On Expressions of Theta Series by η-products

Akihiko OKAMOTO

Waseda University

Abstract. In this paper, we give a certain identity between an η-product of weight 1 and theta series associated with a pair of binary quadratic forms. We also have explicit description of Siegel's theorem by an η-product. For quadratic forms Q_{1} and Q_{2} which are in the same genus, we express the difference $\vartheta Q_{1}(\tau)-\vartheta Q_{2}(\tau)$ by an η product.

1. Introduction

The Dedekind η-function is defined by

$$
\eta(\tau):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right),
$$

where τ lies in the complex upper half plane $\mathcal{H}=\{\tau \in \mathbf{C} \mid \operatorname{Im}(\tau)>0\}$ and $q=\exp (2 \pi \mathrm{i} \tau)$. An η-quotient is defined to be a product of the form

$$
f(\tau)=\prod_{\substack{i \mid N \\ i>0}} \eta(i \tau)^{e_{i}}
$$

where $e_{i} \in \mathbf{Z}$. This is a modular form of weight $k=\frac{1}{2} \sum_{0<i \mid N} e_{i}$ with a multiplier system (cf. [3]). When all of the $e_{i}^{\prime} s$ are non-negative, we say that $f(\tau)$ is an η-product. Fourier coefficients of η-products are related to many well-known number-theoretic functions, including partition functions and quadratic form representation numbers (cf. [4], [10]). Here we study connections between η-products of weight 1 and theta series associated with a pair of binary quadratic forms.

Let p be a prime number such that $p \equiv-1(\bmod 24)$. Consider the following pair of primitive binary quadratic forms with discriminant $-p$:

$$
Q_{1}: 6 x^{2}+x y+\frac{p+1}{24} y^{2}, \quad Q_{2}: 6 x^{2}+5 x y+\frac{p+25}{24} y^{2} .
$$

Serre [12] has given the following identity.

$$
\frac{1}{2}\left(\vartheta_{Q_{1}}(\tau)-\vartheta_{Q_{2}}(\tau)\right)=\eta(\tau) \eta(p \tau)
$$

where $\vartheta_{Q_{1}}(\tau)$ and $\vartheta_{Q_{2}}(\tau)$ are the theta series associated with Q_{1} and Q_{2} respectively. We will extend this relation and our result is the following:

THEOREM 1. Let N be a square-free positive integer such that $N \equiv-1(\bmod 24)$. Let Q_{1} and Q_{2} be two primitive binary quadratic forms which are given by

$$
Q_{1}: 6 x^{2}+x y+\frac{N+1}{24} y^{2}, \quad Q_{2}: 6 x^{2}+5 x y+\frac{N+25}{24} y^{2}
$$

respectively. Then we have the equality

$$
\frac{1}{2}\left(\vartheta_{Q_{1}}(\tau)-\vartheta_{Q_{2}}(\tau)\right)=\eta(\tau) \eta(N \tau)
$$

2. Preliminaries

In this section, we recall some known results about η-products and theta series associated with a quadratic form.

Proposition 1 ([3], p. 174). Suppose that $f(\tau)=\prod_{0<i \mid N} \eta(i \tau)^{e_{i}}$ is an η-product which satisfies the following two properties

$$
\begin{aligned}
& \text { (1) } \sum_{0<i \mid N} i e_{i} \equiv 0(\bmod 24) \\
& \text { (2) } \sum_{0<i \mid N} \frac{N}{i} e_{i} \equiv 0(\bmod 24) .
\end{aligned}
$$

Then an η-product $f(\tau)$ satisfies

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=\chi(d)(c \tau+d)^{k} f(\tau)
$$

for every $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$, where $k=\frac{1}{2} \sum_{0<i \mid N} e_{i}, \chi(d)=\left(\frac{(-1)^{k} s}{d}\right)$ (Jacobi symbol), and $s=\prod_{0<i \mid N} i^{e_{i}}$.

Hence $f(\tau)$ is in the vector space $\mathcal{M}_{k}\left(\Gamma_{0}(N), \chi\right)$ of modular forms on $\Gamma_{0}(N)$ with weight k and character χ, holomorphic in \mathcal{H} and at the cusps of $\Gamma_{0}(N)$. These cusps can be represented by rational numbers a / c, where $c \mid N, c>0$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{c})=1$ (cf.[2] p.103). The order of $f(\tau)$ at the cusp a / c is

$$
\begin{equation*}
v_{a / c}=\frac{h_{c}}{24} \sum_{0<i \mid N} \frac{g c d(i, c)^{2}}{i} e_{i} \tag{1}
\end{equation*}
$$

where $h_{c}=\frac{N}{\operatorname{gcd}\left(c^{2}, N\right)}$ is the width of the cusp a / c (cf.[6], proposition 3.2.8).
Next, we review the theta series associated with a quadratic form. Let A be an even integral symmetric $r \mathrm{x} r$ matrix, i.e. $a_{i j}=a_{j i}$ is an integer and $a_{i i}$ is an even integer. Let $Q(\mathbf{x})=\frac{1}{2} \mathbf{x} A^{t} \mathbf{x}=\frac{1}{2} \sum_{i, j=1}^{r} a_{i j} x_{i} x_{j}\left(\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)\right)$ be a positive definite quadratic form, that is $Q(\mathbf{x})>0$ for $\mathbf{x} \neq 0$. The theta series associated with a quadratic form Q is defined by

$$
\vartheta_{Q}(\tau)=\sum_{x \in \mathbf{Z}^{r}} q^{Q(x)}
$$

Assume $r=2 k$ is even. The following result is given by Schoeneberg.
Proposition 2 ([9], Theorem 20). We have $\vartheta_{Q}(\tau) \in \mathcal{M}_{k}\left(\Gamma_{0}(N)\right.$, $\left.\chi\right)$, where N is the least positive integer such that $N A^{-1}$ is even integral and $\chi(d)=\left(\frac{(-1)^{k} \operatorname{det} \mathrm{~A}}{d}\right)$ (Jacobi symbol).

In Theorem 1 we can write $Q_{1}(x, y)=\frac{1}{2}\left(\begin{array}{ll}x & y\end{array}\right)\left(\begin{array}{cc}12 & 1 \\ 1 & \frac{N+1}{12}\end{array}\right)\binom{x}{y} . \quad$ Since $N\left(\begin{array}{cc}12 & 1 \\ 1 & \frac{N+1}{12}\end{array}\right)^{-1}$ is even integral, we have $\vartheta_{Q_{1}}(\tau) \in \mathcal{M}_{1}\left(\Gamma_{0}(N), \chi_{-N}\right)$. Similarly, we have $\vartheta_{Q_{2}}(\tau) \in \mathcal{M}_{1}\left(\Gamma_{0}(N), \chi-N\right)$.

3. Proof of Theorem 1

In order to show Theorem 1, we calculate the orders of $\vartheta_{Q_{1}}(\tau)-\vartheta Q_{2}(\tau)$ and $\eta(\tau) \eta(N \tau)$ at the cusps of $\Gamma_{0}(N)$. Since N is a square-free integer, a complete set of representatives for the cusps of $\Gamma_{0}(N)$ is

$$
\mathcal{C}_{N}=\left\{\frac{1}{c}|c| N\right\} .
$$

Let $1 / c \in \mathcal{C}_{N}$. First, we consider the η-product $\eta(\tau) \eta(N \tau)$. From (1), the order of $\eta(\tau) \eta(N \tau)$ at $1 / c$ is

$$
v_{1 / c}=\frac{N+c^{2}}{24 c}
$$

We have $\nu_{1 / c}=\frac{N+c^{2}}{24 c} \in \mathbf{N}$, because $c|N, 24| N+1$ and $24 \mid c^{2}-1$. Hence the product $\eta(\tau) \eta(N \tau)$ vanishes at all cusps of $\Gamma_{0}(N)$, and then we obtain $\eta(\tau) \eta(N \tau) \in \mathcal{S}_{1}$ $\left(\Gamma_{0}(N), \chi_{-N}\right)$. Next, we consider the theta series. We put

$$
A_{1}=\left(\begin{array}{cc}
12 & 1 \\
1 & \frac{N+1}{12}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
12 & 5 \\
5 & \frac{N+25}{12}
\end{array}\right)
$$

and put $\vartheta\left(\tau ; A_{1}, N\right)=\vartheta_{Q_{1}}(\tau), \vartheta\left(\tau ; A_{2}, N\right)=\vartheta_{Q_{2}}(\tau)$. For a cusp $1 / c$, we take $\gamma=$ $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \in S L_{2}(\mathbf{Z})$. Then we have $\gamma \infty=1 / c$. The following equalities are obvious by definition of the theta series.

$$
\begin{gather*}
\vartheta\left(\tau ; A_{1}, N\right)=\sum_{\substack{g=0(\bmod N) \\
\mathbf{g} \in \mathbf{Z}^{2} / N \mathbf{Z}^{2}}} \vartheta\left(c \tau ; \mathbf{g}, c A_{1}, c N\right) \quad(\text { for all } \mathrm{c} \in \mathbf{N}) \tag{2}\\
\vartheta\left(\tau+1 ; \mathbf{h}, A_{1}, N\right)=\exp \left(\frac{\mathbf{h} \mathrm{A}_{1}^{\mathrm{t}} \mathbf{h}}{2 \mathrm{~N}^{2}}\right) \vartheta\left(\tau ; \mathbf{h}, \mathrm{A}_{1}, \mathrm{~N}\right) \tag{3}
\end{gather*}
$$

where

$$
\vartheta\left(\tau ; \mathbf{h}, A_{1}, N\right)=\sum_{\substack{\mathbf{x} \equiv \mathbf{h}(\bmod N) \\ \mathbf{x} \in \mathbf{Z}^{2}}} q^{\frac{Q_{1}(\mathbf{x})}{N^{2}}} .
$$

Since $c(\gamma \tau)=1-(c \tau+1)^{-1}$, we obtain by applying (2),(3) and the transformation formula (cf.[7] Lemma 4.9.1)

$$
\vartheta \left\lvert\,[\gamma]_{1}\left(\tau ; A_{1}, N\right)=\left(\operatorname{det} A_{1}\right)^{-\frac{1}{2}} c^{-1}(-\sqrt{-1}) \sum_{\substack{\mathbf{m} \in \mathbf{Z}^{2} / N \mathbf{Z}^{2} \\ A_{1} \mathbf{m}=0(\bmod N)}} \Phi(\mathbf{m}) \vartheta\left(\tau ; A_{1}, \mathbf{m}, N\right)\right.
$$

where

$$
\Phi(\mathbf{m})=\sum_{\substack{\mathbf{g}=0 \\ \mathbf{g} \in \mathbf{Z}^{2} / c N \mathbf{Z}^{2}}} \mathbf{e}\left(\frac{1}{c N^{2}}\left\{\frac{1}{2} \mathbf{g} A_{1}{ }^{t} \mathbf{g}+\mathbf{m} A_{1}{ }^{t} \mathbf{g}+\frac{1}{2} \mathbf{m} A_{1}{ }^{t} \mathbf{m}\right\}\right) .
$$

Hence $\vartheta\left(\tau ; A_{1}, N\right)$ has a $q_{h_{c}}$ expansion $\left(q_{h_{c}}=q^{\frac{1}{h_{c}}}\right)$

$$
\vartheta \left\lvert\,[\gamma]_{1}\left(\tau ; A_{1}, N\right)=\left(\operatorname{det} A_{1}\right)^{-\frac{1}{2}} c^{-1}(-\sqrt{-1}) \sum_{\substack{\mathbf{m} \mathbf{Z}^{2} / N \mathbf{Z}^{2} \\ A_{1} \mathbf{m}=0(\bmod N)}} \Phi(\mathbf{m}) q_{h_{c}}^{\frac{Q_{1}(\mathbf{m}) h_{c}}{N^{2}}}\right.
$$

Lemma 1. For $i=1,2$ we have

$$
\min \left\{\left.\frac{Q_{i}(\mathbf{m}) h_{c}}{N^{2}} \right\rvert\, \mathbf{m} \in \mathbf{Z}^{2} \backslash\{\mathbf{0}\}, \quad A_{i} \mathbf{m} \equiv \mathbf{0}(\bmod N)\right\} \geq \frac{N+c^{2}}{24 c}
$$

Proof. We put $\mu_{i}=\mu_{i}(\mathbf{m}):=\frac{Q_{i}(\mathbf{m}) h_{c}}{N^{2}}$. Then the equation

$$
6 x^{2}+y x+\left(\frac{N+1}{24} y^{2}-\frac{\mu_{i} N^{2}}{h_{c}}\right)=0
$$

has integral solutions. We put

$$
f(x):=6 x^{2}+y x+\left(\frac{N+1}{24} y^{2}-\frac{\mu_{i} N^{2}}{h_{c}}\right) .
$$

Then the discriminant of $f(x)$

$$
\begin{aligned}
\operatorname{disc}(\mathrm{f}(\mathrm{x})) & =y^{2}-24\left(\frac{N+1}{24} y^{2}-\frac{\mu_{i} N^{2}}{h_{c}}\right) \\
& =N\left(-y^{2}+24 \mu_{i} c\right)
\end{aligned}
$$

is a square. Since N is square-free, there exist $\alpha \in 2 \mathbf{N}+1$ and $s \in \mathbf{N}$ such that

$$
-y^{2}+24 \mu_{i} c=N^{\alpha} s^{2}
$$

Then it follows that

$$
\begin{aligned}
y^{2} & =24 \mu_{i} c-N^{\alpha} s^{2} \\
& =c\left(24 \mu_{i}-h_{c} N^{\alpha-1} s^{2}\right) .
\end{aligned}
$$

Therefore there exist $\beta \in 2 \mathbf{N}+1$ and $t \in \mathbf{N}$ such that

$$
24 \mu_{i}-h_{c} N^{\alpha-1} s^{2}=c^{\beta} t^{2}
$$

Thus we obtain

$$
\mu_{i}=\frac{h_{c} N^{\alpha-1} s^{2}+c^{\beta} t^{2}}{24} \geq \frac{h_{c}+c}{24}=\frac{N+c^{2}}{24 c}
$$

Proof of theorem 1. By Lemma 1 we have

$$
\frac{\vartheta_{Q_{1}}(\tau)-\vartheta_{Q_{2}}(\tau)}{\eta(\tau) \eta(N \tau)} \in \mathcal{M}_{0}\left(\Gamma_{0}(N)\right) .
$$

We note that there are no non-constant modular forms of weight zero, i.e.

$$
\mathcal{M}_{0}(\Gamma)=\mathbf{C}
$$

for any congruence subgroup Γ (cf.[5] p. 129 proposition 18). Hence we have

$$
\vartheta_{Q_{1}}(\tau)-\vartheta_{Q_{2}}(\tau)=A \eta(\tau) \eta(N \tau)
$$

for some $A \in \mathbf{C}$. Comparing the coefficient of $q^{\frac{N+1}{24}}$, we obtain $A=2$. This completes the proof of Theorem 1

4. Application of Theorem 1

We recall the notion of genus of quadratic forms. Two quadratic forms Q_{1} and Q_{2} are in the same genus, if they are equivalent over \mathbf{R} and \mathbf{Z}_{p} for all primes p. This definition depends only on equivalence classes and so we can define the genera of classes of quadratic forms. For example, in Theorem 1, Q_{1} and Q_{2} are in the same genus. In general, Siegel showed the following.

Proposition 3 ([13], p. 577). If Q_{1} and Q_{2} are classes of positive definite quadratic forms in even variables which are in the same genus, then $\vartheta_{Q_{1}}(\tau)-\vartheta_{Q_{2}}(\tau)$ is a cusp form.

We note that the above claim is obtained by theta transformation formula. Here, we give examples of Siegel's theorem. Let p be a prime number, and $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ a modular form on $\mathcal{M}_{k}\left(\Gamma_{0}(N), \chi\right)$. The Hecke operators $U_{p}(p \mid N)$ and $T_{p}(p \nmid N)$ are defined by

$$
\begin{aligned}
& f \mid U_{p}=\sum_{n=1}^{\infty} a_{p n} q^{n} \\
& f \mid T_{p}=\sum_{n=1}^{\infty} a_{p n} q^{n}+\chi(p) p^{k-1} \sum_{n=1}^{\infty} a_{n} q^{p n}
\end{aligned}
$$

(cf. [9] [12]). Let $H(-N)$ be the group of equivalent classes of primitive positive definite binary quadratic forms with discriminant $-N$. There is an algorithm for computing equivalent classes of primitive positive definite binary quadratic forms (see for example [1] Theorem 2.8). Moreover, the group law of $H(-N)$ see for example [1] Proposition 3.8 and Theorem 3.9. For simplify, put $[a, b, c]:=a x^{2}+b x y+c y^{2}$.

EXAmple 1. $\quad N=47$
In this case, we see that $H(-47)$ is isomorphic to the cyclic group of order 5 . We put $R_{0}:=[1,1,12], R_{1}:=[2,1,6], R_{2}:=[3,1,4], R_{3}:=[3,-1,4], R_{4}:=[2,-1,6]$. Note that the quadratic form R_{0} is the identity element of $H(-47), R_{1}$ is a generator of $H(-47)$ and $R_{i}=\left(R_{1}\right)^{i}(1 \leq i \leq 5)$. The R_{i} are in the same genus, and then we have the following equalities:

$$
\begin{aligned}
& \frac{1}{2}\left(\vartheta_{R_{1}}(\tau)-\vartheta_{R_{2}}(\tau)\right)=\eta(\tau) \eta(47 \tau), \\
& \left.\frac{1}{2}\left(\vartheta_{R_{0}}(\tau)-\vartheta_{R_{2}}(\tau)\right)=\eta(\tau) \eta(47 \tau) \right\rvert\, T_{2}, \\
& \left.\frac{1}{2}\left(\vartheta_{R_{0}}(\tau)-\vartheta_{R_{1}}(\tau)\right)=-\eta(\tau) \eta(47 \tau) \right\rvert\, T_{4} .
\end{aligned}
$$

EXAMPLE 2. $\quad N=95$
In this case, we see that $H(-95)$ is isomorphic to the cyclic group of order 8 , and consists of two genera. We put $R_{0}:=[1,1,24], R_{1}:=[2,1,12], R_{2}:=[4,1,6], R_{3}:=$
$[3,1,8], R_{4}:=[5,5,6], R_{5}:=[3,-1,8], R_{6}:=[4,-1,6], R_{7}:=[2,-1,12]$. Then we see that $R_{0}, R_{2}, R_{4}, R_{6}$ are in the same genus and $R_{1}, R_{3}, R_{5}, R_{7}$ are in the same genus. We have the following equalities:

$$
\begin{aligned}
& \frac{1}{2}\left(\vartheta_{R_{2}}(\tau)-\vartheta_{R_{4}}(\tau)\right)=\eta(\tau) \eta(95 \tau) \\
& \left.\frac{1}{2}\left(\vartheta_{R_{0}}(\tau)-\vartheta_{R_{2}}(\tau)\right)=\eta(\tau) \eta(95 \tau) \right\rvert\, U_{5}=\eta(5 \tau) \eta(19 \tau) \\
& \left.\frac{1}{2}\left(\vartheta_{R_{1}}(\tau)-\vartheta_{R_{3}}(\tau)\right)=-\eta(\tau) \eta(95 \tau) \right\rvert\, T_{3} \\
& \left.\frac{1}{2}\left(\vartheta_{R_{0}}(\tau)-\vartheta_{R_{4}}(\tau)\right)=-\eta(\tau) \eta(95 \tau) \right\rvert\, T_{6}
\end{aligned}
$$

We can check the equalities of example 1 and 2 by Petersson's valence principle. We omit a proof, because it is just a comparison of Fourier coefficients.

Lemma 2 (Petersson's valence principle). Assume that $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ is a modular form on $\mathcal{M}_{k}\left(\Gamma_{0}(N), \chi\right)$. Put $\mu:=N \prod_{p \mid N}\left(1+\frac{1}{p}\right)=\left[S L_{2}(\mathbf{Z}): \Gamma_{0}(N)\right]$. If $a_{n}=0$ for $0 \leq n \leq \frac{\mu k}{12}$, then $f=0$.

Proof. Let m be the order of χ. Then $f^{m} \in \mathcal{M}_{k m}\left(\Gamma_{0}(N), \chi_{0}\right)\left(\chi_{0}\right.$ is the trivial character) and has $\frac{\mu k m}{12}$ zeros in $\mathcal{H}^{*} / \Gamma_{0}(N)$ (cf. [11], Chapter V, Theorem 8). Hence the order of f at $(i \infty)$ is at most $\frac{\mu k}{12}$.

Acknowledgments. The author is grateful to Professor Ki-ichiro Hashimoto who gave him various advice. He is also grateful to Professor Tomoyoshi Ibukiyama who suggested him an idea of proof of Theorem 1.

References

[1] D. Cox, Primes of the Form $x^{2}+n y^{2}$, Fermat, Class Field Theory and Complex Multiplication, second edition, Wiley, 1997.
[2] F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics 228, Springer-Verlag, 2004.
[3] B. GORDON and D. Sinor, Multiplicative properties of η-products, Lecture Notes in Math, vol.1395, Springer-Verlag, New York, 173-200, 1988.
[4] T. Ibukiyama, Positivity of Eta Products-a Certain Case of K. Saito's Conjecture, Publ. RIMS, Kyoto Univ 41 (2005), 683-693.
[5] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate texts in Mathematics 97, SpringerVerlag, second edition, 1993.
[6] G. Ligozat, Courbes modulaires de genre 1, vol. 43, Bulletin de laSoc. Math. de France, 1975.
[7] T. MiYAKe, Modular Forms, Springer-Verlag, 1989.
[8] M. Newman, Construction and application of a class of modular functions (II), Proc. London Math. Soc. (3) 9 (1959), 373-387.
[9] A. OGg, Modular Forms and Dirichlet Series, Benjamin, 1969.
[10] K. Ono, Congruences for Frobenius partitions, J. Number Theory 57 (1996), 170-180.
[11] B. Schoeneberg, Elliptic modular functions, Springer-Verlag, Berlin and New York, 1974.
[12] J. P. SERRE, Modular forms of weight one and Galois representations, In: A. Froelich ed. Algebraic Number Fields, 193-268, 1977.
[13] C. L. Siegel, Über die analytische Theory der qudratische Formen, Ann of Math 36 (1935), 527-606.

Present Address:
e-mail: prime@toki.waseda.jp

