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Abstract. In this paper, we study the spectral and pseudospectral properties of the differential operator Hy =
—3)% + x2m 4 is_lf(x) on LZ(R), where ¢ > 0 is a small parameter, m € N and f is a real-valued Morse
function which satisfies |3)lc (f(x) — |x|_k)| < Clxl_k_l_1 forl =0, 1,2, 3 and large |x|. We show that ¥ (g) =
(supsegr I(He — i)~ D1 and Z(e) = inf%(o(He)) satisfy C™1e™" < w(e) < Ce™ and Z(e) >
clg—vim) v(m) = min [ k+%++l’ %} This extends the result of I. Gallagher, T. Gallay and F. Nier [3] (2009) for
the case m = 1 to general m € N.

1. Introduction

We consider Schrodinger operator with a complex potential H, = —8)% +x2+ie7 F(x)
in L2(R) where ¢ > 0 is a small parameter and f(x) is a real-valued function. In [ICM
2], C. Villani asked the following question: What is the condition on f(x) for b)) (&) =

inf R(o (I:IS)) — +o00 as ¢ — 0 and how the rate of divergence ? In [5], J. H. Schenker has

proved that Y() > +ooase — 0if L, def {x € R; f(x) = t} is essentially nowhere dense

for each r € R. Now, we say that a set S is essentially nowhere dense if S = §’ U N where S’
is nowhere dense and N has Lebesgue measure zero. In [3], . Gallagher, T. Gallay and F. Nier

have studied the rate of growth of X (¢) and the spectral quantity U(e) = (supkeR |(H, —

ir)~! ||)_l under the condition that f(x) is a real-valued Morse function.

In this paper, we study the same problem for H, = —83 +x2"4ie~! f(x) wherem > 1
is an integer. We consider the operator H, with domain D = {u € H 2(R); x2my € L2(R)}.
Let Hy = —83 + x2" be a self-adjoint operator with domain D. Then H; is Hxo-bounded
and skew-symmetric. Since H, has a compact resolvent, the spectrum o (H;) consists of a
countable number discrete eigenvalues {1, (¢)},en With R(X,(¢)) — +ooasn — oo. The
numerical range & (H;) = {(Hqu,u);2;u € D, |ull;2 = 1} is obviously contained in the
rectangle R, = {A € C; R(X) > ap, eJ(A) € f(R)} where ap = info (Hy). Hence, we have
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M(e) € ®(H;) C Re foralln € N and all ¢ > 0. It follows that the imaginary axis iR is
contained in the resolvent set of H,. We define

-1
D(e) = infR(o(He) = min Ry (e) . and ¥(e) = (sup I(H, — ik)_1||> .
ne reR

As is proved by [3], we have X'(¢) > W(e) > ag. To state our main theorem, we set the
following hypothesis.
HYPOTHESIS 1. Assume that f € C3(R, R) has the following properties :

(i) All critical points of f are nondegenerate, i.e., f'(x) = 0 implies f”(x) # 0,
(i) There exist positive constants C and k such that, for all x € R with [x| > 1,

, 1 c
0 f(x)_W SW, for [ =0,1,2,3.

The main theorem of this paper is the following.

THEOREM 1. Suppose that f satisfies Hypothesis 1. Then there exists C > 0 such that,
forall) < e K 1,

C
<W(e) < om

N 1 . 2m 1
Cevm) = ) and X(¢) > ——— where v(m) =min{ —— .

Cev(m) k+3m+12
A few remarks are in order.

REMARK 1. For the case m = 1, Theorem 1 was proven by I. Gallagher, T. Gallay
and F. Nier [3]. Our result shows that v(m) > v(n) if m > n.

REMARK 2. Since ®(H,) C R¢, H. — ag is maximal accretive and H, is the infin-
itesimal generator of Co-semigroup e~ H: We set that C (nw) = %{ E_N(u) + 21 } and

tan o sino

N (1) = sup; g II(He — w — iA)~!|| where the angle « satisfies tan(2ar) = aoe| 15} As is
proved by [3], for any 0 < i < X (), we have ||e™"H¢|| < C(u)e™™ forall r > 0.

In spite of X'(¢) > ¥ (¢), X' (¢) can be much bigger than ¥ (¢) in some particular cases.
The following is also a generalization of the Theorem 1.9 of [3].

THEOREM 2. Fixk > 0 and set f(x) = (1 + x2)~k/2. Then there exists a constant
C > O such that forall0 < ¢ K 1,

() >

1 2
where V'(m) = min -, m 1
2 k+2m

8‘)/(’") )

The rest of the paper is devoted to the proof of Theorem 1 and Theorem 2. Theorem 1 is
proved in section 2 and Theorem 2 in section 3. Before going into the next, we remark that
(1) Y(e) > apif f € L>(R) is not a constant,
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(i) () > ocoase - 0if f € LCR)N C%(R) and for any t € R, L; has empty
interiors.
This can be proven similarly to Proposition 1.4 and Lemma 2.1 of [3]. Throughout this paper,
we denote by C various constants whose exact values are not important. Thus they may differ
from one place to the other.

2. Resolvent Estimates

In this section, we prove Theorem 1 by using the localization techniques and semiclassi-
cal subelliptic estimates. The proof patterns after that of Proposition 4.1 of [3], and we shall
point out only what modifications are necessary for the generalization. We estimate

i(e,2) = [(He —in)™ Y| for neR and 0<e<1.

Under Hypothesis 1, f has only a finite number of critical points, and we denote the set of
critical values of f by

ov(f) = {f(x);x € R, f'(x) =0}.

PROPOSITION 1. [Iff satisfies Hypothesis 1. Then for any A € Rand 0 < ¢ < 1, the
quantity k (¢, \) satisfies the following estimates:
(1) Ifdist(er, f(R)) =8 > 0, thenk(e, 1) <¢g/é.
(i) Ifdist(er, cv(f)U{0}) = 8 > 0, then k (g, A) < Cse2/3.
(i) If X = A(e) is such that limg_9 eA(e) = o € cv(f)\{0}, then

lim e %k (e, M) < C.
e—0
(iv) For ) = 0, the quantity k (g, 0) satisfies

CeFtn, if 0¢ f(R),

k(e.0) < L cem {53t i 0e FRM\evS),
cemm {8t i 0ecv(p).

D= Wl

(v) There exists C > 1 such that, forall L € Rand(0 < e < 1,
2 1
k(e,A) < Ce"™ | where v(m) = min 7m’ — 1.

k+3m+1 2

For the proof of Proposition 1, we use the following localization scheme. The proof of
the following two lemmas may be found in [3].

LEMMA 1. Let Q = —A+V inR? where V is a complex valued measurable function.

Let {XJZ}]'GJ, where ;€ Cgo(Rd, R) be such that

ij(x)zzl, forallxeRd, and
jeJ
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def def
mi S sup Y |V <400, m3= sup Y (Ax;(x)) < +oo.

xERd jEJ xERd jEJ
Then the following estimates hold for any u € Cg° (RY)

201Qu® + 3m3ull? + 8m} | Vul> = > 1Qxjul.
jeJ

In particular, if RV (x) > 0,

201Qu® + 3m3ull? + 8m3(Qu, u) = > | Qxjul
jeJ

(Qu.u)p2 +milul? = > (Qxju. xju)2 - (1
jeJ

Using a dyadic partition of unity, we apply Lemma 1 to the one-dimensional operator
Q=H;—ik

LEMMA 2. Forj € N,e > 0, and ) € R, we define unitary operators Uj, j € N by
Uju)(x) = Zj/zu(ij) and transform Q by U ;
Pjes = UjQUT = 272792 4222 4 L £ (2)x) — i,
e
and let
Cj(e,2) = inf{|| Pjsyull: u € CG°(R), suppu C Kj, |lul =1},
where Ko = [-1,1] and K; = [—1,-3/8] U [1,3/8] for any j > 0. Then k(¢,)) =
|(He — iA)~Y| satisfies
~1 -1
<inij(e,A)> 5K(8,/\)§C(infcj(s,k)> , 2)
JeN jeN
for some constant C > 1 independent of e, ).
Itis clear that Cj(e, 1) > ap forall j € N, e > 0, 1 € R, because
aollull® < N(Pj e pu, u) < || Pjepullllull, forallu € CPR).
We now begin the proof of Proposition 1.

2.1. Proof of Proposition 1. (i) If dist(¢A, f(R)) > &, then

|S{((He —iM)u, u)| = ‘<<£ - A)u, u>

> (8/¢)||ul)®> forall u €D,
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and we get x (g, A) < ¢/5. Before we prove (ii), for f satisfying Hypothesis 1, set that

Cr € sup sup 2| £(27x)| < +oo,
JENxeK;
where k > 0 is the parameter that governs the asymptotic behavior of f(x) as x| — oo.
(i) Suppose that dist(eA, cv(f) U {0}) > 5. We also assume that e|A| < || f|lL~ + 6,
because otherwise we can use the estimate (i). For any u € C§°(R) with supp u C K and
u # 0, we have the lower bound

1Pjeall _ 15(Pjesu, u) [{[24 f (27) =28 ] u, u)| 1 <elkl B cf>
i £ .

lJull flae]|? &2 [lul|? 24

Since ¢|A| > §, taking large enough J € N such that 2kJ > 2Cy /8, we find that Cj(e, 1) >
8/(2¢) forall j > J.

Thus, we only consider 0 < j < J and the problem is reduced to finding a lower
bound on ||(Hy — iMull when u € Cg°({x € R;|x| < Rs}), for some R > 0. On a
bounded domain, we can neglect the bounded term x*" in H, and only consider the operator
Q = —8% + ;— (f(x) — eA). Thus the method of [3] for the case m = 1 applies here to obtain
Kk(g, 1) < Ce?/3.

(iii)) The assumption limg_,g eA(e) = « € cv(f)\{0} implies that ¢|A| > § for some
fixed § > 0 if ¢ > 0 is small enough. Thus, we can reduce the analysis to a bounded domain
as in (ii) and again the analysis of [3] for the case m = 1 yields the statement (iii).

(iv) Foranyj > landu € C°(R) withsuppu C K; = {% < |x| < 1}, we have

lullll Pje.oull > |R(Pj e ou, u)| > 2™ / e 2 | ()| 2dx > 32220 =39m 12
K;
1 . . m;
. > X . > kj J 2 > ] 2
1P 0wl 2 13¢Pj e.0u, )] = — K,.Z f QD) Pdx = —lull?,

where m;(x) = inf{2¥|f(2/x);3 < |x| < 1}. From Hypothesis 1, we find that

lim;_, o m; = 1, so taking large enough J € N, we find that
. 1 _ 2m .
Ci(e,00)>C 2™ + —= | = Ce ®2, forall j>J.
g2k

Since 0 < j < J corresponds to a bounded spatial domain, we can treated as in (ii) and (iii).
Hence, we find that

L, if 0¢ f(R),
|Heull = Ce™|lull, where o =42, if 0e fR\ev(f),
1. if 0Oecv(f).
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. 2m
Consequently, we get k (¢, 0) < Ce™int ez},

(v) By Lemma 2, we need only prove that

—mi 2m 1
Cj(e,») > Ce mm[k+3m+l’2], forall jeN, 0<e<1 and AeR. (3

As in (ii), (iii), we have C;(e, 1) > st_l/z for 0 < j < J. Hence, we consider the case
j > J. Wetake i € Cj°(R) such that supp & C K, ||u]| = 1 and || Pj ¢ i < 2Cj(e, 1). As
in (iv), we easily find that

infxEKj |g](x)|

. 2mj .
[ Pjesull = C27 , and || Pjepull = k]

“4)
where

gj(x) =2M f2/x) —2Men,

If 2/ > ¢~ F%T, the first inequality of (4) implies (3). If 2/ < &~ &3, we integrate by
parts and obtain the following relation:

1P} enitl| + C22M= DI xm =152 = | Qe aB|> 4 22 =DIH g, 3712 4 2% || 627502

where Qs = Pjey — 22 x¥. Thus, we have ||Pj il > [Qjeall]] — C20m=DJ,
Combining this estimate with (4), we obtain

infrek, 19 ()]

~ — C (omj
2Cj(e. 1) z | Penill Z 5 (2 BT

+1Qj el — 2('"—”1') 6]

As is proved by [3], we have
2/3
g2ki

Returning to (5), we find that

Qe rull = flul, forall ue Cg°(R) with suppu C K.

i h2/3 : —2m
Cie,n)=C (22’"1 4+ — = 2(m—1)1) > Cefrmil |
g2k

which proves (3).

2.2. Proof of Theorem 1. According to (v) in Proposition 1, it is clear that ¥ (¢) =
(sup; g k (e, x))‘1 > C~ 7™ Since X(¢) > ¥(e), we find that X (g) > C eV,
Hence, we need only prove ¥ (¢) < Ce™ V) First, we consider the case k > m — 1. Fix
0<exl1,3/8 <x9<1. Wedefine j € N,A € Rand h > 0 as follows:

V> e > 2071 2= 2 ®DI gy = F2ixg).
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Next, we take v € C3°(R) such that |[v]| = 1 and supp v C [—1, 1]. We define

1 X — X0
Mh(x)zmv<w>, x € R. (6)
It is clear that u, € CG°(R), [lupll = 1 and supp u, C K; for sufficiently small 2 > 0.
Recalling that
Pje) = gz—kl( — h29% 4+ 1?3 4 igj(x)), where g;(x) = 2K F@2ixy —2Men,

we find that there exists C > 0 independent of j, ¢, A such that

h2/3 om
||Pj,8,)nu/’l|| S ng—kj = C8 k+3m+1 | (7)

2m

This implies that C; (e, ) < Ce™ Fm+1, hence k (e, 4) > CeF1 by (2) and W (e) <

Ce™FomeT . Itis straightforward to verify (7). First, using (6), we find [|h232uy || = h*/3|v"|.
Next, since x2" < xgm + 2m|x — xg| for all x € K, we have x¥"uy| < C. Finally, since
gj(x0) = 0 by our choice of A, we have forall x € K,

l9j ()1 < Ix = xol sup [g}(x)] < Clx —xol,
<=1

where C does not depend on j by Hypothesis 1. Therefore, [|gju| < Ch?/3 and the proof of
(7) is complete.

Secondary, we consider the case k < m — 1. Let xq be a critical point of f. We assume
without loss of generality that xo = 0. We set

0
A=%, g(x) = f(x) —er.

Next, we take v € C3°(R) such that |[v|| = 1 and suppv C [—1, 1]. We define

1 X
ug(x) = mv m .
Using Taylor’s expansion of g around xo = 0, we find that
I(He = i2uell < llue" Il + 1" uell + &~ gue |

12

=Ce 24 C+Clx%u | + O (/ x6|ug(X)|2dx)
supp e

< ce 12,

Hence, C'¢!/? < sup, g II(He — i2)~"|| and we obtain ¥ () < Ce~!/2,
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3. Spectral Lower Bounds - Proof of Theorem 2

I. Gallagher, T. Gallay and F. Nier [3] have proved Theorem 2 for the case m = 1, by
using a complex deformation method and the same localization techniques as in the proof of
Proposition 1. They also use accurate numerical computations to show that the lower bound in
Theorem 2 is optimal when m = 1, in the sense that the exponent v'(m) cannot be improved.
Our proof for the general case follows that of Theorem 1.9 of [3]. We only give an outline the
proof of Theorem 2.

To prove Theorem 2, we use a complex deformation method using the dilation group
Ugd)(x) = 69/2¢(e0x), which are unitary operators when 8 € R. If f is given by f(x) =
(14x%)7%/2_ the multiplication operator (i /¢) f (x) is a dilation analytic perturbation of Hy, =
—8)% +x2™. According to the dilation analytic theory ([4]), when we define the operator H(6)
by

_ -1 _ _ ,=2042 | 2mb 2 i 1
Hg(e)—UGHgUe = —e€ Bx—i—em X m‘l—gm,
for § = {6 € C; |3(0)| < m/4m}, the spectrum of H.(8) does not depend on 6 € S. We
choose 6 = ity where 1y = é‘m(’,:—ﬁ). Applying localization formula (1) in Lemma 1 to the

operator H,(it;), we obtain that
o(He) N {z € C;ciN@) < IN@)| < C—z} =@, forsome ci,cy > 0.
I3

As is proved by [3], combining this relation with the resolvent estimate of Proposition 1, we
deduce that there exists C > 0 such that H; has no spectrum in the region {fi(z) < C 8_"/(’")}

for sufficiently small ¢. Therefore, we find that X' (¢) > Ce™V' ™ and this concludes the proof
of Theorem 2.
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