 0 and t ≥ 0 are integers.

Since (f ) + (m[pe] : f t ) ⊂ (f ) + (m[pe] : f t+1), the natural surjection Me, t → Me, t+1

exists. Let R = R/m[pe]. Then, remark that Me, t = f tR/f t+1R.

DEFINITION 2. We define

Ce, t = �R(Me, t )

pen
,

where �R(Me, t ) is the length as an R-module.

Then we have

pe ≥ Ce, 0 ≥ Ce, 1 ≥ Ce, 2 ≥ · · · ≥ Ce, pe−1 ≥ Ce, pe = Ce, pe+1 = · · · = 0 . (2.1)

A sequence of functions {ξf,e : [0, 1] → R}e≥0 is defined by

ξf,e(x) =
{

Ce, �xpe� (0 ≤ x < 1) ,

Ce, pe−1 (x = 1) ,

where �xpe� = max {a ∈ Z|xpe ≥ a} is the floor function. By the definition, we have
∫ 1

0 ξf,e(x)dx = 1 because

∫ 1

0
ξf,e(x)dx = 1

pe

(
Ce, 0 + Ce, 1 + Ce, 2 + · · · + Ce, pe−1

)

= 1

pe
× 1

pen

(
�R(Me, 0) + �R(Me, 1) + · · · + �R(Me, pe−1)

)

= 1

pe(n+1)
�R(R/m[pe])



498 KOSUKE OHTA

= 1

pe(n+1)
× pe(n+1)

= 1 .

DEFINITION 3. We define the function ξf (x) by

ξf (x) = lim sup
e→∞

ξf,e(x)

for x ∈ [0, 1].
By Eq. (2.1), ξf (x) is decreasing on [0, 1]. If lim

e→∞ ξf,e(α) exists, then ξf (α) =
lim

e→∞ ξf,e(α). The sequence {Ce, 0}e is increasing by Lemma 1 in this section.

lim
e→∞ Ce, 0 = lim

e→∞
�R(Me, 0)

pen
= lim

e→∞
�R(R/(f ) + m[pe])

pen
.

This limit exists and is called the Hilbert-Kunz multiplicity of R/(f ), denoted by
eHK(R/(f )). Therefore, by (2.1), lim sup

e→∞
ξf,e(α) is not +∞ for any α ∈ [0, 1]. We shall

give an example that lim
e→∞ ξf,e(α) does not exist for some f ∈ R and α ∈ [0, 1] in Section 3.

We have

ξf (0) = eHK(R/(f )) .

Therefore, ξf (x) is a bounded and decreasing function on [0, 1]. In particular, ξf (x) is inte-
grable, and has at most countably many points of discontinuity on [0, 1].

The main theorem of this paper is the following:

THEOREM 1. 1) The function ξf (x) is decreasing. There exists a countable subset
C of the interval [0, 1] such that ξf (x) is continuous at any α ∈ [0, 1]−C. Moreover,
ξf (x) is continuous at 0 and 1.

2) If ξf (x) is continuous at α ∈ [0, 1], then lime→∞ ξf,e(α) = ξf (α).
3) We have ξf (0) = eHK(R/(f )), and also ξf (1) = s(R/(f )).
4) Suppose that ξf (1) = 0, then fpt(f ) = inf{α ∈ [0, 1] | ξf (α) = 0} holds.

5) The function ξf (x) is integrable, and we have
∫ a+1

pe

a
pe

ξf (x)dx = �R(Me, a)

pe(n+1) for integers

0 ≤ a < pe. In particular,
∫ 1

0 ξf (x)dx = 1 holds.

6) If R/(f ) is normal then ξ ′
f (0) = 0, where ξ ′

f is the derivative of ξf .

REMARK 1. By Theorem 1.1 and Proposition 3.2 (i) in [3], we know that above fpt(f )

is a positive rational number. Note that F-pure thresholds are defined as the smallest F-
jumping exponents in [3].
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REMARK 2. We define the function ϕf (x) on [0, 1] as follows;

ϕf (x) =
∫ x

0
ξf (t)dt .

Actually, we have

ϕf (x) = lim
e→∞

1

pe

(
Ce, 0 + Ce, 1 + · · · + Ce, �xpe�−1

)
.

Since ξf (x) is bounded and integrable on [0, 1], ϕf (x) is Lipschitz continuous on [0, 1]. In
particular, ϕf (x) is continuous on [0, 1]. We can rewrite 3) and 4) in Theorem 1 as follows;

3′) The function ϕf (x) is differentiable at x = 0 and 1, and ϕ′
f (0) = eHK(R/(f )) and

ϕ′
f (1) = s(R/(f )).

4′) Suppose that s(R/(f )) = 0, then

fpt(f ) = inf{α ∈ [0, 1] | ϕf (α) = 1}
holds.

Using 5) in Theorem 1, we know

1 − ϕf (x) =
∫ 1

t

ξf (x)dx = s(R, f t )

for t ∈ [0, 1]. Moreover, if we know that ξf (x) is continuous at 0 and 1 (see Theorem 1 1)),
we obtain 3) in Theorem 1 immediately from Theorem 4.4 in [4].

In this section, we shall prove Theorem 1. The following corollary immediately follows
from Theorem 1 3) and 5).

COROLLARY 1. eHK(R/(f )) × fpt(f ) ≥ 1.

EXAMPLE 1. Suppose R = k[[X1,X2, . . . , Xn+1]] and α > 0. Then eHK(R/(Xα
1 )) =

α and fpt(Xα
1 ) = 1

α
. Therefore, if τ (f ) = Xα

1 for a linear transformation τ (for example,

f = X1 + X2), then eHK(R/(f )) × fpt(f ) = 1 and s(R/(f )) = 1 (see Section 3). We do
not know another example that the equality holds in Corollary 1.

REMARK 3. By Theorem 1 1), 3) and 5), we immediately know that eHK(R/(f )) = 1
if and only if s(R/(f )) = 1. These conditions are equivalent to that R/(f ) is regular by the
following results.

1) Let S be an unmixed local ring of positive characteristic. Then eHK(S) = 1 if and
only if S is regular ([14], Theorem 1.5).

2) Let S be a reduced F-finite Cohen-Macaulay local ring of positive characteristic.
Then s(S) = 1 if and only if S is regular ([7], Corollary 16).
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REMARK 4. Let m < n = dim R/(f ), and set ae = �(Me, pe−1). Assume that ae =
αpem + o(pem), that is lim

e→∞
ae

pem
= α. Let ge = ae − αpem. Then

ϕf (1) − ϕf

(
pe − 1

pe

)

=
pe−1∑

i=0

�(Me, i)

pe(n+1)
−

pe−2∑

i=0

�(Me, i)

pe(n+1)

= �(Me, pe−1)

pe(n+1)

= α

pe(n−m+1)
+ ge

pe(n+1)

holds. Let x = pe−1
pe . Since x − 1 = − 1

pe , we know

ϕf (x) = ϕf (1) + (−1)n−mα(x − 1)n−m+1 + o((x − 1)n−m+1) . (2.2)

Since ϕf (x) is continuous on [0, 1] from Remark 1, ϕf (x) has the form of Eq. (2.2) around
the point x = 1. Therefore, if ϕf (x) is equal to its Taylor series around the point x = 1, we
obtain that

ϕ
(i)
f (1) =

{
0 (i = 1, 2, . . . , n − m) ,

(−1)n−m(n − m + 1)!α (i = n − m + 1) ,

ξ
(i)
f (x) =

{
0 (i = 1, 2, . . . , n − m − 1) ,

(−1)n−m(n − m + 1)!α (i = n − m) .

Let F : R → R be the Frobenius map a �→ ap. Since k is perfect, we have F∗R �
R⊕pn+1

, where F∗R stands for F 1∗ R. Therefore,

(Me, t )
⊕pn+1 � Me, t ⊗R F∗R = ((f t ) + m[pe])F∗R

((f t+1) + m[pe])F∗R
= F∗

(
(f pt ) + m[pe+1]

(f pt+p) + m[pe+1]

)

for all e, t ≥ 0. Consequently,

p × Ce, t = Ce+1, pt + Ce+1, pt+1 + · · · + Ce+1, pt+p−1, (2.3)

where the sum on the right-hand side of Eq. (2.3) has p-terms. That is, Ce, t is the mean of
Ce+1, pt , Ce+1, pt+1, . . . , Ce+1, pt+p−1. Therefore, by Eq. (2.1) and Eq. (2.3), we obtain the
following inequalities immediately.

LEMMA 1. Ce+1, pt ≥ Ce, t ≥ Ce+1, pt+p−1.
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Hence, by Eq. (2.1) and Lemma 1, we have

Ce, �xpe�−1 ≥
by Lemma 1

Ce+1, (�xpe�−1)p+(p−1) ≥ Ce+1, �xpe+1�−1
≤ ≤

Ce, �xpe� Ce+1, �xpe+1�

≤ ≤

Ce, 	xpe
 ≤
by Lemma 1

Ce+1, 	xpe
p ≤ Ce+1, 	xpe+1


and here, we note that �xpe�p ≤ �xpe+1� and 	xpe
p ≥ 	xpe+1
. Therefore, the sequence
{Ce, �xpe�−1}e is decreasing, the sequence {Ce, 	xpe
}e is increasing, and Ce, �xpe�−1 ≥ Ce, 	xpe

for all e ≥ 0 by Eq. (2.1). Consequently, the limits lime→∞ Ce, �xpe�−1 and lime→∞ Ce, 	xpe

exist in R. In particular,

Ce, �αpe�−1 ≥ lim
e→∞ Ce, �αpe�−1 ≥ ξf (α) ≥ lim

e→∞ Ce, 	αpe
 ≥ Ce, 	αpe
 ≥ 0 (2.4)

holds for any α ∈ (0, 1] and e satisfying �αpe� − 1 ≥ 0.

LEMMA 2. We set C(α) = lime→∞ Ce, 	αpe
 for α ∈ [0, 1] and C(β) =
lime→∞ Ce, �βpe�−1 for β ∈ (0, 1].

1) For α ∈ [0, 1] and any integer i ≥ 0, {Ce+1, 	αpe
p+i}e is an increasing sequence.
The limits lime→∞ Ce+1, 	αpe
p+i and lime→∞ Ce, 	αpe
+k exist for any non-negative
integers i, k ≥ 0. Furthermore,

C(α) = lim
e→∞ Ce+1, 	αpe
p+i = lim

e→∞ Ce, 	αpe
+k (2.5)

holds.
2) For β ∈ (0, 1] and any integer i > 0, {Ce+1, �βpe�p−i}e is a decreasing sequence. The

limits lime→∞ Ce+1, �βpe�p−i and lime→∞ Ce, �βpe�−k exist for any positive integers
i, k > 0. Furthermore,

C(β) = lim
e→∞ Ce+1, �βpe�p−i = lim

e→∞ Ce, �βpe�−k (2.6)

holds.

PROOF. Let α ∈ [0, 1] and β ∈ (0, 1], and let k ≥ 0 and � > 0 be integers. We know
{

(	αpe
p + k)p = 	αpe
p2 + kp ≥ 	αpe+1
p + kp ≥ 	αpe+1
p + k ,

(�βpe�p − �)p + (p − 1) ≤ �βpe�p2 − �p + (p − 1)� ≤ �βpe+1�p − � ,

and therefore
⎧
⎨

⎩

Ce+1, 	αpe
p+k ≤ Ce+2, (	αpe
p+k)p ≤ Ce+2, 	αpe+1
p+k ≤ lim
e→∞ Ce, 0 ,

Ce+1, �βpe�p−� ≥ Ce+2, (�βpe�p−�)p+(p−1) ≥ Ce+2, �βpe+1�p−� ≥ 0 ,
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by Eq. (2.1) and Lemma 1. Hence, {Ce+1, 	αpe
p+k}e is increasing and bounded.
{Ce+1, �βpe�p−�}e is decreasing and bounded. Therefore, lime→∞ Ce+1, 	αpe
p+k and
lime→∞ Ce+1, �βpe�p−� exist.

Next, we shall show that

C(α) = lim
e→∞ Ce+1, 	αpe
p+i (2.7)

and

C(β) = lim
e→∞ Ce+1, �βpe�p−j (2.8)

hold for any integers 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ p. We have
{

p × Ce, 	αpe
 = Ce+1, 	αpe
p + Ce+1, 	αpe
p+1 + · · · + Ce+1, 	αpe
p+p−1 ,

p × Ce, �βpe�−1 = Ce+1, �βpe�p−p + Ce+1, �βpe�p−(p−1) + · · · + Ce+1, �βpe�p−1 ,

by Eq. (2.3). Thus, it holds that
⎧
⎨

⎩

p × lim
e→∞ Ce, 	αpe
 = lim

e→∞ Ce+1, 	αpe
p + · · · + lim
e→∞ Ce+1, 	αpe
p+p−1 ,

p × lim
e→∞ Ce, �βpe�−1 = lim

e→∞ Ce+1, �βpe�p−p + · · · + lim
e→∞ Ce+1, �βpe�p−1 .

On the other hand, we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
e→∞ Ce, 	αpe
 = lim

e→∞ Ce+1,	αpe
p ≥ lim
e→∞ Ce+1,	αpe
p+1

≥ · · · ≥ lime→∞ Ce+1,	αpe
p+p−1 ,

lim
e→∞ Ce, �βpe�−1 = lim

e→∞ Ce+1,�βpe�p−1 ≤ lim
e→∞ Ce+1,�βpe�p−2

≤ · · · ≤ lime→∞ Ce+1,�βpe�p−p ,

since Ce, 	αpe
 ≤ Ce+1, 	αpe
p ≤ Ce+1, 	αpe+1
 and Ce, �βpe�−1 ≥ Ce+1, �βpe�p−1 ≥
Ce+1, �βpe+1�−1. Consequently, we have Eq. (2.7) and Eq. (2.8).

In order to complete the proof of the assertion 1), we have the inequalities

Ce, 	αpe
+k ≤ Ce+1, (	αpe
+k)p

= Ce+1, 	αpe
p+kp

≤ Ce+1, 	αpe
p+k

≤ Ce+1, 	αpe+1
+k

for any k ≥ 1. Hence,

lim
e→∞ Ce, 	αpe
+k = lim

e→∞ Ce+1, 	αpe
p+k

holds. Therefore, we obtain Eq. (2.5).
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In order to complete the proof of the assertion 2), we have the inequalities

Ce, �βpe�−k ≥ Ce+1, (�βpe�−k)p+p−1

= Ce+1, �βpe�p−(k−1)p−1

≥ Ce+1, �βpe�p−k

≥ Ce+1, �βpe+1�−k

for any k ≥ 2. Hence,

lim
e→∞ Ce, �βpe�−k = lim

e→∞ Ce+1, �βpe�p−k

holds. Therefore, we obtain Eq. (2.6). �

PROPOSITION 1. 1) For α ∈ [0, 1), limx→α+0 ξf (x) = lime→∞ Ce, 	αpe
 holds.

2) For β ∈ (0, 1], limx→β−0 ξf (x) = lime→∞ Ce, �βpe�−1 holds.

In particular, we have
⎧
⎨

⎩

lim
x→+0

ξf (x) = lim
e→∞ Ce, 0 = ξf (0) ,

lim
x→1−0

ξf (x) = lim
e→∞ Ce, pe−1 = ξf (1) ,

that is to say that ξf (x) is continuous at x = 0 and 1.

PROOF. 1) First, we show limx→α+0 ξf (x) ≤ lime→∞ Ce, 	αpe
. Take x0 > α. For

a large enough number e′, we may assume that αpe′ ≤ x0p
e′ − 2 holds. Then, 	αpe′ 
 ≤

�x0p
e′ � − 1. Hence, by Eq. (2.1) and Eq. (2.4),

ξf (x0) ≤ C
e′, �x0p

e′ �−1 ≤ C
e′, 	αpe′ 
 ≤ lim

e→∞ Ce, 	αpe
 ,

as desired.
Next, we shall show the opposite inequality. By Lemma 2 1), we have only to show that

lim
x→α+0

ξf (x) ≥ lim
e→∞ Ce, 	αpe
+1 .

For any e ≥ 0, α <
	αpe
+1

pe . Hence, there exists a real number x1 ∈ R such that α < x1 <

	αpe
+1
pe . Then 	x1p

e
 ≤ 	αpe
 + 1, and therefore

lim
x→α+0

ξf (x) ≥ ξf (x1) ≥ Ce, 	x1p
e
 ≥ Ce, 	αpe
+1

for any e ≥ 0 because we have Eq. (2.1) and Eq. (2.4), and ξf (x) is decreasing. Consequently,

lim
x→α+0

ξf (x) ≥ lim
e→∞ Ce, 	αpe
+1 ,

as desired.
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2) It is proved in the same way as 1). �

REMARK 5. From Eq. (2.1), we have

Ce, �αpe�−1 ≥ ξf,e(α) = Ce, �αpe� ≥ Ce, 	αpe


for any α ∈ [0, 1]. Hence, if

lim
e→∞ Ce, �αpe�−1 = lim

e→∞ Ce, 	αpe
,

there exists lime→∞ ξf,e(α) in R, and it is equal to ξf (α).

COROLLARY 2. If ξf (x) is continuous at α ∈ [0, 1] then lime→∞ ξf,e(α) exists, so
that it is equal to ξf (α).

PROOF. The proof is obtained from Remark 5 immediately. �

We have just shown Theorem 1 1).
We obtain the following Corollary 3 immediately from Proposition 1.

COROLLARY 3. We define ϕf (x) by

ϕf (x) =
∫ x

0
ξf (t)dt

for x ∈ [0, 1]. Then we have the followings.

1) ϕf (x) is differentiable at 0, and ϕ′
f (0) = ξf (0) = lime→∞ Ce, 0 = eHK(R/(f )).

2) ϕf (x) is differentiable at 1, and ϕ′
f (1) = ξf (1) = lime→∞ Ce, pe−1.

Set μf (pe) = min{t ≥ 0 | f t ∈ m[pe]} for each e ≥ 0. Since f μf (pe) ∈ m[pe],
f μf (pe)p ∈ m[pe+1]. Hence μf (pe)p ≥ μf (pe+1), and so

1 ≥ μf (pe)

pe
≥ μf (pe+1)

pe+1
≥ 0 .

Since
{

μf (pe)

pe

}

e≥0
is decreasing and bounded below, the limit lime→∞

μf (pe)

pe exists in R, and

it is called the F-pure threshold of f , denoted by fpt(f ). It is easy to see that fpt(f ) ∈ (0, 1],
and fpt(f ) = 1 if and only if μf (pe) = pe for any e ≥ 1.

LEMMA 3. Ce, t = 0 if and only if t ≥ μf (pe).

PROOF. If Me, t = 0, then Me, t = Me, t+1 = Me, t+2 = · · · = Me, pe = 0. Hence,

f t ∈ m[pe], and so t ≥ μf (pe). Conversely if t ≥ μf (pe), then f t ∈ m[pe] holds. �

We start to prove Theorem 1. The assertion 1) follows from Proposition 1. The assertion
2) follows from Corollary 2. The first half of 3) follows from the definition of Ce, 0. Now, we
shall show 4).
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PROOF. First, we check that

inf{α ∈ [0, 1] | ξf (α) = 0} ≤ fpt(f ) .

If fpt(f ) = 1, then the assertion is easy. Assume fpt(f ) < 1. Let 1 > α > fpt(f ). Since

fpt(f ) = infe≥0

{
μf (pe)

pe

}
,

fpt(f ) ≤ μf (pe1)

pe1
< α

holds for e1 � 0. Then, it holds that

ξf (α) ≤ ξf

(
μf (pe1)

pe1

)

= lim sup
e→∞

C
e,
⌊μf (pe1 )

pe1 pe
⌋

= 0

because, by Lemma 3,

Ce1+s, μf (pe1 )ps ≤ Ce1+s, μf (pe1+s ) = 0

for any integers s ≥ 0. Therefore, ξf (α) = 0 for all α > fpt(f ), as desired. Conversely,

suppose α < fpt(f ). Hence, we have (fpt(f ) − α)pe′ ≥ 1 for e′ � 0, and therefore αpe′ ≤
fpt(f )pe′ − 1. Then, since we have

α ≤ fpt(f )pe′ − 1

pe′ <
fpt(f )pe′

pe′ = fpt(f ) ≤ μf (pe′
)

pe′ ,

we obtain

α ≤ μf (pe′
) − 1

pe′ .

Therefore,

ξf (α) ≥ ξf

(
μf (pe′

) − 1

pe′

)

≥
by Eq. (2.4)

lim
e→∞ C

e,
⌈μf (pe′ )−1

pe′ pe
⌉

holds. We have C
e′, μf (pe′ )−1 �= 0 by Lemma 3. Since

{

C
e,
⌈μf (pe′ )−1

pe′ pe
⌉

}

e≥0

is an increasing

sequence, we obtain lime→∞ C
e,
⌈μf (pe′ )−1

pe′ pe
⌉ > 0. Therefore, ξf (α) > 0 for all α such that

α < fpt(f ), as desired. �

Next, we shall show 5).
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PROOF. Let F =
{
α ∈

[
a
pe ,

a+1
pe

] ∣∣
∣ α is a discontinuity for ξf (x)

}
and Ω =

[
a
pe ,

a+1
pe

]
− F . Recall that F is a countable set, and lim

s→∞ ξf,s(α) = ξf (α) for any α ∈ Ω by

Theorem 1 1), 2). Then, we have

∫ a+1
pe

a
pe

ξf (x)dx =
∫

Ω

ξf (x)dx

=
∫

Ω

lim
s→∞ ξf,s(x)dx

= lim
s→∞

∫

Ω

ξf,s(x)dx

= lim
s→∞

∫ a+1
pe

a
pe

ξf,s(x)dx

= 1

pe
Ce, a

by Lebegue’s dominated convergence theorem, as desired. �

We shall show 6).

PROOF. Let g, h : N → R be functions. If there exists a positive constant C such that
|h(n)| ≤ Cg(n) for n � 0, then we write h(n) = O(g(n)). If R/(f ) is normal, then there
exists β(R/(f )) ∈ R such that

eHK(R/(f ))pne + β(R/(f ))p(n−1)e = �R(Me, 0) + O(p(n−2)e)

by Huneke-McDermott-Monsky [8]. Since a hypersurface is Gorenstein, β(R/(f )) = 0
follows from Corollary 1.4 in Kurano [10]. Therefore, we have

eHK(R/(f ))pne = �R(Me, 0) + O(p(n−2)e) . (2.9)

First, we shall show that
∣
∣
∣
∣
∣
∣

ξf

(
1
ps

)
− ξf (0)

1
ps

∣
∣
∣
∣
∣
∣
−→ 0 (s → ∞).

Since the sequence
{
Cs+i, pi

}
i≥0

is increasing, we have

ξf

(
1

ps

)

= lim sup
e→∞

Ce, �pe−s� ≥ Cs, 1 .
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Hence, we obtain
∣
∣
∣
∣
∣
∣

ξf

(
1
ps

)
− ξf (0)

1
ps

∣
∣
∣
∣
∣
∣
=

ξf (0) − ξf

(
1
ps

)

1
ps

≤ ξf (0) − Cs, 1
1
ps

.

Set λi(e) = eHK(R/(f ))pen − �R(Me, i) for each e ≥ 0 and 0 ≤ i ≤ p − 1. Note that

0 ≤ λ0(e) ≤ λ1(e) ≤ · · · ≤ λp−1(e) .

Since we have,

p × �R(Ms−1, 0)

p(s−1)n
= �R(Ms, 0)

psn
+ �R(Ms, 1)

psn
+ · · · + �R(Ms, p−1)

psn

for any s ≥ 1 by Eq. (2.3), then we obtain

p × λ0(s − 1)

p(s−1)n
= λ0(s)

psn
+ λ1(s)

psn
+ · · · + λp−1(s)

psn
.

Hence, since

p × λ0(s − 1)

p(s−1)n
≥ λ1(s)

psn
,

it holds that

p2 × λ0(s − 1)

p(s−1)(n−1)
≥ λ1(s)

ps(n−1)
≥ 0 .

Therefore,

ξf (0) − Cs, 1
1
ps

= ps

psn

(
eHK(R/(f ))psn − Cs, 1 × psn

)

= λ1(s)

ps(n−1)

≤ p2 × λ0(s − 1)

p(s−1)(n−1)

= p2

ps−1
× λ0(s − 1)

p(s−1)(n−2)

→ 0 (s → ∞)

by Eq. (2.9). Consequently, for any positive real number ε > 0, there exists a natural number
s0 ∈ N such that s ≥ s0 implies that

∣
∣
∣
∣
∣
∣

ξf

(
1
ps

)
− ξf (0)

1
ps

∣
∣
∣
∣
∣
∣
<

ε

p
.
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Let δ = 1

ps0
. If 0 < x < δ, then there exists s ∈ N such that

1

ps+1 < x <
1

ps
≤ 1

ps0
.

Therefore,
∣
∣
∣
∣
ξf (x) − ξf (0)

x

∣
∣
∣
∣=

ξf (0) − ξf (x)

x

≤
ξf (0) − ξf

(
1
ps

)

1
ps+1

≤ p × ε

p

= ε,

as desired. �

Finally, we shall prove the last half of 3).

DEFINITION 4. Let (S, n) be a (d + 1)-dimensional regular local ring. Let 0 �= α ∈ n.
The pair (ρ, σ ) is called a matrix f actorization of the element α if all of the following
conditions are satisfied:

(1) ρ : G → F and σ : F → G are S-homomorphisms, where F and G are finitely
generated S-free modules, and rankSF = rankSG.

(2) ρ ◦ σ = α · idF .
(3) σ ◦ ρ = α · idG.

Actually, if either (2) or (3) is satisfied, the other is satisfied.

DEFINITION 5. Let (S, n) be a (d +1)-dimensional regular local ring, and let 0 �= α ∈
n. Let (ρ, σ ) and (ρ′, σ ′) be matrix factorizations of α. We regard ρ and σ as r × r matrices
with entries in S, and ρ′ and σ ′ as r ′ × r ′ matrices with entries in S. Then, we write

(ρ, σ ) ⊕ (ρ′, σ ′) =
((

ρ 0
0 ρ′

)

,

(
σ 0
0 σ ′

))

which is a matrix factorization of α.

DEFINITION 6. Let (S, n) be a (d +1)-dimensional regular local ring, and let 0 �= α ∈
n. A matrix factorization (ρ, σ ) of α is called reduced if all the entries of ρ and σ are in n.

REMARK 6. Let (S, n) be a (d + 1)-dimensional regular local ring, and let 0 �= α ∈ n.
Let the map α : S → S be multiplication by α ∈ n on S. If (ρ, σ ) is a matrix factorization of
α ∈ n, then we can write

(ρ, σ ) � (α, idS)⊕v ⊕ (idS, α)⊕u ⊕ (γ1, γ2) ,
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where v and u are some integers, and (γ1, γ2) is reduced. Therefore,

cok(ρ) � cok(α)⊕v ⊕ cok(idS)⊕u ⊕ cok(γ1)

� (S/(α))⊕v ⊕ cok(γ1) .

It is known that cok(γ1) has no free direct summands if (γ1, γ2) is reduced ([6], Corollary
6.3). Consequently, v is equal to the largest rank of a free S/(α)-module appearing as a direct
summand of cok(ρ).

Let Fe : R → Fe∗ R be the e-th Frobenius map. Consider the map f : Fe∗ R →
Fe∗ R. We have f = Fe∗ (f pe

) = Fe∗ (f ) · Fe∗ (f pe−1) = Fe∗ (f pe−1) · Fe∗ (f ). Therefore,

(F e∗ (f ), F e∗ (f pe−1)) is a matrix factorization. We put

(F e∗ (f ), F e∗ (f pe−1)) = (f, idR)⊕ve ⊕ (idR, f )⊕ue ⊕ (reduced) .

By Remark 6 this implies that ve is the number of R/(f ) appearing as the direct summand

of Fe∗ R

Fe∗ (f )(F e∗R)
= Fe∗ (R/(f )). That is, lime→∞ ve

pen is the F-signature of R/(f ), denoted by

s(R/(f )).

PROPOSITION 2. ve = �R(Me, pe−1).

PROOF. We can regard the map Fe∗ (f pe−1) : Fe∗R −→ Fe∗R as a p(n+1)e × p(n+1)e

matrix A with entries in R;

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ive

f

. . .

f

B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Ive is the identity matrix of size ve, and B is a matrix with entries in m. Therefore, we
have

ve = dimR/m

(
Im
(
R/m ⊗ Fe∗ (f pe−1)

)) = dimR/m

(
(f pe−1) + m[pe]

m[pe]

)

= �R(Me, pe−1) .

�

We completed a proof of Theorem 1.
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REMARK 7. Let (S, n, k) be a complete regular local ring of characteristic p > 0.

Suppose that k is perfect. Let I be an ideal of S, and put S = S/I . Suppose that ae is equal to

the largest rank of a free S-module appearing in a direct summand of Fe∗S. Then it is known
that

ae = dimk
(I [pe] : I) + m[pe]

m[pe]

by Fedder’s lemma (see [1]). If I = (f ), then

ae = dimk

(f pe−1) + m[pe]

m[pe] .

3. Examples

Let f = X
α1
1 X

α2
2 . . . X

αn+1
n+1 and α1 ≤ α2 ≤ · · · ≤ αn+1. We set (Xpe

) =
(X

pe

1 , X
pe

2 , . . . , X
pe

n+1) for e ≥ 0. By Theorem 2.1 in Conca [5], we know that there ex-
ists a polynomial P(y) ∈ Z[y] such that

�R

(
R

(f t ) + (Xpe
)

)

= P(pe)

for all pe ≥ αn+1. In fact, since the sequence

0 −→ (f t ) + (Xpe
)

(Xpe
)

−→ R

(Xpe
)

−→ R

(f t ) + (Xpe
)

−→ 0

is exact, we have

�R

(
R

(f t ) + (Xpe
)

)

=

⎧
⎪⎪⎨

⎪⎪⎩

pe(n+1) −
n+1∏

j=1

(pe − tαj ) (if tαn+1 < pe) ,

pe(n+1) (otherwise) .

On the other hand, we have an exact sequence

0 −→ Me, t −→ R

(f t+1) + (Xpe
)

−→ R

(f t ) + (Xpe
)

−→ 0
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for any t ≥ 0. Therefore, we have

�R(Me, t ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

(
pe

αn+1
≤ t

)

,

n+1∏

j=1

(pe − tαj )

(
pe

αn+1
− 1 ≤ t <

pe

αn+1

)

,

n+1∏

j=1

(pe − tαj ) −
n+1∏

j=1

(pe − (t + 1)αj )

(

t <
pe

αn+1
− 1

)

.

(3.1)

If t <
pe

αn+1
− 1,

�R(Me, t ) =
n+1∏

j=1

(pe − tαj ) −
n+1∏

j=1

(pe − (t + 1)αj )

=
n+1∑

j=1

(−1)j tj βjp
e(n+1−j) −

n+1∑

j=1

(−1)j (t + 1)jβjp
e(n+1−j)

=
n+1∑

j=1

(−1)j+1

⎛

⎝
j−1∑

i=0

(
j

i

)

t i

⎞

⎠ βjp
e(n+1−j) ,

where βj denotes the elementary symmetric polynomial of degree j in α1, α2, . . . , αn+1.
Hence

Ce, t = �R(Me, t )

pen
=

n+1∑

j=1

(−1)j+1

⎛

⎝
j−1∑

i=0

(
j

i

)
t i

pe(j−1)

⎞

⎠βj

holds. We shall calculate ξf (x). If x <
1

αn+1
, then �xpe� <

pe

αn+1
− 1 for e � 0. Then,

Ce, �xpe� =
n+1∑

j=1

(−1)j+1

⎛

⎝
j−1∑

i=0

(
j

i

) �xpe�i

pe(j−1)

⎞

⎠βj .

Since xpe − 1 ≤ �xpe� ≤ xpe, we have

lim
e→∞

�xpe�a

peb
=
{

xa (if a = b) ,

0 (if a < b) .

Consequently,

ξf (x) = β1 − 2β2x + 3β3x
2 − · · · + (−1)n(n + 1)βn+1x

n (3.2)
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holds for 0 ≤ x <
1

αn+1
. In particular, eHK(R/(f )) = ξf (0) = α1 + α2 + · · · + αn+1. By

Eq. (3.1), we have

ξf (x) = 0 (3.3)

if x >
1

αn+1
.

Next, we shall calculate ξf

(
1

αn+1

)
. Since pe

αn+1
− 1 ≤

⌊
pe

αn+1

⌋
≤ pe

αn+1
for any e ≥ 0,

�
(
M

e,
⌊

1
αn+1

pe
⌋
)

=
n+1∏

j=1

{

pe −
⌊

pe

αn+1

⌋

αj

}

= εe

n∏

j=1

{

pe − (pe − εe)
αj

αn+1

}

= εe

n∏

j=1

{(

1 − αj

αn+1

)

pe + εe

αn+1
αj

}

= εe

(
1

αn+1

)n n∏

j=1

{
(αn+1 − αj )p

e + εeαj

}

= εe

(
1

αn+1

)n

⎧
⎨

⎩
pen

n∏

j=1

(αn+1 − αj )+
n∑

k=1

∑

1≤i1<i2<···<ik≤n

δi pe(n−k)εk
eαi1αi2 . . . αik

⎫
⎬

⎭

= εe

(
1

αn+1

)n

pen

⎧
⎨

⎩

n∏

j=1

(αn+1 − αj ) +
n∑

k=1

δk

(
εe

pe

)k

⎫
⎬

⎭
,

where εe ≡ pe (mod αn+1) such that 0 ≤ εe < αn+1, and

δi =
∏

j �=i1,i2,...,ik

(αn+1 − αj ) ,

δk =
∑

1≤i1<i2<···<ik≤n

δi αi1αi2 . . . αik .

Hence,

C
e,
⌊

1
αn+1

pe
⌋ = εe

(
1

αn+1

)n

⎧
⎨

⎩

n∏

j=1

(αn+1 − αj ) +
n∑

k=1

δk

(
εe

pe

)k

⎫
⎬

⎭
,
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and therefore

lim sup
e→∞

C
e,
⌊

1
αn+1

pe
⌋ =

(

lim sup
e→∞

εe

)(
1

αn+1

)n n∏

j=1

(αn+1 − αj ) . (3.4)

We shall examine whether lime→∞ εe exists. Let αn+1 = psq , where q is coprime to p,
and s is a non-negative integer. If p ≡ 1 (mod q), then we can find that εe is constant for any
e ≥ s by the Chinese remainder theorem. If p �≡ 1 (mod q), then εe is eventually periodic
with period more than 1.

From the following Proposition 3, we get to know the function ξf (x).

PROPOSITION 3. Let f = X
α1
1 X

α2
2 · · ·Xαn+1

n+1 with α1 ≤ α2 ≤ · · · ≤ αn+1.

1) We have fpt(f ) = 1
αn+1

. If αn+1 ≥ 2, we have s
(
R/(f )

) = 0.

2) lim
x→ 1

αn+1
−0 ξf (x) =

(
1

αn+1

)n−1∏n
j=1(αn+1 − αj ) ≥ 0.

3) The function ξf (x) is continuous on [0, 1] if and only if αn+1 = αn holds.
4) Let αn+1 = psq , where q is coprime to p, and s is a non-negative integer. The

limit lime→∞ ξf,e

(
1

αn+1

)
exists if and only if it satisfies that αn+1 = αn or p ≡ 1

(mod q).

PROOF. By Eq. (3.2) and Eq. (3.3), we obtain 1) immediately.
Next we shall prove 2). We set

g(x) = β1 − 2β2x + 3β3x
2 − · · · + (−1)n(n + 1)βn+1x

n

and

h(x) = (x − α1)(x − α2) . . . (x − αn+1) .

Now, since h(x) = xn+1 − β1x
n + β2x

n−1 − · · · + (−1)n+1βn+1,

xn+1h

(
1

x

)

= 1 − β1x + β2x
2 − · · · + (−1)n+1βn+1x

n+1 .

Hence, we have the following equation

g(x) = −
{

xn+1h

(
1

x

)}′
= −(n + 1)xnh

(
1

x

)

+ xn−1h′
(

1

x

)

.

Since h(αn+1) = 0,

lim
x→ 1

αn+1
−0

ξf (x) = g

(
1

αn+1

)

=
(

1

αn+1

)n−1

h′(αn+1)
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=
(

1

αn+1

)n−1 n∏

j=1

(αn+1 − αj ) ≥ 0 .

The assertion 3) follows from Eq. (3.1), Eq. (3.2) and 2) as above. The assertion 4) follows
from Eq. (3.4). �

EXAMPLE 2. If α1 = α2 = · · · = αn−2 = 0 and αn−1 �= 0, the derivative

g ′(x) = −2(αn+1αn + αn+1αn−1 + αnαn−1) + 6αn+1αnαn−1x.

Let α be the root of g ′(x) = 0, that is,

α = 1

3
× αn+1αn + αn+1αn−1 + αnαn−1

αn+1αnαn−1
.

Then, we have

α − 1

αn+1
= 1

αn+1

{
1

3

(
αn+1

αn−1
+ αn+1

αn

+ 1

)

− 1

}

≥ 0 ,

and so g ′(x) < 0 for any x < 1
αn+1

. Moreover, if αn+1 �= αn we obtain g ′
(

1
αn+1

)
< 0. The

second derivative g ′′(x) is positive for any x ∈ R. In fact, g ′′(x) = 6αn−1αnαn+1 > 0.
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[ 3 ] M. BLICKLE, M. MUSTAŢĂ and K. E. SMITH, F-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361

(2009), 6549–6565.
[ 4 ] M. BLICKLE, K. SCHWEDE and K. TUCKER, F-signature of pairs: continuity, p-fractals and minimal log

discrepancies, J. London Math. Soc. (2) 87 (2013), 802–818.
[ 5 ] A. CONCA, Hilbert-Kunz function of monomial ideals and binomial hypersurfaces, Manuscripta Math. 90

(1996), 287–300.
[ 6 ] D. EISENBUD, Homological algebra on a complete intersection, with an application to group representations,

Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64.
[ 7 ] C. HUNEKE and G. LEUSCHKE, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324

(2002), no. 2, 391–404.
[ 8 ] C. HUNEKE, M. A. MCDERMOTT and P. MONSKY, Hilbert Kunz functions for normal graded rings, Math.

Res. Letters 11 (2004), 539–546.
[ 9 ] K. KUNZ, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999–1013.



FUNCTION DETERMINED BY A HYPERSURFACE 515

[10] K. KURANO, The singular Riemann-Roch theorem and Hilbert-Kunz functions, J. Algebra 304 (2006), 487–
499.

[11] P. MONSKY, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43–49.
[12] S. TAKAGI and K.-I. WATANABE, On F-pure thresholds, J. Algebra 282 (2004), 278–297.
[13] K. TUCKER, F-signature exists, Invent. Math. 190 (2012), no. 3, 743–765.
[14] K.-I. WATANABE and K. YOSHIDA, Hilbert-Kunz multiplicity and an inequality between multiplicity and

colength, J. Algebra 230 (2000), 295–317.

Present Address:
ICAD LTD.,
2F, NOMURA-FUDOSAN SHIBADAIMON BLDG.,
1–9–9 SHIBADAIMON, MINATO-KU, TOKYO 105–0012, JAPAN.
e-mail: koske.math@gmail.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /BGR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHT (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DAN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ENU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ETI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /GRE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HEB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HRV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HUN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ITA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LTH (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LVI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NLD (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /POL (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /PTB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUM (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SKY (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SLV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /TUR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /UKR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFFff08682aff0956fd969b6587732e53705237793e306e51fa529b6a5f306b90693057305f002000410064006f0062006500200050004400460020658766f830924f5c62103057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


