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Abstract. We deal with the existence and non-existence of positive solutions for the problem
⎧
⎨

⎩

−Δpu+m(x)up−1 = a(x)f (u)+ λb(x)g(u) in RN ,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

where Δp is the p-Laplacian operator, 1 < p < N , λ > 0 is a real parameter, f, g : (0,∞) → (0,∞) and

m, a, b : RN → [0,∞); a, b �= 0 are continuous functions. In this work we consider, for example, nonlinearities
with combined effects of concave and convex terms, besides allowing the presence of singularities. For existence of
solutions, we exploit the lower and upper solutions method, combined with a technique of monotone-regularization
on the nonlinearities f and g and for non-existence we use a consequence of Picone identity.

1. Introduction

This paper deals with the existence and non-existence of solutions for the problem
⎧
⎨

⎩

−Δpu+m(x)up−1 = a(x)f (u)+ λb(x)g(u) in RN ,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

(1.1)

where Δpu = div(|∇u|p−2∇u), 1 < p < N, is the p-Laplacian operator, λ > 0 is a real

parameter, f, g : (0,∞) → (0,∞) and m, a, b : RN → [0,∞); a, b �= 0 are continuous
functions.

By a solution of (1.1) we mean a function u = uλ ∈ C1(RN) such that u > 0 in RN ,
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with u(x) → 0 when |x| → ∞ and such that, for all φ ∈ C∞
0 (R

N),
∫

RN
[|∇u|p−2∇u∇φ +m(x)up−1φ]dx =

∫

RN
[a(x)f (u)+ λb(x)g(u)]φdx .

In this paper, we say that an arbitrary function h : (0,∞) → [0,∞) is (p − 1)-sublinear

at 0 or at +∞ respectively, if lims→0 h(s)/s
p−1 = ∞ or lims→∞ h(s)/sp−1 = 0, (p − 1)-

superlinear at 0 or at +∞ respectively, if lims→0 h(s)/s
p−1 = 0 or lims→∞ h(s)/sp−1 = ∞

and (p − 1)-asymptotically linear if there is a positive and finite number that corresponds to
the values of these limits. In particular, a nonlinearity of the concave-convex type is (p −
1)-sublinear at 0 and (p − 1)-superlinear at infinity. Moreover, h is called singular at 0 if
lims→0+ h(s) = ∞.

Problems like (1.1) have been studied intensively in recent years including nonlinearities
that behave like (p−1)-sublinear and (p−1)-superlinear at zero and/or infinity. Among others,
in bounded domains we can cite [2, 14, 32] for the case p = 2, and [17, 15, 3] for the case
p �= 2. In general, there are no works in the literature dealing with p-Laplacian equations
with singular terms and combined nonlinearities (i.e., with the combined effects of concave
and convex terms). An exception is the recent work of Gasiński and Papageorgiou [19]. The
propose of our work is to consider this type of nonlinearities.

We emphasize that our results do not require singularity of the functions f and g , but
we are particularly interested in the case where f and g may have singularity at 0. For our
readers’ information, we note that problems including singular nonlinearities arise in various
physical situations, present in electrical conductivity, in the theory of pseudoplastic fluids, in
singular minimal surfaces, in reaction-diffusion processes, in obtaining various geophysical
indexes and industrial processes, among others; see [6, 7, 16] for a detailed discussion.

From now on, we are going to denote the following

hi := lim
s→i

h(s) , hi := lim
s→i

h(s)

sp−1
and hinf = inf

s>0

h(s)

sp−1
,

for i = 0 or i = ∞, by hi, hi , hinf ∈ [0,∞].
We define the function

ρ(x) := min{a(x), b(x)} , x ∈ RN , (1.2)

and we suppose ρ �= 0. Considering ρ(x) restricted to a smooth bounded domain Ω ⊂
RN , we denote by λ1,Ω(m, ρ) > 0 the first eigenvalue and by ϕΩ = ϕ1,Ω > 0 the first
eigenfunction of the problem

{−Δpϕ +m(x)ϕp−1 = λρ(x)|ϕ|p−2ϕ in Ω ,

ϕ > 0 in Ω, ϕ = 0 on ∂Ω .
(1.3)

Moreover, we are going to denote

λ1(m, ρ) = lim
R→∞λ1,BR (m, ρ)�0 ,
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where BR is the ball centered at the origin of RN with radius R > 0.

REMARK 1.1. The first eigenvalue of (1.3) is simple and positive. Its first associated

eigenfunction, ϕΩ , is positive and belongs to C1,α(Ω), α ∈ (0, 1) (see [31]).

We can show that if the number λ1(m, ρ) given above is equal to zero, there will be no
solution to the problem (1.1).

THEOREM 1.1. If λ1(m, ρ) = 0 and fi + gi > 0, i = 0 and i = ∞, then there is
no solution to the problem (1.1), for all λ > 0. In particular, if the terms a and b satisfy
|x|pa(x), |x|pb(x) → ∞ when |x| → ∞ and fi + gi > 0, i = 0 and i = ∞, then the
problem

⎧
⎨

⎩

−Δpu = a(x)f (u)+ λb(x)g(u) in RN ,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

has no solution for all λ > 0.

The following conditions will be required in our results:

(M) there exists a solution ωM ∈ C1(RN) of
⎧
⎨

⎩

−Δpu+m(x)up−1 = M(x) in RN ,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

(1.4)

where M(x) := max{a(x), b(x)}, x ∈ RN ;

(F ) (F0) f0 < 1/‖ωM‖p−1
L∞(RN) or (F∞) f∞ < 1/‖ωM‖p−1

L∞(RN) .

From now on, we are going to denote ‖ωM‖L∞(RN) by ‖ωM‖∞.

REMARK 1.2. We know that the number λ1(m, ρ) is non-negative and, if it is equal to
zero, by Theorem 1.1 we have non-existence of solution for (1.1). Now, if we assume (M),
then we have

λ1(m, ρ) � ‖ωM‖1−p∞ > 0 . (1.5)

For details, see Lemma 2.2 in the next section.

REMARK 1.3. Conditions for the existence of solutions to problem (1.4) are consid-
ered in the next section. See Lemma 2.1.

Now, to state our main result, we let

λ∗ :=

⎧
⎪⎨

⎪⎩

0, if g0 = 0 and f0 > λ1(m, ρ) ,

max
{

0, λ1(m,ρ)−f0
g0

}
, if 0 < g0 < ∞ ,

0 , if g0 = ∞ .

(1.6)
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Note that, with this definition, we are assuming f0 + g0 > 0.

THEOREM 1.2. Assume that (M) and (F ) hold. Then there exists 0 < λ∗ � ∞ such
that problem (1.1) has:

(a) a solution for each λ∗ < λ < λ∗,
(b) no solution if λ > λ∗.

In addition,

λ∗ � max

{
1

g0

(
1

‖ωM‖p−1∞
− f0

)

,
1

g∞

(
1

‖ωM‖p−1∞
− f∞

)}

and

finf + λ∗ginf � λ1(m, ρ) .

Moreover, if

(c) gi , gj > 0 or (d) gi > 0, fj > λ1(m, ρ)

holds for i, j ∈ {0,∞}, i �= j , then λ∗ < ∞.

REMARK 1.4. About Theorem 1.2, it is important to note that

(i) If f0 > λ1(m, ρ), the condition (F0) cannot occur, due to (1.5).
(ii) Since in this result 0 � g0 � ∞ is permitted, it is allowed that our nonlinearities

admit mixed behavior (such as concave-convex and/or singularities).

Now we present some tables that can contribute to a better understanding of our results.
Here, we are considering λ∗ � 0 as a divisor point, in the sense that the problem (1.1) has
a solution before it but none afterwards (when it is possible). Under the assumptions of

Theorem 1.2 and remembering that by (1.5) λ1(m, ρ) � ‖ωM‖1−p∞ , we have:

(I) If (F0) holds, then:

g0 = 0 λ∗ = ∞

g0 > 0

g∞ > 0 0 < λ∗ < ∞

g∞ = 0

f∞ > λ1(m, ρ) 0 < λ∗ < ∞
f∞ ≤ λ1(m, ρ)

f∞ < ‖ωM‖1−p∞ λ∗ = ∞
‖ωM‖1−p∞ ≤ f∞ ≤ λ1(m, ρ) no available
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(II) If (F∞) holds, then:

g∞ = 0 λ∗ = ∞

g∞ > 0

g0 > 0 0 < λ∗ < ∞

g0 = 0

f0 > λ1(m, ρ) 0 < λ∗ < ∞
f0 ≤ λ1(m, ρ)

f0 < ‖ωM‖1−p∞ λ∗ = ∞
‖ωM‖1−p∞ ≤ f0 ≤ λ1(m, ρ) no available

(III) Concerning the classical problem
⎧
⎨

⎩

−Δpu = a(x)un + λb(x)um in RN ,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

(1.7)

which includes concave-convex nonlinearities, we have:

(III1) If |x|pa(x), |x|pb(x) → ∞ when |x| → ∞ and −∞ < m ≤ p − 1 ≤ n or
−∞ < n ≤ p − 1 ≤ m, then there is no solution to (1.7), for all λ > 0.

(III2) If a, b are functions such that hypothesis (M) is satisfied, we can observe that: if
−∞ < n < p − 1, then f0 = ∞ and f∞ = 0, which implies that (F∞) holds.
Now, if n > p − 1, then f0 = 0 and f∞ = ∞, which implies that (F0) holds.

We can conclude:

−∞ < n < p − 1 n = p − 1, ‖ωM‖∞ < 1 n > p − 1
−∞ < m < p − 1 λ∗ = ∞ λ∗ = ∞ 0 < λ∗ < ∞

m = p − 1 0 < λ∗ < ∞ 0 < λ∗ < ∞ 0 < λ∗ < ∞
m > p − 1 0 < λ∗ < ∞ λ∗ = ∞ no available

To motivate our work, we relate that problems like (1.1) have been studied intensively in
recent years. In the semilinear case p = 2, we begin by citing the work of Lair and Shaker
[25], who in 1996 determined the existence of a unique classical solution to the problem

⎧
⎨

⎩

−Δu = a(x)u−γ in RN ,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

(1.8)

where N � 3, γ > 0, a(x) > 0 and
∫ ∞

0
tφ(t)dt < ∞ , with φ(t) = max|x|=t a(x) . (1.9)
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In 1997, the same authors [26] extended this result considering the more general problem
⎧
⎨

⎩

−Δu = a(x)f (u) in RN,

u > 0 in RN , u(x) → 0 when |x| → ∞ ,

(1.10)

where a(x) � 0, a �= 0 satisfies the hypothesis (1.9) above, f is singular at s = 0 with
f (s) > 0 if s > 0 and f ′(s) � 0.

To insert these problems in the context of our work, in (1.8) we identified m ≡ 0, λ = 0
and f (s) = s−γ , which implies that f0 = ∞ and f∞ = 0. With this, the hypothesis (F∞)
holds. Moreover, by [21] we can see that (1.9) implies that (M) holds. In a similar analysis
for (1.10), we can see that Theorem 1.2 resolves both problems.

With the objective of studying the singular effect of the sign-changing of f ′ on the struc-
ture of the ground state solution set in (1.10), in 2003 Yijing and Shujie [35] considered
nonlinearity as the sum of a singular and a sublinear term, thus establishing the existence of
the classical solution to the problem

⎧
⎨

⎩

−Δu = a(x)u−γ + b(x)uα in RN ,

u > 0 in RN, u(x) → 0 when |x| → ∞ ,

where 0 < γ, α < 1, a, b ∈ Cαloc(RN) are nonnegative functions such that a(x)+ b(x) �= 0

for all x ∈ RN , and they satisfy (1.9). In this case, by identifying f (s) = s−γ and g(s) = sα ,
we obtain f0 = g0 = ∞, f∞ = g∞ = 0, which implies that (F∞) holds and λ∗ = ∞. With
this, the problem above is solved by Theorem 1.2, for all λ > 0.

We also cite the work of Ahmed Mohammed [30], who in 2009 established the existence

of solution in C2,α
loc (R

N) to the problem

⎧
⎨

⎩

−Δu = γ a(x)f (u)+ ηb(x)g(u) in RN ,

u > 0 in RN, u(x) → 0 when |x| → ∞ ,

where a, b are functions in Cαloc(R
N, [0,∞)), a �= 0, η, γ are positive real parameters and

f, g in C1((0,∞), (0,∞)) satisfy g is bounded near 0, f (t)/t is bounded on [ε,∞), for
every ε > 0 and limt→0+ f (t)/t = ∞. Furthermore, it was assumed that there is a positive
solution to the problem

⎧
⎨

⎩

−Δω = a(x)+ b(x) in RN ,

ω(x) → 0 , when |x| → ∞ .

In this work, Mohammed generalized the results in [22] and [35], allowing far more general
nonlinearities and weakening the conditions on a and b. Here, we have f0 = ∞, f∞ < ∞
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and, by the conditions in g , we obtain g0 = ∞ or g0 < ∞. Since f∞ < ∞, the hypothesis
(F ) occurs only to sufficiently small parameter γ .

In the quasilinear case p �= 2, in 2004 Gonçalves and Santos [21] studied the prob-
lem (1.10) with a � 0 being continuous and radially symmetric and f singular at s = 0,

f (s)/sp−1 nonincreasing in (0,∞), lim infs→0 f (s) > 0 and f∞ = 0. Assuming 1 < p < N

and

(i)
∫ ∞

0
r

1
p−1 a(r)

1
p−1 dr < ∞ , if 1 < p � 2 and

(ii)
∫ ∞

0
r
(p−2)N+1

p−1 a(r) dr < ∞ , if 2 � p < ∞ , (1.11)

the authors used fixed point arguments, the shooting method and a lower-upper solutions
argument to determine the existence and non-existence of radially symmetric solutions to
the problem. In 2005, Covei [11] extended their results to the case where a is nonradial but
positive and locally Hölder continuous. Replacing a(r) in (1.11) by max|x|=r a(x), he showed
the existence of solution to the same problem.

In these works, we can identify λ = 0, f0 = ∞ and f∞ = 0, which show that hypoth-
esis (F∞) holds. Since (1.11) with the cited replacement implies that (M) holds (see [21]),
Theorem 1.2 resolves these problems.

Recently, using the concept of generalized solutions that are not subject to any decay at
infinity, Carl and Perera [8] used perturbation and comparison arguments as well as regularity
results for the p-Laplacian to obtain solutions to the singular p-Laplacian problem. For other
works, we refer the reader to [9, 10, 29, 33] and their references.

2. Preliminaries

In this section, our first result has dealt with the existence of solutions of Problem (1.4).
That is, we provide a situation whose hypothesis (M) holds.

LEMMA 2.1. Let m : RN → [0,∞) a continuous function andM be as given in (M).
Moreover, suppose that

∫ ∞

0

[

s1−N
∫ s

0
tN−1M̂(t)dt

] 1
p−1

ds < ∞

holds, where M̂(t) = sup
|x|=t

M(x), t > 0 and 1 < p < N . Then there exists at least one

u ∈ C1(RN) solution of (1.4).

PROOF. First, consider the problem
⎧
⎨

⎩

−(rN−1|v′(r)|p−2v′(r))′ = rN−1M̂(r) , r > 0 ,

v > 0 ∈ RN , v(r) → 0 when r → ∞ .

(2.1)



388 MANUELA C. REZENDE AND CARLOS ALBERTO SANTOS

Defining

v(r) =
∫ ∞

r

[

s1−N
∫ s

0
tN−1M̂(t)dt

] 1
p−1

ds ,

we can show that v ∈ C1(0,∞) is a solution of the problem (2.1).

Now, set w(x) = v(|x|). Since m � 0, we obtain that w ∈ C1(RN) is an upper solution
of (1.4), i.e.,

∫

RN
[|∇w|p−2∇w∇φ +m(x)wp−1φ] �

∫

RN
M(x)φ, φ ∈ C∞

0 (R
N).

Now, consider the following problem
⎧
⎨

⎩

−
pu+m(x)up−1 = M(x) in BR,

u > 0 in BR, u(x) = 0 on ∂BR,
(2.2)

where BR is the ball whose center is the origin of RN and which has radius R.
By Pezzo and Bonder [5] and using the regularity results of Lieberman [28], we have that

there exists uR ∈ C1,β(BR), 0 < β < 1, satisfying (2.2). Consider the function uR defined
by uR(x) = uR(x), if x ∈ BR , and uR(x) = 0, if |x| � R. We claim that

u1(x) � u2(x) � · · · � uR(x) � uR+1(x) � · · · � w(x) , x ∈ RN . (2.3)

Indeed, for each R � 1, note that both uR and uR+1 satisfy the equation given in (2.2)
in the ball BR . Besides this, uR(x) = 0 < uR+1(x), for x ∈ ∂BR . Then, by the Compar-
ison Principle of Tolksdorf [34] we have uR � uR+1in BR. Moreover, uR = 0 < uR+1 in
BR+1\BR . For the last part, note that uR(x) = 0 < w(x), x ∈ BR . So, again by Tolksdorf
[34], uR � w in BR for each R � 1. This completes the proof of statement (2.3).

Finally, letting u(x) = lim
R→∞ uR(x) and using compactness arguments we have that u ∈

C1(RN). Furthermore, it satisfies (1.4). �

Our next result will be necessary to prove that λ∗, announced in Theorem 1.2, is finite.
Moreover, the inequality (1.5) also is showed. Its proof uses Picone’s identity [1] and density
arguments.

LEMMA 2.2. Assume that given λ ∈ R there exists a 0 < v = vλ ∈ W
1,p
loc (R

N)

satisfying −Δpv + mvp−1 � λρvp−1 in the distributional sense, where m : RN → [0,∞)

is a continuous function and ρ is given by (1.2). Then λ � λ1(m, ρ). In particular, if (M)

holds, then λ1(m, ρ) � ‖ωM‖1−p∞ .

PROOF. Firstly, for each R � 1, we consider the functions v and ωM restricted to the
ball BR . They will be denoted by (v)R and (ωM)R .



EXISTENCE AND NON-EXISTENCE OF POSITIVE SOLUTIONS 389

Now, we pick {φn}n∈N ⊂ C∞
0 (BR) with φn � 0 and φn → ϕBR in W 1,p

0 (BR), where
ϕBR > 0 is the first eigenfunction of the problem (1.3) associated to its first eigenvalue
λ1,BR (m, ρ). So, applying Picone’s identity (see [1]) and density arguments, we have

0 �
∫

BR

|∇φn|p −
∫

BR

|∇(v)R |p−2∇(v)R∇
(

φ
p
n

(v)
p−1
R

)

�
∫

BR

|∇φn|p −
∫

BR

λρ(x)φ
p
n +

∫

BR

m(x)φ
p
n .

Now, making n → ∞, we obtain

λ1,BR (m, ρ)

∫

BR

ρ(x)ϕ
p

BR
=

∫

BR

[|∇ϕBR |p +m(x)ϕ
p

BR
] � λ

∫

BR

ρ(x)ϕ
p

BR
,

that is, λ � λ1,BR (m, ρ) because ρ is non-negative and not identically zero. When R → ∞,
we get λ � λ1(m, ρ).

To finish our proof, we define for each τ > 0, v(x) = vτ (x) =
τ‖(ωM)R‖−1

L∞(BR)(ωM)R(x), x ∈ BR . So, we have that 0 < v � τ and

∫

BR

|∇v|p−2∇v∇φ +
∫

Ω

m(x)vp−1φ

= τp−1

‖(ωM)R‖p−1
L∞(BR)

[∫

BR

|∇(ωM)R|p−2∇(ωM)R∇φ +
∫

Ω

m(x)(ωM)
p−1
R φ

]

= 1

‖(ωM)R‖p−1
L∞(BR)

∫

BR

M(x)τp−1φ � 1

‖(ωM)R‖p−1
L∞(BR)

∫

BR

ρ(x)vp−1φ ,

for all φ ∈ C∞
0 (BR), φ � 0. Applying the first part of the lemma, this shows that

λ1,BR (m, ρ) �
1

‖(ωM)R‖p−1
L∞(BR)

, for each R � 1 .

As we have that ‖(ωM)R‖L∞(BR) � ‖ωM‖∞, when R → ∞ we obtain

λ1(m, ρ) �
1

‖ωM‖p−1∞
,

which ends the proof. �

Now, we consider the equation

−Δpu+m(x)up−1 = h(x, u) , u > 0 in RN , (2.4)

where h : RN × (0,∞) → R is a continuous function.
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A function u ∈ C1(RN) is called a solution to (2.4) in the distributional sense, if u > 0
in RN and, for all φ ∈ C∞

0 (R
N), we have:

∫

RN
[|∇u|p−2∇u∇φ +m(x)up−1φ]dx =

∫

RN
h(x, u)φdx.

Moreover, a function u ∈ C1(RN) is called a lower solution (upper solution) to (2.4)
in the distributional sense, if u > 0 in RN and, for all nonnegative functions φ ∈ C∞

0 (R
N),

holds
∫

RN
[|∇u|p−2∇u∇φ +m(x)up−1φ]dx � (�)

∫

RN
h(x, u)φdx . (2.5)

In this sense, we prove the following result for possibly singular problems in RN , which
will be used in the proof of Theorem 1.2:

THEOREM 2.1. Suppose that there exist a lower solution u and an upper solution u of

(2.4) such that u � u in RN . Then Problem (2.4) has a solution u ∈ [u, u].
PROOF (Based on arguments of [27]). We know that RN = ∪∞

R=1BR , where BR is the

ball centered at the origin of the RN with radius R. For each R � 1, we consider the family
of problems

{ −Δpu+m(x)up−1 = h(x, u) in BR ,

u = u on ∂BR,
(2.6)

where h is the function given by (2.4) restricted to BR × (0,∞) and u is the lower solution
defined in (2.5) restricted to BR .

Since that u, u ∈ C1(RN) and u, u > 0 in RN , the numbers

aR = max
BR

u and aR = min
BR

u

are positive.

Now, we define the function h̃ : BR × R → R by

h̃(x, s) :=
⎧
⎨

⎩

h(x, aR) , if s < aR
h(x, aR) , if s > aR

h(x, s) , if aR � s � aR .

(2.7)

It follows from of the continuity of the function h and of the definition (2.7) that h̃ is a bounded

function in BR × R. Then, there is a functionK ∈ Lp′
(BR) such that

|h̃(x, s)| � |K(x)| , a.e. x ∈ BR .
Now, since m is a continuous function in RN and s ∈ R, we have

|h̃(x, s)−m(x)sp−1| � |K(x)| + r(|s|) , a.e. x ∈ BR ,
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for all s > 0, where r(s) = ‖m‖L∞(BR)s
p−1, s > 0 is a nondecreasing function such that

r(|ϕ|) ∈ Lp′
(BR), for ϕ ∈ Lp(BR).

Besides this, we have that u and u are, respectively, lower solution and upper solution
(in the sense of [24]) of the problem

{−Δpu+m(x)up−1 = h̃(x, u) in BR ,

u = u on ∂BR .
(2.8)

With these, we can apply a theorem of lower and upper solution by [24] to conclude that the
problem (2.8) (and also (2.6)) has a solution uR such that u � uR � u a.e. in BR .

Now, using a diagonal argument on R and a standard regularity theory, we get a u ∈
C1(RN) such that u � u � u, u > 0 in RN and, for each φ ∈ C∞

0 (R
N), we have

∫

RN
[|∇u|p−2∇u∇φ +m(x)up−1φ]dx =

∫

RN
h(x, u)φdx .

The proof of Theorem 2.1 is finished. �

3. Proof of Theorem 1.1

PROOF. Suppose, by contradiction, that there exists a λ > 0 such that problem (1.1)
has solution u = uλ.

With this, we claim that there exists c = cλ > 0 such that

ηλ(s) := f (s)

sp−1
+ λ

g(s)

sp−1
� c , for all s > 0 . (3.1)

Note that the hypothesis fi + gi > 0, i = 0 and i = ∞, ensures the validity of (3.1), since it
implies that ηλ(s) > 0, for all s > 0.

Then, using (3.1) and the fact that ρ � a, b, we have

−Δpu+m(x)up−1 − cρ(x)up−1 �−Δpu+m(x)up−1 − ηλ(u)ρ(x)u
p−1

= −Δpu+m(x)up−1 −
[
f (u)

up−1
+ λ

g(u)

up−1

]

ρ(x)up−1

�−Δpu+m(x)up−1 − [a(x)f (u)+ λb(x)g(u)] = 0 .

By Lemma 2.2 and by hypothesis,

0 < c � λ1(m, ρ) = 0 ,

what is an absurd. Therefore, problem (1.1) has no solution for any λ > 0.
Now, we will prove the particular case. Note that |x|pa(x), |x|pb(x) → ∞ when |x| →

∞ implies in |x|pρ(x) → ∞ when |x| → ∞, since ρ(x) := min{a(x), b(x)}. We want to
show that λ1(0, ρ) = 0.
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Initially, we claim that the assumption |x|pρ(x) → ∞ when |x| → ∞ implies in
|x|pρ̂(|x|) → ∞ when |x| → ∞, where ρ̂(|x|) = ρ̂(r) := min|x|=r ρ(x), r > 0. In-

deed, suppose that there exists rn → ∞ such that lim inf rpn ρ̂(rn) < ∞. We can see that
ρ̂(rn) = ρ(xn), with |xn| = rn. So, lim |xn|pρ(xn) = lim rpn ρ̂(rn) < ∞, when n → ∞, what
is an absurd, since |xn|pρ(xn) → ∞.

Now we will prove that λ1(0, ρ) = 0. Suppose, by contradiction, λ1(0, ρ) > 0. By [20],
the inequality ρ̂ � ρ implies in λ1(0, ρ̂) � λ1(0, ρ) > 0. We take λ := λ1(0, ρ̂) and consider

the radially symmetric solution u ∈ C2((0,∞)) ∩ C1([0,∞)) of the equation

−Δpu = λρ̂(x)up−1 in RN ,

or equivalently, the solution of the initial value problem
{−(rN−1|u′|p−2u′)′ = λrN−1ρ̂(r)up−1 , in (0,∞)

u(0) = 1 , u′(0) = 0 .

Note that u �= 0 in RN , since u(0) = 1. Moreover, |x|pρ̂(x) → ∞ when |x| → ∞ implies
that the problem above does not have positive entire solution (see [4]). So, there is R > 0
such that u(R) = 0. With this, u satisfies

{−Δpu = λρ̂(x)up−1 in BR(0)
u > 0 in BR(0) , u = 0 on ∂BR(0) .

By [20] we have

λ := λ1(0, ρ̂) = λ1,BR(0)(0, ρ̂) > λ1(0, ρ̂) .

This contradiction means λ1(0, ρ̂) = 0, which shows that also λ1(0, ρ) = 0. �

4. Some Auxiliary Functions

One of our main purposes in this paper is to consider, in the Problem (1.1), not only
(p − 1)-sublinear terms f and g but also (p − 1)-superlinear and (p − 1)-asymptotically
linear terms. To prove Theorem 1.2 with such nonlinearities, we improved a technique of
regularization-motonicity used, among others, by Fen and Liu [13], Zhang [36] and Mo-
hammed [29].

Observing that for none monotonicity will be required of our nonlinearities, we introduce
a truncation of the terms f and g through a real parameter γ > 0 and, from it, we build some
auxiliary functions which allow us to obtain not only the monotonicity but also the necessary
regularity for the proof of our results. In this way, given γ > 0, we define the continuous
functions

ζf,γ (s) :=
{
f (s) , if 0 < s � γ

If (γ )s
p−1 , if s � γ ,
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and

ζg,γ (s) :=
{
g(s), if 0 < s � γ

Ig (γ )s
p−1 , if s � γ ,

where

If (γ ) := f (γ )

γ p−1 and Ig (γ ) := g(γ )

γ p−1 .

For each s > 0, consider the continuous and monotonous functions

ζ̂f,γ (s) := sup

{
ζf,γ (t)

tp−1 , t > s

}

, ζ̂g,γ (s) := sup

{
ζg,γ (t)

tp−1 , t > s

}

(4.1)

and

ζ̂λ,γ (s) = sp−1ζ̂f,γ (s)+ λsp−1ζ̂g,γ (s) , for each λ � 0 . (4.2)

It follows from the above definitions that

(i)
ζ̂λ,γ (s)

sp−1
is non-increasing in s > 0; (ii) ζ̂λ,γ (s) � ζf,γ (s)+ λζg,γ (s), s > 0;

(iii) lim
s→∞

ζ̂λ,γ (s)

sp−1 = If (γ )+ λIg (γ ).

The function ζ̂λ,γ (s)/sp−1 already has monotonicity, but does not have the enough reg-
ularity. So, defining

Hλ,γ (s) = s2
∫ s

0

t

ζ̂λ,γ (t)
1
p−1

dt

, s > 0 ,

and using (i)–(iii) above, we have

LEMMA 4.1. The function H satisfies:
(i) Hλ,γ ∈ C1((0,∞), (0,∞)); (ii) ζ̂λ,γ (s) � [Hλ,γ (s)]p−1, s > 0;

(iii)
Hλ,γ (s)

s
is non-increasing in s > 0; (iv) lim

s→∞
Hλ,γ (s)

s
= (If (γ )+λIg(γ ))

1
p−1 .

Depending on Hλ,γ , we define the γ -function

Γλ(γ ) = 1

γ

∫ γ

0

t

Hλ,γ (t)
dt, γ > 0 .

Using the previously defined functions and their properties, we have

LEMMA 4.2. Assume that (M) and (F ) hold. Then:
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(i) lim
γ→∞Γλ(γ ) = 1

(f∞ + λg∞)
1

p−1

, for each λ � 0;

(ii) lim
γ→0

Γλ(γ ) = 1

(f0 + λg0)
1
p−1

, for each λ � 0;

(iii) Γλ is decreasing in λ > 0, for each γ > 0;
(iv) there exists a γ̃ > 0 such that Γ0(γ̃ ) > ‖ωM‖∞.

In the appendix of this paper, we prove item (i). The proof of part (ii) is similar. The mono-
tonicity of the function Γλ follows from the definitions of the functions involved, while (iv) is
a consequence of the assumption (F ) together with (i)–(ii).

By above lemma, we can define the nonempty set

ARN := {γ ∈ (0,∞) / Γ0(γ ) > ‖ωM‖∞} .
Now, as a consequence of limλ→∞ Γλ(γ ) = 0, limλ→0 Γλ(γ ) = Γ0(γ ) for each γ > 0, and
from the last lemma, the functionΛ∗ : ARN → (0,∞) that associate, for each γ ∈ ARN , the
unique positive real numberΛ∗(γ ) such that

ΓΛ∗(γ )(γ ) = ‖ωM‖∞ , (4.3)

is well defined.
Thus, we can define the positive number

Λ∗
S = Λ∗

S,RN := sup{Λ∗(γ ) ; γ ∈ ARN } . (4.4)

After these, we have that

LEMMA 4.3. Suppose (M) and (F ) hold. Then

Λ∗
S � max

{
1

g0

(
1

‖ωM‖p−1∞
− f0

)

,
1

g∞

(
1

‖ωM‖p−1∞
− f∞

)}

= max{λ0, λ∞} ,

where λi := 1

gi

(
1

‖ωM‖p−1∞
− fi

)

, i ∈ {0,∞}.

PROOF. If (F0) occurs and g0 < ∞, then given 0 < δ < λ0, it follows from Lemma
4.2(ii), that

lim
γ→0

(Γδ(γ )− ‖ωM‖∞) = 1

(f0 + δg0)
1
p−1

− ‖ωM‖∞ >
1

(f0 + λ0g0)
1
p−1

− ‖ωM‖∞ = 0 .

Now, if (F∞) occurs and g∞ < ∞, using Lemma 4.2(i), we have

lim
γ→∞(Γδ(γ )−‖ωM‖∞) = 1

(f∞ + δg∞)
1
p−1

−‖ωM‖∞ >
1

(f∞ + λ∞g∞)
1
p−1

−‖ωM‖∞ = 0 ,

for each 0 < δ < λ∞ given.
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So, in both cases, there exists a γ0 = γ0(δ) > 0 such that Γδ(γ0) > ‖ωM‖∞. By
Lemma 4.2(iii), we have that γ0 ∈ ARN , since that Γ0(γ0) > Γδ(γ0) > ‖ωM‖∞. From (4.3),
ΓΛ∗(γ0)(γ0) = ‖ωM‖∞. Thus, we have ΓΛ∗(γ0)(γ0) < Γδ(γ0), which implies in Λ∗(γ0) > δ,
by Lemma 4.2(iii) again. So, by the arbitrariness of δ, we have the claimed. Lemma 4.3 is
proved. �

Now, for each γ, λ > 0, we define

ηλ(s) = 1

γ

∫ s

0

t

Hλ,γ (t)
dt , s > 0 . (4.5)

By Lemma 4.2(iii), definition of ARN and (4.3), it follows that

ηλ(γ ) = Γλ(γ ) > ΓΛ∗(γ )(γ ) = ‖ωM‖∞ , (4.6)

for each γ ∈ ARN and 0 < λ < Λ∗(γ ) given.
Besides this, using the auxiliaries functions constructed in this section and their proper-

ties, we can check the following result.

LEMMA 4.4. Suppose (M) and (F ) hold. Then, for each 0 < λ < Λ∗
S given:

(i) [0, ‖ωM‖∞] ⊂ Im(ηλ);
(ii) ηλ ∈ C2((0,∞), Im(ηλ)) is increasing in s > 0;

(iii) η−1
λ := ψλ ∈ C2(Im(ηλ)\{0}, (0,∞)) is increasing in s > 0;

(iv) ψ ′
λ(s) = γHλ,γ (ψλ(s))

ψλ(s)
, s > 0;

(v) ψ ′′
λ (s) � 0, s > 0;

(vi) ηλ is decreasing in λ.

5. An upper solution for the perturbed problem

Due to the possible of singularity under the functions f and g we construct, in the next
result, a bounded positive upper solution for the perturbed problem

{−Δpu+m(x)up−1 = a(x)f (u+ ε)+ λb(x)g(u+ ε) in RN

u > 0 in RN , u(x) → 0 when |x| → ∞ ,
(5.1)

for each ε > 0 small enough.

LEMMA 5.1. Under the assumptions (F ) and (M), given ε > 0 small enough, there

exists v = vλ ∈ C1(RN), independent of ε, upper solution of (5.1), for each 0 < λ < Λ∗
S ,

where Λ∗
S is defined in (4.4).

PROOF. Given 0 < λ < Λ∗
S , since ωM ∈ C1(RN) and ψλ ∈ C2(Im(ηλ)\{0}, (0,∞)),

we can define the function v = vλ ∈ C1(RN) by

v(x) := ψλ(ωM(x)) , x ∈ RN . (5.2)
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We will show that v is an upper solution of (5.1). By (4.5), (4.6), Lemma 4.4 and (M), there
is a γ0 = γ0(λ) ∈ ARN such that 0 < v(x) < γ0, for all x ∈ RN , and lim|x|→∞ v(x) = 0.

So, exists ε > 0 small enough such that

‖v‖L∞(RN) < γ0 − ε . (5.3)

Now, given φ ∈ C∞
0 (R

N), φ � 0, it follows from (5.2) that
∫

RN
[|∇v|p−2∇v∇φ +m(x)vp−1φ]dx

=
∫

RN
[ψ ′
λ(ωM)]p−1|∇ωM |p−2∇ωM∇φdx +

∫

RN
m(x)vp−1φdx

=
∫

RN
|∇ωM |p−2∇ωM∇([ψ ′

λ(ωM)]p−1φ)dx (5.4)

− (p − 1)
∫

RN
|∇ωM |p[ψ ′

λ(ωM)]p−2ψ ′′
λ (ωM)φdx +

∫

RN
m(x)[ψλ(ωM)]p−1φdx

In the appendix of this paper, we prove that

ωMψ
′
λ(ωM) � ψλ(ωM) , x in RN . (5.5)

Since ψ ′′
λ (s) � 0, s > 0, by (5.5), (1.4) and Lemma 4.4(iv), we can rewrite (5.4) as
∫

RN
|∇v|p−2∇v∇φdx +

∫

RN
m(x)vp−1φdx �

∫

RN
M(x)[ψ ′

λ(ωM)]p−1φdx

=
∫

RN
M(x)γ

p−1
0

[
Hλ,γ0(ψλ(ωM))

ψλ(ωM)

]p−1

φdx . (5.6)

Now, it follows from the definitions, properties of the functions involved and (5.3), that

∫

RN
M(x)γ

p−1
0

[
Hλ,γ0(ψλ(ωM))

ψλ(ωM)

]p−1

φdx �
∫

RN
M(x)γ

p−1
0

ζ̂λ,γ0(v + ε)

(v + ε)p−1
φdx

�
∫

RN
M(x)γ

p−1
0

ζ̂λ,γ0(v + ε)

(γ0)p−1
φdx

�
∫

RN
[a(x)f (v + ε)+ λb(x)g(v + ε)]φdx .

This ends the proof of proposition 5.1. �

6. Problem (1.1) in bounded domains

In this section, our objective is to study the problem
{−Δpu+m(x)up−1 = a(x)f (u)+ λb(x)g(u) in Ω ,

u > 0 in Ω, u = 0 on ∂Ω ,
(6.1)
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whereΩ ⊂ RN is a smooth bounded domain and we consider the same functionsm, a, b and
ρ previously given restricted to Ω .

As a particular case of a result in [5] and by [28], we have that there exists a unique

ω = ωM,Ω ∈ C1(Ω) solution of the problem
{−Δpu+m(x)up−1 = M(x) in Ω ,

u > 0 in Ω, u = 0 on ∂Ω .
(6.2)

By a comparison principle in [18], we can conclude that ωM,Ω � ωM , where ωM is the
function given in (1.4) restricted to Ω . With this, ‖ωM,Ω‖L∞(Ω) � ‖ωM‖L∞(RN). So, (F0)

and (F∞) imply in

f0 < 1/‖ωM,Ω‖p−1
L∞(Ω) and f∞ < 1/‖ωM,Ω‖p−1

L∞(Ω) ,

respectively. Similarly as done before, we define

λ∗,Ω :=

⎧
⎪⎨

⎪⎩

0 , if g0 = 0 and f0 > λ1(m, ρ) ,

max
{

0, λ1,Ω(m,ρ)−f0
g0

}
, if 0 < g0 < ∞ ,

0 , if g0 = ∞ ,

(6.3)

and we state our result:

THEOREM 6.1. Assume that (F ) holds. Then there exists 0 < λ∗
Ω � ∞ such that

problem (6.1) has:
(a) a solution, for each λ∗,Ω < λ < λ∗

Ω ,
(b) no solutions if λ > λ∗

Ω .

In addition,

λ∗
Ω � max

{
1

g0

(
1

‖ωM,Ω‖p−1
L∞(Ω)

− f0

)

,
1

g∞

(
1

‖ωM,Ω‖p−1
L∞(Ω)

− f∞
)}

.

PROOF. Analogously to the case done after Lemma 4.2, we can define the nonempty
set AΩ = {γ ∈ (0,∞) / Γ0(γ ) > ‖ωM,Ω‖L∞(Ω)}, the function Λ∗ : AΩ → (0,∞) such
that ΓΛ∗(γ )(γ ) = ‖ωM,Ω‖L∞(Ω) and the positive number

Λ∗
S = Λ∗

S,Ω = sup{Λ∗(γ ) / γ ∈ AΩ} .
Given 0 < λ < Λ∗

S , as in (4.6) we can conclude that exists σ = σ(λ, γ ) > 0 small
enough such that

ηλ(γ ) > ‖ωM,Ω‖∞ + σ̄ , for each γ ∈ AΩ .

With this, the function ηλ satisfies [σ̄ , ‖ωM,Ω‖∞ + σ̄ ] ⊂ Im(ηλ) and the others items

of Lemma 4.4. This allows us to define, for each σ ∈ (0, σ̄ ], the function v = vσ ∈ C1(Ω),
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increasing in σ , by

vσ (x) = vσ,λ(x) := ψλ(ωM,Ω(x)+ σ) , x ∈ Ω , (6.4)

where ωM,Ω is the unique solution of (6.2). As in Lemma 5.1, there are γ0 = γ0(λ) ∈ AΩ

and ε > 0 sufficiently small such that (5.3) holds.
This function vσ is an upper solution to the perturbed problem

{−Δpu+m(x)up−1 = a(x)f (u+ ε)+ λb(x)g(u+ ε) in Ω

u > 0 in Ω , u = 0 on ∂Ω .
(6.5)

Indeed, since ωM,Ω = 0 on ∂Ω , the introduction of the parameter σ > 0 has the ob-
jective of ensuring the regularity required by theorem of lower–upper solution in [15] for the
function vσ on ∂Ω .

Similarly to the proof of Lemma 5.1, for each 0 < σ < σ and φ ∈ C∞
0 (Ω), we can

show that
∫

Ω

[|∇vσ |p−2∇vσ∇φ +m(x)vp−1
σ φ]dx �

∫

Ω

[a(x)f (vσ + ε)+ λb(x)g(vσ + ε)]φdx .

Moreover, by (6.4) follows that vσ (x) = ψλ(σ) > 0 on ∂Ω and, since ψλ is increasing in
s > 0 and ωM,Ω > 0 in Ω , we have also vσ (x) := ψλ(ωM(x)+ σ) > ψλ(σ) > 0 in Ω .

Now, we will show that for some appropriate constantC = CΩ > 0, the function (CϕΩ)
will be a lower solution to (6.5), where ϕΩ > 0 is an eigenfunction associated with the first
eigenvalue λ1,Ω(m, ρ) > 0 of the problem (1.3).

Given λ > λ∗,Ω , by (6.3) there exists an ε1 ∈ (0, γ0), such that

f (s)

sp−1 + λ
g(s)

sp−1 � λ1,Ω(m, ρ) , for any 0 < s � ε1 . (6.6)

Choose C = C(Ω, ε1) > 0 such that C‖ϕΩ‖L∞(Ω) = ε1/2. So, for each 0 < ε < ε1/2, we
have

C‖ϕΩ‖L∞(Ω) + ε < C‖ϕΩ‖L∞(Ω) + ε1/2 = ε1 . (6.7)

Then, for each φ ∈ C∞
0 (Ω), φ � 0, and 0 < ε < ε1/2, it follows from (1.3) and (6.6) that

∫

Ω

[|∇(CϕΩ)|p−2∇(CϕΩ)∇φ +m(x)(CϕΩ)
p−1φ]dx

� λ1,Ω(m, ρ)

∫

Ω

ρ(x)(CϕΩ + ε)p−1φdx

�
∫

Ω

[f (CϕΩ + ε)+ λg(CϕΩ + ε)]ρ(x)φdx .

We claim that

CϕΩ(x) � vΩ(x) , for all x ∈ Ω . (6.8)
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In fact, from (4.1)–(4.2), we have

−Δp(CϕΩ)+m(x)(CϕΩ)
p−1 � γ p−1

0 a(x)
f (CϕΩ + ε)

γ
p−1
0

+ γ
p−1
0 λb(x)

g(CϕΩ + ε)

γ
p−1
0

� γ p−1
0 a(x)

ζf,γ0(CϕΩ + ε)

(CϕΩ + ε)p−1
+ γ

p−1
0 λb(x)

ζg,γ0(CϕΩ + ε)

(CϕΩ + ε)p−1

�M(x)γ p−1
0 [ζ̂f,γ0(CϕΩ + ε)+ λζ̂g,γ0(CϕΩ + ε)]

=M(x)γ
p−1
0

ζ̂λ,γ0(CϕΩ + ε)

(CϕΩ + ε)p−1

�M(x)γ p−1
0

ζ̂λ,γ0(CϕΩ)

(CϕΩ)p−1 , (6.9)

where such inequalities are considered in the distributional sense. Moreover, by analogous
relationship to (5.6), we have

−Δpvσ +m(x)vp−1
σ � M(x)γ

p−1
0

ζ̂λ,γ0(vσ )

v
p−1
σ

. (6.10)

Note that ζ̂λ,γ0(s)/s
p−1 and −sp−1 are non-increasing in s > 0, vσ , CϕΩ ∈ W 1,p(Ω) and

CϕΩ = 0 < vσ on ∂Ω . So, from (6.9) and (6.10), we can apply a comparison principle for
weak solutions to quasilinear equations which is due to Tolksdorf [34] to obtain (6.8).

Define F̂ε : Ω × [0,∞) → [0,∞) by

F̂ε(x, s) :=
{
a(x)f (s + ε)+ λb(x)g(s + ε) , s � vσ

a(x)f (vσ + ε)+ λb(x)g(vσ + ε) , s � vσ ,

and consider the auxiliary problem
{−Δpu+m(x)up−1 = F̂ε(x, u) in Ω

u > 0 in Ω and u = 0 on ∂Ω .
(6.11)

It follows that F̂ε satisfies the Carathéodory conditions, vσ is an upper solution and CϕΩ is a
lower solution for (6.11). In addition, for each s0 > 0 there exists a constant A such that

|F̂ε(x, s)−m(x)sp−1| � A , (x, s) ∈ Ω × [−s0, s0] .
By considering the above, we mainly apply a theorem of lower–upper solution, due to [15] to

conclude that there exists a uσ,ε ∈ W 1,p
0 (Ω)∩L∞(Ω), with 0 < Cϕ � uσ,ε � vσ , satisfying

(6.11) and consequently (6.5).
Now, we using a standard diagonal argument and we can show that there is a function

uλ ∈ C1(Ω) ∩ C(Ω) solution of (6.1), for each λ∗,Ω < λ < Λ∗
S given, with 0 < CϕΩ �

uλ � v < γ0 in Ω .
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Finally, let

λ∗
Ω := sup{λ > 0 : (6.1) has solution} .

It is clear that Λ∗
S = Λ∗

S,Ω � λ∗
Ω . Taking λ < λ∗

Ω , there exists λ̃ ∈ (λ, λ∗
Ω) such that (6.1)

has solution, namely, there exists uλ̃ such that

−Δpuλ̃ +m(x)up−1 = a(x)f (uλ̃)+ λ̃b(x)g(uλ̃)

� a(x)f (uλ̃)+ λb(x)g(uλ̃) in Ω .

So, uλ̃ is an upper solution and CϕΩ is a lower solution for (6.1). By [12], we claim that
CϕΩ � uλ̃ in Ω . Moreover, we can apply a lower and upper solution theorem for singular
problems from [23] and ensure that (6.1) has solution u with CϕΩ � u � uλ̃, a.e. x ∈ Ω .
This ends the proof of Theorem 6.1. �

7. Proof of Theorem 1.2

PROOF. At first, it follows from Lemma 2.2(iv) that ARN ⊂ ABR , for all R � 1,
because if γ ∈ ARN then Γ0(γ ) > ‖ωM‖L∞(RN) � ‖ωM,BR‖L∞(BR), for all R � 1, i.e.,

γ ∈ ABR . So, we have that Λ∗
S = Λ∗

S,RN
:= sup{Λ∗(γ ) / γ ∈ ARN } � sup{Λ∗(γ ) / γ ∈

ABR } := Λ∗
S,BR

, for all R � 1, where Λ∗
S is as in (4.4) and the functions ωM and ωM,BR was

given in (1.4) and (6.2) respectively.
So, given λ∗ < λ < Λ∗

S and taking vR = v|BR as an upper solution, where v is given

by Lemma 5.1, there exists, by Theorem 6.1 and its demonstration, a uR ∈ C1(BR) ∩C(BR)
satisfying

{ −ΔpuR +m(x)u
p−1
R = a(x)f (uR)+ λb(x)g(uR) in BR

uR > 0 in BR , uR = 0 on ∂BR ,
(7.1)

for each R � 1 given with

0 < CRϕR � uR � vR in BR .

Besides this, from λ > λ∗, λ1(m, ρ) = limR→∞ λ1,BR (m, ρ) and (1.6), it follows that
there exists an L0 > 1 such that λ1,BL0

(m, ρ) < λg0 + f0. That is, from the monotonicity of

the first eigenvalue in relation to the domain, there exists one δ = δ(L0) > 0 such that

f (s)+ λg(s) > λ1,BR (m, ρ)s
p−1 , for all s ∈ (0, δ) and R � L0 . (7.2)

Now, we choose a constant C = C(δ) ∈ (0, CL0) small enough such that

0 < C ‖ ϕL0 ‖L∞(BL0 )
< δ , (7.3)

where CL0 is the constant of the lower solution of (6.1) with R = L0 defined in (6.7).
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Now, we claim that

CϕL0(x) � uR(x) , x ∈ BL0 , for all R > L0 . (7.4)

To see this, suppose by contradiction that there are x0 ∈ BL0 and R0 > L0 such that
CϕL0(x0) > uR0(x0). Thus, the open set

AR0,L0 := {x ∈ BL0 / CϕL0(x) > uR0(x)}
is nonempty.

Recalling that CϕL0 and uR satisfy (1.3) and (7.1), respectively, it follows from (7.2),
(7.3) and Díaz and Saá’s inequality [12], that

0 �
∫

AR0,L0

[−Δp(CϕL0)

(CϕL0)
p−1 + ΔpuR0

(uR0)
p−1

]

[(CϕL0)
p − (uR0)

p]dx

�
∫

AR0,L0

[

λ1,BL0
(ρ)ρ(x)− a(x)

f (uR0)

(uR0)
p−1 − λb(x)

g(uR0)

(uR0)
p−1

]

[(CϕL0)
p − (uR0)

p]dx

�
∫

AR0,L0

ρ(x)

[

λ1,BL0
(ρ)− f (uR0)

(uR0)
p−1 − λ

g(uR0)

(uR0)
p−1

]

[(CϕL0)
p − (uR0)

p]dx � 0 .

That is, CϕL0 = duR0 , for some d > 0. By definition of AR0,L0 , it follows that CϕL0 =
uR0 . This is impossible. Therefore, AR0,L0 = ∅ and (7.4) is verified.

Noting that RN = ⋃∞
R=1 BR(0) and proceeding as at the end of proof of Theorem 6.1,

we finish the proof of existence, for each λ∗ < λ < Λ∗
S given.

Now, defining

λ∗ := sup{λ > 0 : (1.1) has solution} ,
we have that Λ∗

S � λ∗.
We can define the functions

f̂ (t) = tp−1 inf

{
f (s)

sp−1
, 0 < s � t

}

and ĝ(t) = tp−1 inf

{
g(s)

sp−1
, 0 < s � t

}

.

Note that f̂ + ĝ is positive, non-increasing, and f̂ (t) + ĝ(t) � f (t) + g(t), for all t > 0.

Moreover, f̂0 = f0 and ĝ0 = g0.

Given λ∗ < λ < λ∗, there exists λ̃ ∈ (λ, λ∗) such that (1.1) has a solution uλ̃. Then,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δpuλ̃ +m(x)u
p−1
λ̃

= a(x)f (uλ̃)+ λ̃b(x)g(uλ̃)

� a(x)f (uλ̃)+ λb(x)g(uλ̃)

� a(x)f̂ (uλ̃)+ λb(x)ĝ(uλ̃) in RN

u
λ̃
> 0 in RN , u

λ̃
(x) → 0 when |x| → ∞ .

(7.5)
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By Theorem 6.1, there is a function uR , for each R � 1, satisfying the problem
{−Δpu+m(x)up−1 = a(x)f̂ (u)+ λb(x)ĝ(u) in BR ,

u > 0 in BR , u = 0 on ∂BR .

Now, using the monotonicity of f̂ (t)/tp−1 and ĝ(t)/tp−1 and Díaz and Saá’s inequality [12],
we can show that uR � uλ̃.

As made in (7.2), (7.3) and (7.4), there exists an L0 > 1 and C ∈ (0, CL0) such that

0 < CϕL0(x) � uR(x) � uλ̃(x) , for all x ∈ BL0 , R > L0 .

Defining z(x) = lim
R→∞ uR(x), x ∈ RN, and using a diagonal argument, we can show

that z satisfies
{−Δpz+m(x)zp−1 = a(x)ĝ(z) � a(x)f (z)+ λb(x)g(z) in RN

z > 0 in RN, z(x) → 0 when |x| → ∞ .
(7.6)

By (7.5) and (7.6), follow that uλ̃ and z are, respectively, upper and lower solution to the

problem (1.1). Moreover, z � uλ̃ in RN .

By Theorem 2.1, the problem (1.1) has a solution u ∈ C1(RN) with 0 < u � uλ̃.
Therefore, for any λ∗ < λ < λ∗, it follows that (1.1) has a solution.

Since that Λ∗
S � λ∗, the Lemma 4.3 proved that

λ∗ � max

{
1

g0

(
1

‖ωM‖p−1∞
− f0

)

,
1

g∞

(
1

‖ωM‖p−1∞
− f∞

)}

.

To see the other inequality, i.e.,

finf + λ∗ginf � λ1(m, ρ) ,

let

ηλ(s) := f (s)

sp−1 + λ
g(s)

sp−1 , s, λ > 0 . (7.7)

Of course, ηλ(s) � finf + λginf , for all λ > 0. Given 0 < λ < λ∗, it follows from Theorem
1.2 that there exists a function u = uλ solution of the problem (1.1). Then

−Δpu+m(x)up−1 − (finf +λginf )ρ(x)up−1 � −Δpu+m(x)up−1 −ηλ(u)ρ(x)up−1

= −Δpu+m(x)up−1 −
[
f (u)

up−1
+ λ

g(u)

up−1

]

ρ(x)up−1

� −Δpu+m(x)up−1 − [a(x)f (u)+ λb(x)g(u)] = 0 .

By Lemma 2.2 and by arbitrarity of 0 < λ < λ∗, it follows that finf+λ∗ginf � λ1(m, ρ).
Now, remains only for us to show that, under the conditions (c) or (d) given in Theorem

1.2, we have λ∗ < ∞.
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Let ηλ as in (7.7). Consider the sequence (λn) ⊂ (0,+∞) such that λn → ∞ when
n → ∞.

We claim that there exist n0 ∈ N large arbitrarily and θ = θ(λn0) > 0 such that

ηλn(s) > θ > λ1(m, ρ) , for all s > 0 , n � n0 . (7.8)

To prove (7.8), given an arbitrary n > 0, we consider ηλn(s), for s ∈ [1/j, j ], j > 0. Of
course, there is sj = sj,n ∈ [1/j, j ] such that ηλn(sj ) � ηλn(s), for all s ∈ [1/j, j ]. Making
j → ∞, note that might happen, less of subsequence:

(i) sj → s0,n ∈ (0,∞), what implies that ηλn(s) � f (s0,n)/s
p−1
0,n + λng(s0,n)/s

p−1
0,n ;

(ii) sj → 0, resulting in ηλn(s) � f0 + λng0;
(iii) sj → ∞, and then ηλn(s) � f∞ + λng∞.

In case (i) above, we need to repeat this analysis, because when n → ∞, may happen that:
s0,n → s0 ∈ (0,∞), s0,n → 0 or s0,n → ∞.

Note that in any of these cases, by the hypotheses given, we have

lim
n→∞ ηλn(s) > λ1(m, ρ) ,

what shows (7.8).
Let us assume that (1.1) has solution u = uλ0, λ0 = λn0 . By (7.8), (7.7) and (1.1), it

follows that
−Δpuλ0 +m(x)u

p−1
λ0

− θρ(x)u
p−1
λ0

�−Δpuλ0 +m(x)u
p−1
λ0

− ηλ0(uλ0)ρ(x)u
p−1
λ0

= −Δpuλ0 +m(x)u
p−1
λ0

−
[
f (uλ0)

u
p−1
λ0

+ λ0
g(uλ0)

u
p−1
λ0

]

ρ(x)u
p−1
λ0

�−Δpuλ0 +m(x)u
p−1
λ0

− [a(x)f (uλ0)+ λ0b(x)g(uλ0)] = 0 .

By considering the above, we apply Lemma 2.2 to conclude that θ � λ1(m, ρ), which contra-
dicts (7.8). So, uλ0 cannot be a solution of the problem (1.1). Therefore, λ∗ < ∞. This ends
the proof of Theorem 1.2. �

8. Appendix

PROOF OF LEMMA 4.2(i):

PROOF. Given β ∈ (0, 1) by (4.2)(i) and Lemma (4.1)(iii), we have that

lim
γ→∞Γλ(γ )≥ lim

γ→∞

(
1

γ

∫ γ

βγ

t

Hλ,γ (t)
dt

)

≥ lim
γ→∞

(
1

γ

βγ

Hλ,γ (βγ )
γ (1 − β)

)

= lim
γ→∞

(1 − β)

βγ

∫ βγ

0

t

ζ̂λ,γ (t)
1

p−1

dt ≥ lim
γ→∞

(1 − β)

βγ

∫ βγ

β2γ

t

ζ̂λ,γ (t)
1

p−1

dt
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≥ lim
γ→∞

[
(1 − β)

βγ

β2γ

[ζ̂λ,γ (β2γ )] 1
p−1

βγ (1 − β)

]

.

By the properties of the functions involved, it follows that

lim
γ→∞Γλ(γ )≥ lim

γ→∞
(1 − β)2β2γ

[(β2γ )p−1ζ̂f,γ (β2γ )+ λ(β2γ )p−1ζ̂g,γ (β2γ )] 1
p−1

= lim
γ→∞

(1 − β)2

[

sup

{
ζf,γ (t)

tp−1 , t > β2γ

}

+ λ sup

{
ζg,γ (t)

tp−1 , t > β2γ

}] 1
p−1

= (1 − β)2

(f∞ + λg∞)
1

p−1

.

On the other hand,

lim
γ→∞Γλ(γ )≤ lim

γ→∞
1

γ

γ

Hλ,γ (γ )
γ = lim

γ→∞
1

γ

∫ γ

0

t

ζ̂λ,γ (t)
1

p−1

dt

≤ lim
γ→∞

γ

γ ζ̂f,γ (γ )
1
p−1 + λ

1
p−1 γ ζ̂g,γ (γ )

1
p−1

= lim
γ→∞

1
[

sup

{
ζf,γ (t)

tp−1
, t > γ

}

+ λ sup

{
ζg,γ (t)

tp−1
, t > γ

}] 1
p−1

= 1

(f∞ + λg∞)
1
p−1

.

Then,

(1 − β)2

(f∞ + λg∞)
1

p−1

≤ lim
γ→∞Γλ(γ ) ≤ 1

(f∞ + λg∞)
1

p−1

.

When β → 0, we have the claimed. �

PROOF OF (5.5):

PROOF. Firstly, we show that

γ0ηλ(t)
Hλ,γ0(t)

t
� t , for all t > 0 . (8.1)

In fact, by (4.5) and Lemma 4.1(iii) we have

γ0ηλ(t)
Hλ,γ0(t)

t
= γ0

(
1

γ0

∫ t

0

s

Hλ,γ0(s)
ds

)
Hλ,γ0(t)

t
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� t

Hλ,γ0(t)
t
Hλ,γ0(t)

t
= t .

Then, using Lemma 4.4(iii) and (iv), we obtain

ω′
λ(ηλ(t)) = γ0

Hλ,γ0(ψλ(ηλ(t)))

ψλ(ηλ(t))
= γ0

Hλ,γ0(t)

t
,

what implies, by (8.1), for all t > 0, that

ηλ(t)ψ
′
λ(ηλ(t)) = γ0ηλ(t)

Hλ,γ0(t)

t
� t = ψλ(ηλ(t)) . (8.2)

Now, by Lemma 4.4(i), we have ωM(x) ∈ Im(ηλ), for all x ∈ Ω , i.e., given x ∈ Ω , there
exists tx > 0 such that ηλ(tx) = ωM(x), what allows us to write (8.2) as

ωM(x)ψ
′
λ(ωM(x)) � ψλ(ωM(x)) , for all x ∈ Ω .

�
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