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Abstract. We apply recent methods of Burns, Kurihara and Sano in [5] to study connections between the
values at s = 0 of the higher derivatives of abelian L-functions of number fields and the higher Fitting ideals of
the canonical Selmer groups of Gm. Whereas Burns, Kurihara and Sano apply these methods to the setting of the
‘Rubin-Stark conjecture’, we study the ‘evaluators’ defined in a more general setting by Emmons and Popescu in [7]
and by Vallieres in [14].

This allows us to conjecture that the ideals formed from the images of the evaluators can be described precisely
in terms of the higher Fitting ideals of the canonical Selmer groups of Gm. Moreover, we are able to prove that this
conjecture follows from the equivariant Tamagawa number conjecture.

1. Introduction

In the 1970s and 80s Stark wrote a seminal series of four papers [11] in which he for-
mulated conjectures concerning the values at s = 0 of the Artin L-functions attached to finite
Galois extensions of number fields. Stark’s work was reinterpreted and extended by Tate in
[12] and a large number of related conjectures were subsequently formulated and studied by
many different authors.

Of particular interest to us is the so-called ‘Rubin-Stark conjecture’, formulated by Rubin
in [10, Conj. B’]. This is an ‘abelian rank r’ Stark’s conjecture in that one considers S-
truncated L-functions for characters that factor through some abelian extension of number
fields F/E, where S is a finite set of places of E containing r places which split completely
in F so that the truncated L-functions each vanish to order at least r at s = 0. The conjecture
then asserts the existence of a canonical ‘Rubin-Stark element’ that acts as an ‘evaluator’ for
the values at s = 0 of the r-th derivatives of the truncated L-functions.

In later work Emmons and Popescu [7] considered the more general situation in which
one assumes that the truncated L-functions vanish to order at least r at s = 0 but not that
S contains a prescribed subset of splitting places. In this setting they defined a natural gen-
eralisation of the Rubin-Stark ‘evaluator’ and conjectured that it satisfies precise integrality
conditions.

A little earlier Burns [1] had showed that a special case of the very general ‘equivariant
Tamagawa number conjecture’ (from [3]) implied the validity of the Rubin-Stark conjecture,
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as well as that of a host of related conjectures due to Gross, to Tate and to Popescu among
others. The approach used in [1] was then adapted by Vallières in [14] to show that the same
case of the equivariant Tamagawa number conjecture also implied the validity of a refined
version of the conjecture of Emmons and Popescu.

In some very recent work Burns, Kurihara and Sano have significantly improved upon
the proof in [1] and provided new methods for studying Stark type conjectures (see [5]).

In this paper we will apply these new methods to study the evaluators defined by Popescu,
Emmons and Vallières and, in so doing, we will show that the proof of the main result of
Vallières in [14] can be both significantly simplified and improved (for details see §3). This
allows us to formulate a stronger conjecture.

In particular, while the conjecture of Emmons and Popescu asserts that the images under
certain homomorphisms of their evaluator form an ideal of Z[Gal(F/E)], in this paper we are
led to conjecture that this ideal can be described precisely in terms of the r-th Fitting ideal
over Z[Gal(F/E)] of the canonical Selmer groups that one can associate to the multiplicative
group Gm over F . This is formulated in Conjecture 1.8.

In §4 we prove the main result of this paper, Theorem 1.9, which states that our conjec-
tural description of the ideal follows from the validity of the equivariant Tamagawa number
conjecture and thereby deduce that it is unconditionally true in some important cases.

1.1. Notations and definitions
1.1.1. Galois modules. We let K/k be a finite abelian extension of number fields with
Galois groupG. We fix a finite set S of places of k such that S contains all infinite places and
all places that ramify in K/k. For any place v of k and place w of K lying above v, write Gv
for the decomposition subgroup of w in G. (Note that this is independent of our choice of w
lying above v since G is abelian.) Let IGv be the augmentation ideal of Gv .

We write SK for the set of places ofK lying above those in S and we let YK,S be the free
abelian group on the set SK . We letXK,S be the kernel of the homomorphism from YK,S to Z
that sends each place in SK to one. We write OK,S for the ring of SK -integers and O×

K,S for

the group of SK -units.

We fix a non-empty finite auxiliary set of places T with S
⋂
T = ∅ and such that O×

K,S,T

is Z-torsion-free. The (SK, TK)-units are defined by

O×
K,S,T = {

x ∈ O×
K,S : x ≡ 1 mod w for all w ∈ TK

}
.

We let ClS(K) denote the SK -class group and ClS,T (K) denote the
(SK, TK )-class group, which is defined by

ClS,T (K) :=
{
fractional ideals of OK,S prime to TK

}
{
x · OK,S : x ≡ 1 mod w for all w ∈ TK

}
All of these groups are stable under the action of G, so form Z[G]-modules.

If M is a Z[G]-module, we write RM for the R[G]-module R ⊗Z M , and CM for the
C[G]-module C ⊗Z M . We let M∨ := HomZ(M,Q/Z) denote the Pontryagin dual of M and
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we let M∗ := HomZ[G](M,Z[G]).
If A is a set let |A| denote the cardinality of A and ℘r(A) denote the set of subsets of A

of cardinality r . Let ℘r(m) denote the set of r-tuples (n1, . . . , nr ) of integers between 1 and
m that satisfy n1 < · · · < nr .
1.1.2. Characters and L-functions. As G is abelian, all irreducible representations of G

are one dimensional. Hence the set of characters Ĝ := Hom(G,C×) forms a group under

multiplication. We let χ1 represent the trivial character. For each χ ∈ Ĝ define

eχ := 1

|G|
∑
g∈G

χ
(
g−1)g .

For any Z[G]-module M and character χ ∈ Ĝ, we write Mχ for the χ component of
CM . This is the submodule of CM defined by Mχ := eχCM .

For each character χ of G we have the S-truncated Artin L-function attached to χ given
by the product formula

LK/k,S(χ, s) =
∏
℘/∈S

(
1 − χ(σ℘)N℘−s)−1 ∈ C[G]

where σ℘ is the Frobenius automorphism of ℘ in G, s ∈ C and N℘ is the size of the residue
field, (recall that we are excluding factors for infinite and ramifying primes).

We also modify this L-function to take into account our auxiliary set of places T . Let

δT (s) =
∏
℘∈T

(
1 − σ−1

℘ N(℘)1−s)

Then the S-truncated T -modified L-function is defined as

LK/k,S,T (χ, s) = χ̄(δT (s)) · LK/k,S(χ, s) .
In the situation that we study all of these L-functions will vanish at s = 0. Let L∗

K/k,S,T (χ, 0)

denote the first non-vanishing Taylor coefficient of LK/k,S,T (χ, s) at s = 0.
We can gather the L-functions for different characters together to obtain the S-truncated

T -modified equivariant L-function given by

θK/k,S,T (s) :=
∑
χ∈Ĝ

LK/k,S,T (χ, s) · eχ̄ .

We also define

θ∗
K/k,S,T :=

∑
χ∈Ĝ

L∗
K/k,S,T (χ, 0) · eχ̄ .
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1.1.3. Regulator maps. The Dirichlet logarithm induces an isomorphism of C[G] mod-
ules

λK,S : CO×
K,S,T −→ CXK,S

such that at each element u ∈ O×
K,S,T we have

λK,S(u) = −
∑
w∈SK

log|u|w · w ,

where | · |w is the normalised absolute value at w.
The map λK,S also induces an isomorphism on the t-th exterior power, for any positive

integer t , which we will also denote by λK,S

λK,S :
t∧

C[G]
CO×

K,S,T ˜−→
t∧

C[G]
CXK,S .

When K and S are clear from the context we will just write λ.

1.2. Order of vanishing of L-functions. The order of vanishing of S-truncated L-
functions is well understood and given by the following lemma. (See, for example [13,
Chap. I, Prop. 3.4] for proof.)

LEMMA 1.1. Let K/k be an abelian extension of number fields and S a finite set of
primes of k containing all infinite primes. We let rS(χ) := ords=0LK/k,S(χ, s) Then

rS(χ) = dimC
(
CO×

K,S · eχ
) =

{
|S| − 1, ifχ = χ1∣∣{v ∈ S : Gv ⊆ Ker(χ)

}∣∣ ifχ 
= χ1 .

Let r := min{rS(χ) : χ ∈ Ĝ} so that r is the minimal order of vanishing at s = 0 of the
S-truncated L-function for any character χ of G. Then

Ĝr,S := {
χ ∈ Ĝ : rS(χ) = r

}
is the set of characters whose S-truncated L-functions vanish at s = 0 to this minimal order.
It follows from Lemma 1.1 that

er,S :=
∑
χ∈Ĝr,S

eχ

is a rational idempotent.

If χ1 ∈ Ĝr,S it follows that |S| = r + 1. In this case Emmons and Popescu have shown
in [7] that S must contain at least r places that split completely in K . Thus we may pick r
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such places v1, . . . , vr . Then for any χ ∈ Ĝr,S we define the set Vχ as follows:

Vχ :=
{{
v ∈ S : v splits completely in KKer(χ)/k

}
ifχ 
= χ1

{v1, . . . , vr } ifχ = χ1 .

Then we let

VS =
⋃

χ∈Ĝr,S
Vχ ⊂ S .

For each I ∈ ℘r(VS) define

Ĝr,S,I := {
χ ∈ Ĝr,S : Vχ = I

}
.

So for |S| 
= r + 1 we have

Ĝr,S,I = {
χ ∈ Ĝr,S : Gv ⊆ Ker(χ), for all v ∈ I}

and

Ĝr,S =
⋃

I∈℘r(VS)
Ĝr,S,I .

We may think of the sets I as defining equivalence classes for the set of characters in

Ĝr,S . We define idempotents corresponding to these sets. For each I ∈ ℘r(VS) let

eI = er,S,I :=
∑

χ∈Ĝr,S,I
eχ .

Again, eI is a rational idempotent.

1.3. Statements of main results. Assume that S 
= VS . We fix an ordering of S =
{v0, v1, . . . , vn} such that VS = {v1, . . . , vm}. This means that for each I ∈ ℘r(VS) and

non-trivial character χ ∈ Ĝr,S,I we have Gv0 � Ker(χ). Fix places w0, w1, . . . , wn lying

above {v0, v1, . . . , vn} in K . We let Ī = {i1, i2, . . . , ir } with i1 < i2 < · · · < ir and so that
I = {vi1, vi2 , . . . , vir }.

Following Vallières and Emmons and Popescu (see [14] and [7]) we define the following
elements:

DEFINITION 1.2. Let

ηIK/k,S,T ∈ C
r∧

Z[G]
O×
K,S,T · eI

be the unique element such that

λ
(
ηIK/k,S,T

) = eI · θ∗
K/k,S,T · wI ,
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where wI = (wi1 −w0) ∧ (wi2 −w0) ∧ · · · ∧ (wir −w0).
We sum over all I to obtain

ηK/k,S,T =
∑

I∈℘r(VS)
ηIK/k,S,T ∈ C

r∧
Z[G]

O×
K,S,T · er,S .

Emmons and Popescu refer to these elements ηIK/k,S,T and ηK/k,S,T as evaluators.

In order to recall the previous conjecture of Emmons and Popescu we define the Rubin
Lattice.

DEFINITION 1.3. The Rubin Lattice is defined by

	K/k,S,T :=
{
u ∈ Q

r∧
Z[G]

O×
K,S,T : 
(u) ∈ Z[G] for all 
 ∈

r∧
Z[G]

(O×
K,S,T )

∗
}
,

where 
 is regarded as an element of (
∧r

Z[G] O×
K,S,T )

∗ as described in §2.1.

The element ηK/k,S,T is the analogue of the Rubin-Stark element. This leads Emmons
and Popescu to make the following conjecture (see [7, Conj. 3.8]).

CONJECTURE 1.4 (Emmons-Popescu). LetK/k be a finite abelian extension of num-
ber fields. Let S be a finite set of places of k containing all infinite places and places that
ramify in K/k. Let T be another finite set of places of k such that S ∩ T = ∅ and such that

O×
K,S,T is Z-torsion-free. Assume S 
= VS . Let ηK/k,S,T ∈ C

∧r
Z[G] O×

K,S,T · er,S be defined

as above. Then

ηK/k,S,T ∈ 	K/k,S,T .
REMARK 1.5. Suppose S contains precisely r places that split completely in K/k so

that the conditions of the Rubin-Stark conjecture are satisfied. Then VS consists of these r

places and therefore there is only one I ∈ ℘r(VS). Then ηIK/k,S,T = ηK/k,S,T is a Rubin-

Stark element for K/k and Conjecture 1.4 reduces to the Rubin-Stark conjecture.

REMARK 1.6. The condition S 
= VS is not trivial. In the classical case, where S
contains r places that split completely, this guarantees the existence of a distinguished place
v0 that does not contribute to the vanishing of the L-function that vanishes to order precisely
r . In our more general case the existence of such a place is not guaranteed. This place is used
to show that the denominators of the rational idempotents eI do not lead us to lose integrality
properties. Without this hypothesis integrality results may not always hold.

In [14] Vallières considers the case where |S| > r + 1 and conjectures that



(
ηIK/k,S,T

) ∈ Z[G] for all 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗
. (1)
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Vallières uses the method developed by Burns in [1] to show that (1) (and therefore also
Conjecture 1.4) follows from a special case of the equivariant Tamagawa number conjecture
called the leading term conjecture (LTC(K/k)).

In §3 we use recent work by Burns, Kurihara and Sano (see [5]) to significantly simplify

and improve upon Vallières’ proof. The key idea is to express the element ηIK/k,S,T as the

‘canonical projection’ of the zeta element zK/k,S,T arising in a particular formulation of the
leading term conjecture. The zeta element interpolates the leading terms at s = 0 of the
S-truncated T -modified L-functions, LK/k,S,T (χ, s). (See §2.3 for details.)

In their recent paper, Burns, Kurihara and Sano work under the assumptions of the Rubin-
Stark conjecture, so ηK/k,S,T is a Rubin-Stark element. Their description of ηK/k,S,T in
terms of the zeta element zK/k,S,T allows them to calculate the ideal of Z[G] generated by


(ηK/k,S,T ) as
 runs over
∧r

Z[G](O×
K,S,T )

∗ in terms of the r-th Fitting ideal of S tr
S,T (Gm/K),

the ‘transpose’ of a canonical ‘S-relative T -trivialised integral dual Selmer group’ for the
multiplicative group overK . We denote this r-th Fitting ideal by FittrZ[G](S tr

S,T (Gm/K)). (See

§2.3 for full details.)
In §4 we investigate the ideal of Z[G] generated by the elements
(ηIK/k,S,T ) in the more

general case, when we don’t assume that S contains r split places. We prove the following
theorem, which tells us more about the structure of our Fitting ideal.

THEOREM 1.7. Let K/k be a finite abelian extension of number fields. Let S be a
finite set of places of k containing all infinite places and places that ramify in K/k. Let T be

another finite set of places of k such that S ∩ T = ∅ and such that O×
K,S,T is Z-torsion-free.

Assume S 
= VS . Then for each I ∈ ℘r(VS)
eDI · FittrZ[G]

(S tr
S,T (Gm/K)

) ⊆ FittrZ[G]
(S tr
S,T (Gm/K)

)
.

HereDI denotes the group generated by the decomposition groups of the places in I and
the idempotent eDI is defined in §4.

This result leads us to make the following conjecture which improves upon (1).

CONJECTURE 1.8. Assume the conditions of Theorem 1.7 hold. Let ηIK/k,S,T ∈
C
∧r

Z[G] O×
K,S,T · eI be defined as above. Then we have

FittrZ[G]
(S tr
S,T (Gm/K)

) =
⊕

I∈℘r(VS)

{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗}
.

The main evidence that we can give for this conjecture is the following result.

THEOREM 1.9. Assume thatK/k and S satisfy the hypotheses of Conjecture 1.4. Then
the validity of LTC(K/k) implies the validity of Conjecture 1.8.

We recall that Burns and Greither have proved in [4] that LTC(K/k) holds away from
the prime 2 whenK is an abelian extension of Q (and k is any intermediate field ofK/Q) and
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that Flach proved the same result at the prime 2 in [8].
Given this, the following result is an immediate consequence of Theorem 1.9.

COROLLARY 1.10. If K is an abelian extension of Q, then Conjecture 1.8 is valid for
any intermediate field k of K/Q.

2. Preliminaries

2.1. Exterior powers. When working with exterior powers, we will need to deal with
changes of sign arising when we use ordered bases. We will use the following notations (for
further details see [14, §6.1]).

Let Ī = (i1, . . . , ir1) ∈ ℘r1(m) and J̄ = (j1, . . . , jr2) ∈ ℘r2(m) . Define

(−1)Ī+J̄ := (−1)i1+···+ir1 +j1+···+jr2 .

If in addition we have that J̄ ⊆ Ī then let τĪ ,J̄ denote the permutation Ī �→ J̄ · (Ī \ J̄ ), where
· means concatenation. If t is a positive integer let

[t] = (1, 2, . . . , t) .

Then

sgn
(
τ[m],Ī

) = (−1)Ī+[r1] .

We will also need some constructions for exterior powers of homomorphisms. Suppose
M is a Z[G]-module and f ∈ M∗. Then for every positive integer t we can define a Z[G]-
module homomorphism

t∧
Z[G]

M −→
t−1∧
Z[G]

M

by

m1 ∧ · · · ∧mt �→
t∑
i=1

(−1)i−1f (mi)m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mt .

We will still denote this morphism by f .
Furthermore this construction allows us to regard elements of∧s

Z[G]M∗ as elements of HomZ[G](
∧t

Z[G]M,
∧t−s

Z[G]M) for non negative integers t and s

with t ≥ s. We do this by defining a homomorphism

s∧
Z[G]

M∗ −→ HomZ[G]
( t∧

Z[G]
M,

t−s∧
Z[G]

M

)
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by

f1 ∧ · · · ∧ fs �→ (
m �→ fs ◦ · · · ◦ f1(m)

)
.

When s = t this is the map

(f1 ∧ · · · ∧ ft )(m1 ∧ · · · ∧mt) = det
(
fi(mj )

)
.

Finally we will use the following results from [5] which we state without proof.

PROPOSITION 2.1. Let Q be a Z[G]-algebra. Let m1, . . . ,mt ∈ M and f1, . . . , fs ∈
HomZ[G](M,Q). Then we have

(f1 ∧· · ·∧fs)(m1 ∧· · ·∧mt) =
∑
σ∈St,s

sgn(σ )mσ(s+1)∧· · ·∧mσ(t)⊗det
(
fi(mσ(j))

)
1≤i,j≤s ,

where

St,s := {
σ ∈ St : σ(1) < · · · < σ(s)andσ(s + 1) < · · · < σ(t)

}
.

PROOF. See [5, Prop. 4.1]. �

LEMMA 2.2. Let D be a field, and A an n-dimensional D-vector space. If we have a
D-linear map

� : A −→ D⊕m ,

where � = ⊕m
i=1ψi with ψ1, . . . , ψm ∈ HomD(A,D) (m ≤ n), then we have

Im

( ∧
1≤i≤m

ψi :
n∧
D

A −→
n−m∧
D

A

)
=

⎧⎪⎪⎨
⎪⎪⎩
n−m∧
D

Ker(�) if � is surjective,

0 if � is not surjective.

PROOF. See [5, Lem. 4.2]. �

LEMMA 2.3. Let P be a finitely generated projective Z[G]-module and j : O×
K,S,T ↪→

P be an injection whose cokernel is Z-torsion-free. If we regard O×
K,S,T as a submodule of P

via j , then we have

	K/k,S,T =
(

Q
r∧

Z[G]
O×
K,S,T

)
∩

r∧
Z[G]

P .

PROOF. See [5, Lem. 4.7(ii)]. �

2.2. Restriction and corestriction maps. Here we recall the definitions of the re-
striction and corestriction maps. We follow the notation in [14].
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Let k ⊆ L ⊆ K be a tower of number fields, where K/k is abelian. As before let G be
the Galois group of K/k and then let H be the Galois group of K/L and � = G/H be the
Galois group of L/k.

The restriction map

resK/L : C[G] −→ C[�]
is the C[G]-algebra morphism defined by

σ �→ σ |L
for σ ∈ G.

The corestriction map

corK/L : C[�] −→ C[G]
is the C[G]-module morphism defined by

γ �→
∑
σ∈G
σ |L=γ

σ = γ̃ · NH ,

where γ̃ is any extension of γ and NH = ∑
h∈H h.

REMARK 2.4. The restriction and corestriction map satisfy the following properties

(i) For λ1, λ2 ∈ C[�] we have

corK/L(λ1 · λ2) = 1

|H |corK/L(λ1) · corK/L(λ2) .

(ii) For σ ∈ C[G] we have

corK/L ◦ resK/L(σ) = NH · σ .
(iii) For γ ∈ C[�] we have

resK/L ◦ corK/L(γ ) = |H | · γ .
We will also need the following result.

LEMMA 2.5. We have the following isomorphism of abelian groups

HomZ[G]
(O×

L,S,T ,Z[G]) ˜−→HomZ[�]
(O×

L,S,T ,Z[�]) ,
given by

φ �→ 1

|H | · resK/L ◦ φ ,

for φ ∈ HomZ[G](O×
L,S,T ,Z[G]). The inverse map is given by

φ �→ corK/L ◦ φ
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for φ ∈ HomZ[�](O×
L,S,T ,Z[�]).

PROOF. See [14, Lem. 4.20]. �

2.3. The leading term conjecture
2.3.1. The canonical complex. Burns has constructed a canonical complex which allows
LTC(K/k) to be expressed in terms of a zeta element and the determinant module of this
complex. Burns first uses this complex in [2], but it is developed further in [5] where it is
expressed in terms of an ‘integral dual Selmer group for Gm’. Here we give the necessary
definitions and properties of the complex. For full details see [5, §2].

DEFINITION 2.6. The ‘S-relative T -trivialised integral dual Selmer group for Gm’ is
defined by

SS,T (Gm/K) := coker

( ∏
w/∈SK∪TK

Z −→ HomZ
(
K×
T ,Z

))
,

where K×
T is the subgroup of K× defined by

K×
T := {

a ∈ K× : ordw(a − 1) > 0 for all w ∈ TK
}
,

and the homomorphism in the right hand side is defined by

(xw)w �→
(
a �→

∑
w/∈SK∪TK

ordw(a)xw

)
.

SS,T (Gm/K) can be better understood, conjecturally at least, as a cohomology group of
a canonical complex of G-modules using ‘Weil-ètale cohomology’.

PROPOSITION 2.7. There exists a perfect complex R�c,T ((OK,S)W ,Z) such that

(i) R�c,T ((OK,S)W ,Z) is acyclic outside degrees one, two and three.
(ii) There are canonical isomorphisms

Hi
(
R�c,T

(
(OK,S)W ,Z

)) �

⎧⎪⎪⎨
⎪⎪⎩
YK,S/�S(Z) if i = 1

SS,T (Gm/K) if i = 2(
K×
T ,tors

)∨
if i = 3

where �S is the natural diagonal map and (K×
T ,tors)

∨ is the Pontryagin dual of the

torsion subgroup of K×
T .

(iii) There is an exact sequence

0 −→ ClS,T (K)∨ −→ SS,T (Gm/K) −→ HomZ
(O×

K,S,T ,Z
) −→ 0 .

PROOF. See [5, Prop. 2.2 and Prop. 2.4]. �
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We define a ‘dual’ of the complex R�c,T ((OK,S)W ,Z) Let

R�T
(
(OK,S)W ,Gm

) := RHomZ
(
R�c,T

(
(OK,S)W ,Z

)
,Z

)[−2] .
DEFINITION 2.8. We define the ‘transpose’ of SS,T (Gm/K) by

S tr
S,T (Gm/K) := H 1

T (R�T ((OK,S)W ,Gm)) = H−1(RHomZ(R�c,T ((OK,S)W ,Z),Z)) .

PROPOSITION 2.9. The complex R�T ((OK,S)W ,Gm) is acyclic outside degrees zero
and one. There exist canonical isomorphisms

Hi
(
R�T

(
(OK,S)W ,Gm

)) �
{
O×
K,S,T if i = 0

S tr
S,T (Gm/K) if i = 1

and there is a canonical exact sequence

0 −→ ClS,T (K) −→ S tr
S,T (Gm/K) −→ XK,S −→ 0 .

PROOF. See [5, Rem. 2.7]. �

2.3.2. The ‘zeta element’. If D•
K,S,T : D0 −→ D1 is a representative of the complex

R�T ((OK,S)W ,Gm), we define the regulator isomorphism

ρK,S : CdetZ[G]
(
D•
K,S,T

) ˜−→C[G]
as follows:

CdetZ[G]
(
D•
K,S,T

) ˜−→ detC[G]
(
CD0

K,S,T

) ⊗C[G] Cdet−1
C[G]

(
CD1

K,S,T

)
˜−→ detC[G]

(
CO×

K,S,T

) ⊗C[G] detC[G]
(
CIm(d0)

)
⊗C[G] det−1

C[G]
(
CIm(d0)

) ⊗C[G] det−1
C[G]

(
CXK,S

)
˜−→ detC[G]

(
CO×

K,S,T

) ⊗C[G] det−1
C[G]

(
CXK,S

)
˜−→ detC[G]

(
CXK,S

) ⊗C[G] det−1
C[G]

(
CXK,S

)
˜−→ C[G] .

The first isomorphism is the definition of detZ[G](D•
K,S,T ). The second follows from

the properties of determinants and Proposition 2.9. The third isomorphism follows from the
evaluation map and the fourth by applying the Dirichlet logarithm λ. The final isomorphism
is again the evaluation map.

DEFINITION 2.10. The zeta element zK/k,S,T ∈ CdetZ[G](R�T ((OK,S)W ,Gm)) is
the unique element such that

ρK,S(zK/k,S,T ) = θ∗
K/k,S,T .
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CONJECTURE 2.11 (Leading Term Conjecture - LTC(K/k)). In
CdetZ[G](R�T ((OK,S)W ,Gm)) one has

Z[G]zK/k,S,T = detZ[G]
(
R�T

(
(OK,S)W ,Gm

))
.

2.4. A representative for R�T ((OK,S)W ,Gm). Before we show that the leading
term conjecture implies the extended abelian Stark conjectures due to Vallières, Emmons
and Popescu, we construct the representativeD•

K,S,T of the complex R�T ((OK,S)W ,Gm).

In [1] Burns constructs a Yoneda two extension of O×
K,S,T by XK,S using a free Z[G]-

module F and a homomorphism π which maps F onto XK,S . Vallières follows this method
in [14]. This method first works under the assumption that ClS,T (K) is trivial, and then shows
how this may be removed.

In [5] Burns et al. adapt this method to create a representative forD•
K,S,T by constructing

a Yoneda two-extension of O×
K,S,T by H 1(C•

K,S,T ) and making the necessary adaptions to F

and π . In the case that ClS,T (K) is trivial, this method recovers the method used by Burns in
[1] and Vallières in [14]. We follow this second method.

2.4.1. The free Z[G]-module F . Here we recall the construction of F and π by Burns et
al. ([5, §5.4]).

Let d ∈ Z be sufficiently large. Let F be a free Z[G]-module with basis {bi}1≤i≤d . We
will construct a surjective Z[G]-homomorphism

π : F −→ H 1(D•
K,S,T

)
in two parts. Firstly write F = F1 ⊕ F2, where F1 is the free Z[G]-module generated by
{bi}1≤i≤n and F2 is the free Z[G]-module generated by {bi}n<i≤d .

Since F1 is free we may choose a homomorphism π1 : F1 −→ H 1(C•
K,S,T ) such that

the composition

F1
π1−→ H 1(D•

K,S,T

) −→ XK,S

sends bi to wi − w0.
Now let A be the kernel of the composition

H 1(D•
K,S,T

) −→ XK,S −→ YK,S\{v0} ,

where the last map sends places above v0 to 0. We chose d to be sufficiently large so that we
can now choose a surjection

π2 : F2 −→ A .

This then gives us a surjective map π defined by:

π := π1 ⊕ π2 : F = F1 ⊕ F2 −→ H 1(D•
K,S,T

)
.
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2.4.2. Constructing the representative. We use F and the map π to construct a repre-

sentative for the Yoneda extension class of D•
K,S,T in Ext2Z[G](H

1(D•
K,S,T ),O×

K,S,T ). Since

D•
K,S,T is perfect we can represent it by an exact sequence

0 −→ O×
K,S,T −→ P

ψ−→ F
π−→ H 1(D•

K,S,T

) −→ 0

where P is a cohomologically trivial Z[G]-module. Since O×
K,S,T is torsion-free,P is torsion-

free and hence projective.

LEMMA 2.12. For every prime p there is a natural isomorphism of Z(p)[G]-modules

P(p) � F(p) .

PROOF. We have that CO×
K,S,T � CH 1(D•

K,S,T ). Therefore for every prime p

Q(p)O×
K,S,T (p) � Q(p)H

1(D•
K,S,T

)
(p)
.

Since Q(p)[G] is semisimple we get

Q(p)P(p) � Q(p)F(p) .

Finally our required result follows from Swan’s Theorem since P and F are both projective
and torsion-free. (See [6] for details of Swan’s Theorem.) �

REMARK 2.13. Since

detZ[G]
(
D•
K,S,T

) � detZ[G](P )⊗Z[G] det−1
Z[G](F ) ,

if LTC(K/k) is valid then we have that the Z[G]-module P is isomorphic to F .

3. The leading term conjecture implies the extended abelian Stark conjectures

In this section we prove the following result:

THEOREM 3.1 (Vallières). LetK/k be a finite abelian extension of number fields. Let
S be a finite set of places of k containing all infinite places and places that ramify in K/k.

Let T be another finite set of places of k such that S ∩ T = ∅ and such that O×
K,S,T is

Z-torsion-free. Assume S 
= VS . Let ηIK/k,S,T ∈ C
∧r

Z[G] O×
K,S,T · eI be defined as before.

Then LTC(K/k) implies that ηIK/k,S,T ∈ 	K/k,S,T .

REMARK 3.2. Theorem 3.1 is originally proved by Vallières in [14, Thm. 6.12] but
here we use methods from [5] to improve and simplify the proof. Since r is defined to be the
minimal order of vanishing of the S-truncated L-functions, we do not need to assume that S
is an ‘r-cover’. (This condition essentially asserts that all orders of vanishing are at least r .)

Crucially this proof allows us to express ηIK/k,S,T in terms of the zeta element zK/k,S,T .

This new proof provides us with the construction we need to to prove our results involving
Fitting ideals in §4.
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PROOF. Assume LTC(K/k) holds. If |S| = r + 1 then S contains at least r places

that split completely in K . Then the statement ηIK/k,S,T ∈ 	K/k,S,T is just the Rubin-Stark

conjecture, and the theorem has been proved by Burns in [1].

Assume |S| > r + 1 and therefore that χ1 /∈ Ĝr,S . We adapt the method from the proof
of [5, Theorem 5.11].

It follows from Remark 2.13 that P is free of rank d . It also follows from LTC(K/k) that

we can define zb ∈ ∧d
Z[G] P to be the element that corresponds to the zeta element zK/k,S,T ∈

detZ[G](D•
K,S,T ) via the isomorphism

κ :
d∧

Z[G]
P ˜−→

d∧
Z[G]

P ⊗
d∧

Z[G]
F ∗ � detZ[G]

(
D•
K,S,T

)
,

where the first isomorphism is given by

a �→ a ⊗
∧

1≤i≤d
b∗
i ,

where b∗
i ∈ F ∗ is the dual basis of bi ∈ F , and the second isomorphism is given by

detZ[G]
(
D•
K,S,T

) � detZ[G](P ) ⊗Z[G] det−1
Z[G](F ) .

For each 1 ≤ i ≤ d , we define

ψi := b∗
i ◦ ψ ∈ P ∗ .

Then the theorem follows from the next proposition. �

PROPOSITION 3.3. Regard O×
K,S,T ⊂ P . Then we have

1. eI · (∧i /∈Ī ψi)(zb) ∈ 	K/k,S,T (⊂ ∧r
Z[G] P)

2. ηIK/k,S,T = eI · (−1)Ī+[r]+r(d−r)(
∧
i /∈Ī ψi)(zb).

PROOF. Let χ ∈ Ĝr,S,I . Define a map

� :=
⊕
i /∈Ī

ψi : eχ · CP → eχ · C[G]⊕(d−r) .

We will show that � is surjective and then apply Lemma 2.2. We have that eχ · C Im(ψ) =⊕
i /∈Ī C[G] ·bi ·eχ , (see [14, Lem. 6.5],) which implies surjectivity. Therefore by Lemma 2.2

we have eχ · (∧i /∈Ī ψi)(zb) ∈ eχ · C
∧r

Z[G] O×
K,S,T . Summing over all χ ∈ Ĝr,S,I we get

eI ·
(∧
i /∈Ī
ψi

)
(zb) ∈ eI · C

r∧
Z[G]

O×
K,S,T .
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Since eI is a rational character it follows from Lemma 2.3 and Lemma 3.4 below that

eI ·
(∧
i /∈Ī
ψi

)
(zb) ∈

(
Q

r∧
Z[G]

O×
K,S,T

)
∩

r∧
Z[G]

P = 	K/k,S,T .

By Lemma 3.5 below we have that

λ

(
eI · (−1)Ī+[r]+r(d−r)

(∧
i /∈Ī
ψi

)
(zb)

)
= eI · θ∗

K/k,S,T · wI .

Since λ is an isomorphism it follows that

ηIK/k,S,T = eI · (−1)Ī+[r]+r(d−r)
(∧
i /∈Ī
ψi

)
(zb) .

�

LEMMA 3.4. Assume LTC(K/k). Then

eI ·
(∧
i /∈Ī
ψi

)
(zb) =

(∧
i /∈Ī
ψi

)
(zb) .

PROOF. This proof uses methods developed in [1], [5] and [14, Lem. 6.8].
By Proposition 2.1 it suffices to prove that for every σ ∈ Sd,r we have that

eI · det
(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d = det

(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d .

We prove this prime by prime after localisation.
Fix a prime p. By Lemma 2.12 the Z(p)[G]-modules P(p) and F(p) are free of the same

rank d . Thus we may assume that P(p) = F(p). The basis {b1, . . . , bd} of F thus gives a basis
for both P(p) and F(p), for which we will use the same notation.

Fix σ ∈ Sd,r . Let ψI,σ,p denote the composite map

ψI,σ,p :
⊕
r<j≤d

Z(p)[G] · bσ(j) ψres−→ F(p)
q−→

⊕
i /∈Ī

Z(p)[G] · bi

where q is the natural projection. The matrix (ψi(bσ(j)))i /∈Ī ,r<j≤d corresponds to the mor-

phism ψI,σ,p. We will show that if χ /∈ Ĝr,S,I then ψχI,σ,p := eχ · (C ⊗Z(p) ψI,σ,p) is singular

(and so has determinant equal to zero). This will suffice since eI + ∑
χ /∈Ĝr,S,I eχ = 1. We

will examine two separate cases.

Fix χ /∈ Ĝr,S , then dimC(CKer(ψ) · eχ) > r . Suppose ψχI,σ,p is not singular. Then

(
CKer(ψ) · eχ

) ∩
( ⊕
r<j≤d

C[G] · bσ(j) · eχ
)

= 0 .
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It follows that dimC(CKer(ψ)·eχ+⊕
r<j≤d C[G]·bσ(j)·eχ ) = dimC(CKer(ψ)·eχ )+d−r >

r + d − r = d , which is a contradiction.

Now let χ ∈ Ĝr,S\Ĝr,S,I , then dimC(Im(ψ) · eχ ) = d − r . Again suppose ψχI,σ,p is not

singular. Then

CKer(ψ) · eχ ∩
( ⊕
r<j≤d

C[G] · bσ(j)
)

· eχ = 0 ,

so by counting dimensions

CKer(ψ) · eχ +
( ⊕
r<j≤d

C[G] · bσ(j) · eχ
)

= CF · eχ .

We have χ /∈ Ĝr,S,I . Therefore ∃i0 ∈ Ī such that Gvi0 � Ker(χ). We also have that

π(bi0) = wi0 −w0 in CS tr
S,T (Gm/K) = CXK,S . Therefore π(eχ · bi0) = eχ · (wi0 −w0) = 0

as Gv0,Gvi0
� Ker(χ). This gives eχ · bi0 ∈ Im(ψχ).

Therefore we can find x in CF · eχ such that ψχ (x) = eχ · bi0 and write x = y ′ + y for
some y ′ ∈ Ker(ψχ ) and y ∈ (⊕r<j≤d C[G] · bσ(j)) · eχ .

Then ψχ(x) = ψχ(y) and since q(eχ · bi0) = 0, we get

ψ
χ
I,σ,p(y) = 0 .

But y 
= 0 since eχ · bi0 
= 0, therefore ψχI,σ,p is singular. �

LEMMA 3.5. By definition of zb we have

eI · λ
(
(−1)Ī+[r]+r(d−r)

(∧
i /∈Ī
ψi

)
(zb)

)
= eI · θ∗

K/k,S,T · wI .

PROOF. Let χ ∈ Ĝr,S,I .
We have

0 −→ O×
K,S,T −→ P

ψ−→ F
π−→ H 1(D•

K,S,T

) −→ 0 .

This breaks up into two short exact sequences, which after tensoring with C and taking
χ-components give

0 −→ (O×
K,S,T

)
χ

−→ Pχ
ψ−→ Im(ψ)χ −→ 0 (2)

and

0 −→ Im(ψ)χ −→ Fχ
π−→ (

XK,S
)
χ

−→ 0 . (3)
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We now fix ordered C-bases for the modules above. (Note that we identify eχ · C[G]
with C by letting eχ correspond to 1.) Let J̄ := {1, . . . , d} \ Ī = {j1, j2, . . . , jd−r } with
j1 < j2 < · · · < jd−r .

By the definition of π we have that π(eχ · bi) = eχ · (wi − w0) for 1 ≤ i ≤ n. We also

have that eχ · wi = 0 for i /∈ Ī . Therefore we write

xi,χ := eχ · (wi − w0) ,

and we fix an ordered C-basis for (CXK,S)χ as {xi1,χ , xi2,χ , . . . , xir ,χ }.
We recall that C[G] is semisimple. Choose a section

ι2 : CXK,S −→ CF

such that ι2(xi,χ ) = bi,χ for i ∈ Ī , where bi,χ := eχ · bi.
An ordered C-basis for Fχ is {b1,χ , b2,χ , . . . , bd,χ}. Then Im(ψ)χ has C-rank d − r and

we fix {bj1,χ , bj2,χ , . . . , bjd−r ,χ } as an ordered basis. We also have that Pχ has rank d and

(O×
K,S,T )χ has rank r . Fix a basis {ui1,χ , ui2,χ , . . . , uir ,χ } of (O×

K,S,T )χ . We can then choose

a section

ι1 : CIm(ψ) −→ CP

with {ui1,χ , . . . , uir ,χ , ι1(bj1,χ ), . . . , ι1(bjd−r ,χ )} forming a basis for Pχ .
We can now use these two sections to define an isomorphism f of C-modules from CP

to CF .

CP
∼
> CO×

K,S,T ⊕ ι1
(
CIm(ψ)

)

CF

f∨ ∼
> ι2

(
CXK,S

)ι2◦λ∨
⊕ CIm(ψ)

ψ∨

Then f also defines an isomorphism from Pχ to Fχ and we can define fi := b∗
i ◦ f ∈

HomC(Pχ ,C).
We will show that diagram (4) below commutes. This will allow us to obtain the equality

given in the proposition by mapping the element zb across both the top and bottom arrows.

∧d
C Pχ

(−1)r(d−r)·ρK,S◦κ
�� C

∧d
C Pχ ∧i=di=1fi

�� C

(4)

We need only show that it commutes for a basis of
∧d

C Pχ . Since
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{ui1,χ , . . . , uir ,χ , ι1(bj1,χ ), . . . , ι1(bjd−r ,χ )} is a C-basis for Pχ , we have that the element

ui1,χ ∧ · · · ∧ uir ,χ ∧ ι1(bj1,χ ) ∧ · · · ∧ ι1(bjd−r ,χ ) is a C-basis for
∧d

C Pχ .
Let us first apply the top line. Unless otherwise stated all individual wedge products are

taken in order of increasing index.
We start with the basis element

∧
i∈Ī
ui,χ ∧

∧
j∈J̄

ι1(bj,χ ) ∈
d∧
C

Pχ .

Recall that the map κ was defined via two isomorphisms. We first apply the isomorphism
given by a �→ a ⊗ ∧

1≤i≤d b∗
i . This gives

∧
i∈Ī
ui,χ ∧

∧
j∈J̄

ι1(bj,χ )⊗
∧

1≤k≤d
b∗
k,χ ∈

d∧
C

Pχ ⊗C[G]
d∧
C

(F ∗)χ .

The second part of κ is given by the isomorphism

detZ[G](P ) ⊗Z[G] det−1
Z[G](F ) ˜−→detZ[G]

(
D•
K,S,T

)
.

However if we recall the definition of the regulator isomorphism ρK,S in §2.3.2, the first step
was given by the inverse of this map. Therefore our next step is to apply the second part of
ρK,S , which is given by the isomorphisms coming from the split short exact sequences (2)
and (3). This maps

∧
i∈Ī ui,χ ∧ ∧

j∈J̄ ι1(bj,χ )⊗
∧

1≤k≤d b∗
k,χ to the element

(−1)J̄+[d−r] ∧
i∈Ī
ui,χ ⊗

∧
j∈J̄

bj,χ ⊗
∧
j∈J̄

b∗
j,χ ⊗

∧
i∈Ī
x∗
i,χ

∈
r∧
C

(O×
K,S,T

)
χ

⊗C

d−r∧
C

Im(ψ)χ ⊗C

d−r∧
C

(
Im(ψ)∗

)
χ

⊗C

r∧
C

(
X∗
K,S

)
χ
.

We then apply the evaluation map to obtain

(−1)J̄+[d−r] ∧
i∈Ī
ui,χ ⊗

∧
i∈Ī
x∗
i,χ ∈

r∧
C

(O×
K,S,T

)
χ

⊗C

r∧
C

(
X∗
K,S

)
χ
.

Applying the Dirichlet logarithm gives

(−1)J̄+[d−r] ∧
i∈Ī
λ(ui,χ )⊗

∧
i∈Ī
x∗
i,χ ∈

r∧
C

(
XK,S

)
χ

⊗C

r∧
C

(
X∗
K,S

)
χ
.

This is equal to

(−1)J̄+[d−r]det(Cχ )
∧
i∈Ī
(xi,χ )⊗

∧
i∈Ī
x∗
i,χ ∈

r∧
C

(
XK,S

)
χ

⊗C

r∧
C

(
X∗
K,S

)
χ
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where Cχ = (cik,χ )i,k∈Ī is the matrix defined by λ(ui,χ ) = ∑
k∈Ī cik,χxk,χ .

Finally applying the evaluation map and multiplying by (−1)r(d−r) gives

(−1)Ī+[r]det
(
Cχ

) ∈ C ,

where we note that (−1)[d−r]+[r] = (−1)[d]+r(d−r) and (−1)[d] = (−1)Ī+J̄ .
Let us now turn our attention to the bottom row of diagram (4). We have ∧i=di=1fi =

∧i=di=1b
∗
i,χ ◦ ∧i=di=1f. In order to apply ∧i=di=1f we calculate det(f ) with respect to our chosen

ordered bases.
It is easier to do this by first considering the matrix of f with respect to a different or-

dering of the basis of Fχ . We consider the matrix of f with respect to the ordered bases
{ui1,χ , . . . , uir ,χ , ι1(bj1,χ ), . . . , ι1(bjd−r ,χ )} of Pχ and {bi1,χ , . . . , bir ,χ , bj1,χ , . . . , bjd−r ,χ }
of Fχ .

We have for i ∈ Ī that

f (ui,χ ) = ι2

(∑
k∈Ī

cik,χ xk,χ

)

=
∑
k∈Ī

cik,χbk,χ

where the first equality follows since ui,χ ∈ (O×
K,S,T )χ and the second by the definition of ι2.

For j ∈ J̄ we have

f
(
ι1(bj,χ )

) = bj,χ .

Thus the matrix of f with respect to this ordering is:

bi1,χ . . . bir ,χ bj1,χ . . . bjd−r ,χ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ui1,χ
... Cχ 0

uir r,χ

ι1
(
bj1,χ

)
... 0 Id

ι1
(
bjd−r ,χ

)
.

The determinant of this matrix is equal to det(Cχ). In order to obtain the matrix of f with
respect to our original ordered basis {b1,χ , . . . , bd,χ} of Fχ we have to permute the columns
and so we obtain that

det(f ) = (−1)Ī+[r]det
(
Cχ

)
.
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We can now apply the bottom arrow to our basis element. Again we start with the element

∧
i∈Ī
ui,χ ∧

∧
j∈J̄

ι1(bj,χ ) ∈
d∧
C

Pχ .

We then apply ∧i=di=1f to get

∧
i∈Ī
f
(
ui,χ

) ∧
∧
j∈J̄

f (ι1(bj,χ )) = (
det(f )

) i=d∧
i=1

bi,χ ∈
d∧
C

Fχ .

Applying ∧i=di=1b
∗
i,χ gives

det(f ) = (−1)Ī+[r]det
(
Cχ

) ∈ C ,

thus proving the commutativity of the diagram.

We can use this result to map the element eχ · zb ∈ ∧d
C Pχ in both directions around

diagram (4).
By definition of zb under the top line we have

eχ · zb �→ eχ · zK/k,S,T �→ (−1)r(d−r)eχ · θ∗
K/k,S,T .

Under the bottom line we have

eχ · zb �→ (∧i=di=1fi
)
(eχ · zb) .

Therefore(i=d∧
i=1

fi

)
(eχ · zb) = (−1)r(d−r)eχ · θ∗

K/k,S,T

⇒ (−1)Ī+[r]+r(d−r)
(∧
i∈Ī
fi

)((∧
i /∈Ī
fi

)
(eχ · zb)

)
= eχ · θ∗

K/k,S,T

⇒ (−1)Ī+[r]+r(d−r)(ι2 ◦ λ)
((∧

i /∈Ī
fi

)
(eχ · zb)

)
= eχ · θ∗

K/k,S,T

⇒ (−1)Ī+[r]+r(d−r)λ
((∧

i /∈Ī
fi

)
(eχ · zb)

)
= eχ · θ∗

K/k,S,T

∧
i∈Ī
(wi −w0)

⇒ (−1)Ī+[r]+r(d−r)λ
(
eI ·

(∧
i /∈Ī
fi

)
(zb)

)
= eI · θ∗

K/k,S,T · wI

where third line follows since (
∧
i /∈I fi)(zb) ∈ ∧r Ker(ψ).
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Finally let us consider eχ · (∧i /∈I fi)(zb) for χ ∈ Ĝr,S,I . Recall that f is ι2 ◦ λ on

CO×
K,S,T = CKer(ψ) and ψ on ι2(CIm(ψ)). We claim that (b∗

i ◦ ι2 ◦ λ)χ = 0 for i /∈ Ī .

Considering just the χ component we have that λ maps to (XK,S)χ which has basis {xi,χ :
i ∈ Ī }. These basis elements are mapped to {bi,χ : i ∈ Ī } by ι2. However these elements are

not seen by b∗
i for i /∈ Ī , which proves our claim. Therefore

eI ·
(∧
i /∈Ī
fi

)
(zb) = eI ·

(∧
i /∈Ī
ψi

)
(zb)

thus proving the proposition.
�

Then the following corollary follows immediately from the above theorem.

COROLLARY 3.6. LTC(K/k) implies Conjecture 1.4.

4. Evaluators and higher Fitting ideals

In this section we investigate the ideal generated by 
(ηIK/k,S,T ) as 
 runs over∧r
Z[G](O×

K,S,T )
∗. We will apply and adapt the techniques developed by Burns et al. in [5] in

the following way. We begin by defining, for every I ∈ ℘r(VS), a subextension of K/k in
which the hypotheses of the Rubin-Stark hold. Emmons, Popescu and Vallières have shown
(see [7] and [14]) the relationship between the Rubin-Stark elements of the subextensions,
and the elements ηIK/k,S,T . This allows us to apply the results in [5].

Applying these methods introduces denominators that remove some of the integrality
properties. However, through Theorem 1.7 we are able to regain some integrality results.

4.1. Subextensions of K/k. For each I ∈ ℘r(Vs) we define a subextension of K/k
in which there are r places that split completely. Let

• DI = 〈Gv : v ∈ I 〉
• LI = KDI

• �I = G/DI

• e′r,S = ∑
χ ′∈(�̂I )r,S eχ ′

• eDI = 1
|DI |

∑
d∈DI d

REMARK 4.1. The definition of eDI implies that it can be decomposed as

eDI =
∑
χ∈Ĝ

χ(DI )=1

eχ =
∑
χ∈Ĝ

χ(Gv)=1,∀v∈I

eχ .

By comparing this with the definition of the idempotent eI , it is easy to see that

eI · eDI = eI .
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For all i ∈ {0, . . . , n} fix wI,i as the unique place of LI lying between vi and wi .
Let

εILI /k,S,T ∈ C
r∧

Z[�I ]
O×
LI ,S,T

· e′r,S

be the unique element such that

λLI/k
(
εILI /k,S,T

) = θ∗
LI /k,S,T

(wI,i1 −wI,0) ∧ · · · ∧ (wI,ir − wI,0) · e′r,S .
Since the set of places {vi : i ∈ Ī } split completely in LI/k, εILI /k,S,T is a Rubin-Stark

element for LI/k.
We can therefore apply the theorem by Burns et al. to the Rubin-Stark element εILI /k,S,T .

THEOREM 4.2. Assume LTC(LI /k). Then

FittrZ[�I ]
(S tr
S,T (Gm/LI )

) =
{
�
(
εILI /k,S,T

) : � ∈
r∧

Z[�I ]
HomZ[�I ]

(O×
LI ,S,T

,Z[�I ]
)}
.

PROOF. See [5, Thm. 7.3]. �

In order to apply this result to our element ηIK/k,S,T we use the following result linking

the Rubin-Stark of element each subextension to the corresponding element ηIK/k,S,T of the

original extension.

LEMMA 4.3. In C
∧r

Z[G] O×
K,S,T we have the following equality:

ηIK/k,S,T = 1

|DI |r ε
I
LI /k,S,T

.

PROOF. See [14, Prop. 4.18]. �

REMARK 4.4. The Rubin-Stark conjecture asserts that εILI /k,S,T ∈ 	LI /k,S,T . How-

ever this relationship between elements allows Vallières to make the stronger conjecture that
εILI /k,S,T is a |DI |th power in 	LI/k,S,T and to prove that this conjecture follows from

LTC(K/k).

This relationship allows us to apply results already proven for the Rubin-Stark element

εILI /k,S,T , and via the restriction and corestriction maps apply them to the element ηK/k,S,T .

4.2. Proof of Theorem 1.7. In this section we prove Theorem 1.7.
We prove this prime by prime after localisation, i.e. we prove that for every prime p we

have

eDI · FittrZ(p)[G]
(S tr
S,T (Gm/K)(p)

) ⊆ FittrZ(p)[G]
(S tr
S,T (Gm/K)(p)

)
.
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We have the following presentation for S tr
S,T (Gm/K)

P
ψ−→ F

π−→ S tr
S,T (Gm/K) −→ 0 .

After localisation, we assume, as we may by Lemma 2.12, that F(p) = P(p). Thus we obtain
the presentation

F(p)
ψ−→ F(p)

π−→ S tr
S,T (Gm/K)(p) −→ 0 .

The Z[G]-basis {b1, . . . , bd} for F also gives a Z(p)[G]-basis for F(p), for which we use the
same notation. Let A(p) be the matrix corresponding to this presentation.

For any σ ∈ Sd,r , we have that det(ψi(bσ(j)))i /∈Ī ,r<j≤d is a (d − r)× (d − r) minor of

A(p) . Furthermore the proof of Lemma 3.4 gives us that

eI · det
(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d = det

(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d .

Since we also have that eI · eDI = eI (see Remark 4.1) it’s not hard to see that

eDI · det
(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d = det

(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d .

The other (d − r)× (d − r) minors of A(p) are of the form det(ψi(bσ(j)))i∈J̄ ,r<j≤d for

some σ ∈ Sd,r and some J ∈ ℘d−r (VS) such that I ∩ J 
= ∅. In this case we have that
eDI · det(ψi(bσ(j)))i∈J̄ ,r<j≤d = 0.

To see this we fix i ∈ Ī ∩ J̄ . Then Im(ψi) ⊆ IGvi (see [5, Lem. 5.19] for proof). Let

x ∈ IGvi . Then x = ∑
δ∈Gvi (δ − 1) · xδ for some xδ ∈ Z(p)[G]. Then

eDI · x =
∑
δ∈Gvi

eDI · (δ − 1) · xδ

=
∑
δ∈Gvi

∑
χ∈Ĝ

χ(Gv)=1,∀v∈I

eχ · (δ − 1) · xδ

=
∑
δ∈Gvi

∑
χ∈Ĝ

χ(Gv)=1,∀v∈I

eχ · (χ(δ)− 1
) · xδ

= 0 ,

where the final line follows since χ(δ) = 1.
We then obtain our final result since

eDI · FittrZ(p)[G]
(S tr
S,T (Gm/K)(p)

)
=

∑
B∈{(d−r)×

(d−r)minors of A(p)}

eDI · det(B) · Z(p)
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=
∑

σ∈Sd,r

eDI · det
(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d · Z(p)[G]

+
∑

J∈℘d−r (VS)
I∩J 
=∅
σ∈Sd,r

eDI · det
(
ψi
(
bσ(j)

))
i∈J̄ ,r<j≤d · Z(p)[G]

=
∑

σ∈Sd,r

det
(
ψi
(
bσ(j)

))
i /∈Ī ,r<j≤d · Z(p)[G] + 0

⊆ FittrZ(p)[G]
(S tr
S,T (Gm/K)(p)

)
.

4.3. The proof of Theorem 1.9. As a first step we prove the following result.

THEOREM 4.5. With the same set up as before LTC(K/k) implies that:

eDI · FittrZ[G]
(S tr
S,T (Gm/K)

) =
{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]
(O×

K,S,T )
∗
}

⊆ FittrZ[G]
(S tr
S,T (Gm/K)

)
.

PROOF. Assume LTC(K/k).
We need only prove that

eDI · FittrZ[G]
(S tr
S,T (Gm/K)

) =
{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗}

since the containment follows from Theorem 1.7, proved above.
Suppose |S| = r + 1. Then S must contain at least r places that split completely. In this

case the stronger result {
(ηIK/k,S,T ) : 
 ∈ ∧r
Z[G](O×

K,S,T )
∗} = FittrZ[G](S tr

S,T (Gm/K)) has

been proved by Burns et al in [5] so we are done. Therefore we assume that |S| > r + 1.
In order to prove the statement we apply the result from Burns et al. to each element

εILI /k,S,T for I ∈ ℘r(VS). We use Lemma 4.3 and the properties of restriction and corestric-

tion maps to apply the result to the elements ηIK/k,S,T . This will allow us to show that

{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗} = 1

|DI |corK/LI
(
FittrZ[�I ]

(S tr
S,T (Gm/LI )

))
.

First we show that

1

|DI |corK/LI
(
FittrZ[�I ]

(S tr
S,T (Gm/LI )

)) ⊆
{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗}
.

By Theorem 4.2 we may write any element of FittrZ[�I ](S tr
S,T (Gm/LI )) as �(εILI /k,S,T )

for some � ∈ ∧r
Z[�I ] HomZ[�I ](O×

LI ,S,T
,Z[�I ]). Therefore it is enough to show the inclu-
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sion above holds for the element

ψ1 ∧ · · · ∧ ψr
(
εILI /k,S,T

) ∈ FittrZ[�I ]
(S tr
S,T (Gm/LI )

)
for any ψ1, . . . , ψr ∈ HomZ[�I ]

(O×
LI ,S,T

,Z[�I ]
)
.

We apply the corestriction map and then use the properties of the restriction and core-

striction maps given in Remark 2.4 and the relation ηIK/k,S,T = 1
|DI |r ε

I
LI /k,S,T

to get

corK/LI
(
ψ1 ∧ · · · ∧ ψr

(
εILI /k,S,T

))
= 1

|DI |r−1
(corK/LI ◦ ψ1) ∧ · · · ∧ (corK/LI ◦ ψr)

(
εILI /k,S,T

)
= 1

|DI |r−1 (corK/LI ◦ ψ1) ∧ · · · ∧ (corK/LI ◦ ψr)
(|DI |rηIK/k,S,T )

= |DI |(corK/LI ◦ ψ1) ∧ · · · ∧ (corK/LI ◦ ψr)
(
ηIK/k,S,T

)
= |DI |( ˜corK/LI ◦ ψ1) ∧ · · · ∧ ( ˜corK/LI ◦ ψr)

(
ηIK/k,S,T

)
∈ |DI | ·

{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗}

where corK/LI ◦ ψi ∈ HomZ[G](O×
LI ,S,T

,Z[G]) for i = 1, . . . , r by Lemma 2.5, and

˜corK/LI ◦ ψi is any lift to (O×
K,S,T )

∗.

Therefore

1

|DI |corK/LI
(
FittrZ[�I ]

(S tr
S,T (Gm/LI )

)) ⊆
{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗}

as required.
We now show the inclusion in the other direction. Again it is enough to show that

φ1 ∧ · · · ∧ φr(η
I
K/k,S,T ) ∈ 1

|DI |corK/LI (FittrZ[�I ](S tr
S,T (Gm/LI ))) for arbitrary φ1, . . . , φr ∈

(O×
K,S,T )

∗.

Fix φ1, . . . , φr ∈ (O×
K,S,T )

∗ and for each i denote the restriction of φi to O×
LI ,S,T

by the

same symbol φi . Then Lemma 2.5 gives that

1

|DI | resK/LI ◦ φi ∈ HomZ[�I ]
(O×

LI ,S,T
,Z[�])

for i = 1, . . . , r . Therefore by Theorem 4.2( 1

|DI | resK/LI ◦ φ1

)
∧ · · · ∧

( 1

|DI | resK/LI ◦ φr
)(
εILI /k,S,T

) ∈ FittrZ[�I ]
(S tr
S,T (Gm/LI )

)
.
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Applying the corestriction map gives

corK/LI
(( 1

|DI | resK/LI ◦ φ1

)
∧ · · · ∧

( 1

|DI | resK/LI ◦ φr
)(
εILI /k,S,T

))

= 1

|DI |r−1

(( 1

|DI |corK/LI ◦ resK/LI ◦ φ1

)
∧. . .∧

( 1

|DI |corK/LI ◦ resK/LI ◦ φr
)(
εILI /k,S,T

))

= 1

|DI |r−1

((NDI
|DI | · φ1

)
∧ · · · ∧

(NDI
|DI | · φr

)(
εILI /k,S,T

))

= NDI

|DI |r · φ1 ∧ · · · ∧ φr
(
εILI /k,S,T

)
= 1

|DI |r−1 · φ1 ∧ · · · ∧ φr
(
εILI /k,S,T

)
= |DI | · φ1 ∧ · · · ∧ φr

(
ηIK/k,S,T

) ∈ corK/LI
(
FittrZ[�I ]

(S tr
S,T (Gm/LI )

))
,

which gives the required inclusion.
The final requirement that

1

|DI |corK/LI
(
FittrZ[�I ]

(S tr
S,T (Gm/LI )

)) = eDI · FittrZ[G]
(S tr
S,T (Gm/K)

)
follows immediately from Remark 2.4(ii) if we note that

resK/LI
(
FittrZ[G]

(S tr
S,T (Gm/K)

)) = FittrZ[�I ]
(S tr
S,T (Gm/LI )

)
.

�

LEMMA 4.6.

FittrZ[G]
(S tr
S,T (Gm/K)

) = er,S · FittrZ[G]
(S tr
S,T (Gm/K)

)
.

PROOF. We prove that for all x ∈ FittrZ[G](S tr
S,T (Gm/K)) and all χ such that rS(χ) > r

we have that xeχ = 0. If this holds then

x = x · 1 = xer,S +
∑
χ∈Ĝ

rS(χ)>r

xeχ = xer,S ,

so that FittrZ[G](S tr
S,T (Gm/K)) = er,S · FittrZ[G](S tr

S,T (Gm/K)) as required.

Let χ be such that rS(χ) > r and consider the surjective ring homomorphism

Z[G] −→ Rχ := eχ · Z[χ][G]
that sends x to eχ · x.

Under this map the standard properties of Fitting ideals give us that

FittrZ[G]
(S tr
S,T (Gm/K)

) −→ FittrRχ
(
Rχ ⊗Z[G] S tr

S,T (Gm/K)
)
.
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We show that FittrRχ (Rχ ⊗Z[G] S tr
S,T (Gm/K)) = 0.

By a result of Northcott (see [9, Ex. 3, p. 61]), and the fact that a Fitting ideal is deter-
mined by its localisations, it is enough to show that Rχ ⊗Z[G] S tr

S,T (Gm/K) surjects onto a

projectiveRχ module of rank greater than r . We show this by computing the dimensions over
C.

Note that Lemma 1.1 gives

dimC
(
CS tr

S,T (Gm/K) · eχ
) = dimC

(
CXK,S · eχ

) = rS(χ) > r .

It follows that Rχ ⊗Z[G]S tr
S,T (Gm/K)) spans a C � C[G] ·eχ -space of dimension greater

than r , proving the required result. �

REMARK 4.7. For each I ∈ ℘r(VS) we have that

eDI · FittrZ[G]
(S tr
S,T (Gm/K)

) = eI · FittrZ[G]
(S tr
S,T (Gm/K)

)
.

To see this note that eDI = eI + (eDI − eI ) and eDI − eI is the sum of idempotents eχ such
that rS(χ) > r and χ(DI ) = 1 and follow the argument at the end of the proof of Lemma 4.6
above.

To deduce Theorem 1.9 we now need only make the following computation

FittrZ[G]
(S tr
S,T (Gm/K)

) = er,S · FittrZ[G]
(S tr
S,T (Gm/K)

)
=
( ∑
I∈℘r(VS)

eI

)
· FittrZ[G]

(S tr
S,T (Gm/K)

)

=
⊕

I∈℘r(VS)

(
eI · FittrZ[G]

(S tr
S,T (Gm/K)

))

=
⊕

I∈℘r(VS)

(
eI · eDI · FittrZ[G]

(S tr
S,T (Gm/K)

))

=
⊕

I∈℘r(VS)

(
eI ·

{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗})

=
⊕

I∈℘r(VS)

{


(
ηIK/k,S,T

) : 
 ∈
r∧

Z[G]

(O×
K,S,T

)∗}
.

Here the first equality is Lemma 4.6 and the second is clear from the definition of the
idempotents er,S and eI . The third equality follows from the mutual orthogonality of the
idempotents eI , from the equality in Remark 4.7 and from the inclusion in Theorem 1.7.
The fourth equality is by Remark 4.1, the fifth by Theorem 4.5 and the final equality since
ηIK/k,S,T = eI · ηIK/k,S,T .

This completes the proof of Theorem 1.9.
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