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Abstract. In this paper, we study the spectral and pseudospectral properties of the differential operator Hε =
−∂2

x + x2m + iε−1f (x) on L2(R), where ε > 0 is a small parameter, m ∈ N and f is a real-valued Morse

function which satisfies |∂l
x (f (x) − |x|−k)| ≤ C|x|−k−l−1 for l = 0, 1, 2, 3 and large |x|. We show that Ψ (ε) =

(supλ∈R ‖(Hε − iλ)−1‖)−1 and Σ(ε) = inf �(σ (Hε)) satisfy C−1ε−ν(m) ≤ Ψ (ε) ≤ Cε−ν(m) and Σ(ε) ≥
C−1ε−ν(m), ν(m) = min

{
2m

k+3m+1 , 1
2

}
. This extends the result of I. Gallagher, T. Gallay and F. Nier [3] (2009) for

the case m = 1 to general m ∈ N.

1. Introduction

We consider Schrödinger operator with a complex potential H̃ε = −∂2
x +x2 + iε−1f (x)

in L2(R) where ε > 0 is a small parameter and f (x) is a real-valued function. In [ICM

2], C. Villani asked the following question : What is the condition on f (x) for Σ̃(ε) =
inf �(σ (H̃ε)) → +∞ as ε → 0 and how the rate of divergence ? In [5], J. H. Schenker has

proved that Σ̃(ε) → +∞ as ε → 0 if Lt
def= {x ∈ R; f (x) = t} is essentially nowhere dense

for each t ∈ R. Now, we say that a set S is essentially nowhere dense if S = S′ ∪ N where S′
is nowhere dense and N has Lebesgue measure zero. In [3], I. Gallagher, T. Gallay and F. Nier

have studied the rate of growth of Σ̃(ε) and the spectral quantity Ψ̃ (ε) = (
supλ∈R ‖(H̃ε −

iλ)−1‖)−1 under the condition that f (x) is a real-valued Morse function.

In this paper, we study the same problem for Hε = −∂2
x +x2m + iε−1f (x) where m ≥ 1

is an integer. We consider the operator Hε with domain D = {u ∈ H 2(R); x2mu ∈ L2(R)}.
Let H∞ = −∂2

x + x2m be a self-adjoint operator with domain D. Then Hε is H∞-bounded
and skew-symmetric. Since Hε has a compact resolvent, the spectrum σ(Hε) consists of a
countable number discrete eigenvalues {λn(ε)}n∈N with �(λn(ε)) → +∞ as n → ∞. The
numerical range Θ(Hε) = {〈Hεu, u〉L2 ; u ∈ D, ‖u‖L2 = 1} is obviously contained in the

rectangle Rε = {λ ∈ C; �(λ) ≥ a0, ε
(λ) ∈ f (R)} where a0 = inf σ(H∞). Hence, we have
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λn(ε) ∈ Θ(Hε) ⊂ Rε for all n ∈ N and all ε > 0. It follows that the imaginary axis iR is
contained in the resolvent set of Hε. We define

Σ(ε) = inf �(σ (Hε)) = min
n∈N

�(λn(ε)) , and Ψ (ε) =
(

sup
λ∈R

‖(Hε − iλ)−1‖
)−1

.

As is proved by [3], we have Σ(ε) ≥ Ψ (ε) ≥ a0. To state our main theorem, we set the
following hypothesis.

HYPOTHESIS 1. Assume that f ∈ C3(R, R) has the following properties :
(i) All critical points of f are nondegenerate, i.e., f ′(x) = 0 implies f ′′(x) �= 0,

(ii) There exist positive constants C and k such that, for all x ∈ R with |x| ≥ 1,∣∣∣∣∂l
x

(
f (x) − 1

|x|k
)∣∣∣∣ ≤ C

|x|k+l+1
, for l = 0, 1, 2, 3 .

The main theorem of this paper is the following.

THEOREM 1. Suppose that f satisfies Hypothesis 1. Then there exists C > 0 such that,
for all 0 < ε � 1,

1

Cεν(m)
≤ Ψ (ε) ≤ C

εν(m)
and Σ(ε) ≥ 1

Cεν(m)
where ν(m) = min

{
2m

k + 3m + 1
,

1

2

}
.

A few remarks are in order.

REMARK 1. For the case m = 1, Theorem 1 was proven by I. Gallagher, T. Gallay
and F. Nier [3]. Our result shows that ν(m) > ν(n) if m > n.

REMARK 2. Since Θ(Hε) ⊂ Rε , Hε − a0 is maximal accretive and Hε is the infin-
itesimal generator of C0-semigroup e−tHε . We set that C(μ) = 1

π

{ μ
tan α

N(μ) + 2π
sin α

}
and

N(μ) = supλ∈R ‖(Hε − μ − iλ)−1‖ where the angle α satisfies tan(2α) = a0ε‖f ‖−1∞ . As is

proved by [3], for any 0 < μ < Σ(ε), we have ‖e−tHε‖ ≤ C(μ)e−μt for all t ≥ 0.

In spite of Σ(ε) ≥ Ψ (ε), Σ(ε) can be much bigger than Ψ (ε) in some particular cases.
The following is also a generalization of the Theorem 1.9 of [3].

THEOREM 2. Fix k > 0 and set f (x) = (1 + x2)−k/2. Then there exists a constant
C > 0 such that for all 0 < ε � 1,

Σ(ε) ≥ C

εν ′(m)
, where ν′(m) = min

{
1

2
,

2m

k + 2m

}
.

The rest of the paper is devoted to the proof of Theorem 1 and Theorem 2. Theorem 1 is
proved in section 2 and Theorem 2 in section 3. Before going into the next, we remark that

(i) Ψ (ε) > a0 if f ∈ L∞(R) is not a constant,



SPECTRAL PROPERTIES OF NON-SELFADJOINT SCHRÖDINGER OPERATORS 339

(ii) Ψ (ε) → ∞ as ε → 0 if f ∈ L∞(R) ∩ C0(R) and for any t ∈ R, Lt has empty
interiors.

This can be proven similarly to Proposition 1.4 and Lemma 2.1 of [3]. Throughout this paper,
we denote by C various constants whose exact values are not important. Thus they may differ
from one place to the other.

2. Resolvent Estimates

In this section, we prove Theorem 1 by using the localization techniques and semiclassi-
cal subelliptic estimates. The proof patterns after that of Proposition 4.1 of [3], and we shall
point out only what modifications are necessary for the generalization. We estimate

κ(ε, λ) = ‖(Hε − iλ)−1‖ f or λ ∈ R and 0 < ε � 1 .

Under Hypothesis 1, f has only a finite number of critical points, and we denote the set of
critical values of f by

cv(f ) = {f (x); x ∈ R, f ′(x) = 0} .

PROPOSITION 1. If f satisfies Hypothesis 1. Then for any λ ∈ R and 0 < ε � 1, the
quantity κ(ε, λ) satisfies the following estimates :

(i) If dist(ελ, f (R)) ≥ δ > 0, then κ(ε, λ) ≤ ε/δ.

(ii) If dist(ελ, cv(f ) ∪ {0}) ≥ δ > 0, then κ(ε, λ) ≤ Cδε
2/3.

(iii) If λ = λ(ε) is such that limε→0 ελ(ε) = α ∈ cv(f )\{0}, then

lim
ε→0

ε−1/2κ(ε, λ(ε)) ≤ C .

(iv) For λ = 0, the quantity κ(ε, 0) satisfies

κ(ε, 0) ≤

⎧⎪⎪⎨
⎪⎪⎩

Cε
2m

k+2m , if 0 /∈ f (R) ,

Cε
min

{
2m

k+2m
, 2

3

}
, if 0 ∈ f (R)\cv(f ) ,

Cε
min

{
2m

k+2m
, 1

2

}
, if 0 ∈ cv(f ) .

(v) There exists C > 1 such that, for all λ ∈ R and 0 < ε � 1,

κ(ε, λ) ≤ Cεν(m) . where ν(m) = min

{
2m

k + 3m + 1
,

1

2

}
.

For the proof of Proposition 1, we use the following localization scheme. The proof of
the following two lemmas may be found in [3].

LEMMA 1. Let Q = −Δ+V in Rd , where V is a complex valued measurable function.

Let {χ2
j }j∈J , where χj ∈ C∞

0 (Rd, R) be such that∑
j∈J

χj (x)2 = 1 , f or all x ∈ Rd , and
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m2
1

def= sup
x∈Rd

∑
j∈J

|∇χj(x)|2 < +∞ , m2
2

def= sup
x∈Rd

∑
j∈J

(Δχj (x))2 < +∞ .

Then the following estimates hold for any u ∈ C∞
0 (Rd)

2‖Qu‖2 + 3m2
2‖u‖2 + 8m2

1‖∇u‖2 ≥
∑
j∈J

‖Qχju‖2 .

In particular, if �V (x) ≥ 0,

2‖Qu‖2 + 3m2
2‖u‖2 + 8m2

1�〈Qu, u〉 ≥
∑
j∈J

‖Qχju‖2 ,

〈Qu, u〉L2 + m2
1‖u‖2 ≥

∑
j∈J

〈Qχju, χju〉L2 . (1)

Using a dyadic partition of unity, we apply Lemma 1 to the one-dimensional operator
Q = Hε − iλ.

LEMMA 2. For j ∈ N, ε > 0, and λ ∈ R, we define unitary operators Uj , j ∈ N by

(Uju)(x) = 2j/2u(2j x) and transform Q by Uj

Pj,ε,λ = UjQU∗
j = −2−2j ∂2

x + 22mjx2m + i

ε
f (2jx) − iλ ,

and let

Cj (ε, λ) = inf{‖Pj,ε,λu‖: u ∈ C∞
0 (R), supp u ⊂ Kj, ‖u‖ = 1} ,

where K0 = [−1, 1] and Kj = [−1,−3/8] ∪ [1, 3/8] for any j > 0. Then κ(ε, λ) =
‖(Hε − iλ)−1‖ satisfies(

inf
j∈N

Cj(ε, λ)

)−1

≤ κ(ε, λ) ≤ C

(
inf
j∈N

Cj(ε, λ)

)−1

, (2)

for some constant C ≥ 1 independent of ε, λ.

It is clear that Cj (ε, λ) ≥ a0 for all j ∈ N, ε > 0, λ ∈ R, because

a0‖u‖2 ≤ �〈Pj,ε,λu, u〉 ≤ ‖Pj,ε,λu‖‖u‖, f or all u ∈ C∞
0 (R) .

We now begin the proof of Proposition 1.

2.1. Proof of Proposition 1. (i) If dist(ελ, f (R)) ≥ δ, then

|
〈(Hε − iλ)u, u〉| =
∣∣∣∣
〈(

f

ε
− λ

)
u, u

〉∣∣∣∣ ≥ (δ/ε)‖u‖2 for all u ∈ D ,
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and we get κ(ε, λ) ≤ ε/δ. Before we prove (ii), for f satisfying Hypothesis 1, set that

Cf
def= sup

j∈N
sup
x∈Kj

2kj |f (2j x)| < +∞ ,

where k > 0 is the parameter that governs the asymptotic behavior of f (x) as |x| → ∞.
(ii) Suppose that dist(ελ, cv(f ) ∪ {0}) ≥ δ. We also assume that ε|λ| ≤ ‖f ‖L∞ + δ,

because otherwise we can use the estimate (i). For any u ∈ C∞
0 (R) with supp u ⊂ Kj and

u �≡ 0, we have the lower bound

‖Pj,ε,λ‖
‖u‖ ≥ |
〈Pj,ε,λu, u〉|

‖u‖2 =
∣∣〈[2kjf

(
2j ·) − 2kj ελ

]
u, u

〉∣∣
ε2kj‖u‖2 ≥ 1

ε

(
ε|λ| − Cf

2kj

)
.

Since ε|λ| ≥ δ, taking large enough J ∈ N such that 2kJ ≥ 2Cf /δ, we find that Cj(ε, λ) ≥
δ/(2ε) for all j ≥ J .

Thus, we only consider 0 ≤ j ≤ J and the problem is reduced to finding a lower
bound on ‖(Hε − iλ)u‖ when u ∈ C∞

0 ({x ∈ R; |x| < Rδ}), for some Rδ > 0. On a

bounded domain, we can neglect the bounded term x2m in Hε and only consider the operator

Q̃ = −∂2
x + i

ε
(f (x) − ελ). Thus the method of [3] for the case m = 1 applies here to obtain

κ(ε, λ) ≤ Cε2/3.
(iii) The assumption limε→0 ελ(ε) = α ∈ cv(f )\{0} implies that ε|λ| ≥ δ for some

fixed δ > 0 if ε > 0 is small enough. Thus, we can reduce the analysis to a bounded domain
as in (ii) and again the analysis of [3] for the case m = 1 yields the statement (iii).

(iv) For any j ≥ 1 and u ∈ C∞
0 (R) with supp u ⊂ Kj = { 3

8 ≤ |x| ≤ 1}, we have

‖u‖‖Pj,ε,0u‖ ≥ |�〈Pj,ε,0u, u〉| ≥ 22mj

∫
Kj

|x|2m|u(x)|2dx ≥ 32m22(j−3)m‖u‖2 ,

‖u‖‖Pj,ε,0u‖ ≥ |
〈Pj,ε,0u, u〉| ≥ 1

ε2kj

∫
Kj

2kj |f (2jx)||u(x)|2dx ≥ mj

ε2kj
‖u‖2 ,

where mj(x) = inf{2kj |f (2jx)|; 3
8 ≤ |x| ≤ 1}. From Hypothesis 1, we find that

limj→∞ mj = 1, so taking large enough J ∈ N, we find that

Cj (ε, 0) ≥ C

(
2mj + 1

ε2kj

)
≥ Cε− 2m

k+2m , for all j ≥ J .

Since 0 ≤ j ≤ J corresponds to a bounded spatial domain, we can treated as in (ii) and (iii).
Hence, we find that

‖Hεu‖ ≥ Cε−σ ‖u‖ , where σ =

⎧⎪⎪⎨
⎪⎪⎩

1 , if 0 /∈ f (R) ,
2
3 , if 0 ∈ f (R)\cv(f ) ,
1
2 , if 0 ∈ cv(f ) .
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Consequently, we get κ(ε, 0) ≤ Cεmin{ 2m
k+2m ,σ }.

(v) By Lemma 2, we need only prove that

Cj(ε, λ) ≥ Cε
− min

{
2m

k+3m+1 , 1
2

}
, for all j ∈ N , 0 < ε � 1 and λ ∈ R . (3)

As in (ii), (iii), we have Cj(ε, λ) ≥ CJ ε−1/2 for 0 ≤ j ≤ J . Hence, we consider the case
j > J . We take ũ ∈ C∞

0 (R) such that supp ũ ⊂ Kj , ‖ũ‖ = 1 and ‖Pj,ε,λũ‖ ≤ 2Cj(ε, λ). As
in (iv), we easily find that

‖Pj,ε,λũ‖ ≥ C22mj , and ‖Pj,ε,λũ‖ ≥ infx∈Kj |gj (x)|
ε2kj

, (4)

where

gj (x) = 2kjf (2jx) − 2kj ελ .

If 2j ≥ ε− 1
k+3m+1 , the first inequality of (4) implies (3). If 2j < ε− 1

k+3m+1 , we integrate by
parts and obtain the following relation :
‖Pj,ε,λũ‖2 + C22(m−1)j‖xm−1ũ‖2 = ‖Qj,ε,λũ‖2 + 22(m−1)j+1‖xm∂xũ‖2 + 24mj‖x2mũ‖2 ,

where Qj,ε,λ = Pj,ε,λ − 22mjx2m. Thus, we have ‖Pj,ε,λũ‖ ≥ ‖Qj,ε,λũ‖ − C2(m−1)j .
Combining this estimate with (4), we obtain

2Cj(ε, λ) ≥ ‖Pj,ε,λũ‖ ≥ C

3

(
22mj + infx∈Kj |gj (x)|

ε2kj
+ ‖Qj,ε,λũ‖ − 2(m−1)j

)
. (5)

As is proved by [3], we have

‖Qj,ε,λu‖ ≥ Ch2/3

ε2kj
‖u‖ , for all u ∈ C∞

0 (R) with supp u ⊂ Kj .

Returning to (5), we find that

Cj (ε, λ) ≥ C

(
22mj + h2/3

ε2kj
− 2(m−1)j

)
≥ Cε

−2m
k+3m+1 ,

which proves (3).

2.2. Proof of Theorem 1. According to (v) in Proposition 1, it is clear that Ψ (ε) =(
supλ∈R κ(ε, λ)

)−1 ≥ C−1ε−ν(m). Since Σ(ε) ≥ Ψ (ε), we find that Σ(ε) ≥ C−1ε−ν(m).

Hence, we need only prove Ψ (ε) ≤ Cε−ν(m). First, we consider the case k > m − 1. Fix
0 < ε � 1, 3/8 < x0 < 1. We define j ∈ N, λ ∈ R and h > 0 as follows :

2j ≥ ε− 1
k+3m+1 > 2j−1 , h2 = ε2(k−2)j , ελ = f (2jx0) .
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Next, we take v ∈ C∞
0 (R) such that ‖v‖ = 1 and supp v ⊂ [−1, 1]. We define

uh(x) = 1

h1/3 v

(
x − x0

h2/3

)
, x ∈ R . (6)

It is clear that uh ∈ C∞
0 (R), ‖uh‖ = 1 and supp uh ⊂ Kj for sufficiently small h > 0.

Recalling that

Pj,ε,λ = 1

ε2kj

( − h2∂2
x + h2/3x2m + igj (x)

)
, where gj (x) = 2kjf (2jx) − 2kj ελ ,

we find that there exists C > 0 independent of j , ε, λ such that

‖Pj,ε,λuh‖ ≤ C
h2/3

ε2kj
= Cε− 2m

k+3m+1 . (7)

This implies that Cj (ε, λ) ≤ Cε− 2m
k+3m+1 , hence κ(ε, λ) ≥ Cε

2m
k+3m+1 by (2) and Ψ (ε) ≤

Cε− 2m
k+3m+1 . It is straightforward to verify (7). First, using (6), we find ‖h2∂2

xuh‖ = h2/3‖v′′‖.

Next, since x2m ≤ x2m
0 + 2m|x − x0| for all x ∈ Kj , we have ‖x2muh‖ ≤ C. Finally, since

gj (x0) = 0 by our choice of λ, we have for all x ∈ Kj ,

|gj (x)| ≤ |x − x0| sup
3
8 ≤|x|≤1

|g ′
j (x)| ≤ C|x − x0| ,

where C does not depend on j by Hypothesis 1. Therefore, ‖gj uh‖ ≤ Ch2/3 and the proof of
(7) is complete.

Secondary, we consider the case k ≤ m − 1. Let x0 be a critical point of f . We assume
without loss of generality that x0 = 0. We set

λ = f (0)

ε
, g(x) = f (x) − ελ .

Next, we take v ∈ C∞
0 (R) such that ‖v‖ = 1 and suppv ⊂ [−1, 1]. We define

uε(x) = 1

ε1/8 v

(
x

ε1/4

)
.

Using Taylor’s expansion of g around x0 = 0, we find that

‖(Hε − iλ)uε‖ ≤ ‖uε
′′‖ + ‖x2muε‖ + ε−1‖guε‖

= Cε−1/2 + C + C‖x2uε‖ + O
(∫

supp uε

x6|uε(x)|2dx

)1/2

≤ Cε−1/2 .

Hence, C−1ε1/2 ≤ supλ∈R ‖(Hε − iλ)−1‖ and we obtain Ψ (ε) ≤ Cε−1/2.
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3. Spectral Lower Bounds - Proof of Theorem 2

I. Gallagher, T. Gallay and F. Nier [3] have proved Theorem 2 for the case m = 1, by
using a complex deformation method and the same localization techniques as in the proof of
Proposition 1. They also use accurate numerical computations to show that the lower bound in
Theorem 2 is optimal when m = 1, in the sense that the exponent ν′(m) cannot be improved.
Our proof for the general case follows that of Theorem 1.9 of [3]. We only give an outline the
proof of Theorem 2.

To prove Theorem 2, we use a complex deformation method using the dilation group

(Uθφ)(x) = eθ/2φ(eθx), which are unitary operators when θ ∈ R. If f is given by f (x) =
(1+x2)−k/2, the multiplication operator (i/ε)f (x) is a dilation analytic perturbation of H∞ =
−∂2

x +x2m. According to the dilation analytic theory ([4]), when we define the operator Hε(θ)

by

Hε(θ) = UθHεU
−1
θ = −e−2θ∂2

x + e2mθx2m + i

ε

1

(1 + e2θx2)k/2
,

for S = {θ ∈ C; |
(θ)| ≤ π/4m}, the spectrum of Hε(θ) does not depend on θ ∈ S. We
choose θ = itk where tk = π

4m(k+2)
. Applying localization formula (1) in Lemma 1 to the

operator Hε(itk), we obtain that

σ(Hε) ∩
{
z ∈ C; c1�(z) ≤ |
(z)| ≤ c2

ε

}
= ∅ , for some c1, c2 > 0 .

As is proved by [3], combining this relation with the resolvent estimate of Proposition 1, we

deduce that there exists C > 0 such that Hε has no spectrum in the region {�(z) ≤ Cε−ν ′(m)}
for sufficiently small ε. Therefore, we find that Σ(ε) ≥ Cε−ν ′(m) and this concludes the proof
of Theorem 2.
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