Positive Solutions for Non-cooperative Singular p-Laplacian Systems

D. D. HAI

Mississippi State University
(Communicated by F. Nakano)

Abstract. We prove the existence of positive solutions for the p-Laplacian system

$$
\left\{\begin{aligned}
-\Delta_{p} u_{1}=\lambda f_{1}\left(u_{2}\right) & \text { in } \Omega, \\
-\Delta_{p} u_{2}=\lambda f_{2}\left(u_{1}\right) & \text { in } \Omega, \\
u_{1}=u_{2}=0 & \text { on } \partial \Omega,
\end{aligned}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1, \Omega$ is a bounded domain in \mathbf{R}^{n} with smooth boundary $\partial \Omega, f_{i}:(0, \infty) \rightarrow \mathbf{R}$ are possibly singular at 0 and are not required to be positive or nondecreasing, and λ is a large parameter.

1. Introduction

Consider the system

$$
\left\{\begin{align*}
-\Delta_{p} u_{1}=\lambda f_{1}\left(u_{2}\right) & \text { in } \Omega \tag{I}\\
-\Delta_{p} u_{2}=\lambda f_{2}\left(u_{1}\right) & \text { in } \Omega \\
u_{1}=u_{2}=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1, \Omega$ is a bounded domain in \mathbf{R}^{n} with smooth boundary $\partial \Omega, f_{i}:(0, \infty) \rightarrow \mathbf{R}, i=1,2$, and λ is a positive parameter.

The system (I) with f_{i} nonsingular has been studied extensively in recent year (see e.g. $[1,3,9,11]$ and the references therein). In this paper, we are interested in obtaining positive solutions of (I) when f_{i} are possibly singular at 0 and are not required to be nonnegative, nondecreasing, or bounded away from 0 at infinity. Such nonlinearities have not been considered in the literature to the best of our knowledge. Our approach is based on the method of sub- and supersolutions.

2. Main results

We make the following assumptions:
(B.1) $\quad f_{i}:(0, \infty) \rightarrow \mathbf{R}$ are continuous, $i=1,2$.

Received December 6, 2010
2000 Mathematics Subject Classification: 35J25, 35J70
(B.2) There exist numbers $a, b, c, A>0, \alpha_{i}, \beta_{i} \in(0,1)$ with $\beta_{i}<p-1$ and $\alpha_{i} \geq$ β_{i} such that

$$
-\frac{b}{t^{\alpha_{i}}} \leq f_{i}(t) \leq \frac{c}{t^{\beta_{i}}}
$$

for $t>0$, and

$$
f_{i}(t) \geq \frac{a}{t^{\beta_{i}}}
$$

for $t>A$.
(B.3) There exist numbers $L, A>0$ such that

$$
f_{i}(t) \geq L
$$

for $t>A, i=1,2$, and

$$
\lim _{t \rightarrow \infty} \frac{f_{1}^{\frac{1}{p-1}}\left(c f_{2}^{\frac{1}{p-1}}(t)\right)}{t}=0
$$

for each $c>0$.
(B.4) There exists a number $\delta \in(0,1)$ such that

$$
\limsup _{t \rightarrow 0^{+}} t^{\delta}\left|f_{i}(t)\right|<\infty
$$

for $i=1,2$.
By a solution of (I), we mean a pair $(u, v) \in C^{1, \alpha}(\bar{\Omega}) \times C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$ that satisfies (I) in the weak sense.

Theorem 2.1. Let (B.1)-(B.2) hold. Then problem (I) has a positive solution $u=$ $\left(u_{1, \lambda}, u_{2, \lambda}\right)$ for λ large. Furthermore $\left\|u_{i, \lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty, i=1,2$.

THEOREM 2.2. Let (B.1), (B.3), and (B.4) hold. Then problem (I) has a positive solution $u=\left(u_{1, \lambda}, u_{2, \lambda}\right)$ for λ large. Furthermore $\left\|u_{i, \lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty, i=1,2$.

REMARK 2.1. A result similar to Theorem 2.2 was obtained in Theorem 2.2 of [8]. However, the theorem in [8], when applied to (B.4), requires that $\delta<1 / n$. Theorem 2.2 also improves Theorem A in [11], where f_{i} are assumed to be nondecreasing, nonsingular, and unbounded

EXAMPLE 2.1. Let $f_{1}\left(u_{2}\right)=-\frac{b_{1}}{u_{2}^{\alpha_{1}}}+\frac{c_{1}}{u_{2}^{\beta_{1}}}, f_{2}\left(u_{1}\right)=-\frac{b_{2}}{u_{1}^{\alpha_{2}}}+\frac{c_{2}}{u_{1}^{\beta_{2}}}$, where $b_{i}, c_{i}>$ $0, p \geq 2, \alpha_{i}, \beta_{i} \in(0,1)$ and $\alpha_{i}>\beta_{i}$. Then f_{i} satisfy (B.1),(B.2) and therefore (I) has a positive solution for λ large, by Theorem 2.1. Note that the nonlinearities $f_{i}(t)$ decay to 0 as $t \rightarrow \infty$, which do not seem to have been considered in the literature.

3. Preliminary results

We shall denote the norms in $L^{q}(\Omega), C^{1}(\bar{\Omega})$, and $C^{1, \alpha}(\bar{\Omega})$ by $\|\cdot\|_{q},|\cdot|_{1}$, and $|\cdot|_{1, \alpha}$ respectively.

The following results were established in [10]. For convenience, we sketch the proofs. Let $d(x)$ denote the distance from x to the boundary of Ω.

Lemma 3.1 [10]. Let $h \in L_{\text {loc }}^{\infty}(\Omega)$ and suppose there exist numbers $\gamma \in(0,1)$ and $C>0$ such that

$$
\begin{equation*}
|h(x)| \leq \frac{C}{d^{\gamma}(x)} \tag{3.1}
\end{equation*}
$$

for a.e. $x \in \Omega$. Let $u \in W_{0}^{1, p}(\Omega)$ be the solution of

$$
\left\{\begin{align*}
-\Delta_{p} u=h & \text { in } \Omega, \tag{3.2}\\
u=0 & \text { on } \partial \Omega,
\end{align*}\right.
$$

Then there exist constants $\alpha \in(0,1)$ and $M>0$ depending only on C, γ, Ω such that $u \in C^{1, \alpha}(\bar{\Omega})$ and $|u|_{1, \alpha}<M$.

Proof. Suppose $p=2$. It follows from [5] that the problem

$$
-\Delta v=\frac{1}{v^{\gamma}} \quad \text { in } \Omega, \quad v=0 \quad \text { on } \partial \Omega
$$

has a positive solution v which is Lipschitz continuous in $\bar{\Omega}$. Let $C_{1}>0$ be such that $v(x) \leq$ $C_{1} d(x)$ in Ω. Then

$$
-\Delta\left(C C_{1}^{\gamma} v\right) \geq \frac{C}{d^{\gamma}} \quad \text { in } \Omega
$$

Let \tilde{u} be the solution of

$$
-\Delta \tilde{u}=|h| \quad \text { in } \quad \Omega, \quad \tilde{u}=0 \quad \text { on } \partial \Omega,
$$

and $\bar{u}=u+\tilde{u}$. Then

$$
-\Delta \bar{u}=h+|h| \geq 0 \quad \text { in } \Omega .
$$

By the maximum principle, $\tilde{u}(x) \leq C C_{1}^{\gamma} v(x) \leq C_{2} d(x)$ and $u(x) \leq C_{2} d(x)$ similarly, and thus one obtains $\bar{u}(x) \leq 2 C_{2} d(x)$ for $x \in \Omega$. Using the regularity result in [7, Theorem B.1], we conclude that there exist $\alpha \in(0,1)$ and $M_{0}>0$ such that $\tilde{u}, \bar{u} \in C^{1, \alpha}(\bar{\Omega})$ and $|\tilde{u}|_{1, \alpha},|\bar{u}|_{1, \alpha}<M_{0}$. Since $u=\bar{u}-\tilde{u}$, Lemma 3.1 with $p=2$ follows.

Now let u be the solution of (3.2) with $p>1$. From Lemma 3.1, Theorem B.1, and the proof of Lemma A. 7 in [7], it follows that the problem

$$
\left\{\begin{aligned}
-\Delta_{p} v & =\frac{C}{v^{\gamma}} \quad
\end{aligned} \quad \text { in } \Omega,\right.
$$

has a unique positive solution $v \in W_{0}^{1, p}(\Omega)$ with $v \leq c_{0} d$ in Ω. This implies

$$
-\Delta_{p}\left(c_{0}^{\frac{\gamma}{p-1}} v\right) \geq \frac{C}{d^{\gamma}} \quad \text { in } \Omega
$$

Since

$$
-\Delta_{p} u \leq \frac{C}{d^{\gamma}} \quad \text { and } \quad-\Delta_{p}(-u) \leq \frac{C}{d^{\gamma}}
$$

in Ω, the weak comparison principle (see e.g. [14]) implies

$$
|u| \leq c_{0}^{\frac{\gamma}{p-1}} v \leq c_{0}^{\frac{\gamma}{p-1}+1} d \quad \text { in } \Omega
$$

Next, let $w \in C^{1, \alpha}(\bar{\Omega})$ be the solution of

$$
-\Delta w=h \quad \text { in } \Omega, \quad w=0 \quad \text { on } \partial \Omega .
$$

Then

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u-\nabla w\right)=0 \quad \text { in } \Omega,
$$

and Lemma 3.1 now follows from Lieberman's result [12, Theorem 1].
Corollary 3.1. Let $\varepsilon>0$ and $h, \tilde{h} \in L_{\text {loc }}^{\infty}(\Omega)$ satisfy (3.1) with $h \geq 0, h \not \equiv 0$. Let $u, u_{\varepsilon} \in W_{0}^{1, p}(\Omega)$ be, respectively, the solutions of

$$
\left\{\begin{aligned}
&-\Delta_{p} u=h \text { in } \Omega \\
& u=0 \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

and

$$
-\Delta_{p} u_{\varepsilon}= \begin{cases}h & \text { if } d(x)>\varepsilon \\ \tilde{h} & \text { if } d(x)<\varepsilon\end{cases}
$$

Then for ε small enough,

$$
u_{\varepsilon} \geq u / 2 \quad \text { in } \Omega
$$

Proof. By Lemma 3.1, there exist $M>0$ and $\alpha \in(0,1)$ so that $|u|_{1, \alpha},\left|u_{\varepsilon}\right|_{1, \alpha}<$ M. By the strong maximum principle [15], there exists $\kappa>0$ such that $u \geq \kappa d$ in Ω. Multiplying the equation

$$
-\Delta_{p} u-\left(-\Delta_{p} u_{\varepsilon}\right)= \begin{cases}0 & \text { if } d(x)>\varepsilon \\ h-\tilde{h} & \text { if } d(x)<\varepsilon\end{cases}
$$

by $u-u_{\varepsilon}$ and integrating gives

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon}\right) \cdot \nabla\left(u-u_{\varepsilon}\right) d x \leq 2 M \int_{d<\varepsilon}|h-\tilde{h}| d x \tag{3.3}
\end{equation*}
$$

Note that for $x, y \in \mathbf{R}^{n}$,

$$
(|x|+|y|)^{r}\left(|x|^{p-2} x-|y|^{p-2} y\right) \cdot(x-y) \geq C_{0}|x-y|^{\max (p, 2)}
$$

where $r=2-\min (p, 2), C_{0}=(1 / 2)^{p-1}$, if $p \geq 2, C_{0}=p-1$, if $p<2$ (see e.g. [13, Lemma 30.1]). Using this inequality with $x=\nabla u, y=\nabla u_{\varepsilon}$ in (3.3) and note that $|x|+|y| \leq 2 M$, we obtain

$$
\frac{C_{0}}{(2 M)^{r}} \int_{\Omega}\left|\nabla\left(u-u_{\varepsilon}\right)\right|^{\max (p, 2)} d x \leq 2 M \int_{d<\varepsilon}|h-\tilde{h}| d x \leq 4 M C \int_{d<\varepsilon} \frac{1}{d^{\gamma}(x)} d x
$$

Hence $\left\|\nabla\left(u-u_{\varepsilon}\right)\right\|_{2} \rightarrow 0$ as $\varepsilon \rightarrow 0$, and since $C^{1, \alpha}(\bar{\Omega})$ is compactly imbedded in $C^{1}(\bar{\Omega})$, we obtain $\left|u-u_{\varepsilon}\right|_{1} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Consequently, if ε is sufficiently small,

$$
\left|u_{\varepsilon}-u\right|_{1} \leq \kappa / 2
$$

which implies

$$
u_{\varepsilon} \geq u-(\kappa / 2) d \geq u / 2 \quad \text { in } \Omega
$$

which completes the proof.

4. Proofs of main results

Proof of Theorem 2.1. Let $z_{i}, i=1,2$, be the solutions of

$$
\left\{\begin{aligned}
-\Delta_{p} z_{i} & =\frac{1}{z_{i}^{\beta_{i}}}
\end{aligned} \quad \text { in } \Omega,\right.
$$

and let $m>0$ be such that $z_{i} \leq m z_{j}$ in Ω for $i \neq j$. Choose $\delta>0$ so that

$$
m \delta^{1-\frac{\beta_{i} \beta_{j}}{(p-1)^{2}}} \leq\left(a c^{-\frac{\beta_{i}}{p-1}} m^{-\beta_{i}} / 2^{p-1}\right)^{\frac{1}{p-1}}, \quad i \neq j
$$

Let $\varepsilon>0$ and u_{i} satisfy

Using Corollary 3.1 with

$$
u=\left[a\left(\frac{\delta^{\beta_{j}}}{c m^{p-1}}\right)^{\frac{\beta_{i}}{p-1}}\right]^{\frac{1}{p-1}} z_{i}, \quad h=a\left(\frac{\delta^{\beta_{j}}}{c m^{p-1}}\right)^{\frac{\beta_{i}}{p-1}} \frac{1}{z_{i}^{\beta_{i}}}
$$

$u_{\varepsilon}=u_{i}, \tilde{h}=-\frac{b}{\delta^{\alpha_{i}} z_{i}^{\alpha_{i}}}$, and note that h, \tilde{h} satisfy (3.1) with $\gamma=\max \left(\beta_{i}, \alpha_{i}\right)$, it follows that if $\varepsilon>0$ is small enough then $u_{\varepsilon} \geq u / 2$ in Ω, i.e.,

$$
\begin{equation*}
u_{i} \geq \frac{1}{2}\left[a\left(\frac{\delta^{\beta_{j}}}{c m^{p-1}}\right)^{\frac{\beta_{i}}{p-1}}\right]^{\frac{1}{p-1}} z_{i} \geq \delta m z_{i} \geq \delta z_{j} \tag{4.1}
\end{equation*}
$$

in $\Omega, i=1,2, i \neq j$. Let $r_{i}=\frac{p-1-\beta_{i}}{(p-1)^{2}-\beta_{i} \beta_{j}}$ and note that $1-r_{j} \beta_{i}=r_{i}(p-1)$ for $i \neq j$. Define

$$
\Phi_{i}=\lambda^{r_{i}} u_{i}, \quad \Psi_{i}=\lambda^{r_{i}} \delta^{-\frac{\beta_{i}}{p-1}} c^{\frac{1}{p-1}} z_{i},
$$

$i=1,2$. By the comparison principle,

$$
u_{i} \leq\left[a\left(\frac{\delta^{\beta_{j}}}{c m^{p-1}}\right)^{\frac{\beta_{i}}{p-1}}\right]^{\frac{1}{p-1}} z_{i} \quad \text { in } \Omega
$$

and so $\Phi_{i} \leq \Psi_{i}$ in Ω if δ is small enough. We shall verify that $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ and $\Psi=$ $\left(\Psi_{1}, \Psi_{2}\right)$ form a system of sub- and supersolutions for (I) (see Appendix). For $\xi \in W_{0}^{1, p}(\Omega)$ with $\xi \geq 0$ and $v_{j} \in\left[\Phi_{j}, \Psi_{j}\right]$, we have from (4.1) that for $i \neq j$,

$$
v_{j} \geq \lambda^{r_{j}} \delta z_{i} \quad \text { in } \Omega
$$

and thus

$$
\begin{gather*}
\lambda \int_{\Omega} f_{i}\left(v_{j}\right) \xi d x \leq \lambda c \int_{\Omega} \frac{\xi}{v_{j}^{\beta_{i}}} d x \leq \frac{\lambda^{1-r_{j} \beta_{i}} c}{\delta^{\beta_{i}}} \int_{\Omega} \frac{\xi}{z_{i}^{\beta_{i}}} d x=\frac{\lambda^{r_{i}(p-1)} c}{\delta^{\beta_{i}}} \int_{\Omega} \frac{\xi}{z_{i}^{\beta_{i}}} d x \\
=\int_{\Omega}\left|\nabla \Psi_{i}\right|^{p-2} \nabla \Psi_{i} \cdot \nabla \xi d x . \tag{4.2}
\end{gather*}
$$

Next, we have

$$
\begin{gather*}
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p-2} \nabla \Phi_{i} \cdot \nabla \xi d x=\lambda^{r_{i}(p-1)} a\left(\frac{\delta^{\beta_{j}}}{c m^{p-1}}\right)^{\frac{\beta_{i}}{p-1}} \int_{d>\varepsilon} \frac{\xi}{z_{i}^{\beta_{i}}} d x \\
-\frac{\lambda^{r_{i}(p-1)} b}{\delta^{\alpha_{i}}} \int_{d<\varepsilon} \frac{\xi}{z_{i}^{\alpha_{i}}} d x . \tag{4.3}
\end{gather*}
$$

Since there exists $m_{0}>0$ so that $z_{i} \geq m_{0} d$ in $\Omega, i=1,2$, it follows that

$$
v_{j}(x) \geq \lambda^{r_{j}} \delta z_{i}(x) \geq \lambda^{r_{j}} \delta m_{0} \varepsilon>A,
$$

if $d(x)>\varepsilon$ and $\lambda \gg 1$. Hence

$$
\begin{align*}
\lambda \int_{d>\varepsilon} f_{i}\left(v_{j}\right) \xi d x & \geq \lambda a \int_{d>\varepsilon} \frac{\xi}{v_{j}^{\beta_{i}}} d x \geq \lambda^{1-r_{j} \beta_{i}} a\left(\frac{\delta^{\beta_{j}}}{c}\right)^{\frac{\beta_{i}}{p-1}} \int_{d>\varepsilon} \frac{\xi}{z_{j}^{\beta_{i}}} d x \\
& \geq \lambda^{r_{i}(p-1)} a\left(\frac{\delta^{\beta_{j}}}{c m^{p-1}}\right)^{\frac{\beta_{i}}{p-1}} \int_{d>\varepsilon} \frac{\xi}{z_{i}^{\beta_{i}}} d x . \tag{4.4}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\lambda \int_{d<\varepsilon} f_{i}\left(v_{j}\right) \xi d x & \geq-\lambda b \int_{d<\varepsilon} \frac{\xi}{v_{j}^{\alpha_{i}}} d x \geq-\frac{\lambda^{1-r_{j} \alpha_{i}} b}{\delta^{\alpha_{i}}} \int_{d<\varepsilon} \frac{\xi}{z_{i}^{\alpha_{i}}} d x \\
& \geq-\frac{\lambda^{r_{i}(p-1)} b}{\delta^{\alpha_{i}}} \int_{d<\varepsilon} \frac{\xi}{z_{i}^{\alpha_{i}}} d x, \tag{4.5}
\end{align*}
$$

where we have used the fact that $1-r_{j} \alpha_{i} \leq 1-r_{j} \beta_{i}$ and $\lambda>1$. Combining (4.3)-(4.5), we get

$$
\lambda \int_{\Omega} f_{i}\left(v_{j}\right) \xi d x \geq \int_{\Omega}\left|\nabla \Phi_{i}\right|^{p-2} \nabla \Phi_{i} \cdot \nabla \xi d x
$$

which, together with (4.2), shows that $\{\Phi, \Psi\}$ is a system of sub- and supersolutions of (I). Theorem 2.1 now follows from Lemma A in the Appendix.

Proof of Theorem 2.2. Let $\varepsilon, \lambda>0$ and $z, \psi, \psi_{\varepsilon}$ satisfy

$$
\left\{\begin{array}{rl}
-\Delta_{p} z=\frac{1}{z^{\delta}} & \text { in } \Omega, \\
z=0 & \text { on } \partial \Omega,
\end{array}, \quad\left\{\begin{aligned}
-\Delta_{p} \psi=1 & \text { in } \Omega \\
\psi=0 & \text { on } \partial \Omega
\end{aligned}\right.\right.
$$

and

$$
-\Delta_{p} \psi_{\varepsilon}=\left\{\begin{array}{ll}
L & \text { if } d(x)>\varepsilon, \quad \psi_{\varepsilon}=0 \quad \text { on } \partial \Omega \\
-\frac{1}{z^{\delta}} & \text { if } d(x)<\varepsilon
\end{array}, \quad,\right.
$$

respectively. Then, by Corollary 3.1,

$$
\psi_{\varepsilon} \geq\left(L^{\frac{1}{p-1}} / 2\right) \psi \quad \text { in } \quad \Omega
$$

if ε is small enough, which we shall assume. By (B.3) and (B.4), there exists $b>0$ such that

$$
\left|f_{i}(t)\right| \leq \frac{b}{t^{\delta}}
$$

for $t<A$, and

$$
f_{i}(t) \geq-\frac{b}{t^{\delta}}
$$

for $t>0$. Define

$$
\tilde{f}_{i}(t)= \begin{cases}\sup _{A \leq s \leq t} f_{i}(s) & \text { if } t \geq A \\ f_{i}(A) & \text { if } t<A\end{cases}
$$

Then \tilde{f}_{i} are nondecreasing and

$$
\lim _{t \rightarrow \infty} \frac{\tilde{f}_{1}^{\frac{1}{p-1}}\left(c \tilde{f}_{2}^{\frac{1}{p-1}}(t)\right)}{t}=0
$$

for each $c>0$. Hence there exists $M \gg 1$ so that

$$
\begin{equation*}
\lambda\left[b+\|z\|_{\infty}^{\delta} \tilde{f}_{1}\left(\lambda^{\frac{1}{p-1}}\|z\|_{\infty}\left(b+\|z\|_{\infty}^{\delta} \tilde{f}_{2}\left(M\|z\|_{\infty}\right)\right)^{\frac{1}{p-1}}\right)\right] \leq M^{p-1} \tag{4.6}
\end{equation*}
$$

Define

$$
\Phi_{i}=\lambda^{\frac{1}{p-1}} \psi_{\varepsilon}, \quad i=1,2, \quad \Psi_{1}=M z, \Psi_{2}=\lambda^{\frac{1}{p-1}}\left(b+\|z\|_{\infty}^{\delta} \tilde{f}_{2}\left(M\|z\|_{\infty}\right)\right)^{\frac{1}{p-1}} z
$$

We shall verify that $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ and $\Psi=\left(\Psi_{1}, \Psi_{2}\right)$ form a system of sub- and supersolutions for (I) if λ is large enough.

By increasing b, we can assume that

$$
\psi_{\varepsilon} \leq b^{\frac{1}{p-1}} z \quad \text { in } \Omega
$$

Next, take $\lambda>0$ large enough so that

$$
\lambda^{\frac{1}{p-1}}\left(L^{\frac{1}{p-1}} / 2\right) \psi(x)>A
$$

for $d(x)>\varepsilon$, and

$$
\Phi_{i} \geq \max \left(1, b^{1 / \delta}\right) z \quad \text { in } \Omega
$$

Then, for $M \gg \lambda^{\frac{1}{p-1}}$, we have $\Phi_{i} \leq \Psi_{i}$ in $\Omega, i=1$, 2. Let $\xi \in W_{0}^{1, p}(\Omega)$ with $\xi \geq 0$. Then we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p-2} \nabla \Phi_{i} . \nabla \xi d x=\lambda L \int_{d>\varepsilon} \xi d x-\lambda \int_{d<\varepsilon} \frac{\xi}{z^{\delta}} d x . \tag{4.7}
\end{equation*}
$$

For $v_{j} \in\left[\Phi_{j}, \Psi_{j}\right]$ and $d(x)>\varepsilon$, we have

$$
v_{j}(x) \geq \lambda^{\frac{1}{p-1}}\left(L^{\frac{1}{p-1}} / 2\right) \psi(x)>A
$$

which implies

$$
\begin{equation*}
\lambda \int_{d>\varepsilon} f_{i}\left(v_{j}\right) \xi d x \geq \lambda L \int_{d>\varepsilon} \xi d x \tag{4.8}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\lambda \int_{d<\varepsilon} f_{i}\left(v_{j}\right) \xi d x \geq-\lambda b \int_{d<\varepsilon} \frac{\xi}{v_{j}^{\delta}} \geq-\lambda \int_{d<\varepsilon} \frac{\xi}{z^{\delta}} d x \tag{4.9}
\end{equation*}
$$

Combining (4.7)-(4.9), we get

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p-2} \nabla \Phi_{i} \cdot \nabla \xi d x \leq \lambda \int_{\Omega} f_{i}\left(v_{j}\right) \xi d x \tag{4.10}
\end{equation*}
$$

for $i \neq j$. Next, since

$$
f_{i}(t) \leq \frac{b}{t^{\delta}}+\tilde{f}_{i}(t)
$$

for $t>0$, we deduce from (4.6) that

$$
\begin{align*}
& c \lambda \int_{\Omega} f_{1}\left(v_{2}\right) \xi d x \\
& \quad \leq \lambda \int_{\Omega}\left(\frac{b}{z^{\delta}}+\tilde{f}_{1}\left(\lambda^{\frac{1}{p-1}}\|z\|_{\infty}\left(b+\|z\|_{\infty}^{\delta} \tilde{f}_{2}\left(M\|z\|_{\infty}\right)\right)^{\frac{1}{p-1}}\right)\right) \xi d x \tag{4.11}\\
& \leq M^{p-1} \int_{\Omega} \frac{\xi}{z^{\delta}} d x=\int_{\Omega}\left|\nabla \Psi_{1}\right|^{p-2} \nabla \Psi_{1} \cdot \nabla \xi d x
\end{align*}
$$

Similarly,

$$
\begin{align*}
& c \lambda \int_{\Omega} f_{2}\left(v_{1}\right) \xi d x \leq \lambda \int_{\Omega}\left(\frac{b}{z^{\delta}}+\tilde{f}_{2}\left(v_{1}\right)\right) \xi d x \\
& \quad \leq \lambda \int_{\Omega}\left(\frac{b+\|z\|_{\infty}^{\delta} \tilde{f}_{2}\left(M\|z\|_{\infty}\right)}{z^{\delta}}\right) \xi d x=\int_{\Omega}\left|\nabla \Psi_{2}\right|^{p-2} \nabla \Psi_{2} \cdot \nabla \xi d x \tag{4.12}
\end{align*}
$$

From (4.10)-(4.12), we see that Φ and Ψ form a system of sub- and supersolutions for (I), which completes the proof of Theorem 2.2.

Appendix

We shall present some results needed above concerning sub- and supersolutions for singular boundary value problems. Related results can be found in [4, 6, 9]. Consider the system

$$
\left\{\begin{align*}
-\Delta_{p} u_{1} & =h_{1}\left(x, u_{1}, u_{2}\right) & & \text { in } \Omega \tag{1}\\
-\Delta_{p} u_{2} & =h_{2}\left(x, u_{1}, u_{2}\right) & & \text { in } \Omega \\
u_{1} & =u_{2}=0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $h_{i}: \Omega \times(0, \infty) \times(0, \infty) \rightarrow \mathbf{R}$ are continuous, $i=1$, 2. Let $\Phi=\left(\Phi_{1}, \Phi_{2}\right), \Psi=$ $\left(\Psi_{1}, \Psi_{2}\right)$, where $\Phi_{i}, \Psi_{i} \in C^{1}(\bar{\Omega}), \Phi_{i} \leq \Psi_{i}$ in Ω. Suppose there exist $l, C>0, \gamma \in(0,1)$, such that $\Phi_{i}, \Psi_{i} \geq l d$ in Ω and

$$
\left|h_{i}\left(x, w_{1}, w_{2}\right)\right| \leq \frac{C}{d^{\gamma}(x)}
$$

for a.e. $x \in \Omega$ and all $w_{i} \in C(\bar{\Omega})$ with $\Phi_{i} \leq w_{i} \leq \Psi_{i}$ in $\Omega, i=1,2$. We say that $\{\Phi, \Psi\}$ forms a system of sub- and supersolutions for (1) if $\Phi_{i} \leq 0 \leq \Psi_{i}$ on $\partial \Omega$ and for all $\xi \in W_{0}^{1, p}(\Omega)$ with $\xi \geq 0$,

$$
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p-2} \nabla \Phi_{i} \cdot \nabla \xi d x \leq \int_{\Omega} h_{i}\left(x, \tilde{u}_{1}, \tilde{u}_{2}\right) \xi d x
$$

where $\tilde{u}_{j}=\Phi_{i}$ if $j=i, \tilde{u}_{j} \in\left[\Phi_{j}, \Psi_{j}\right]$ if $j \neq i$, and

$$
\int_{\Omega}\left|\nabla \Psi_{i}\right|^{p-2} \nabla \Psi_{i} \cdot \nabla \xi d x \geq \int_{\Omega} h_{i}\left(x, \tilde{v}_{1}, \tilde{v}_{2}\right) \xi d x
$$

where $\tilde{v}_{j}=\Psi_{i}$ if $j=i, \tilde{v}_{j} \in\left[\Phi_{j}, \Psi_{j}\right]$ if $j \neq i$. Here $\left[\Phi_{j}, \Psi_{j}\right]=\left\{u \in C(\bar{\Omega}): \Phi_{j} \leq u_{j} \leq\right.$ Ψ_{j} in $\left.\Omega\right\}$.

Note that the integrals on the right-hand side are defined by virtue of Hardy's inequality (see e.g. [2]).

Lemma A. Under the above assumptions, there exists $\alpha \in(0,1)$ such that (1) has a solution $\left(u_{1}, u_{2}\right) \in C^{1, \alpha}(\bar{\Omega}) \times C^{1, \alpha}(\bar{\Omega}), i=1,2$.

Proof. For $\left(v_{1}, v_{2}\right) \in C(\bar{\Omega}) \times C(\bar{\Omega})$, define $T\left(v_{1}, v_{2}\right)=\left(u_{1}, u_{2}\right)$, where u_{i} satisfy

$$
-\Delta_{p} u_{i}=\tilde{h}_{i}\left(x, v_{1}, v_{2}\right) \quad \text { in } \Omega, \quad u_{i}=0 \text { on } \partial \Omega,
$$

where $\tilde{h}_{i}\left(x, v_{1}, v_{2}\right)=h_{i}\left(x, \tilde{v}_{1}, \tilde{v}_{2}\right), \tilde{v}_{i}=\min \left(\max \left(v_{i}, \Phi_{i}\right), \Psi_{i}\right), i=1,2$. Note that $\Phi_{i} \leq$ $\tilde{v}_{i} \leq \Psi_{i}$ in Ω. Since

$$
\left|\tilde{h}_{i}\left(x, v_{1}, v_{2}\right)\right| \leq \frac{C}{d^{\gamma}(x)}
$$

for a.e. $x \in \Omega$ and all $v_{1}, v_{2} \in C(\bar{\Omega})$, Lemma 3.1 implies the existence of $\alpha \in(0,1)$ such that $u_{i} \in C^{1, \alpha}(\bar{\Omega})$ and $\left|u_{i}\right|_{1, \alpha}<\tilde{C}, i=1,2$, where \tilde{C} is independent of $v_{i}, i=1,2$. It is easy to see that T is a compact operator. Since $T(C(\bar{\Omega}) \times C(\bar{\Omega}))$ is relatively compact in $C(\bar{\Omega}) \times C(\bar{\Omega})$, it follows from the Schauder Fixed Point Theorem that T has a fixed point $u=\left(u_{1}, u_{2}\right)$ with $u_{i} \in C^{1, \alpha}(\bar{\Omega}), i=1,2$, for some $\alpha \in(0,1)$. Using standard arguments, we see that $\Phi_{i} \leq u_{i} \leq \Psi_{i}$ in $\Omega, i=1,2$, which concludes the proof.

References

[1] C. Azizieh, Ph. Clement and E. Mitidieri, Existence and a priori estimates for positive solutions for p-Laplace systems, J. Differential Equations 184 (2002), 422-442.
[2] H. Brezis, Analyse fonctionnelle, théorie et applications, second edition, Masson, Paris (1983).
[3] Ph. Clement, J. Fleckinger, E. Mitidieri and F. De Thelin, Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations 166 (2000), 455-477.
[4] A. CANADA, P. DRABEK and J. L. GAMEZ, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997), 4231-4249.
[5] M. G. Crandall, P. H. Rabinowitz and L. TARTAR, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
[6] C. Decoster and S. Nicaise, Lower and upper solutions for elliptic problems in nonsmooth domains, J. Differential Equations 244 (2008), 599-629.
[7] J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), no. 1, 117-158.
[8] D. D. HaI, Singular boundary value problems for the p-Laplacian, Nonlinear Anal. 73 (2010), 2876-2881.
[9] D. D. HaI, On positive solutions for p-Laplacian systems with sign-changing nonlinearities, Hokaiddo Math. J. 39 (2010), 67-84.
[10] D. D. Hai, On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl. 383 (2011), 619-626.
[11] D. D. Hai and R. Shivaji, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal. 56 (2004), 1007-1010.
[12] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[13] T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1986).
[14] S. SAKAGUCHI, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 14 (1987), 403-421.
[15] J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Present Address:

Department of Mathematics, Mississippi State University, Mississippi State, MS 39762, USA.
e-mail: dang@math.msstate.edu

