Токуо J. Матн. Vol. 36, No. 1, 2013

S¹-equivariant CMC-hypersurfaces in the Hyperbolic 3-space and the Corresponding Lagrangians

Keiichi KIKUCHI

Tokai University

Abstract. A family of S^1 -equivariant hypersurfaces of constant mean curvature can be obtained by using the Lagrangians with suitable potentials in the hyperbolic 3-space. The conservation law is effectively applied to the construction of S^1 -equivariant hypersurfaces of constant mean curvature in the hyperbolic 3-space.

1. Introduction

W-Y. Hsiang [5] investigated the rotation hypersurfaces of constant mean curvature in the spherical or hyperbolic *n*-space. In [2], Eells and Ratto have constructed rotation(S^1 equivariant) minimal hypersurfaces in the unit 3-sphere, where they used a certain first integral which is invariant with respect to the horizontal rotation angle of generating curves on the orbit space. In [8], A certain family of S^1 -equivariant CMC (constant mean curvature) hypersurfaces was constructed in the unit 3-sphere equipped with parametrized metric. In its construction, the Lagrangians with potentials appear and the corresponding Hamiltonians and the conservation laws are used effectively. In the construction of S^1 -equivariant CMC hypersurfaces in the hyperbolic 3-space, it is cleared that the conserved quantity can be obtained by using the Lagrangian of the corresponding dynamical system with respect to the Hsiang-Lawson metric [2], [6] on the orbit space via the Hamilton equation [10] when we consider the horizontal angle of generating curves as "time". We should remark that the corresponding Lagrangian has the vanishing potential when we construct the S^1 -equivariant minimal hypersurfaces. However, in case that we construct S^1 -equivariant non-minimal CMC hypersurfaces in the hyperbolic 3-space, the corresponding potentials are nonvanishing functions. We determine the potential function of the Lagrangian which corresponds to S^1 -equivariant CMC-surfaces immersed in the hyperbolic 3-space (Theorem 4.3). As a result we can see that the corresponding potential function depends on the constant mean curvature H itself.

Mathematics Subject Classification: 53C43, 70H05, 70H33

Received November 16, 2011; revised April 26, 2012

Key words and phrases: S¹-equivariant CMC surface, Lagrangians, conservation laws

KEIICHI KIKUCHI

2. Preliminaries

We identify \mathbf{R}^4 with the space of quaternions $\mathbf{H} = span\{1, i, j, k\}$. The Minkowski inner product \langle , \rangle_M on \mathbf{H} is defined by

$$\langle w_1, w_2 \rangle_M := -a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2,$$

where $w_m = a_m + b_m i + c_m j + d_m k$, m = 1, 2.

The hyperbolic space H^3 is defined by

$$H^{3} = \{ w \in \mathbf{H}; \langle w, w \rangle_{M} = -1, \Re(w) > 0 \}$$

Then the orbit space X by the S^1 -action r_t on H^3 :

$$r_t(w) = a + bi + e^{it}(cj + dk), \quad w = a + bi + cj + dk \in H^3,$$

is represented by

$$X = \{(\cosh \theta)e_{i\phi} + (\sinh \theta)j ; 0 \le \theta < +\infty, -\infty < \phi < +\infty\},\$$

where $e_{i\phi} := \cosh \phi + \sinh \phi i$.

Let $X \setminus \partial X$ denote by X° . The orbital metric h on X is given by $h = h_1 d\theta^2 + h_2 d\phi^2$, where $h_1 = 1$, $h_2 = \cosh^2 \theta$. Moreover, the volume function is $V = 2\pi \sinh \theta$ and the Hsiang-Lawson metric $\hat{h} = \hat{h_1} d\theta^2 + \hat{h_2} d\phi^2$, where $\hat{h_1} = 4\pi^2 \sinh^2 \theta$, $\hat{h_2} = 4\pi^2 \sinh^2 \theta \cosh^2 \theta$.

 $\gamma : J \subset \mathbf{R} \to (X^\circ, h)$ denotes a curve parametrized by arclength *s*. $\tau(\gamma) = \nabla_{\dot{\gamma}} \dot{\gamma}$ and $\hat{\tau}(\gamma) = \hat{\nabla}_{\dot{\gamma}} \dot{\gamma}$ stand for the tension fields of γ with respect to the metrics *h* and \hat{h} , respectively.

The geodesic curvature $\kappa(\gamma)$ at $\gamma(s)$ is defined by $\kappa(\gamma) := h(\tau(\gamma), \eta)$ where η denotes the unit normal vector field to γ .

3. S¹-equivariant CMC-immersion

For a curve $\gamma : J \to X^\circ$, we consider an S^1 -equivariant map $\mu : M = \gamma^{-1}(H^3) \to H^3$ such that $\gamma \circ \pi = \sigma \circ \mu$, where $\pi : M \to J$ and $\sigma : H^3 \to X^\circ$ are Riemannian submersions. Throughout the paper, we assume that μ is an S^1 -equivariant constant mean curvature Himmersion. Then we have

$$\kappa(\gamma) - \eta(\log V) = 2H, \qquad (1)$$

since

$$h(\tau(\gamma), \eta) - \eta(\log V) = h(\hat{\tau}(\gamma), \eta).$$

On the orbit space (X°, h) , the velocity vector field of a curve $\gamma(s) = (\theta(s), \phi(s))$ is given by the following component functions:

$$\theta'(s) = \cos \lambda(s), \quad \phi'(s) = \frac{\sin \lambda(s)}{\cosh \theta(s)}.$$
 (2)

208

LEMMA 3.1. The following formulas hold on (X°, h)

$$\eta(s) = -\sin\lambda(s)\frac{\partial}{\partial\theta} + \frac{\cos\lambda(s)}{\cosh\theta(s)}\frac{\partial}{\partial\phi},$$
(3)

$$\tau(\gamma) = \tau(\gamma)_1 \frac{\partial}{\partial \theta} + \tau(\gamma)_2 \frac{\partial}{\partial \phi}, \qquad (4)$$

where

$$\tau(\gamma)_1 = \theta''(s) - \sinh\theta(s)\cosh\theta(s)\phi'(s)^2$$

and

Then, using the formula (1), we have the following differential equation (5) of generating curves on X° which corresponds to S^{1} -equivariant CMC-hypersurfaces immersed in H^{3} , since using Lemma 3.1 the geodesic curvature $\kappa(\gamma)$ is given by

$$\kappa(\gamma) = \lambda'(s) + \tanh \theta(s) \sin \lambda(s) ,$$

$$\lambda'(s) + (\tanh \theta(s) + \coth \theta(s)) \sin \lambda(s) - 2H = 0 .$$
(5)

4. An application of conservation laws

We consider a generating curve $\gamma(s) = (\theta(s), \phi(s))$ on X° such that $\theta = \theta(\phi)$ and $\phi'(s) > 0$. Then we can consider the space $\Xi(\theta, \theta^{\#})$ of motion with $\theta^{\#} = d\theta / d\phi$ and time ϕ . Let $\mathcal{L} = \mathcal{L}(\theta, \theta^{\#})$ be a Lagrangian on $\Xi(\theta, \theta^{\#})$. Via the Legendre transformation, we have the Hamiltonian \mathcal{H} on the phase space $\Xi^*(\theta, p)$:

$$\mathcal{H} = \theta^{\#} p - \mathcal{L} \,, \quad p = \frac{\partial \mathcal{L}}{\partial \theta^{\#}}$$

The conservation laws of our system imply the following

PROPOSITION 4.1. Let the Lagrangian \mathcal{L} on $\Xi(\theta, \theta^{\#})$ be the following form:

$$\mathcal{L} = \sqrt{\hat{h}_1(\theta^{\#})^2 + \hat{h}_2} + G(\theta) \,,$$

where \hat{h} is the Hsiang-Lawson metric on X° and $G(\theta)$ is a potential function on the configuration space. Then we have

$$\frac{d}{d\phi} \left\{ \frac{\hat{h}_2}{\sqrt{\hat{h}_1(\theta^{\#})^2 + \hat{h}_2}} + G(\theta) \right\} = 0,$$
(6)

where the conserved quantity in (6) represents the Hamiltonian of our system.

KEIICHI KIKUCHI

By means of the Hamilton equation (6), we shall determine the potential $G(\theta)$ which corresponds to S^1 -equivariant CMC-hypersurfaces immersed in H^3 via the differential equation (5) of generating curves on the orbit space X° .

The direct computation yields the following

LEMMA 4.2. Assume that θ and λ are functions of ϕ and $d\lambda / d\phi = \lambda'(s) / \phi'(s)$. Then we have

$$\frac{d}{d\phi} \frac{\hat{h}_2}{\sqrt{\hat{h}_1(\theta^{\#})^2 + \hat{h}_2}} = \Psi\{\lambda'(s) + (\tanh\theta(s) + \coth\theta(s))\sin\lambda(s)\},\tag{7}$$

where

$$\Psi = 2\pi \sinh \theta(s) \cosh^2 \theta(s) \cot \lambda(s) \,.$$

By using the conservation law (6) and (7), we have the following

THEOREM 4.3. On our system we have the following potential function $G(\theta)$, Lagrangian \mathcal{L} and Hamiltonian \mathcal{H} .

$$G(\theta) = -\pi H \cosh 2\theta,$$

$$\mathcal{L} = \frac{\pi \sinh 2\theta(s)}{\sin \lambda(s)} - \pi H \cosh 2\theta(s),$$

and

$$\mathcal{H} = -2\pi \sinh \theta(s) \cosh \theta(s) \sin \lambda(s) + \pi H \cosh 2\theta(s) \,.$$

Let $\gamma(s) = (\theta(s), \phi(s))$ be a generating curve on X° such that $\theta = \theta(\phi)$ and $\phi'(s) > 0$. Then we set the initial conditions: $\theta_0 := \theta(0), \phi(0) = 0, \theta'(0) = 0$ and $\lambda(0) = \frac{\pi}{2}$. Then we have the following

Lemma 4.4.

$$\left(\frac{d^2\theta}{d\phi^2}\right)_{s=0} = 2\cosh^2\theta_0(\coth 2\theta_0 - H).$$
(8)

PROOF. The conservation law implies that

$$\frac{\hat{h}_2}{\sqrt{\hat{h}_1(\theta^{\#})^2 + \hat{h}_2}} + G(\theta) = C ,$$

where

$$C = 2\pi \sinh \theta_0 \cosh \theta_0 - \pi H \cosh 2\theta_0$$

210

then

$$\left(\frac{d\theta}{d\phi}\right)^2 = \frac{\hat{h}_2}{\hat{h}_1} \left\{ \frac{\hat{h}_2}{(C - G(\theta))^2} - 1 \right\}.$$
(9)

Since $(C - G(\theta_0))^2 = \hat{h}_2(\theta_0)$ and

$$\left(\frac{d^2\theta}{d\phi^2}\right)_{s=0} = \frac{1}{2} \left(\frac{d}{d\theta}\right)_{s=0} \left(\frac{d\theta}{d\phi}\right)^2,\tag{10}$$

using (9) we have

$$2(C - G(\theta_0))^3 \left(\frac{d^2\theta}{d\phi^2}\right)_{s=0}$$

$$= \frac{\hat{h}_2(\theta_0)}{\hat{h}_1(\theta_0)} \left\{ 2\pi^2 \left(\frac{\partial G}{\partial \theta} \right)_{s=0} \sinh^2 2\theta_0 + (C - G(\theta_0)) \left(\frac{\partial \hat{h}_2}{\partial \theta} \right)_{s=0} \right\}$$

from which, a direct computation implies the formula (8).

Lemma 4.4 implies the following.

LEMMA 4.5. Under the initial conditions above with respect to a generating curve $\theta = \theta(\phi(s))$ on X° , assume that H > 1. Then

$$\left(\frac{d^2\theta}{d\phi^2}\right)_{s=0} \ge 0 \quad (resp., \le 0)$$

if and only if

$$\theta_0 \le \theta_H \quad (resp., \ge \theta_H), \tag{11}$$

where

$$\theta_H := \frac{1}{4} \log \left(\frac{H+1}{H-1} \right).$$

Let H > 1 and we choose θ_0 such that $\theta_H < \theta_0 < 3\theta_H$. Under the initial conditions above with respect to a generating curve $\theta = \theta(\phi(s))$, using Lemma 4.5 we have $\left(\frac{d^2\theta}{d\phi^2}\right)_{s=0} < 0$ and there exists the value $\phi_1 = \phi(s_1)$ of ϕ such that $\theta = \theta(\phi(s))$ decreases strictly until ϕ_1 , where the value of $d\theta / d\phi$ equals to zero at $\phi = \phi_1$, and $\theta = \theta(\phi(s))$ takes a local minimum at $\phi = \phi_1$.

In fact, suppose that this is not valid, then we may assume that there exists *a* such that $0 \le a < \theta_0 < +\infty$ and $\lim_{s \to +\infty} \theta(s) = a$, $\lim_{s \to +\infty} \theta'(s) = 0$, $\lim_{s \to +\infty} \lambda(s) = \frac{\pi}{2}$.

KEIICHI KIKUCHI

Then, by making use of (9), we have

$$\left(\frac{d\theta}{d\phi}\right)^2 = \frac{4\cosh^2\theta(s)\sinh(\theta(s)+\theta_0)\sinh(\theta(s)-\theta_0)\Phi\Omega}{\{\sinh 2\theta_0+2H\sinh(\theta(s)+\theta_0)\sinh(\theta(s)-\theta_0)\}^2},$$
(12)

where

$$\Phi = \cosh(\theta(s) - \theta_0) + H \sinh(\theta(s) - \theta_0),$$

$$\Omega = \cosh(\theta(s) + \theta_0) - H \sinh(\theta(s) + \theta_0).$$

Furthermore, by using the differential equation (5) of generating curves, we obtain $a = \theta_H$. Hence we have $\theta_0 < a + arctanh(1/H)$, since $\theta_H < \theta_0 < 3\theta_H$ and $2\theta_H = arctanh(1/H)$, which implies $\cosh(a - \theta_0) + H \sinh(a - \theta_0) > 0$. Moreover, we can easily prove that $\cosh(a + \theta_0) - H \sinh(a + \theta_0)$ is not equal to zero. Consequently, since $0 \le a < \theta_0$, from the formula (12) we see that $\lim_{s \to +\infty} (d\theta / d\phi)^2$ is not zero, which contradicts the assumption $\lim_{s \to +\infty} \theta'(s) = 0$.

Consequently we can continue $\theta = \theta(\phi(s))$ as the generating curve satisfying the differential equation (5) by the reflection. Thus we have

THEOREM 4.6. In case that H > 1 and $\theta_H < \theta_0 < 3\theta_H$, we obtain S^1 -equivariant CMC-H hypersurfaces immersed in H^3 , whose generating curves have the periodicity on the orbit space X° . If $\theta_0 = \theta_H$, then we obtain S^1 -equivariant CMC-H hypersurfaces embedded in H^3 . The corresponding Lagrangian and Hamiltonian are given by the formulas in Theorem 4.3.

OBSERVATION. Let 0 < H < 1. Then we can choose the initial value $\theta_0 = \theta(0)$ such that $\tanh 2\theta_0 = H$. This initial condition implies that C = 0 and using the formula (9) we have

$$\left(\frac{d\theta}{d\phi}\right)^2 = \frac{1}{H^2}\cosh^2\theta(\tanh^2 2\theta - H^2).$$

Now we consider the generating curve $\theta(s) = \theta(\phi(s))$ issuing from the point $(\theta_0, \phi(0))$ on X° . Let $s_1 > 0$ be sufficiently small. Then, noting that $\left(\frac{d\theta}{d\phi}\right)_{s=0} = 0$ and $\left(\frac{d^2\theta}{d\phi^2}\right)_{s=0} > 0$, we have

$$\phi(s) = H \int_{\theta(s_1)}^{\theta(s)} \frac{1}{\cosh \theta \sqrt{\tanh^2 2\theta - H^2}} d\theta \,,$$

where $s \ge s_1 > 0$ and assume $\phi = \phi(s) \ge 0$.

This formula describes the behavior of the generating curves in case that 0 < H < 1.

COROLLARY 4.7. In case that H > 1 and $\theta_0 = \theta_H$, we have a CMC-H embedding

212

$$\mu: L \times S^1 \to H^3,$$

$$\mu(\phi, t) = (\cosh \theta_H)e_{i\phi} + (\sinh \theta_H)e^{it}j$$

 $= \cosh \theta_H \cosh \phi + (\cosh \theta_H \sinh \phi)i + (\sinh \theta_H \cos t)j + (\sinh \theta_H \sin t)k,$

where $\theta_H = \frac{1}{4} \log \left(\frac{H+1}{H-1}\right), L = (-\infty, +\infty), 0 \le t < 2\pi.$

References

- [1] J. EELLS, The surfaces of Delaunay, Math. Intell. 9 (1987), 53–57.
- [2] J. EELLS and A. RATTO, Harmonic maps and minimal immersions with symmetries, Ann. Math. Studies **130**, 1993.
- [3] E. V. FERAPONTOV and A. P. FORDY, Separable Hamiltonians and integrable systems of hydrodynamic type, J. Geometry and Physics 21 (1997), 169–182.
- [4] D. FERUS and F. PEDIT, S^1 -equivariant Minimal Tori in S^4 and S^1 -equivariant Willmore Tori in S^3 , Math. Z. **204** (1990), 269–282.
- [5] W-Y. HSIANG, On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature, Duke Math. J. 49 (1982), 485–496.
- [6] W-Y. HSIANG and H. B. LAWSON, Minimal submanifolds of low cohomogeneity, J. Diff. Geom. 5 (1971), 1–38.
- [7] K. KENMOTSU, Kyokumenron Kougi (Japanese), Baifukan, 2000.
- [8] K. KIKUCHI, The construction of rotation surfaces of constant mean curvature and the corresponding Lagrangians, Tsukuba J. Math. Vol. 36, No. 1 (2012), 43–52.
- [9] T. OTSUKI, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145–173.
- [10] C. VON WESTENHOLZ, Differential forms in Mathematical Physics, Chap. 12 Hamiltonian mechanics and geometry, Series Studies in Mathematics and its Applications, Vol. 3, North-Holland, 1981.

Present Address: DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, TOKAI UNIVERSITY, HIRATSUKA, KANAGAWA, 259–1292 JAPAN. *e-mail*: kikuchi@jewel.ocn.ne.jp