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Abstract. In this paper we classify a class of surfaces with negative Gaussian curvature parametrized by a
generalized Chebyshev net with constant Chebyshev angle in the Euclidean 3-space. As an application we obtain for
each constant Chebyshev angle a seven-parameter family of complete surfaces.

1. Introduction

Bianchi in [1]–[2] studies a class of surfaces with negative Gaussian curvature obtained
by generalizing Bäcklund transformation for surfaces with constant negative Gaussian curva-
ture. Fujioka in [6] introduces the notion of generalized Chebyshev nets which is a natural
generalization of Chebyshev nets for surfaces with constant negative Gaussian curvature and
shows that a Bianchi surface with constant Chebyshev angle parametrized by a generalized
Chebyshev net is a piece of a right helicoid; in this case the Chebyshev angle is π/2.

Riveros and Corro in [7] obtained a characterization for a class of surfaces with a gener-
alized Chebyshev net and constant Chebyshev angle different from π/2. The characterization
is obtained by showing that the coefficients of the first and second fundamental form of these
surfaces depend on a meromorphic function which satisfies a certain differential equation.
The characterization is based on the results obtained in [3], [4] and [5].

In this work, we classify a class of surfaces with negative Gaussian curvature
parametrized by a generalized Chebyshev net with constant Chebyshev angle. We also study
the completeness of such surfaces.

2. Prelimiminaries

In the following we consider only surfaces with negative Gaussian curvature in the Eu-

clidean 3-space R3. Since such a surface has two directions, called the asymptotic directions,
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in which the normal curvature vanishes, we can parametrize the surface locally by asymptotic
line coordinates (x, y):

χ : Ω ⊂ R2 → R3 .

If the Gaussian curvature is − 1
ρ2 for a positive function ρ on Ω then the fundamental forms

become as follows:

I = A2dx2 + 2AB cos ϕdxdy + B2dy2 , II = 2AB sin ϕ

ρ
dxdy ,

where A = |χx |, B = |χy | and ϕ is the angle between the asymptotic lines, called the
Chebyshev angle. Changing the coordinates if necessary, we may assume that 0 < ϕ < π .

DEFINITION 1. A parametrization of a surface is called a generalized Chebyshev net
if A = B.

REMARK 1. In this paper the inner product is defined by 〈 , 〉 : C × C → R. In the
computation we use the following properties: If f, g : C → C are holomorphic functions of
z = x + iy ∈ C then

〈f, g〉x = 〈f ′, g〉 + 〈f, g ′〉 , 〈f, g〉y = 〈if ′, g〉 + 〈f, ig ′〉 .

The following result, obtained in [7], characterizes the surfaces in R3 with a generalized
Chebyshev net, negative Gaussian curvature and constant Chebyshev angle ϕ �= π/2.

THEOREM 1. Let M ⊂ R3 be a connected orientable Riemann surface and ϕ a

constant different from π/2. There exists an immersion X : M → R3 with a generalized

Chebyshev net, negative Gaussian curvature K = − 1
e2u and Chebyshev angle ϕ if and only

if there exists a global meromorphic function h : M → C such that h′(z) �= 0 at all regular
points and it admits only simple poles, satisfying the following

2ec(1 + ε cos ϕ)〈h, (1 + εi)h′〉〈h′, h′〉
− [1 + ec(1 + ε cos ϕ) | h |2]〈h′, (1 + εi)h′′〉 = 0 . (1)

Moreover, locally the fundamental forms of X are given by

I = e(1−ε cos ϕ)u+c[dx2 + 2 cos ϕdxdy + dy2] , (2)

II = 2e−ε cos ϕu+c sin ϕdxdy , (3)

where

u(x, y) = log

(
1 + ec(1 + ε cos ϕ) | h(z) |2

2 | h′(z) |
) 2

1+ε cos ϕ

, (4)

c ∈ R, z = x + iy ∈ C, ε = ±1.
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LEMMA 1. If f, g, h : C → C are holomorphic functions of z = x + iy ∈ C such
that

〈1, f 〉 + |h|2〈1, g〉 = 0 . (5)

Then

f = −z̄1h + ic2 , g = ic1 + z1

h
, (6)

where ci are real constants and z1 ∈ C.

PROOF. The equation (5) can be written as

P = 〈1, f 〉 + 〈h, hg〉 = 0 . (7)

From this equation, it follows that Pxx + Pyy = 0, i.e.

〈h′, (hg)′〉 = 0 ,

therefore (hg)′ = ic1h
′, c1 ∈ R and by integration we get

hg = ic1h + z1 , z1 ∈ C . (8)

Substituting (8) into (7), we obtain

〈1, f 〉 + 〈h, z1〉 = 0 . (9)

Differentiating with respect to x and y respectively, we get

〈1, f ′〉 + 〈h′, z1〉 = 0 , 〈1, if ′〉 + 〈ih′, z1〉 = 0 .

From these equations we have

f ′ + z1h′ = 0

and consequently

f ′

h′ = −z1 .

Integrating, we get

f = −z̄1h + z2 , z2 ∈ C ,

substituting this expression into (9), we obtain 〈1, z2〉 = 0, it follows from this that z2 =
ic2, c2 ∈ R , consequently we obtain the expression of f given in (6). The expression of g is
obtained from equation (8). �

3. Main Results

The following Theorem classifies a class of surfaces in R3 with a generalized Chebyshev
net, negative Gaussian curvature and constant Chebyshev angle ϕ �= π/2.
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THEOREM 2. Let M ⊂ R3 be a connected orientable Riemann surface and ϕ a
constant different from π/2. X : M → R3 is an immersion with a generalized Chebyshev net,

negative Gaussian curvature K = − 1
e2u and Chebyshev angle ϕ if and only if the global

meromorphic function h : M → C of the Theorem 1 is given by:
1)

h(z) = i

z̄1

[
S coth

(
ε + i

4
Sz − z0

)
+ c2

]
, in this case M = C − {αk}k∈Z , (10)

αk = 2(ε−i)
S

Re(z0) + 2(1+εi)
S

[Im(z0) + kπ] , S =
√

c2
2 + |z1|2

ec(1+ε cos ϕ)
, c, c2 ∈ R ,

z0, z1 ∈ C , ε = ±1,

2)

h(z) = e(ε+i)
c2
2 z+z2 , in this case M = C , c2 �= 0 , z2 ∈ C , ε = ±1 . (11)

PROOF. From Theorem 1, the proof of this Theorem reduces to determining all of the
solutions of the differential equation (1).

The equation (1) can be written as〈
1,

bh′′

h′

〉
+ |h|2

〈
1,

abh′′

h′ − 2abh′

h

〉
= 0 , (12)

where a = ec(1 + εcosϕ), b = 1 + εi, ε = ±1.
From Lemma 1, we obtain

bh′′

h′ = −z̄1h + ic2 , (13)

abh′′

h′ − 2ab
h′

h
= ic1 + z1

h
. (14)

Substituting (13) into (14) we get

a(−z̄1h + ic2) − 2ab
h′

h
= ic1 + z1

h

and consequently

bh′ = − z̄1

2
h2 + i

2

(
c2 − c1

a

)
h − z1

2a
. (15)

Differentiating (15) and dividing by h′, we have that

bh′′

h′ = −z̄1h + i

2

(
c2 − c1

a

)
. (16)
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From (13) and (16), it follows that c1 = −ac2, substituting this expression into (15), we get

h′ = − z̄1

2b
h2 + ic2

b
h − z1

2ab
. (17)

Now we will determine the solutions of the equation (17).

Supposing that z1 �= 0, c2 ∈ R and substituting the expressions w1 = − z̄1

2b
, w2 =

ic2

b
, w3 = − z1

2ab
into (17), we obtain

h′ = w1

[(
h + w2

2w1

)2

− w2
2 − 4w1w3

4w2
1

]
. (18)

On the other hand

w2
2 − 4w1w3

4w2
1

= − 1

z̄2
1

(
c2

2 + |z1|2
a

)
. (19)

Putting S2 = c2
2 + |z1|2

a
, from (18) and (19), we get

w1 = h′[(
h + w2

2w1

)2

+ 1

z̄2
1

S2

] . (20)

We can show that

h′[(
h + w2

2w1

)2

+ 1

z̄2
1

S2

] = h′
i

z̄1
S

[
1
2

h + w2
2w1

− i
z̄1

S
−

1
2

h + w2
2w1

+ i
z̄1

S

]
.

(21)

Using (21) in (20), we get

i

z̄1
Sw1dz =

1
2dh

h + w2
2w1

− i
z̄1

S
−

1
2dh

h + w2
2w1

+ i
z̄1

S
. (22)

Integrating

i

z̄1
Sw1z + z0 = 1

2
log

(
h + w2

2w1
− i

z̄1
S

)
− 1

2
log

(
h + w2

2w1
+ i

z̄1
S

)
.

Hence,

e
2i
z̄1

Sw1z+2z0 = h + w2
2w1

− i
z̄1

S

h + w2
2w1

+ i
z̄1

S
.
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Solving for h, we get

h(z) = i

z̄1
S

(
1 + e

2i
z̄1

Sw1z+2z0

1 − e
2i
z̄1

Sw1z+2z0

)
− w2

2w1
. (23)

Substituting the expressions w1 = − z̄1
2b

, w2 = ic2
b

, b = 1 + εi into (23), we have that the
solutions of equation (17) are given by

h(z) = i

z̄1

[
S

(
1 + e− ε+i

2 Sz+2z0

1 − e− ε+i
2 Sz+2z0

)
+ c2

]
,

which is equivalent to equation (10). We observe that sinh
(

ε+i
4 Sz − z0

) = 0 if and only if
z = αk .

For the case z1 = 0, c2 �= 0, the equation (17) reduces to h′ = ic2
b

h .
Integrating, we obtain

log h = ic2

b
z + z2 , z2 ∈ C .

Hence, h(z) = e(ε+i)
c2
2 z+z2 , is a solution to the equation (17) given in (11). Which concludes

the proof of Theorem 2. �

COROLLARY 1. There exists a seven-parameter family of surfaces with a generalized
Chebyshev net and constant Chebyshev angle ϕ �= π/2 whose first and second fundamental
forms are given by

I = ec

(√
2

∣∣∣∣sinh

(
ε + i

4
Sz − z0

)∣∣∣∣
2

|z̄1|S2

{
|z̄1|2 + ec(1 + ε cos ϕ) (24)

×
∣∣∣∣S coth

(
ε + i

4
Sz − z0

)
+ c2

∣∣∣∣
2}) 2(1−ε cos ϕ)

1+ε cos ϕ

[dx2 + 2 cos ϕdxdy + dy2] ,

II = 2ec

(√
2

∣∣∣∣sinh

(
ε + i

4
Sz − z0

)∣∣∣∣
2

|z̄1|S2

{
|z̄1|2 + ec(1 + ε cos ϕ) (25)

×
∣∣∣∣S coth

(
ε + i

4
Sz − z0

)
+ c2

∣∣∣∣
2})−2ε cos ϕ

1+ε cos ϕ

sin ϕdxdy .

Moreover, if c2 = 0 and c ≥ − log(1 + ε cos ϕ) then the surfaces defined by (24) and (25)

are complete.

PROOF. From Theorem 2, it follows that for the meromorphic function given by (10)

there exists a seven-parameter family X : C − {zk}k∈Z → R3 of surfaces with a generalized
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Chebyshev net and constant Chebyshev angle. Moreover, we have that

h′(z) = (1 − εi)S2

4z̄1 sinh2( ε+i
4 Sz − z0)

. (26)

Substituting (10) and (26) into (4), we get

u(x, y) = log

(√
2
∣∣∣sinh

(
ε+i

4 Sz−z0

)∣∣∣2
|z̄1|S2

{
|z̄1|2 + ec(1 + ε cos ϕ)

×
∣∣∣∣S coth

(
ε + i

4
Sz − z0

)
+ c2

∣∣∣∣
2}) 2

1+ε cos ϕ

.

(27)

Substituting (27) in (2) and (3), we obtain the equations (24) and (25). On the other hand, if
c2 = 0 and c ≥ − log(1 + ε cos ϕ) , we can show that

(√
2 |sinh R|2
|z̄1|S2

{|z̄1|2 + ec(1 + ε cos ϕ) |S coth R|2 })
2(1−ε cos ϕ)

1+ε cos ϕ

≥
(√

2

|z1|
)2(1−ε cos ϕ)

1+ε cos ϕ

(28)

where, R = ε+i
4 Sz − z0. In fact, from the condition c ≥ − log(1 + ε cos ϕ) , we have

√
2 |sinh R|2
|z̄1|S2

{|z̄1|2 + ec(1 + ε cos ϕ) |S coth R|2 } ≥
√

2 |sinh R|2
|z̄1|S2

{|z̄1|2 + S2 |coth R|2 }

=
√

2

|z̄1|S2

(
|z̄1|2 |sinh R|2 + |z1|2

ec(1 + ε cos ϕ)
|cosh R|2

)

=
√

2|z̄1|
S2ec(1 + ε cos ϕ)

(
ec(1 + ε cos ϕ) |sinh R|2 + |cosh R|2 ) ≥

√
2

|z1| .

Therefore, the equation (28), is an consequence of this inequality. From (28), it follows that

ds2 ≥ Cds̄2 (29)

where,

ds2 = ec

(√
2
∣∣ sinh

(
ε+i

4 Sz − z0
)∣∣2

|z̄1|S2

{
|z̄1|2 + ec(1 + ε cos ϕ)

×
∣∣∣∣S coth

(
ε + i

4
Sz − z0

)∣∣∣∣
2})2(1−ε cos ϕ)

1+ε cos ϕ [
dx2 + 2 cos ϕdxdy + dy2] ,

ds̄2 = dx2 + 2 cos ϕdxdy + dy2

and C = ec

(√
2

|z1|
)2(1−ε cos ϕ)

1+ε cos ϕ

.
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Since the metric Cds̄2 is complete, it follows that the metric ds2 also is complete. On the
other hand, when z → αk , we have that R → kπi and the metric also satisfies the equation
(29) and therefore is complete. This concludes the proof of Corollary 1. �

REMARK 2. Considering the solution h(z) = e(ε+i)
c2
2 z+z2, given in Theorem 2, we

obtain the family of the surfaces obtained in Corollary 2 in [7].
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