The Equivalence Theorem of Kinetic Solutions and Entropy Solutions for Stochastic Scalar Conservation Laws

Dai NOBORIGUCHI

Waseda University
(Communicated by K. Matsuzaki)

Abstract

In this paper, we prove the equivalence of kinetic solutions and entropy solutions for the initialboundary value problem with a non-homogeneous boundary condition for a multi-dimensional scalar first-order conservation law with a multiplicative noise. We somewhat generalized the definitions of kinetic solutions and of entropy solutions given in Kobayasi and Noboriguchi [8] and Bauzet, Vallet and Wittobolt [1], respectively.

1. Introduction

In this paper we study the first order stochastic conservation law of the following type

$$
\begin{equation*}
d u+\operatorname{div}(A(u)) d t=\Phi(u) d W(t) \quad \text { in } \Omega \times Q \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0, \cdot)=u_{0}(\cdot) \quad \text { in } \Omega \times D, \tag{2}
\end{equation*}
$$

and the formal boundary condition

$$
\begin{equation*}
" u=u_{b} " \quad \text { on } \Omega \times \Sigma \text {. } \tag{3}
\end{equation*}
$$

Here $D \subset \mathbb{R}^{d}$ is a bounded domain with a Lipschitz boundary $\partial D, T>0, Q=(0, T) \times D$, $\Sigma=(0, T) \times \partial D$ and W is a cylindrical Wiener process defined on a stochastic basis $\left(\Omega, \mathscr{F}_{2}\left(\mathscr{F}_{t}\right), P\right)$. More precisely, $\left(\mathscr{F}_{t}\right)$ is a complete right-continuous filtration and $W(t)=\sum_{k=1}^{\infty} \beta_{k}(t) e_{k}$ with $\left(\beta_{k}\right)_{k \geq 1}$ being mutually independent real-valued standard Wiener processes relative to $\left(\mathscr{F}_{t}\right)$ and $\left(e_{k}\right)_{k \geq 1}$ is a complete orthonormal system in a separable Hilbert space H (cf. [3] for example). Our purpose of this paper is to present the definitions of a kinetic solution and an entropy solution to the initial-boundary value problem (1)-(3) and to prove that such solutions are equivalent.

In the case of $\Phi=0$, Eq.(1) becomes a deterministic scalar conservation law. In this case, a well known difficulty for the boundary condition (3) is that if (3) were assumed in the

[^0]classical sense the problem (1)-(3) would be overdetermined. In the BV setting Bardos, Le Roux and Nédélec [2] first gave an interpretation of the boundary condition (3) as an "entropy" inequality on Σ. This condition is known as the BLN condition. However the BLN condition makes sense only if there exists a trace of solutions on ∂D. Otto [10] extended it to the L^{∞} setting by introducing the notion of boundary entropy-flux pairs. Imbert and Vovelle [5] gave a kinetic formulation of weak entropy solutions of the initial-boundary value problem and proved equivalence between such a kinetic solution and weak entropy solution. Concerning deterministic degenerate parabolic equations, see [7] and [9].

To add a stochastic forcing $\Phi(u) d W(t)$ is natural for applications, which appears in wide variety of fields as physics, engineering and others. There are a few paper concerning the Dirichlet boundary value problem for stochastic conservation laws. See Kim [6], Vallet and Wittbold [11] and the references therein. Using the notion of entropy solutions, Bauzet, Vallet and Wittbold [1] studied the Dirichlet problem in the case of multiplicative noise under the restricted assumption that the flux function A is global Lipschitz. On the other hand, using the notion of kinetic solutions, Kobayasi and Noboriguchi [8] extended the result of Debussche and Vovelle [4] to the multidimensional Dirichlet problem with multiplicative noise without the assumption that A is global Lipschitz.

The aim of the present paper is to prove an equivalence theorem between kinetic solutions and entropy solutions to the problem (1)-(3). In the deterministic case the equivalence has been proved in [5]. Therefore our result is a counterpart of it in the stochastic case. In order to show that an entropy solution is a kinetic solution we introduce a notion of renormalized kinetic solutions in which both of the boundary defect measure $\bar{m}^{ \pm}$and the defect measure m are renormalized. We note that in [8] only the boundary defect measure is renormalized. We note that the uniqueness of such renormalized kinetic solution can be also proved in the same way as in [8]

We now give the precise assumptions under which the problem (1)-(3) is considered:
$\left(\mathrm{H}_{1}\right)$ The flux function $A: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is of class C^{2} and its derivatives have at most polynomial growth.
$\left(\mathrm{H}_{2}\right)$ For each $z \in L^{2}(D), \Phi(z): H \rightarrow L^{2}(D)$ is defined by $\Phi(z) e_{k}=g_{k}(\cdot, z(\cdot))$, where $g_{k} \in C(D \times \mathbb{R})$ satisfies the following conditions:

$$
\begin{gather*}
G^{2}(x, \xi)=\sum_{k=1}^{\infty}\left|g_{k}(x, \xi)\right|^{2} \leq L\left(1+|\xi|^{2}\right) \tag{4}\\
\sum_{k=1}^{\infty}\left|g_{k}(x, \xi)-g_{k}(y, \zeta)\right|^{2} \leq L\left(|x-y|^{2}+|\xi-\zeta| r(|\xi-\zeta|)\right) \tag{5}
\end{gather*}
$$

for every $x, y \in D, \xi, \zeta \in \mathbb{R}$. Here, L is a positive constant and r is a continuous nondecreasing function on \mathbb{R}_{+}with $r(0)=0$.
$\left(\mathrm{H}_{3}\right) u_{0} \in L^{\infty}(\Omega \times D)$ and u_{0} is $\mathscr{F}_{0} \otimes \mathscr{B}(D)$-measurable, where $\mathscr{B}(D)$ is the Borel σ field on $D . u_{b} \in L^{\infty}(\Omega \times \Sigma)$ and $\left\{u_{b}(t)\right\}$ is predictable, in the following sense: For
every $p \in[1, \infty)$, the $L^{p}(\partial D)$-valued process $\left\{u_{b}(t)\right\}$ is predictable with respect to the filtration $\left(\mathscr{F}_{t}\right)$.
Note that under the assumption $\left(\mathrm{H}_{1}\right)$ an important example of inviscid Burgers' equation (i.e. $A(\xi)=\xi^{2} / 2$) can be included and that by (4) one has

$$
\begin{equation*}
\Phi: L^{2}(D) \rightarrow L_{2}\left(H ; L^{2}(D)\right), \tag{6}
\end{equation*}
$$

where $L_{2}\left(H ; L^{2}(D)\right)$ denotes the set of Hilbert-Schmidt operators from H to $L^{2}(D)$.
This paper is organized as follows. In Section 2, we introduce the notion of kinetic solutions and entropy solutions to (1)-(3) and state our result. In Section 3, we give a proof of it.

2. Statement of the result

We now give some notations and the definitions of kinetic solutions and entropy solutions in this section. We choose a finite open cover $\left\{U_{\lambda_{i}}\right\}_{i=0, \ldots, M}$ of \bar{D} and a partition of unity $\left\{\lambda_{i}\right\}_{i=0, \ldots, M}$ on \bar{D} subordinated to $\left\{U_{\lambda_{i}}\right\}$ such that $U_{\lambda_{0}} \cap \partial D=\emptyset$, for $i=1, \ldots, M$,

$$
\begin{gathered}
D^{\lambda_{i}}:=D \cap U_{\lambda_{i}}=\left\{x \in U_{\lambda_{i}} ;\left(\mathcal{A}_{i} x\right)_{d}>h_{\lambda_{i}}\left(\overline{\mathcal{A}_{i} x}\right)\right\} \text { and } \\
\partial D^{\lambda_{i}}:=\partial D \cap U_{\lambda_{i}}=\left\{x \in U_{\lambda_{i}} ;\left(\mathcal{A}_{i} x\right)_{d}=h_{\lambda_{i}}\left(\overline{\mathcal{A}_{i} x}\right)\right\},
\end{gathered}
$$

with a Lipschitz function $h_{\lambda_{i}}: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$, where \mathcal{A}_{i} is an orthogonal matrix corresponding to a change of coordinates of \mathbb{R}^{d} and \bar{y} stands for $\left(y_{1}, \ldots, y_{d-1}\right)$ if $y \in \mathbb{R}^{d}$. For the sake of clarity, we will drop the index i of λ_{i} and we will suppose that the matrix \mathcal{A}_{i} equals to the identity. We also set $Q^{\lambda}=(0, T) \times D^{\lambda}, \Sigma^{\lambda}=(0, T) \times \partial D^{\lambda}$ and $\Pi^{\lambda}=\left\{\bar{x} ; x \in U_{\lambda}\right\}$.

To regularize functions that are defined on D^{λ} and \mathbb{R}, let us consider a standard mollifier ρ on \mathbb{R}, that is, ρ is a nonnegative and even function in $C_{c}^{\infty}((-1,1))$ such that $\int_{\mathbb{R}} \rho=1$. We set $\rho^{\lambda}(x)=\Pi_{i=1}^{d-1} \rho\left(x_{i}\right) \rho\left(x_{d}-\left(L_{\lambda}+1\right)\right)$ for $x=\left(x_{1}, \ldots, x_{d}\right)$ with the Lipschitz constant L_{λ} of h_{λ} on Π^{λ}. Moreover we denote by ψ a standard mollifier on \mathbb{R}_{ξ}. For $\varepsilon, \delta>0$ we set $\rho_{\varepsilon}^{\lambda}(x)=\frac{1}{\varepsilon^{\varepsilon}} \rho^{\lambda}\left(\frac{x}{\varepsilon}\right)$ and $\psi_{\delta}(\xi)=\frac{1}{\delta} \psi\left(\frac{\xi}{\delta}\right)$.

We denote by \mathcal{E}^{+}the set of non-negative convex functions η in $C^{\infty}(\mathbb{R})$ such that $\eta(x)=$ 0 if $x \leq 0$ and that there exists $\delta>0$ such that $\eta^{\prime}(x)=1$ if $x>\delta$. We also denote by \mathcal{E}^{-}the set $\left\{\eta \in C^{\infty}(\mathbb{R}) ; \eta(-\cdot) \in \mathcal{E}^{+}\right\}$. For convenience, define

$$
\begin{aligned}
& \operatorname{sgn}^{+}(r)=\left\{\begin{array}{ll}
1 & \text { if } r>0, \\
0 & \text { if } r \leq 0,
\end{array} \quad \text { and } \quad \operatorname{sgn}^{-}(r)= \begin{cases}-1 & \text { if } r<0, \\
0 & \text { if } r \geq 0,\end{cases} \right. \\
& \mathcal{F}^{ \pm}(\xi, \kappa)=\operatorname{sgn}^{ \pm}(\xi-\kappa)(A(\xi)-A(\kappa)) \\
& \text { and for any } \eta \in \mathcal{E}^{+} \cup \mathcal{E}^{-}, \quad \mathcal{F}^{\eta}(\xi, \kappa)=\int_{\kappa}^{\xi} \eta^{\prime}(\zeta-\kappa) a(\zeta) d \zeta,
\end{aligned}
$$

where $a(\xi)=A^{\prime}(\xi)$.
Definition 2.1 (Kinetic measure). The set $\left\{m_{N} ; N>0\right\}$ of maps m_{N} from Ω to $\mathcal{M}_{b}^{+}([0, T) \times D \times(-N, N))$ is said to be a kinetic measure if
(i) for each $N>0, m_{N}$ are weak measurable,
(ii) if $A_{N}=[0, T) \times D \times\{\xi \in \mathbb{R} ; N-1 \leq|\xi| \leq N\}$ then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{E} m_{N}\left(A_{N}\right)=0, \tag{7}
\end{equation*}
$$

(iii) for all $\phi \in C_{b}(D \times(-N, N))$, the process

$$
\begin{equation*}
t \mapsto \int_{[0, t] \times D \times(-N, N)} \phi(x, \xi) d m_{N}(s, x, \xi) \tag{8}
\end{equation*}
$$

is predictable,
where $\mathbb{E} X$ denotes the expectation of a random variable $X, C_{b}(D \times(-N, N))$ is the set of bounded continuous functions over $D \times(-N, N)$ and $\mathcal{M}_{b}^{+}([0, T) \times D \times(-N, N))$ is the set of non-negative finite measures over $[0, T) \times D \times(-N, N)$.

Definition 2.2 (Kinetic solution). Let u_{0} and u_{b} satisfy $\left(\mathrm{H}_{3}\right)$. A measurable function $u: \Omega \times Q \rightarrow \mathbb{R}$ is said to be a kinetic solution of (1)-(3) if the following conditions (i)-(iii) hold:
(i) $\{u(t)\}$ is predictable,
(ii) for all $p \in[1, \infty)$ there exists a constant $C_{p} \geq 0$ such that for a.e. $t \in[0, T]$,

$$
\begin{equation*}
\|u(t)\|_{L^{p}(\Omega \times D)} \leq C_{p}, \tag{9}
\end{equation*}
$$

(iii) there exist kinetic measures $\left\{m_{N}^{ \pm} ; N>0\right\}$ and for any $N>0$ nonnegative functions $\bar{m}_{N}^{ \pm} \in L^{1}(\Omega \times \Sigma \times(-N, N))$ such that $\left\{\bar{m}_{N}^{ \pm}(t)\right\}$ is predictable, $\bar{m}_{N}^{+}(N-0)=$ $\bar{m}_{N}^{-}(-N+0)=0$ for sufficiently large $N>0$ and $f_{+}:=\mathbf{1}_{u>\xi}, f_{-}:=f_{+}-1=$ $-\mathbf{1}_{u \leq \xi}$ satisfy: for all $\varphi \in C_{c}^{\infty}([0, T) \times \bar{D} \times(-N, N))$,

$$
\begin{aligned}
\int_{Q} & \int_{-N}^{N} f_{ \pm}\left(\partial_{t}+a(\xi) \cdot \nabla\right) \varphi d \xi d x d t \\
& +\int_{D} \int_{-N}^{N} f_{ \pm}^{0} \varphi(0) d \xi d x+M_{N} \int_{\Sigma} \int_{-N}^{N} f_{ \pm}^{b} \varphi d \xi d \sigma d t \\
= & -\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u) \varphi(t, x, u) d x d \beta_{k}(t) \\
& -\frac{1}{2} \int_{Q} G^{2}(x, u) \partial_{\xi} \varphi(t, x, u) d x d t
\end{aligned}
$$

$$
\begin{equation*}
+\int_{[0, T) \times D \times(-N, N)} \partial_{\xi} \varphi d m_{N}^{ \pm}(t, x, \xi)+\int_{\Sigma} \int_{-N}^{N} \partial \xi \varphi \bar{m}_{N}^{ \pm} d \xi d \sigma d t \quad \text { a.s. } \tag{10}
\end{equation*}
$$

where $M_{N}=\max _{-N \leq \xi \leq N}|a(\xi)| \cdot \operatorname{In}(10), f_{+}^{0}=\mathbf{1}_{u_{0}>\xi}, f_{+}^{b}=\mathbf{1}_{u_{b}>\xi}, f_{-}^{0}=f_{+}^{0}-1$ and $f_{-}^{b}=f_{+}^{b}-1$.

REMARK 2.3. Even when we define kinetic solutions as above, we can get a unique existence theorem of kinetic solutions in a similar method as in [8].

REMARK 2.4. The main difficulty is to give an appropriate boundary condition. We treat this difficulty by using the kinetic trace $\bar{f}_{ \pm}$(see (27) below) of the kinetic solution $f_{ \pm}$. Two boundary defect measures $\bar{m}_{N}^{ \pm}$are introduced and characterized by the formula

$$
\begin{equation*}
\partial_{\xi} \bar{m}_{N}^{ \pm}=-M_{N} f_{ \pm}^{b} \pm(-a \cdot n) \bar{f}_{ \pm} \tag{11}
\end{equation*}
$$

(see (30) and (31) below). The relation (11) can be understood as a kinetic analogue of the notion of boundary entropy-flux pairs introduced by Otto [10].

DEFINITION 2.5 (Entropy solution). Let u_{0} and u_{b} satisfy $\left(\mathrm{H}_{3}\right)$. Let $u: \Omega \times Q \rightarrow \mathbb{R}$ be a measurable function.
(1) u is said to be an entropy sub-solution of (1)-(3) with data $\left(u_{0}, u_{b}\right)$ if it satisfies:
(i) $\{u(t)\}$ is predictable,
(ii) for all $p \in[1, \infty)$ there exists a constant $C_{p} \geq 0$ such that for a.e. $t \in[0, T]$,

$$
\begin{equation*}
\|u(t)\|_{L^{p}(\Omega \times D)} \leq C_{p}, \tag{12}
\end{equation*}
$$

(iii) a.e. $N \in \mathbb{R}^{+}$, for any $\kappa \in(-N, N), \eta \in \mathcal{E}^{+}$and $\varphi \in C_{c}^{\infty}([0, T) \times \bar{D})$ with $\varphi \geq 0$,

$$
\begin{align*}
& \int_{Q} \eta(u \wedge N-\kappa) \partial_{t} \varphi d x d t+\int_{Q} \mathcal{F}^{\eta}(u \wedge N, \kappa) \cdot \nabla \varphi d x d t \\
& \quad+\int_{D} \eta\left(u_{0} \wedge N-\kappa\right) \varphi(0) d x+M_{N} \int_{\Sigma} \eta\left(u_{b} \wedge N-\kappa\right) \varphi d \sigma d t \\
& \quad+\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} \mathbf{1}_{u \in(-N, N)} \eta^{\prime}(u-\kappa) g_{k}(x, u) \varphi d x d \beta_{k}(t) \\
& \quad+\frac{1}{2} \int_{Q} \mathbf{1}_{u \in(-N, N)} \eta^{\prime \prime}(u-\kappa) G^{2}(x, u) \varphi d x d t \geq I_{N}^{+}(\varphi) \quad \text { a.s. } \tag{13}
\end{align*}
$$

where $I_{N}^{+}(\varphi)$ are non-positive and satisfy $\lim \sup _{N \rightarrow \infty} I_{N}^{+}(\varphi)=0$.
(2) u is said to be an entropy super-solution of (1)-(3) with data $\left(u_{0}, u_{b}\right)$ if definition of entropy sub-solution (iii) is replaced by
a.e. $N \in \mathbb{R}^{+}$, for any $\kappa \in(-N, N), \eta \in \mathcal{E}^{-}$and $\varphi \in C_{c}^{\infty}([0, T) \times \bar{D})$ with $\varphi \geq 0$,

$$
\begin{align*}
\int_{Q} & \eta(u \vee N-\kappa) \partial_{t} \varphi d x d t+\int_{Q} \mathcal{F}^{\eta}(u \vee N, \kappa) \cdot \nabla \varphi d x d t \\
& +\int_{D} \eta\left(u_{0} \vee N-\kappa\right) \varphi(0) d x+M_{N} \int_{\Sigma} \eta\left(u_{b} \vee N-\kappa\right) \varphi d \sigma d t \\
& +\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} \mathbf{1}_{u \in(-N, N)} \eta^{\prime}(u-\kappa) g_{k}(x, u) \varphi d x d \beta_{k}(t) \\
\quad & +\frac{1}{2} \int_{Q} \mathbf{1}_{u \in(-N, N)} \eta^{\prime \prime}(u-\kappa) G^{2}(x, u) \varphi d x d t \geq I_{N}^{-}(\varphi) \quad \text { a.s. }, \tag{14}
\end{align*}
$$

where $I_{N}^{-}(\varphi)$ are non-positive and satisfy $\lim \sup _{N \rightarrow \infty} I_{N}^{-}(\varphi)=0$.
(3) u is said to be an entropy solution of (1)-(3) with data $\left(u_{0}, u_{b}\right)$ if it is both an entropy sub- and super-solution.

We are in a position to state our result.
THEOREM 2.6. Let the assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold true. Then the following statements are equivalent each other:
(i) u is a kinetic solution of (1)-(3) with data $\left(u_{0}, u_{b}\right)$.
(ii) u is an entropy solution of (1)-(3) with data $\left(u_{0}, u_{b}\right)$.

REMARK 2.7. If u is an entropy solution to (1)-(3), then u is a weak solution over $[0, T) \times D$ in the following sense; for any $\varphi \in C_{c}^{\infty}([0, T) \times D)$

$$
\begin{align*}
& \int_{Q} u(t, x) \partial_{t} \varphi d x d t+\int_{D} u_{0}(x) \varphi(0) d x+\int_{Q} A(u(t, x)) \cdot \nabla \varphi d x d t \\
& \quad+\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u(t, x)) \varphi d x d \beta_{k}(t)=0 \quad \text { a.s. } \tag{15}
\end{align*}
$$

Indeed, we take $\varphi \in C_{c}^{\infty}([0, T) \times D)$. Passing $N \rightarrow \infty$ in (13) and then passing $\kappa \rightarrow-\infty$, we obtain

$$
\begin{align*}
& \int_{Q} u(t, x) \partial_{t} \varphi d x d t+\int_{D} u_{0}(x) \varphi(0) d x+\int_{Q} A(u(t, x)) \cdot \nabla \varphi d x d t \\
& \quad+\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u(t, x)) \varphi d x d \beta_{k}(t) \geq 0 \quad \text { a.s. } \tag{16}
\end{align*}
$$

In a similar manner, from (14) we obtain

$$
\begin{align*}
& \int_{Q} u(t, x) \partial_{t} \varphi d x d t+\int_{D} u_{0}(x) \varphi(0) d x+\int_{Q} A(u(t, x)) \cdot \nabla \varphi d x d t \\
& \quad+\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u(t, x)) \varphi d x d \beta_{k}(t) \leq 0 \quad \text { a.s. } \tag{17}
\end{align*}
$$

Combining (16) with (17) yields (15).

3. Proof

To prove that a kinetic solution is an entropy solution, we need the following two lemmas.
LEMMA 3.1. We assume that for each $N>0$ (10) holds true. Then for any $N_{2}>$ $N_{1}>0$ and $\varphi \in C_{c}^{\infty}\left([0, T) \times \bar{D} \times\left(-N_{1}, N_{1}\right)\right)$,

$$
\begin{equation*}
\int_{[0, T) \times D \times\left(-N_{1}, N_{1}\right)} \partial \xi \varphi d m_{N_{1}}^{ \pm}(t, x, \xi)=\int_{[0, T) \times D \times\left(-N_{1}, N_{1}\right)} \partial \xi \varphi d m_{N_{2}}^{ \pm}(t, x, \xi) \tag{18}
\end{equation*}
$$

Proof. Let $\bar{f}_{ \pm}^{\lambda}$ be any weak* limit of $\left\{f_{ \pm}^{\lambda, \varepsilon}\right\}$ as $\varepsilon \rightarrow+0$ in $L^{\infty}\left(\Sigma^{\lambda} \times \mathbb{R}\right)$ for any element λ of the partition of unity $\left\{\lambda_{i}\right\}$ on \bar{D}, where $f_{ \pm}^{\lambda, \varepsilon}$ is denoted by

$$
f_{ \pm}^{\lambda, \varepsilon}(t, x, \xi)=\int_{D^{\lambda}} f_{ \pm}(t, x, \xi) \rho_{\varepsilon}^{\lambda}(y-x) d y
$$

and let $\bar{f}_{ \pm}=\sum_{i=0}^{M} \lambda_{i} \bar{f}_{ \pm}^{\lambda_{i}}$. We take $\phi \in C_{c}^{\infty}([0, T) \times \bar{D} \times(-N, N))$. Put $\varphi=\bar{W}_{\varepsilon} \phi^{\lambda}$ in (10), where $\phi^{\lambda}=\phi \lambda$ and for any $\varepsilon>0$

$$
\begin{equation*}
\bar{W}_{\varepsilon}=\int_{0}^{x_{d}-h_{\lambda}(\bar{x})} \rho_{\varepsilon}^{\lambda}\left(r-\varepsilon\left(L_{\lambda}+1\right)\right) d r \tag{19}
\end{equation*}
$$

Letting $\varepsilon \rightarrow+0$ and summing over i, we obtain

$$
\begin{align*}
& \int_{Q} \int_{-N}^{N} f_{ \pm}\left(\partial_{t}+a(\xi) \cdot \nabla\right) \phi d \xi d x d t+\int_{D} \int_{-N}^{N} f_{ \pm}^{0} \phi(0) d \xi d x \\
&+\int_{\Sigma} \int_{-N}^{N}(-a(\xi) \cdot \mathbf{n}) \bar{f}_{ \pm} \phi d \xi d \sigma d t \\
&=-\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u) \phi(t, x, u) d x d \beta_{k}(t) \\
& \quad-\frac{1}{2} \int_{Q} G^{2}(x, u) \partial_{\xi} \phi(t, x, u) d x d t+\int_{[0, T) \times D \times(-N, N)} \partial_{\xi} \phi d m_{N}^{ \pm}(t, x, \xi) \quad \text { a.s. } \tag{20}
\end{align*}
$$

We take $\phi \in C_{c}^{\infty}\left([0, T) \times \bar{D} \times\left(-N_{1}, N_{1}\right)\right)$. Subtracting the case $N=N_{1}$ from the case $N=N_{2}$ in (20), we can get the desired result.

For a kinetic measure $\left\{m_{N} ; N>0\right\}$, from (7) there exists a set $\Omega_{0} \subset \Omega$ of full measure and a sequence $\left\{N_{k} ; k \in \mathbb{N}\right\} \subset \mathbb{N}$ such that for all $\omega \in \Omega_{0}$,

$$
\begin{align*}
& \lim _{k \rightarrow \infty} m_{N_{k}}\left([0, T) \times D \times\left[N_{k}-1, N_{k}\right)\right) \\
& \quad=\lim _{k \rightarrow \infty} m_{N_{k}}\left([0, T) \times D \times\left(-N_{k},-N_{k}+1\right]\right)=0 . \tag{21}
\end{align*}
$$

For each $N \in \mathbb{N}$ and fixed $\omega \in \Omega_{0}$, we define the non-decreasing functions on $[-N, N]$ by

$$
\begin{equation*}
\mu_{N}(\xi)=m_{N}([0, T) \times D \times(-N, \xi)) \tag{22}
\end{equation*}
$$

Let \mathbb{D}_{N} be the sets of $\xi \in(N-1, N)$ such that $\mu_{i}, i=N, N+1, \ldots$, are differentiable at ξ and $-\xi$. We also set $\mathbb{D}=\cup_{N=1}^{\infty} \mathbb{D}_{N}$. It is easy to see that \mathbb{D}_{N} and \mathbb{D} are full sets of $(N-1, N)$ and \mathbb{R}, respectively.

Lemma 3.2. It holds true:

(i) Let $N_{0} \in \mathbb{N}$. If $a \in \mathbb{D}_{N_{0}}$, then for all $N \in \mathbb{N}$ with $N \geq N_{0}$, as $\delta \downarrow 0$

$$
\begin{equation*}
\int_{-N}^{N} \psi_{\delta}(\xi \pm a) d \mu_{N}(\xi) \rightarrow \mu_{N}^{\prime}(\mp a) \tag{23}
\end{equation*}
$$

(ii) There exists a sequence $\left\{a_{N} ; N \in \mathbb{N}\right\} \subset \mathbb{A}$ such that

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \mu_{N}^{\prime}\left(\pm N \mp a_{N}\right)=0 \tag{24}
\end{equation*}
$$

where $\mathbb{A}=\cap_{N=1}^{\infty}\left\{a \in(0,1) ; N-a \in \mathbb{D}_{N}\right\}$.
Proof. Let $a \in \mathbb{D}_{N_{0}}$. Since $\mu_{N}(\zeta \mp a)=\mu_{N}(\mp a)+\mu_{N}^{\prime}(\mp a) \zeta+o(\zeta)$ for each $N \in \mathbb{N}$ with $N \geq N_{0}$, it follows that

$$
\int_{-N}^{N} \psi_{\delta}(\zeta \pm a) d \mu_{N}(\zeta)=-\int_{-\delta}^{\delta} \mu_{N}(\zeta \mp a) \psi_{\delta}^{\prime}(\zeta) d \zeta=\mu_{N}^{\prime}(\mp a)-\int_{-\delta}^{\delta} o(\zeta) \psi_{\delta}^{\prime}(\zeta) d \zeta
$$

Besides, the last term of the right hand on the above equality tends to 0 as $\delta \rightarrow+0$. Indeed, since for any $\varepsilon>0$ there exists $\delta_{0}>0$ such that if $|\zeta|<\delta_{0}$ then $|o(\zeta)| \leq \varepsilon|\zeta|$, if $0<\delta<\delta_{0}$ then

$$
\left|\int_{-\delta}^{\delta} o(\zeta) \psi_{\delta}^{\prime}(\zeta) d \zeta\right| \leq \varepsilon \int_{-\delta}^{\delta}\left|\zeta \psi_{\delta}^{\prime}(\zeta)\right| d \zeta \leq \varepsilon
$$

Thus we obtain the claim of (i).
Next, let us assume that there exists a number $k \in \mathbb{N}$ such that for any $N \geq k$ and $a \in \mathbb{A}$,

$$
\mu_{N}^{\prime}(N-a)>\frac{1}{k} .
$$

Since the function $\xi \mapsto \mu_{N}(\xi)$ is non-decreasing, for all $N \in \mathbb{N}$ with $N \geq k$

$$
\mu_{N}(N)-\mu_{N}(N-1) \geq \int_{N-1}^{N} \mu_{N}^{\prime}(\xi) d \xi
$$

$$
=\int_{0}^{1} \mu_{N}^{\prime}(N-1+\xi) d \xi>\int_{0}^{1} \frac{1}{k} d \xi=\frac{1}{k}>0
$$

This contradicts the limit (21). Thus for each $k \in \mathbb{N}$, there exist a number $N_{k} \geq k$ and $a_{k} \in \mathbb{A}$ such that

$$
\mu_{N_{k}}^{\prime}\left(N_{k}-a_{k}\right) \leq \frac{1}{k}
$$

Proof of Theorem 2.6. Consider a kinetic solution u of (1)-(3). We take $N \in \mathbb{D}$, $\varphi \in C_{c}^{\infty}([0, T) \times \bar{D})$ with $\varphi \geq 0, \kappa \in(-N, N)$ and $\eta \in \mathcal{E}^{+}$. We define the cutoff functions as follows. For each $\delta>0$,

$$
\Psi_{\delta}(\xi)=\int_{-\infty}^{\xi}\left\{\psi_{\delta}(\zeta+N-\delta)-\psi_{\delta}(\zeta-N+\delta)\right\} d \zeta
$$

Putting $(t, x, \xi) \mapsto \varphi(t, x) \eta^{\prime}(\xi-\kappa) \Psi_{\delta}(\xi)$ in (10), we obtain

$$
\begin{align*}
& \int_{Q} \int_{-N}^{N} f_{ \pm}\left(\partial_{t}+a(\xi) \cdot \nabla\right) \varphi \eta^{\prime}(\xi-\kappa) \Psi_{\delta}(\xi) d \xi d x d t \\
&+\int_{D} \int_{-N}^{N} f_{ \pm}^{0} \varphi(0) \eta^{\prime}(\xi-\kappa) \Psi_{\delta}(\xi) d \xi d x \\
&+M_{N} \int_{\Sigma} \int_{-N}^{N} f_{ \pm}^{b} \varphi \eta^{\prime}(\xi-\kappa) \Psi_{\delta}(\xi) d \xi d \sigma d t \\
&=-\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u) \varphi(t, x) \eta^{\prime}(u-\kappa) \Psi_{\delta}(u) d x d \beta_{k}(t) \\
&-\frac{1}{2} \int_{Q} G^{2}(x, u) \partial_{\xi} \varphi(t, x) \eta^{\prime}(u-\kappa) \Psi_{\delta}(u) d x d t \\
&+\int_{[0, T) \times D \times(-N, N)} \varphi\left\{\eta^{\prime \prime}(\xi-\kappa) \Psi_{\delta}(\xi)+\eta^{\prime}(\xi-\kappa) \Psi_{\delta}^{\prime}(\xi)\right\} d m_{N}(t, x, \xi) \\
&+\int_{\Sigma} \int_{-N}^{N} \varphi \bar{m}_{N}^{ \pm}\left\{\eta^{\prime \prime}(\xi-\kappa) \Psi_{\delta}(\xi)+\eta^{\prime}(\xi-\kappa) \Psi_{\delta}^{\prime}(\xi)\right\} d \xi d \sigma d t \quad \text { a.s. } \tag{25}
\end{align*}
$$

Using Lemma 3.1 and Lemma 3.2 (i), we can compute the third term on the right hand of (25) as follows. For some $N_{0} \in \mathbb{N}$ with $N_{0}>N$,

$$
\begin{aligned}
& \int_{[0, T) \times D \times(-N, N)} \varphi\left\{\eta^{\prime \prime}(\xi-\kappa) \Psi_{\delta}(\xi)+\eta^{\prime}(\xi-\kappa) \Psi_{\delta}^{\prime}(\xi)\right\} d m_{N}(t, x, \xi) \\
& \quad=\int_{[0, T) \times D \times(-N, N)} \varphi\left\{\eta^{\prime \prime}(\xi-\kappa) \Psi_{\delta}(\xi)+\eta^{\prime}(\xi-\kappa) \Psi_{\delta}^{\prime}(\xi)\right\} d m_{N_{0}}(t, x, \xi) \\
& \quad \geq \int_{[0, T) \times D \times(-N, N)} \varphi \eta^{\prime}(\xi-\kappa) \Psi_{\delta}^{\prime}(\xi) d m_{N_{0}}(t, x, \xi)
\end{aligned}
$$

$$
\begin{aligned}
& \geq-C \int_{[0, T) \times D \times(-N, N)} \psi_{\delta}(\xi-N+\varepsilon) d m_{N_{0}}(t, x, \xi) \\
& \geq-C \int_{-N}^{N} \psi_{\delta}(\xi-N+\varepsilon) d \mu_{N_{0}}(\xi) \\
& \rightarrow-C \mu_{N_{0}}^{\prime}(N)=: I_{N}^{+}(\varphi), \quad \text { as } \delta \downarrow 0 .
\end{aligned}
$$

Since by Lemma 3.2 (ii) there exists a sequence $\left\{a_{i}\right\} \subset \mathbb{A}$ such that $\liminf _{i \rightarrow \infty} \mu_{i}^{\prime}\left(\pm i \mp a_{i}\right)=$ 0 , if we set $N_{i}=i-a_{i}$, then $\lim \sup _{i \rightarrow \infty} I_{N_{i}}^{+}(\varphi)=0$. Therefore using integration by parts it is easy to see that as $\delta \downarrow 0$ we get (13). In a similar manner, we can also obtain (14).

Next we prove that an entropy solution is a kinetic solution. Consider an entropy solution u of (1)-(3). Define linear forms $v_{N}^{ \pm}$on $C_{c}^{\infty}([0, T) \times \bar{D} \times(-N, N))$ by

$$
\begin{aligned}
\nu_{N}^{+}(\varphi):= & \int_{Q} \int_{-N}^{N}(u \wedge N-\xi)^{+} \partial_{t} \varphi d \xi d x d t \\
& +\int_{Q} \int_{-N}^{N} \mathcal{F}^{+}(u \wedge N, \xi) \nabla \varphi d \xi d x d t \\
& +\int_{D} \int_{-N}^{N}\left(u_{0} \wedge N-\xi\right)^{+} \varphi(0) d \xi d x \\
& +M_{N} \int_{\Sigma} \int_{-N}^{N}\left(u_{b} \wedge N-\xi\right)^{+} \varphi d \xi d \sigma d t \\
& +\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} \int_{-N}^{N} \mathbf{1}_{u \in(-N, N)} \operatorname{sgn}_{+}(u-\xi) g_{k}(x, u) \varphi d \xi d x d \beta_{k}(t) \\
& +\frac{1}{2} \int_{Q} G^{2}(x, u) \varphi(t, x, u) d x d t-\int_{-N}^{N} I_{N}^{+}(\varphi) d \xi
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{N}^{-}(\varphi):= & \int_{Q} \int_{-N}^{N}(u \vee N-\xi)^{-} \partial_{t} \varphi d \xi d x d t \\
& +\int_{Q} \int_{-N}^{N} \mathcal{F}^{-}(u \vee N, \xi) \nabla \varphi d \xi d x d t \\
& +\int_{D} \int_{-N}^{N}\left(u_{0} \vee N-\xi\right)^{-} \varphi(0) d \xi d x \\
& +M_{N} \int_{\Sigma} \int_{-N}^{N}\left(u_{b} \vee N-\xi\right)^{-} \varphi d \xi d \sigma d t \\
& +\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} \int_{-N}^{N} \mathbf{1}_{u \in(-N, N)} \operatorname{sgn}_{-}(u-\xi) g_{k}(x, u) \varphi d \xi d x d \beta_{k}(t)
\end{aligned}
$$

$$
+\frac{1}{2} \int_{Q} G^{2}(x, u) \varphi(t, x, u) d x d t-\int_{-N}^{N} I_{N}^{-}(\varphi) d \xi
$$

Since u is an entropy solution, we know that $v_{N}^{ \pm}(\varphi)$ are nonnegative for a.e. $N \in \mathbb{R}^{+}$and any $\varphi \geq 0$. We conclude that for a.e. $N \in \mathbb{R}^{+}, v_{N}^{ \pm}$are nonnegative finite measures on $[0, T) \times \bar{D} \times(-N, N)$ and satisfy the condition (7). Moreover, we have

$$
\begin{align*}
v_{N}^{ \pm}\left(\partial_{\xi} \varphi\right)= & \int_{Q} \int_{-N}^{N} f_{ \pm}\left(\partial_{t}+a(\xi) \cdot \nabla\right) \varphi d \xi d x d t \\
& +\int_{D} \int_{-N}^{N} f_{ \pm}^{0} \varphi(0) d \xi d x+M_{N} \int_{\Sigma} \int_{-N}^{N} f_{ \pm}^{b} \varphi d \xi d \sigma d t \\
& +\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u) \varphi(t, x, u) d x d \beta_{k}(t) \\
& +\frac{1}{2} \int_{Q} G^{2}(x, u) \partial_{\xi} \varphi(t, x, u) d x d t \tag{26}
\end{align*}
$$

We now denote by $m_{N}^{ \pm}$the restriction of $v_{N}^{ \pm}$to $[0, T) \times D \times(-N, N)$ and by $\bar{v}_{N}^{ \pm}$the restriction of $v_{N}^{ \pm}$to $\Sigma \times(-N, N)$. Let $\varphi \in C_{c}^{\infty}([0, T) \times \bar{D} \times(-N, N))$. Take a test function $(t, x, \xi) \mapsto$ $\bar{W}_{\varepsilon}(x) \varphi^{\lambda}(t, x, \xi)$ in (26), where $\varphi^{\lambda}=\varphi \lambda$ and

$$
\bar{W}_{\varepsilon}(x)=\int_{0}^{x_{d}-h_{\lambda}(\bar{x})} \rho_{\varepsilon}^{\lambda}\left(r-\varepsilon\left(L_{\lambda}+1\right)\right) d r .
$$

Let $\bar{f}_{ \pm}^{\lambda}$ be any weak* limit of $\left\{f_{ \pm}^{\lambda, \varepsilon}\right\}$ as $\varepsilon \rightarrow+0$ in $L^{\infty}\left(\Sigma^{\lambda} \times \mathbb{R}\right)$ for any element λ of the partition of unity $\left\{\lambda_{i}\right\}$ on \bar{D}, where $f_{ \pm}^{\lambda, \varepsilon}$ is denoted by

$$
f_{ \pm}^{\lambda, \varepsilon}(t, x, \xi)=\int_{D^{\lambda}} f_{ \pm}(t, x, \xi) \rho_{\varepsilon}^{\lambda}(y-x) d y
$$

and let

$$
\begin{equation*}
\bar{f}_{ \pm}=\sum_{i=0}^{M} \lambda_{i} \bar{f}_{ \pm}^{\lambda_{i}} \tag{27}
\end{equation*}
$$

Then letting the limit $\varepsilon \downarrow 0$ and summing over i, we obtain

$$
\begin{aligned}
m_{N}^{ \pm}\left(\partial_{\xi} \varphi\right)= & \int_{Q} \int_{-N}^{N} f_{ \pm}\left(\partial_{t}+a(\xi) \cdot \nabla\right) \varphi d \xi d x d t \\
& +\int_{D} \int_{-N}^{N} f_{ \pm}^{0} \varphi(0) d \xi d x+\int_{\Sigma} \int_{-N}^{N}(-a(\xi) \cdot n) \bar{f}_{ \pm} \varphi d \xi d \sigma d t \\
& +\sum_{k=1}^{\infty} \int_{0}^{T} \int_{D} g_{k}(x, u) \varphi(t, x, u) d x d \beta_{k}(t)
\end{aligned}
$$

$$
\begin{equation*}
+\frac{1}{2} \int_{Q} G^{2}(x, u) \partial_{\xi} \varphi(t, x, u) d x d t \tag{28}
\end{equation*}
$$

It follows from (26) and (28) that for all $\varphi \in C_{c}^{\infty}([0, T) \times \bar{D} \times(-N, N))$,

$$
\begin{align*}
& \int_{\Sigma} \int_{-N}^{N}(-a(\xi) \cdot n) \bar{f}_{ \pm} \varphi d \xi d \sigma d t \\
& \quad=M_{N} \int_{\Sigma} \int_{-N}^{N} f_{ \pm}^{b} \varphi d \xi d \sigma d t-\int_{\Sigma} \int_{-N}^{N} \partial_{\xi} \varphi d \bar{\nu}_{N}^{ \pm}(t, x, \xi) \tag{29}
\end{align*}
$$

Defining the functions $\bar{m}_{N}^{ \pm}$by

$$
\begin{align*}
& \bar{m}_{N}^{+}(t, x, \xi):=M_{N}\left(u_{b}(t, x)-\xi\right)^{+}-\int_{\xi}^{N}(-a(\xi) \cdot n(x)) \bar{f}_{+}(t, x, \zeta) d \zeta \tag{30}\\
& \bar{m}_{N}^{-}(t, x, \xi):=M_{N}\left(u_{b}(t, x)-\xi\right)^{-}+\int_{-N}^{\xi}(-a(\xi) \cdot n(x)) \bar{f}_{-}(t, x, \zeta) d \zeta \tag{31}
\end{align*}
$$

we can replace $\int_{\Sigma} \int_{-N}^{N} \partial_{\xi} \varphi d \bar{\nu}_{N}^{ \pm}(t, x, \xi)$ with $\int_{\Sigma} \int_{-N}^{N} \partial_{\xi} \varphi \bar{m}_{N}^{ \pm} d \xi d t d \sigma$ in (29). Since obviously $\bar{m}_{N}^{ \pm}(\pm N \mp 0)=0$ for sufficiently large $N \in \mathbb{R}$, we conclude the desired claim.

Acknowledgment. The author would like to express my gratitude to Professor Kazuo Kobayasi for many useful discussions on the subject.

References

[1] C. Bauzet, G. Vallet and P. Wittbolt, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation, J. Funct. Anal. 266 (2014), 2503-2545.
[2] C. Bardos, A. Y. Le Roux and J.-C. NÉdÉLEC, First order quasilinear equations with boundary condition, Comm. Partial Differential Equations 4 (1979), 1017-1034.
[3] G. Da Prato and J. ZABCZYK, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1992.
[4] A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing, J. Funct. Anal. 259 (4) (2010), 1014-1042.
[5] C. Imbert and J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal. 36 (2004), 214-232.
[6] J. U. Kim, On a stochastic scalar conservation law, Indiana Univ. Math. J. 52 (1) (2003), 227-256.
[7] K. Kobayasi, A kinetic approach to comparison properties for degenerate parabolic-hyperbolic equations with boundary conditions, J. Differential Equations 230 (2006), 682-701.
[8] K. Kobayasi and D. Noboriguchi, A stochastic conservation law with nonhomogeneous Dirichlet boundary conditions, preprint.
[9] A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal. 41 (2003), 2262-2293.
[10] F. Отто, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 729-734.
[11] G. Vallet and P. Wittbold, On a stochastic first-order hyperbolic equation in a bounded domain, Infin. Dimens. Anal. Quantum Probab. 12 (4) (2009), 1-39.

Present Address:

Graduate School of Education,
Waseda University,
1-6-1 Nishi-WASEDA, Shinjuku-Ku, Tokyo 169-8050, Japan.
e-mail: 588243-dai@fuji.waseda.jp

[^0]: Received July 28, 2014; revised December 9, 2014
 Mathematics Subject Classification: 35L04, 60H15
 Key words and phrases: Conservation laws, Kinetic solution, entropy solution

