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Abstract. Some inequalities for functions defined by power series concerning two operators in both the non-
commutative and commutative case are given. Natural examples for fundamental functions that can be represented
by power series are presented as well.

1. Introduction

For power series f (z) = ∑∞
n=0 anz

n with complex coefficients we can naturally con-
struct another power series which have as coefficients the absolute values of the coefficient of
the original series, namely, fa (z) := ∑∞

n=0 |an| zn. It is obvious that this new power series
have the same radius of convergence as the original series, and that if all coefficients an ≥ 0,

then fa = f .
With this notation S.S. Dragomir [4] (also see [5]) showed the following:
Let f (z) = ∑∞

n=0 anz
n be a function defined by power series with complex coefficients

and convergent on the open disk D (0, R) ⊂ C, R > 0. Let T ∈ B (H), α, β ≥ 0 with
α + β ≥ 1 and such that

‖T ‖2α , ‖T ‖2β < R .

Then ∣∣〈Tf (|T |α+β)|T |α+β−1x, y
〉∣∣2

≤ 〈
fa(|T |2α)|T |2αx, x

〉〈
fa(|T ∗|2β)|T ∗|2βy, y

〉
for any x, y ∈ H.

This is an extension of the following inequality for a bounded linear operator T ∈ B (H)

by Furuta [7] (also see [8]):

∣∣〈T |T |α+β−1x, y
〉∣∣2 ≤ 〈|T |2αx, x

〉〈|T ∗|2βy, y
〉
, x, y ∈ H.
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Motivated by this result for one operator, we investigate in the current paper some in-
equalities for functions defined by power series concerning two operators in both the non-

commutative and commutative case. In particular, for p > 1, 1
p

+ 1
q

= 1 we show that

∥∥f (AB)
∥∥ ≤ f

1/p
a

(‖A‖p
)
f

1/q
a

(‖B‖q
)

.

Moreover we prove this inequality is also valid for every unitarily invariant norm.
The following is one among some examples given in this paper:
If ‖A‖p , ‖B‖q < 1, then

∥∥(1H ± AB)−1
∥∥ ≤ (

1 − ‖A‖p
)−1/p (

1 − ‖B‖q
)−1/q

.

2. Some General Norm Inequalities

The following result concerning norm inequalities for two bounded operators may be
stated:

THEOREM 1. Let f (z) = ∑∞
n=0 anz

n ( 	= 0) be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. If A and B

are two bounded operators on the Hilbert space H and for p > 1, 1
p

+ 1
q

= 1

(2.1) ‖A‖p , ‖B‖q < R ,

then

(2.2)
∥∥f (AB)

∥∥ ≤ min
{
K1 (p, q) ,K2(p, q)

}
where

(2.3) K1 (p, q) := f
1/p
a

( ‖A‖p
)
f

1/q
a

(‖B‖q
)

,

and

(2.4) K2 (p, q) := fa

(‖A‖p
)
fa

(‖B‖q
)

fa

(‖A‖p−1 ‖B‖q−1) .

PROOF. By the properties of operator norm, observe that, for any j ∈ N we have
∥∥(AB)j

∥∥ ≤ ‖A‖j ‖B‖j .

If we multiply with
∣∣aj

∣∣ and use the generalized triangle inequality we have

(2.5)

∥∥∥∥
n∑

j=0

aj (AB)j
∥∥∥∥ ≤

n∑
j=0

|aj | ‖A‖j ‖B‖j

for any n ∈ N.



SOME INEQUALITIES FOR POWER SERIES 485

Now, by Hölder’s inequality we have

(2.6)
n∑

j=0

|aj | ‖A‖j ‖B‖j ≤
( n∑

j=0

|aj | ‖A‖jp

)1/p( n∑
j=0

|aj | ‖B‖jq

)1/q

for any n ∈ N, and by (2.5) we get

(2.7)

∥∥∥∥
n∑

j=0

aj (AB)j
∥∥∥∥ ≤

( n∑
j=0

|aj | ‖A‖jp

)1/p( n∑
j=0

|aj | ‖B‖jq

)1/q

.

Since the series whose partial sums are involved in (2.7) are convergent, then by taking
n → ∞ in (2.7) we deduce the first inequality in (2.3).

Further, by utilizing the following Hölder’s type inequality obtained by Dragomir and
Sándor in 1990 [6] (see also [2, Corollary 2.34]):

(2.8)
n∑

k=0

mk |xk|p
n∑

k=0

mk |yk|q ≥
n∑

k=0

mk |xkyk|
n∑

k=0

mk |xk|p−1 |yk|q−1 ,

that holds for nonnegative numbers mk and complex numbers xk, yk where k ∈ {0, ..., n} ,

we observe that the convergence of the series
∑∞

k=0 mk |xk|p and
∑∞

k=0 mk |yk|q imply the

convergence of the series
∑∞

k=0 mk |xk|p−1 |yk|q−1 .

Utilising (2.8) we then have

n∑
j=0

|aj | ‖A‖j ‖B‖j ≤
∑n

j=0 |aj | ‖A‖jp
∑n

j=0 |aj | ‖B‖jq

∑n
j=0 |aj | ‖A‖j(p−1) ‖B‖j(q−1)

which together with (2.5) gives

(2.9)

∥∥∥∥
n∑

j=0

aj (AB)j
∥∥∥∥ ≤

∑n
j=0 |aj | ‖A‖jp

∑n
j=0 |aj | ‖B‖jp

∑n
j=0 |aj | ‖A‖j(p−1) ‖B‖j(q−1)

,

for any n ∈ N.
Since all the series whose partial sums are involved in (2.9) are convergent, then by

taking n → ∞ in (2.9) we deduce the second inequality in (2.2). �

REMARK 1. The case p = q = 2 produces the Schwarz’s type inequality

(2.10)
∥∥f (AB)

∥∥2 ≤ fa

(‖A‖2)fa

(‖B‖2) ,

provided ‖A‖2 , ‖B‖2 < R.

The finite-dimensional case is as follows:
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THEOREM 2. Theorem 1 also holds for every unitarily invariant norm ||| · ||| on a
finite matrix algebra. Moreover, we have the inequalities

(2.11) |‖f (AB)|‖ ≤ min {L1 (p, q) , L2 (p, q)}
where

(2.12) L1 (p, q) := f
1/p
a (|‖|A|p|‖)f 1/q

a (|‖|B|q |‖)
and

(2.13) L2(p, q) := fa(|‖|A|p|‖)fa(|‖|B|q |‖)
fa(|‖|A|p|‖1/q |‖|B|q |‖1/p)

,

provided |‖|A|p|‖, |‖|B|q |‖ < R.

PROOF. Since |‖AB|‖ ≤ |‖A|‖ · |‖B|‖ and |‖AB|‖ ≤ |‖|A|p|‖1/p · |‖|B|q |‖1/q where

p > 1, 1
p

+ 1
q

= 1 (see for instance [1, p. 95]), we have by the Hölder inequality that

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑
j=0

aj (AB)j
∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

n∑
j=0

|aj ||‖AB|‖j ≤
n∑

j=0

|aj ||‖|A|p|‖j/p · |‖|B|q |‖j/q(2.14)

≤
( n∑

j=0

|aj |‖|A|p|‖j

)1/p( n∑
j=0

|aj ||‖|B|q |‖j

)1/q

for any n ∈ N.
Since all the series whose partial sums are involved in (2.14) are convergent, then by

taking n → ∞ in (2.14) we deduce the first inequality in (2.11).
Utilising the inequality (2.8) we also have

n∑
j=0

|aj ||‖|A|p|‖j/p · |‖|B|q |‖j/q(2.15)

≤
∑n

j=0 |aj ||‖|A|p|‖j
∑n

j=0 |aj ||‖|B|q |‖j

∑n
j=0 |aj ||‖|A|p|‖j

p−1
p · |‖|B|q |‖j

q−1
q

=
∑n

j=0 |aj ||‖|A|p|‖j
∑n

j=0 |aj ||‖|B|q |‖j

∑n
j=0 |aj ||‖|A|p|‖ j

q · |‖|B|q |‖ j
p

for any n ∈ N.
Since all the series whose partial sums are involved in (2.15) are convergent, then by

taking n → ∞ in (2.15) we deduce the first inequality in (2.11). �

REMARK 2. The case p = q = 2 produces the Schwarz’s type inequality

|‖f (AB)|‖2 ≤ fa(|‖|A|2|‖)fa(|‖|B|2|‖) ,
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provided |‖|A|2|‖, |‖|B|2|‖ < R.

A refinement of the inequality (2.10) may be found in the following theorem:

THEOREM 3. Let f (z) = ∑∞
n=0 anz

n ( 	= 0) be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. If A and B

are two bounded operators on the Hilbert space H and

(2.16) ‖A‖2 , ‖B‖2 < R ,

then ∥∥f (AB)
∥∥2 ≤ fa

(‖A‖1+α ‖B‖1−α
)
fa

(‖A‖1−α ‖B‖1+α
)

(2.17)

≤ fa

(‖A‖2)fa

(‖B‖2) ,

where α ∈ [0, 1] .

If
∑∞

n=0 |an| < ∞ and in addition to the condition (2.16) we have ‖A‖ , ‖B‖ < R, then

(2.18)
∥∥f (AB)

∥∥ ≤ fa (1) · fa

(‖A‖2) fa

(‖B‖2)
fa

(‖A‖)fa

(‖B‖) .

PROOF. We utilize the Callebaut inequality (see for instance [2, Remark 3.31])

( n∑
j=1

pjajbj

)2

≤
n∑

j=1

pja
1+α
j b1−α

j

n∑
j=1

pja
1−α
j b1+α

j ≤
n∑

j=1

pja
2
j

n∑
j=1

pjb
2
j

that holds for α ∈ [0, 1] and the nonnegative numbers aj , bj , pj with j ∈ {1, . . . , n} .

Therefore( n∑
j=0

|aj | ‖A‖j ‖B‖j

)2

≤
n∑

j=0

|aj | ‖A‖(1+α)j ‖B‖(1−α)j
n∑

j=0

|aj | ‖A‖(1−α)j ‖B‖(1+α)j

≤
n∑

j=0

|aj | ‖A‖2j

n∑
j=0

|aj | ‖B‖2j

and by (2.5) we get∥∥∥∥
n∑

j=0

aj (AB)j
∥∥∥∥

2

(2.19)

≤
n∑

j=0

|aj | ‖A‖(1+α)j ‖B‖(1−α)j
n∑

j=0

|aj | ‖A‖(1−α)j ‖B‖(1+α)j

≤
n∑

j=0

|aj | ‖A‖2j

n∑
j=0

|aj | ‖B‖2j ,
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for any n ∈ N.
Since all the series whose partial sums are involved in (2.19) are convergent, then by

taking n → ∞ in (2.19) we deduce the inequality (2.17).
For the second part, we use the following inequality obtained by S.S. Dragomir in 1984

[3] (see also [2, Theorem 2.20]):
∑n

j=1 pjajbj

∑n
j=1 pjaj

∑n
j=1 pjbj∑n

j=1 pj

≤
n∑

j=1

pja
2
j

n∑
j=1

pjb
2
j

that holds for the nonnegative numbers aj , bj , pj with j ∈ {1, . . . , n} and
∑n

j=1 pj > 0.

Utilising this inequality, we have

n∑
j=0

|aj | ‖A‖j ‖B‖j ≤
n∑

j=0

|aj | ·
∑n

j=0 |aj | ‖A‖2j
∑n

j=0 |aj | ‖B‖2j

∑n
j=0 |aj | ‖A‖2 ∑n

j=0 |aj | ‖B‖2

which together with (2.5) produces

(2.20)

∥∥∥∥
n∑

j=0

aj (AB)j
∥∥∥∥ ≤

n∑
j=0

|aj | ·
∑n

j=0 |aj | ‖A‖2j
∑n

j=0 |aj | ‖B‖2j

∑n
j=0 |aj | ‖A‖2 ∑n

j=0 |aj | ‖B‖2
.

Since all the series whose partial sums are involved in (2.20) are convergent, then by taking
n → ∞ in (2.20) we deduce the inequality (2.18). �

REMARK 3. The condition fa (1) < ∞ can be avoided if a complex parameter |z| < R

is introduced. Namely, we can obtain the following generalization of (2.18)

(2.21)
∥∥f (zAB)

∥∥ ≤ fa (|z|) · fa

(|z| ‖A‖2)fa

(|z| ‖B‖2)
fa

(|z| ‖A‖)fa

(|z| ‖B‖) ,

provided |z| ‖A‖2 , |z| ‖B‖2 , |z| ‖A‖ , |z| ‖B‖ < R.

The finite-dimensional version of Theorem 3 is as follows:

THEOREM 4. Theorem 3 also holds for every unitarily invariant norm ||| · ||| on a
finite matrix algebra. Moreover, we have the inequalities

|‖f (AB) |‖2(2.22)

≤ fa

(|‖|A|2|‖ 1+α
2 |‖|B|2|‖ 1−α

2
)
fa

(|‖|A|2|‖ 1−α
2 |‖|B|2|‖ 1+α

2
)

≤ fa

(|‖|A|2|‖)fa

(|‖|B|2|‖) ,

provided

(2.23) |‖|A|2|‖, |‖|B|2|‖ < R ,

where α ∈ [0, 1] .
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If
∑∞

n=0 |an| < ∞ and in addition to the condition (2.23) we have

|‖|A|2|‖1/2, |‖|B|2|‖1/2 < R ,

then

(2.24) |‖f (AB) |‖ ≤ fa (1) · fa

(|‖|A|2|‖)fa

(|‖|B|2|‖)
fa

(|‖|A|2|‖1/2
)
fa

(|‖|B|2|‖1/2
) .

The details of the proof are left to the reader.

3. Some Vector Inequalities for Normal Operators

The case of normal operators is as follows:

THEOREM 5. Let f (z) = ∑∞
n=0 anz

n be a function defined by power series with com-
plex coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. If A and B are two
commuting normal operators on the Hilbert space H, z ∈ C and

(3.1) |z| ‖A‖2 , |z| ‖B‖2 < R ,

then we have

(3.2)
∣∣〈f (zAB) x, y〉∣∣2 ≤ 〈

fa(|z| |A|2)x, x
〉〈
fa(|z| |B|2)y, y

〉
for any x, y ∈ H.

PROOF. By utilizing Schwarz inequality we have for any x, y ∈ H that

∣∣〈Ajx, (B∗)j y〉∣∣2 ≤ 〈Ajx,Ajx〉〈(B∗)j y, (B∗)j y
〉

for any j ∈ N, which in operator modulus notations is equivalent with

(3.3)
∣∣〈BjAjx, y〉∣∣2 ≤ 〈|Aj |2x, x

〉〈|(B∗)j |2y, y
〉
.

Since A and B are normal operators, then

|Aj |2 = |A|2j and
∣∣(B∗)j

∣∣2 = |B|2j

for any j ∈ N.
By the commutativity of A with B we also have

BjAj = (AB)j

for any j ∈ N and then by (3.3) we have

(3.4)
∣∣〈(AB)j x, y〉∣∣2 ≤ 〈|A|2jx, x

〉〈|B|2j y, y
〉

for any x, y ∈ H and for any j ∈ N.
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If we multiply the inequality (3.3) with
∣∣aj

∣∣ |z|j , sum over j from 0 to m and use the
generalized triangle inequality and the Cauchy-Bunyakovsky-Schwarz weighted inequality,
we have successively∣∣∣∣

〈 m∑
j=0

aj z
j (AB)j x, y

〉∣∣∣∣(3.5)

≤
m∑

j=0

|aj ||z|j
∣∣〈 (AB)j x, y

〉∣∣

≤
m∑

j=0

|aj | |z|j
〈|A|2jx, x

〉1/2〈|B|2jy, y
〉1/2

≤
( m∑

j=0

|aj | |z|j
〈 |A|2j x, x

〉)1/2( m∑
j=0

|aj ||z|j
〈 |B|2j y, y

〉)1/2

=
〈 m∑

j=0

|aj | |z|j |A|2j x, x

〉1/2〈 m∑
j=0

|aj | |z|j |B|2j y, y

〉1/2

for any x, y ∈ H and for any m ∈ N.

Since the series
∑∞

j=0

∣∣aj

∣∣ |z|j |A|2j ,
∑∞

j=0

∣∣aj

∣∣ |z|j |B|2j and
∑∞

j=0 aj z
j (AB)j are

convergent, then by taking the limit over m → ∞ in (3.5) we deduce the desired result
(3.2). �

COROLLARY 1. Let f (z) = ∑∞
n=0 anz

n be a function defined by power series with
real coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. If A and B are two
commuting normal operators on the Hilbert space H satisfying the condition (3.1) then we
have the norm inequality

(3.6)
∥∥f (zAB)

∥∥2 ≤ ∥∥fa(|z||A|2)∥∥∥∥fa(|z| |B|2)∥∥
and the numerical radius inequality

(3.7) w
[
f (zAB)

] ≤ 1

2

∥∥fa(|z| |A|2) + fa(|z| |B|2)∥∥.

PROOF. From (3.2) we also have the inequalities∣∣〈f (zAB) x, x〉∣∣ ≤ 〈
fa(|z| |A|2)x, x

〉1/2〈
fa(|z| |B|2)x, x

〉1/2

≤ 1

2

〈[fa(|z| |A|2) + fa(|z| |B|2)]x, x
〉

for any x ∈ H , which, by taking the supremum over ‖x‖ = 1, produces the desired result
(3.7). �
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REMARK 4. If A is a normal operator and z ∈ C with |z| ‖A‖2 , |z| < R, then by
taking B = 1H in (3.2) we get

(3.8)
∣∣〈f (zA) x, y〉∣∣2 ≤ fa (|z|) 〈

fa(|z| |A|2)x, x
〉 ‖y‖2

for any x, y ∈ H.

If A is a normal operator and z ∈ C with |z| ‖A‖2 , |z| < R, then by taking B = A in
(3.2) we get

(3.9)
∣∣〈f (zA2)x, y〉∣∣2 ≤ 〈

fa(|z| |A|2)x, x
〉〈
fa(|z| |A|2)y, y

〉
and by taking B = A∗ in (3.2) we also get

(3.10)
∣∣〈f (z |A|2)x, y〉∣∣2 ≤ 〈

fa(|z||A|2)x, x
〉〈
fa(|z||A|2)y, y

〉
for any x, y ∈ H.

Moreover, if U and V are two commuting unitary operators, then by taking A = U and
B = V in (3.2) we get

(3.11)
∣∣〈f (zUV )x, y〉∣∣ ≤ fa(|z|)‖x‖‖y‖

for any x, y ∈ H and z ∈ C with |z| < R.

The following result for two power series can be stated as well:

THEOREM 6. Let f (z) = ∑∞
n=0 anz

n and be g (z) = ∑∞
n=0 bnz

n be two functions
defined by power series with complex coefficients and both of them convergent on the open
disk D (0, R) ⊂ C, R > 0. If A and B are two normal operators on the Hilbert space H,

z, u ∈ C and

(3.12) |z| ‖A‖ , |u| ‖B‖ ≤ R

then we have ∣∣〈f (zA)x, g(uB)y〉∣∣2(3.13)

≤ fa

(|z|2)ga

(|u|2)〈fa(|A|2)x, x
〉〈
ga(|B|2)y, y

〉
for any x, y ∈ H.

PROOF. By Schwarz’s inequality we also have the following inequality for normal op-
erators

(3.14)
∣∣〈Ajx,Bky〉∣∣ ≤ 〈 |A|2j x, x

〉1/2〈 |B|2k y, y
〉1/2

for any x, y ∈ H and j, k ∈ N.
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If we multiply (3.14) with
∣∣aj

∣∣ |z|j |bk| |u|k , sum over j and k from 0 to m and use the
generalized triangle inequality, then we have successively∣∣∣∣

〈 m∑
j=0

aj z
jAjx,

m∑
k=0

bku
kBky

〉∣∣∣∣(3.15)

≤
m∑

j=0

m∑
k=0

|aj | |z|j |bk| |u|k ∣∣〈Ajx,Bky〉∣∣

≤
m∑

j=0

m∑
k=0

|aj | |z|j |bk| |u|k 〈|A|2jx, x
〉1/2〈|B|2ky, y

〉1/2

=
m∑

j=0

|aj | |z|j
〈|A|2jx, x

〉1/2
m∑

k=0

|bk| |u|k 〈|B|2ky, y
〉1/2

for any x, y ∈ H and m ∈ N.
Further, by the Cauchy-Bunyakovsky-Schwarz inequality we also have

m∑
j=0

|aj | |z|j
〈 |A|2j x, x

〉1/2 ≤
( m∑

j=0

|aj | |z|2j

)1/2〈 m∑
j=0

|aj | |A|2j x, x

〉1/2

and

m∑
k=0

|bk| |u|k 〈 |B|2k y, y
〉1/2 ≤

( m∑
k=0

|bk| |u|2k

)1/2〈 m∑
k=0

|bk| |B|2k y, y

〉1/2

for any x, y ∈ H and m ∈ N, which together with (3.15) provide∣∣∣∣
〈 m∑

j=0

aj z
jAjx,

m∑
k=0

bku
kBky

〉∣∣∣∣(3.16)

≤
( m∑

j=0

|aj | |z|2j

)1/2〈 m∑
j=0

|aj | |z|j |A|2j x, x

〉1/2

×
( m∑

k=0

|bk| |u|2k

)1/2〈 m∑
k=0

|bk| |u|k |B|2k y, y

〉1/2

for any x, y ∈ H and m ∈ N.
Since the series whose partial sums are involved in the inequality (3.16) are convergent,

then taking the limit over m → ∞ in (3.16) we deduce the desired result (3.13). �

COROLLARY 2. Let f (z) = ∑∞
n=0 anz

n and be g (z) = ∑∞
n=0 bnz

n be two functions
defined by power series with real coefficients and both of them convergent on the open disk
D (0, R) ⊂ C, R > 0. If A and B are two normal operators on the Hilbert space H that
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satisfy condition (3.12) then we have

(3.17)
∥∥g

(
uB∗) f (zA)

∥∥2 ≤ fa

( |z|2 )
ga

( |u|2 )∥∥fa

( |A|2 )∥∥∥∥ga

( |B|2 )∥∥
and

(3.18) w
(
g(uB∗)f (zA)

) ≤ 1

2
fa

(|z|2)ga

(|u|2)∥∥fa

(|A|2) + ga

(|B|2)∥∥ .

4. Some Examples

As some natural examples that are useful for applications, we can point out that, if

f (z) =
∞∑

n=1

(−1)n

n
zn = ln

1

1 + z
, z ∈ D(0, 1) ;(4.1)

g(z) =
∞∑

n=0

(−1)n

(2n)! z2n = cos z , z ∈ C ;

h (z) =
∞∑

n=0

(−1)n

(2n + 1)!z
2n+1 = sin z , z ∈ C ;

l(z) =
∞∑

n=0

(−1)n zn = 1

1 + z
, z ∈ D (0, 1) ;

then the corresponding functions constructed by the use of the absolute values of the coeffi-
cients are

fa(z) =
∞∑

n=1

1

n
zn = ln

1

1 − z
, z ∈ D(0, 1) ;(4.2)

ga(z) =
∞∑

n=0

1

(2n)!z
2n = cosh z , z ∈ C ;

hA(z) =
∞∑

n=0

1

(2n + 1)!z
2n+1 = sinh z , z ∈ C ;

lA(z) =
∞∑

n=0

zn = 1

1 − z
, z ∈ D(0, 1) .

Other important examples of functions as power series representations with nonnegative co-
efficients are:

exp(z) =
∞∑

n=0

1

n!z
n z ∈ C ,(4.3)
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1

2
ln

(
1 + z

1 − z

)
=

∞∑
n=1

1

2n − 1
z2n−1 , z ∈ D (0, 1) ;

sin−1(z) =
∞∑

n=0

Γ
(
n + 1

2

)
√

π (2n + 1) n!z
2n+1 , z ∈ D (0, 1) ;

tanh−1(z) =
∞∑

n=1

1

2n − 1
z2n−1 , z ∈ D (0, 1)

2F1(α, β, γ, z) =
∞∑

n=0

Γ (n + α) Γ (n + β) Γ (γ )

n!Γ (α) Γ (β) Γ (n + γ )
zn, α, β, γ > 0 ,

z ∈ D (0, 1) ;
where Γ is Gamma function.

On making use of Theorem 1, we can state some particular examples as follows:

EXAMPLE 1. a) If A and B are two bounded operators on the Hilbert space H and

for p > 1, 1
p

+ 1
q

= 1, ‖A‖ , ‖B‖ < 1, then

(4.4)
∥∥(1H ± AB)−1

∥∥ ≤ min
{
S1(p, q), S2(p, q)

}
where

S1 (p, q) := (
1 − ‖A‖p

)−1/p(
1 − ‖B‖q

)−1/q
,

and

S2 (p, q) := 1 − ‖A‖p−1 ‖B‖q−1(
1 − ‖A‖p

)(
1 − ‖B‖q

) .

We also have the following inequality for the logarithm

(4.5)
∥∥ln (1H ± AB)−1

∥∥ ≤ min
{
T1 (p, q) , T2 (p, q)

}
where

T1 (p, q) := [
ln(1 − ‖A‖p)−1]1/p[

ln(1 − ‖B‖q)−1]1/q

and

T2 (p, q) :=
[

ln(1 − ‖A‖p)−1
][

ln(1 − ‖B‖q)−1
]

ln
(
1 − ‖A‖p−1 ‖B‖q−1 )−1 .

b) If A and B are two bounded operators on the Hilbert space H and p > 1, 1
p
+ 1

q
= 1,

then

(4.6)
∥∥exp (AB)

∥∥ ≤ min
{
U1 (p, q) , U2 (p, q)

}
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where

U1 (p, q) := exp

(
1

p
‖A‖p + 1

q
‖B‖q

)
,

and

U2 (p, q) := exp
(‖A‖p + ‖B‖q − ‖A‖p−1 ‖B‖q−1) .

Theorem 2 provides the following results for unitarily invariant norm ||| · ||| on a finite
matrix algebra.

EXAMPLE 2. a) Let |‖ · |‖ be a unitarily invariant norm on a finite matrix algebra. If

|‖|A|p|‖, |‖|B|q |‖ < 1, where p > 1, 1
p

+ 1
q

= 1, then

(4.7) |‖(I ± AB)−1|‖ ≤ min
{
V1 (p, q) , V2 (p, q)

}
where

V1 (p, q) := (
1 − |‖|A|p|‖)−1/p(

1 − |‖|B|q |‖)−1/q
,

and

V2 (p, q) := 1 − |‖|A|p|‖1/q |‖|B|q |‖1/p(
1 − |‖|A|p|‖)(1 − |‖|B|q |‖) ,

and

(4.8)
∣∣∥∥ln(I ± AB)−1

∣∣∥∥ ≤ min
{
W1 (p, q) ,W2 (p, q)

}
where

W1 (p, q) := [
ln(1 − |‖|A|p|‖)−1]1/p[

ln(1 − |‖|B|q |‖)−1]1/q
,

and

W2 (p, q) := ln
(
1 − |‖|A|p|‖)−1 ln

(
1 − |‖|B|q |‖)−1

ln
(
1 − |‖|A|p|‖1/q |‖|B|q |‖1/p

)−1 .

b) For any two matrices we have

(4.9)
∣∣∥∥exp(AB)

∣∣∥∥ ≤ min
{
Z1 (p, q) , Z2 (p, q)

}
where

Z1 (p, q) := exp

(
1

p
|‖|A|p|‖ + 1

q
|‖|B|q |‖

)
,

and

Z2 (p, q) := exp
(|‖|A|p|‖ + |‖|B|q |‖ − |‖|A|p|‖1/q |‖|B|q |‖1/p

)
.
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Employing the inequalities from Theorem 3 and Remark 3 we can state:

EXAMPLE 3. a) If A and B are two bounded operators on the Hilbert space H and

‖A‖, ‖B‖ < 1 ,

then ∥∥(1H ± AB)−1
∥∥2 ≤ (

1 − ‖A‖1+α‖B‖1−α
)−1(1 − ‖A‖1−α‖B‖1+α

)−1(4.10)

≤ (
1 − ‖A‖2 )−1(1 − ‖B‖2 )−1

,

and ∥∥ln (1H ± AB)−1
∥∥2

(4.11)

≤ ln
(
1 − ‖A‖1+α ‖B‖1−α

)−1 ln
(
1 − ‖A‖1−α ‖B‖1+α

)−1

≤ ln
(
1 − ‖A‖2 )−1 ln

(
1 − ‖B‖2 )−1

,

where α ∈ [0, 1] .

b) For any bounded linear operators A and B we have the inequalities∥∥ exp (AB)
∥∥2 ≤ exp

( ‖A‖1+α ‖B‖1−α + ‖A‖1−α ‖B‖1+α
)

(4.12)

≤ exp
( ‖A‖2 + ‖B‖2 )

,

where α ∈ [0, 1] , and

(4.13)
∥∥exp (zAB)

∥∥ ≤ exp
( |z| (1 + ‖A‖2 + ‖B‖2 − ‖A‖ − ‖B‖ ))

,

where z ∈ C.

Finally, by the use of the result in Theorem 5 we also have:

EXAMPLE 4. a) If A and B are two commuting normal operators on the Hilbert
space H with ‖A‖ , ‖B‖ < 1 and z ∈ D (0, 1) then we have the inequalities∣∣〈 (1H ± zAB)−1 x, y

〉∣∣2(4.14)

≤ 〈
(1H − |z| |A|2)−1x, x

〉〈
(1H − |z| |B|2)−1y, y

〉
,

∣∣〈 ln (1H ± zAB)−1 x, y
〉∣∣2(4.15)

≤ 〈
ln(1H − |z| |A|2)−1x, x

〉〈
ln(1H − |z| |B|2)−1y, y

〉
,

and ∣∣〈 2F1 (α, β, γ, zAB) x, y
〉∣∣2(4.16)

≤ 〈
2F1(α, β, γ, |z| |A|2)x, x

〉〈
2F1(α, β, γ, |z| |B|2)y, y

〉
where α, β, γ > 0, for any x, y ∈ H.
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b) If A and B are two commuting normal operators on the Hilbert space H and z ∈ C
then we have the inequalities∣∣〈sin (zAB) x, y〉∣∣2

,
∣∣〈sinh (zAB) x, y〉∣∣2(4.17)

≤ 〈
sinh(|z||A|2)x, x

〉〈
sinh(|z||B|2)y, y

〉
,

∣∣〈cos (zAB) x, y〉∣∣2, ∣∣〈cosh (zAB) x, y〉∣∣2(4.18)

≤ 〈
cosh(|z| |A|2)x, x

〉〈
cosh(|z||B|2)y, y

〉
and

(4.19)
∣∣〈exp (zAB) x, y〉∣∣2 ≤ 〈

exp(|z||A|2)x, x
〉〈

exp(|z||B|2)y, y
〉

for any x, y ∈ H.
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