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Abstract. Among the unitary reflection groups, the one on the title is singled out by its importance in, for
example, coding theory and number theory. In this paper we examine the semi-simple structure of the centralizer
algebra in the tensor representation, and show that the dimensions of the centralizers coincide with the numbers of
some combinatorial objects.

1. Introduction

The group, which we denote by H1, on the title of this paper consists of 96 matrices of
size 2 by 2. It is the unitary group generated by reflections, numbered as No.8 in Shephard-
Todd [14]. This group, as well as No.9 in the same list, has long been recognized. The purpose
of the present paper is to give a contribution to H1 by decomposing the centralizer algebra of
H1 in the tensor representation into irreducible components.

The group H1 naturally acts on the polynomial ring C[x, y] of two variables over the
complex number field C, i.e.

Af (x, y) = f (ax + by, cx + dy), A =
(

a b

c d

)
∈ H1

for f ∈ C[x, y]. We consider the invariant ring

C[x, y]H1 = {f ∈ C[x, y] : Af = f, for any A ∈ H1}
of H1. This ring has a rather simple structure. It is generated by two algebraically independent
homogeneous polynomials of degrees 8 and 12, and conversely this nature characterizes the
unitary group generated by reflections. Broué-Enguehard [6] found a map connecting this
invariant ring with number theory. Take a homogeneous polynomial f (x, y) of degree n from
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the invariant ring. Introducing theta constants

θab(τ ) =
∑
m∈Z

exp 2πi

[
1

2
τ

(
m + a

2

)2 +
(
m + a

2

) b

2

]
,

we get a modular form f (θ00(2τ ), θ10(2τ )) of weight n/2 for SL(2,Z). Moreover this map
is an isomorphism from the invariant ring of H1 onto the ring of modular forms for SL(2,Z).

Next we proceed to coding theory. Let F2 = {0, 1} be the field of two elements and
F

n
2 the vector space of dimension n over F2 equipped with the usual inner product (u, v) =

u1v1 + · · · + unvn. The weight of a vector u is the number of non-zero coordinates of u. A
code of length n is by definition a linear subspace of Fn

2. We impose two conditions on codes.

The first one is the self-duality which says that a code C coincides with its dual code C⊥, that
is, C = C⊥ in which

C⊥ = {u ∈ F
n
2 : (u, v) = 0, for any v ∈ C}.

The second one is the doubly-evenness which means

wt(u) ≡ 0 (mod 4), for any u ∈ C.

These two notions give rise to the relation with invariant theory via the weight enumerator

WC(x, y) =
∑
v∈C

xn−wt(v)ywt(v)

of a code C. In fact, if C is self-dual, we have

WC((x − y)/
√

2, (x + y)/
√

2) = WC(x, y)

and if C is doubly even, we have

WC(x, iy) = WC(x, y).

We mention that a self-dual and doubly even code of length n exists if and only if n is a
multiple of 8.

Now we can state the connections among all what we have mentioned. Take a positive
integer n ≡ 0 (mod 8). The weight enumerator of a self-dual doubly even code of length n

is an invariant of H1 and

WC(θ00(2τ ), θ10(2τ ))

is a modular form of weight n/2 for SL(2,Z). Gleason [9] showed that the invariants of
degree n can be spanned by the weight enumerators of self-dual doubly even codes of length
n. Finally any modular form of weight n/2 can be obtained from the weight enumerator of
self-dual doubly even codes of length n. The whole theory with more general results could be
found in [11], [12] from which our notation H1 comes.
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Besides the importance of H1, the motivation of this paper could be found in Brauer [5],
Weyl [16]. One of the main ingredients there is the commutator algebra where invari-
ant theory comes into play. We follow Weyl. Given any group of linear transformations

in an n-dimensional space. Take covariant vectors y(1), . . . , y(f ) and contravariant vectors

ξ(1), . . . , ξ (f ). A linear transformation acts on covariant vectors cogrediently and on con-
travariant vectors contragrediently. Then the matrices ‖b(i1 · · · if ; k1 · · · kf )‖ in the tensor
space obtained from the invariants∑

i;k
b(i1 · · · if ; k1 · · · kf )ξ

(1)
i1

· · · ξ(f )

if
y

(1)
k1

· · · y(f )

kf

form the commutator algebra of H1 in the tensor representation.
In this paper we decompose this algebra into simple parts. Also, we show that the di-

mensions of the commutator algebras coincide with the numbers of combinatorial objects, the
symmetric polynomials in 4 noncommuting variables [2] and the universal embedding of the
symplectic dual polar space DSp(2k, 2) [3].

2. Irreducible representations of H1

In this section we determine the irreducible representations of H1 which yields the char-
acter table. At the end of this section we discuss invariant theory of H1 under the irreducible
representations.

The unitary reflection group H1 is a finite group in U2 generated by the following matri-
ces T and D:

T = 1 + i

2

(
1 1
1 −1

)
= 1√

2

(
ε ε

ε ε5

)
, D =

(
1 0
0 i

)
.

Here ε = exp(2πi/8). It is known that the group H1 is of order 96 with 16 conjugacy classes
C1, . . . ,C16. Each conjugacy class has the following representative:

C1 � 1 =
(

1 0
0 1

)
, C2 � T = 1√

2

(
ε ε

ε ε5

)
, C3 � T 2 =

(
i 0
0 i

)
,

C4 � T 3 = 1√
2

(
ε3 ε3

ε3 ε7

)
, C5 � T 4 =

(−1 0
0 −1

)
, C6 � T 6 =

(−i 0
0 −i

)
,

C7 � D =
(

1 0
0 i

)
, C8 � DT = 1√

2

(
ε ε

ε3 ε7

)
, C9 � DT 2 =

(
i 0
0 −1

)
,

C10 � DT 3 = 1√
2

(
ε3 ε3

ε5 ε

)
, C11 � DT 4 =

(−1 0
0 −i

)
,

C12 � DT 5 = 1√
2

(
ε5 ε5

ε7 ε3

)
, C13 � DT 6 =

(−i 0
0 1

)
,
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C14 � DT 7 = 1√
2

(
ε7 ε7

ε ε5

)
, C15 � D2 =

(
1 0
0 −1

)
, C16 � D2T 2 =

(
i 0
0 −i

)
.

Since the number of conjugacy classes and that of the non-isomorphic irreducible rep-
resentations coincide, there exist 16 classes of the irreducible representations of H1. In the
following, we construct explicitly all of them one by one.

First we note that any group has the trivial representation which maps each element of the
group to 1. We denote that of H1 by (ρ1, V1). The determinant which maps T and D to −i and
i respectively also gives a one-dimensional irreducible representation. We call it (ρ3, V3). The

tensor product ρ⊗2
3 also gives a one-dimensional irreducible representation, which maps both

T and D to −1. We name it (ρ2, V2). Also ρ2 ⊗ ρ3 defines a one-dimensional representation.
We name it (ρ4, V4).

Next we consider two-dimensional representations. The natural representation (ρ10, V10)

which maps T and D to the defining matrices above is irreducible, since neither of one-
dimensional D-invariant subspaces are T -invariant. Taking tensor products with the one-
dimensional representations above and the natural representation, we have further 3 two-
dimensional irreducible representations, ρ7 = ρ3 ⊗ ρ10, ρ8 = ρ2 ⊗ ρ10 and ρ9 = ρ4 ⊗ ρ10.
There are 2 more two-dimensional irreducible representations which we will deal with later.

As a subrepresentation of ρ10 ⊗ ρ10, we have a three-dimensional irreducible repre-
sentation. Let 〈e1, e2〉 be a basis of V10 which gives the natural representation. Then

〈e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2〉 gives a basis for the tensor representation ρ⊗2
10 . With

respect to this basis, the representation matrices of T and D are

ρ⊗2
10 (T ) = i

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ and ρ⊗2

10 (D) = diag(1, i, i,−1).

If we put e′
1 = e1 ⊗ e1, e′

2 = e1 ⊗ e2 + e2 ⊗ e1 and e′
3 = e2 ⊗ e2, then 〈e′

1, e
′
2, e

′
3〉 is

obviously a D-invariant subspace. It is easy to check that it is also T -invariant. Hence it gives
a three-dimensional representation. We name it (ρ13, V13). The representation matrices with
respect to this basis are

ρ13(T ) = i

2

⎛
⎝1 2 1

1 0 −1
1 −2 1

⎞
⎠ and ρ13(D) = diag(1, i,−1).

Since each one-dimensional D-invariant subspace of V13 is not T -invariant, the representation
(ρ13, V13) is irreducible. Similarly to the previous case, we have further 3 three-dimensional
irreducible representations, ρ11 = ρ3 ⊗ ρ13, ρ12 = ρ4 ⊗ ρ13 and ρ14 = ρ2 ⊗ ρ13.

Next we look for a four-dimensional irreducible representation in (ρ10 ⊗ρ13, V10 ⊗V13).
Let 〈ei ⊗ e′

j | i = 1, 2, j = 1, 2, 3〉 be a basis of V10 ⊗ V13 (lexicographical order). Then we
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have the following representation matrices of T and D:

ρ10 ⊗ ρ13(T ) = −1 + i

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 1 2 1
1 0 −1 1 0 −1
1 −2 1 1 −2 1
1 2 1 −1 −2 −1
1 0 −1 −1 0 1
1 −2 1 −1 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ρ10 ⊗ ρ13(D) = diag(1, i,−1, i,−1,−i).

If we put e′′
1 = e1 ⊗ e′

1, e′′
2 = e1 ⊗ e′

2 + e2 ⊗ e′
1, e′′

3 = e1 ⊗ e′
3 + e2 ⊗ e′

2, and e′′
4 = e2 ⊗ e′

3,

according to the eigenvalues of ρ10 ⊗ ρ13(D), then 〈e′′
k | k = 1, 2, 3, 4〉 is obviously a D-

invariant subspace. It is also easy to check that it is T -invariant. Hence it gives a four-
dimensional representation. We name it (ρ15, V15). The representation matrices with respect
to this basis are

ρ15(T ) = −1 + i

4

⎛
⎜⎜⎝

1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

⎞
⎟⎟⎠ and ρ13(D) = diag(1, i,−1,−i).

As we saw in the previous case, none of one-dimensional D-invariant subspaces of V15 is
T -invariant. Now consider two-dimensional D-invariant subspaces. Since all eigenspaces of
ρ15(D) are one-dimensional, we find that a two-dimensional D-invariant subspace is of the
form 〈e′′

i , e
′′
j 〉(i �= j). Let W be 〈e′′

1, e
′′
2〉 and take a non-zero vector v = ae′′

1 + be′′
2 from W .

Then we have

ρ15(T )v = −1 + i

4

[
(a + 3b)e′′

1 + (a + b)e′′
2 + (a − b)e′′

3 + (a − 3b)e′′
4

]
.

In order that ρ15(T )v ∈ W , it must hold that a = b = 0. This contradicts the assumption that
v is non-zero vector. Hence we find that W is not T -invariant. Similar arguments hold for
all two-dimensional D-invariant subspaces {〈e′′

i , e
′′
j 〉}1≤i<j≤4. This implies there is no two-

dimensional subrepresentation in V15. Hence we find that (ρ15, V15) is irreducible. Similarly
to the previous case, we have further four-dimensional irreducible representations, ρ2 ⊗ ρ15,
ρ3 ⊗ ρ15, ρ4 ⊗ ρ15. The first one, however, coincides with ρ15 and the second one and the
third one are equivalent. Hence we have 2 four-dimensional irreducible representations, ρ15

and ρ16 = ρ3 ⊗ ρ15.
Finally we look for the remaining irreducible representations in (ρ10 ⊗ ρ15, V10 ⊗ V15).

Let 〈ei ⊗ e′′
j | i = 1, 2, j = 1, 2, 3, 4〉 be a basis of V10 ⊗ V15 (lexicographical order). Then

we have the following representation matrices of T and D:
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ρ10 ⊗ ρ15(T ) = −1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 1 3 3 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −3 3 −1 1 −3 3 −1
1 3 3 1 −1 −3 −3 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 −3 3 −1 −1 3 −3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ρ10 ⊗ ρ15(D) = diag(1, i,−1,−i, i,−1,−i, 1).

If we put e′′′
1 = e1 ⊗ e′′

1 + e2 ⊗ e′′
4, and e′′′

2 = e1 ⊗ e′′
3 + e2 ⊗ e′′

2, then 〈e′′′
1 , e′′′

2 〉 is T - and
D-invariant subspace. We name it (ρ5, V5). The representation matrices with respect to this
basis are

ρ5(T ) = −1

2

(
1 1
3 −1

)
and ρ5(D) = diag(1,−1).

Similarly to the previous ones, we can check that this representation is irreducible. Further
ρ6 = ρ3 ⊗ ρ5 also defines a two-dimensional irreducible representation.

So far, we have got 16 irreducible representations. Since H1 has 16 conjugacy classes,

{(ρi , Vi)}16
i=1 are complete representatives of all irreducible representations of H1. Accord-

ingly, the character table of H1 is also derived.

H1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
1 T T 2 T 3 T 4 T 6 D DT DT 2 DT 3 DT 4 DT 5 DT 6 DT 7 D2 D2T 2

order 1 8 4 8 2 4 4 6 4 12 4 3 4 12 2 4
size 1 12 1 12 1 1 6 8 6 8 6 8 6 8 6 6
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 1
χ3 1 −i −1 i 1 −1 i 1 −i −1 i 1 −i −1 −1 1
χ4 1 i −1 −i 1 −1 −i 1 i −1 −i 1 i −1 −1 1
χ5 2 0 2 0 2 2 0 −1 0 −1 0 −1 0 −1 2 2
χ6 2 0 −2 0 2 −2 0 −1 0 1 0 −1 0 1 −2 2
χ7 2 0 −2i 0 −2 2i β 1 α −i α −1 β i 0 0
χ8 2 0 2i 0 −2 −2i β 1 α i α −1 β −i 0 0
χ9 2 0 −2i 0 −2 2i α 1 β −i β −1 α i 0 0
χ10 2 0 2i 0 −2 −2i α 1 β i β −1 α −i 0 0
χ11 3 1 3 1 3 3 −1 0 −1 0 −1 0 −1 0 −1 −1
χ12 3 −1 3 −1 3 3 1 0 1 0 1 0 1 0 −1 −1
χ13 3 i −3 −i 3 −3 i 0 −i 0 i 0 −i 0 1 −1
χ14 3 −i −3 i 3 −3 −i 0 i 0 −i 0 i 0 1 −1
χ15 4 0 −4i 0 −4 4i 0 −1 0 i 0 1 0 −i 0 0
χ16 4 0 4i 0 −4 −4i 0 −1 0 −i 0 1 0 i 0 0

Here α = 1 + i, β = −1 + i, and α, β are their complex conjugates.
We conclude this section with adding a few words on invariant theory of H1 under irre-

ducible representations (cf. [8]). Let ρ be one of the d-dimensional irreducible representation
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of H1. Then ρ(H1) acts naturally on the polynomial ring of d variables. We denote the
invariant ring under this action by C[ρ]H1 . The orders of ρi(H1) are

1, 2, 4, 4︸ ︷︷ ︸
dim 1

, 6, 12, 96, 96, 96, 96︸ ︷︷ ︸
dim 2

, 24, 24, 48, 48︸ ︷︷ ︸
dim 3

, 96, 96︸ ︷︷ ︸
dim 4

.

The dimension 1 case aside, the invariant rings

C[ρ5]H1,C[ρi]H1 (i = 7, 8, 9, 10),C[ρ12]H1

are weighted polynomial rings. In the sense of [14], all ρi(H1) (i = 7, 8, 9, 10) are equivalent

each other, and ρ15(H1) to ρ16(H1). We already know the ringC[ρ7]H1 . The ringC[ρ5]H1 can
be generated by the polynomials of degrees 2 and 3, and the ring C[ρ15]H1 by those of degrees
2, 3 and 4. If we look at the degrees, we can find that ρ5(H1) is equivalent to G(3, 3, 2) and
ρ12(H1) to G(2, 2, 3). The other cases up to dimension 3 are modules of rank 2 over the
polynomial rings. The ρ15 case has a somewhat complicated structure. The ring C[ρ15]H1 is
a module of rank 32 over the polynomial ring. We note that calculations here were done with
Magma [4].

3. Decomposition of tensor representations

In the previous section, we have found complete representatives of all irreducible repre-
sentations. In this section, we see how tensor powers of ρ10 are decomposed into irreducible
ones.

We begin with the general theory (see for example Curtis-Reiner[7]). Let χ1, . . . , χs be
the set of all irreducible characters of a finite group G. For any (not necessarily irreducible)
representation (ρ, V ) of G, let χ be its character. Then χ can be uniquely expressed by a sum
of irreducible characters:

χ = m1χ1 + · · · + msχs.

Now suppose that χ has its character values (k1, . . . , ks) = (χ(C1), . . . , χ(Cs )) on the con-
jugacy classes (C1, . . . ,Cs). Then we get

(k1, . . . , ks) = (χ(C1), . . . , χ(Cs ))

= m1(χ1(C1), . . . , χs(Cs)) + · · · + ms(χs(C1), . . . , χs(Cs ))

= (m1, . . . ,ms)

⎛
⎜⎝

χ1(C1) · · · χ1(Cs )
...

. . .
...

χs(C1) · · · χs(Cs)

⎞
⎟⎠ .

If we let X denote the matrix of the character table, then the above relation is simply written
as

(k1, . . . , ks) = (m1, . . . ,ms)X. (1)
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By the linear independence of the irreducible characters, X is non-singular. Hence we have

(m1, . . . ,ms) = (k1, . . . , ks)X
−1. (2)

In order to examine the structure of the centralizer algebra of the tensor representation,
it is useful to investigate how the tensor product of the natural and an irreducible representa-
tion is decomposed into the irreducible ones. In the following, we go back to our case and
decompose ρ10 ⊗ ρi (i = 1, 2, . . . , 16) one by one.

By the argument and/or the character table in the previous section, we already have the
following:

χ10 · χ1 = χ10, χ10 · χ2 = χ8, χ10 · χ3 = χ7, χ10 · χ4 = χ9.

Further, we can directly read the following from the character table:

χ10 · χ5 = χ16, χ10 · χ6 = χ15.

Next, consider χ10 · χ7. Again from the character table, we have

(χ10 · χ7(C1), . . . , χ10 · χ7(C16))

= (4, 0, 4, 0, 4, 4,−2, 1,−2, 1,−2, 1,−2, 1, 0, 0).

Using the identity (2), we have

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

= (χ10 · χ7(C1), . . . , χ10 · χ7(C16)) X−1. (3)

Here using the orthogonality of the character table we can obtain the matrix X−1 from X by
multiplying the j -th column by |Cj |/|G|, taking the complex conjugates and then transposing

it. In our case we have the following matrix as 96 × X−1:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4
12 −12 12i −12i 0 0 0 0 0 0 12 −12 −12i 12i 0 0
1 1 −1 −1 2 −2 2i −2i 2i −2i 3 3 −3 −3 4i −4i

12 −12 −12i 12i 0 0 0 0 0 0 12 −12 12i −12i 0 0
1 1 1 1 2 2 −2 −2 −2 −2 3 3 3 3 −4 −4
1 1 −1 −1 2 −2 −2i 2i −2i 2i 3 3 −3 −3 −4i 4i

6 −6 −6i 6i 0 0 6β 6β 6α 6α −6 6 −6i 6i 0 0
8 8 8 8 −8 −8 8 8 8 8 0 0 0 0 −8 −8
6 −6 6i −6i 0 0 6α 6α 6β 6β −6 6 6i −6i 0 0
8 8 −8 −8 −8 8 8i −8i 8i −8i 0 0 0 0 −8i 8i

6 −6 −6i 6i 0 0 6α 6α 6β 6β −6 6 −6i 6i 0 0
8 8 8 8 −8 −8 −8 −8 −8 −8 0 0 0 0 8 8
6 −6 6i −6i 0 0 6β 6β 6α 6α −6 6 6i −6i 0 0
8 8 −8 −8 −8 8 −8i 8i −8i 8i 0 0 0 0 8i −8i
6 6 −6 −6 12 −12 0 0 0 0 −6 −6 6 6 0 0
6 6 6 6 12 12 0 0 0 0 −6 −6 −6 −6 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here again α = 1 + i, β = −1 + i, and α, β are their complex conjugate. The equation (3)
means

χ10 · χ7 = χ2 + χ11.

In a similar way we have

χ10 · χ8 = χ4 + χ14, χ10 · χ9 = χ1 + χ12, χ10 · χ10 = χ3 + χ13,
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χ10 · χ11 = χ8 + χ16, χ10 · χ12 = χ10 + χ16, χ10 · χ13 = χ7 + χ15,

χ10 · χ14 = χ9 + χ15, χ10 · χ15 = χ5 + χ11 + χ12, χ10 · χ16 = χ6 + χ13 + χ14.

By the above calculation, we obtain the Bratteli diagram of the decomposition of ρ⊗k
10 (k =

1, 2, 3, . . .) into irreducible ones.

ρ10, 1 12 = 1

ρ3, 1 ρ13, 1 12 + 12 = 2

ρ7, 2 ρ15, 1 22 + 12 = 5

ρ2, 2 ρ11, 3 ρ12, 1 ρ5, 1 22 + 32 + 12 + 12 = 15

ρ8, 5 ρ10, 1 ρ16, 5 52 + 12 + 52 = 51

ρ4, 5 ρ3, 1 ρ14, 10 ρ13, 6 ρ6, 5 52 + 12 + 102 + 62 + 52 = 187

ρ9, 15 ρ7, 7 ρ15, 21 152 + 72 + 212 = 715

ρ1, 15 ρ2, 7 ρ11, 28ρ12, 36 ρ5, 21 152 + 72 + 282 + 362 + 212 = 2795

ρ8, 35 ρ10, 51ρ16, 85 352 + 512 + 852 = 11051
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From this diagram we can read off the multiplicity of each irreducible representation (ρi, Vi)

in V ⊗k
10 by counting the number of paths from the top vertex indexed by ρ10 in the 1-st row

to the corresponding vertex in the k-th row. We put the multiplicity on the right side of each
irreducible representation. Further, we calculated the square sums of the multiplicities on
each row.

Let Ak = EndH1(V
⊗k
10 ) be the centralizer algebra of H1 in V ⊗k

10 , where H1 acts on V10

diagonally. By the Schur-Weyl reciprocity [13, 16], this diagram is the Bratteli diagram of the
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algebra sequence

C = A1 ⊂ A2 ⊂ A3 ⊂ · · · .

(For the Bratteli diagram, see for example Goodman-de la Harpe-Jones [10], §2.3.) Accord-

ingly, the square sum of the multiplicities on the k-th row is the dimension of EndH1(V
⊗k
10 ).

We will examine it in detail in the next section.

4. Centralizer algebra

In the previous section, we have seen that the dimensions of Ak = EndH1(V
⊗k
10 ) (k =

1, 2, . . .) are 1, 2, 5, 15, 51, 187, 715, . . . . According to “The On-Line Encyclopedia of
Integer Sequences”[15], these terms coincide with the fist few terms of the expression (3 ·
2k−2 + 22k−3 + 1)/3. This is indeed the case arbitrarily. In order to prove this, we calculate
the size of each simple component of Ak .

Let d
(i)
j be the multiplicity of ρi in the tensor representation ρ

⊗j
10 , which coincides with

the size of the corresponding simple component of Aj . By the Bratteli diagram of Aj given in
the previous section, we have the recursive formulae as follows. First note that the irreducible
representations ρ8, ρ10, ρ16 of H1 again appear in the bottom of the diagram, as well as the
5-th row of the diagram. This implies that the diagram periodically grows up as k increases.
The iteration is as follows:

[ρ8, ρ10, ρ16] → [ρ4, ρ3, ρ14, ρ13, ρ6] → [ρ9, ρ7, ρ15] → [ρ1, ρ2, ρ11, ρ12, ρ5] → · · · .

Hence based on the Bratteli diagram of the 9-th row from the 5-th row, we can obtain the
following recursive formulae:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
(4)
4�+2 = d

(8)
4�+1,

d
(3)
4�+2 = d

(10)
4�+1,

d
(14)
4�+2 = d

(8)
4�+1 + d

(16)
4�+1,

d
(13)
4�+2 = d

(10)
4�+1 + d

(16)
4�+1,

d
(6)
4�+2 = d

(16)
4�+1,⎧⎪⎨

⎪⎩
d

(9)
4�+3 = d

(4)
4�+2 + d

(14)
4�+2,

d
(7)
4�+3 = d

(3)
4�+2 + d

(13)
4�+2,

d
(15)
4�+3 = d

(14)
4�+2 + d

(13)
4�+2 + d

(6)
4�+2,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
(1)
4(�+1) = d

(9)
4�+3,

d
(2)
4(�+1) = d

(7)
4�+3,

d
(11)
4(�+1) = d

(7)
4�+3 + d

(15)
4�+3,

d
(12)
4(�+1) = d

(9)
4�+3 + d

(15)
4�+3,

d
(5)
4(�+1) = d

(15)
4�+3,
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⎧⎪⎨
⎪⎩

d
(8)
4(�+1)+1 = d

(2)
4(�+1) + d

(11)
4(�+1),

d
(10)
4(�+1)+1 = d

(1)
4(�+1) + d

(12)
4(�+1),

d
(16)
4(�+1)+1 = d

(11)
4(�+1) + d

(12)
4(�+1) + d

(5)
4(�+1).

Note also that if we allow the possibility d
(i)
j = 0, the recursions above are still valid even for

the 1-st to 4-th row. Hence we have the following:

d
(8)
4�+1 = d

(2)
4� + d

(11)
4�

= d
(7)
4�−1 + (d

(7)
4�−1 + d

(15)
4�−1)

= 2d
(7)
4�−1 + d

(15)
4�−1

= 2(d
(3)
4�−2 + d

(13)
4�−2) + (d

(14)
4�−2 + d

(13)
4�−2 + d

(6)
4�−2)

= 2d
(3)
4�−2 + d

(14)
4�−2 + 3d

(13)
4�−2 + d

(6)
4�−2

= 2d
(10)
4�−3 + (d

(8)
4�−3 + d

(16)
4�−3) + 3(d

(10)
4�−3 + d

(16)
4�−3) + d

(16)
4�−3

= d
(8)
4(�−1)+1 + 5d

(10)
4(�−1)+1 + 5d

(16)
4(�−1)+1 (� > 0). (4)

Similarly we have

d
(10)
4�+1 = 5d

(8)
4(�−1)+1 + d

(10)
4(�−1)+1 + 5d

(16)
4(�−1)+1 (5)

and

d
(16)
4�+1 = 5d

(8)
4(�−1)+1 + 5d

(10)
4(�−1)+1 + 11d

(16)
4(�−1)+1 . (6)

From the recursion (4), (5) and (6), and the initial condition (d
(8)
1 , d

(10)
1 , d

(16)
1 ) = (0, 1, 0),

we obtain

d
(8)
4�+1 = − (−4)�

2
+ 1

3
+ 16�

6
,

d
(10)
4�+1 = (−4)�

2
+ 1

3
+ 16�

6
,

d
(16)
4�+1 = −1

3
+ 16�

3
.

By the initial recursion formulae, we immediately obtain

d
(4)
4�+2 = − (−4)�

2
+ 1

3
+ 16�

6
,

d
(3)
4�+2 = (−4)�

2
+ 1

3
+ 16�

6
,

d
(14)
4�+2 = − (−4)�

2
+ 16�

2
,
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d
(13)
4�+2 = (−4)�

2
+ 16�

2
,

d
(6)
4�+2 = −1

3
+ 16�

3
,

d
(9)
4�+3 = −(−4)� + 1

3
+ 2 · 16�

3
,

d
(7)
4�+3 = (−4)� + 1

3
+ 2 · 16�

3
,

d
(15)
4�+3 = −1

3
+ 4 · 16�

3

and

d
(1)
4(�+1) = −(−4)� + 1

3
+ 2 · 16�

3
,

d
(2)
4(�+1) = (−4)� + 1

3
+ 2 · 16�

3
,

d
(11)
4(�+1) = (−4)� + 2 · 16�,

d
(12)
4(�+1) = −(−4)� + 2 · 16�,

d
(5)
4(�+1)

= −1

3
+ 4 · 16�

3
.

Thus we have obtained the size of each simple component of Ak . If we apply simple consid-
erations to the order of simple components, the sizes are uniformly described as follows.

THEOREM 1. Let Ak = EndH1(V
⊗k
10 ) be a centralizer algebra of H1 in V ⊗k

10 , where
H1 acts on V10 diagonally. Then Ak has the following multi-matrix structure.

Ak
∼=

⎧⎪⎪⎨
⎪⎪⎩

Md+(k)(C) ⊕ Md−(k)(C) ⊕ Md0(k)(C)

if k = 2m − 1,

Md+(k)(C) ⊕ Md−(k)(C) ⊕ Md0(k)(C) ⊕ Me+(k)(C) ⊕ Me−(k)(C)

if k = 2m,

where

d±(k) = ±2m−2 + 1

3
+ 2 · 4m−2

3
,

d0(k) = −1

3
+ 4m−1

3

and

e±(k) = ±2m−2 + 2 · 4m−2.
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Calculating the square sum of the dimensions of the simple components of Ak in cases
k = 2m − 1 and k = 2m, we finally obtain the following corollary as we expected.

COROLLARY 1.

dimAk = 2k−2 + 22k−3

3
+ 1

3
.

Hence we found that the dimensions of the centralizer algebras of H1 in the tensor repre-
sentations coincide with the number of the symmetric polynomials in 4 noncommuting vari-
ables [2] and the universal embedding of the symplectic dual polar space DSp(2k, 2) [3].
This result suggests that the basis of the centralizer could be indexed by those combinatorial
objects. Unfortunately, we do not have any concrete correspondence among them at present.
It would be interesting that these points become clear.
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