Токуо J. Матн. Vol. 34, No. 2, 2011

On Expressions of Theta Series by η -products

Akihiko OKAMOTO

Waseda University

Abstract. In this paper, we give a certain identity between an η -product of weight 1 and theta series associated with a pair of binary quadratic forms. We also have explicit description of Siegel's theorem by an η -product. For quadratic forms Q_1 and Q_2 which are in the same genus, we express the difference $\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau)$ by an η -product.

1. Introduction

The Dedekind η -function is defined by

$$\eta(\tau) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n),$$

where τ lies in the complex upper half plane $\mathcal{H} = \{\tau \in \mathbb{C} \mid \text{Im}(\tau) > 0\}$ and $q = \exp(2\pi i \tau)$. An η -quotient is defined to be a product of the form

$$f(\tau) = \prod_{\substack{i|N\\i>0}} \eta(i\tau)^{e_i} \,,$$

where $e_i \in \mathbb{Z}$. This is a modular form of weight $k = \frac{1}{2} \sum_{0 \le i \mid N} e_i$ with a multiplier system (cf. [3]). When all of the e_i 's are non-negative, we say that $f(\tau)$ is an η -product. Fourier coefficients of η -products are related to many well-known number-theoretic functions, including partition functions and quadratic form representation numbers (cf. [4], [10]). Here we study connections between η -products of weight 1 and theta series associated with a pair of binary quadratic forms.

Let p be a prime number such that $p \equiv -1 \pmod{24}$. Consider the following pair of primitive binary quadratic forms with discriminant -p:

$$Q_1: 6x^2 + xy + \frac{p+1}{24}y^2, \quad Q_2: 6x^2 + 5xy + \frac{p+25}{24}y^2.$$

Received March 4, 2010; revised September 13, 2010; revised Janurary 23, 2011

²⁰⁰⁰ Mathematics Subject Classification: 11F11, 11F20 (Primary)

Key words and phrases: η -product, theta series

AKIHIKO OKAMOTO

Serre [12] has given the following identity.

$$\frac{1}{2} \left(\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau) \right) = \eta(\tau) \eta(p\tau)$$

where $\vartheta_{Q_1}(\tau)$ and $\vartheta_{Q_2}(\tau)$ are the theta series associated with Q_1 and Q_2 respectively. We will extend this relation and our result is the following:

THEOREM 1. Let N be a square-free positive integer such that $N \equiv -1 \pmod{24}$. Let Q_1 and Q_2 be two primitive binary quadratic forms which are given by

$$Q_1: 6x^2 + xy + \frac{N+1}{24}y^2, \quad Q_2: 6x^2 + 5xy + \frac{N+25}{24}y^2$$

respectively. Then we have the equality

$$\frac{1}{2} \left(\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau) \right) = \eta(\tau) \eta(N\tau).$$

2. Preliminaries

In this section, we recall some known results about η -products and theta series associated with a quadratic form.

PROPOSITION 1 ([3], p. 174). Suppose that $f(\tau) = \prod_{0 < i | N} \eta(i\tau)^{e_i}$ is an η -product which satisfies the following two properties

(1)
$$\sum_{0 < i | N} ie_i \equiv 0 \pmod{24};$$

(2)
$$\sum_{0 < i | N} \frac{N}{i}e_i \equiv 0 \pmod{24}.$$

Then an η *-product* $f(\tau)$ *satisfies*

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = \chi(d)(c\tau+d)^k f(\tau)$$

for every $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$, where $k = \frac{1}{2} \sum_{0 < i | N} e_i$, $\chi(d) = (\frac{(-1)^k s}{d})$ (Jacobi symbol), and $s = \prod_{0 < i | N} i^{e_i}$.

Hence $f(\tau)$ is in the vector space $\mathcal{M}_k(\Gamma_0(N), \chi)$ of modular forms on $\Gamma_0(N)$ with weight *k* and character χ , holomorphic in \mathcal{H} and at the cusps of $\Gamma_0(N)$. These cusps can be represented by rational numbers a/c, where $c \mid N, c > 0$ and gcd(a, c) = 1 (cf.[2] p.103). The order of $f(\tau)$ at the cusp a/c is

$$\nu_{a/c} = \frac{h_c}{24} \sum_{0 < i|N} \frac{gcd(i,c)^2}{i} e_i , \qquad (1)$$

320

where $h_c = \frac{N}{\gcd(c^2, N)}$ is the width of the cusp a/c (cf.[6], proposition 3.2.8).

Next, we review the theta series associated with a quadratic form. Let A be an even integral symmetric r x r matrix, i.e. $a_{ij} = a_{ji}$ is an integer and a_{ii} is an even integer. Let $Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}A^t\mathbf{x} = \frac{1}{2}\sum_{i,j=1}^r a_{ij}x_ix_j$ ($\mathbf{x} = (x_1, \dots, x_r)$) be a positive definite quadratic form, that is $Q(\mathbf{x}) > 0$ for $\mathbf{x} \neq 0$. The theta series associated with a quadratic form Q is defined by

$$\vartheta_Q(\tau) = \sum_{x \in \mathbf{Z}^r} q^{Q(x)}.$$

Assume r = 2k is even. The following result is given by Schoeneberg.

PROPOSITION 2 ([9], Theorem 20). We have $\vartheta_Q(\tau) \in \mathcal{M}_k(\Gamma_0(N), \chi)$, where N is the least positive integer such that NA^{-1} is even integral and $\chi(d) = (\frac{(-1)^k \text{det}A}{d})$ (Jacobi symbol).

In Theorem 1 we can write $Q_1(x, y) = \frac{1}{2} \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 12 & 1 \\ 1 & \frac{N+1}{12} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Since $N \begin{pmatrix} 12 & 1 \\ 1 & \frac{N+1}{12} \end{pmatrix}^{-1}$ is even integral, we have $\vartheta_{Q_1}(\tau) \in \mathcal{M}_1(\Gamma_0(N), \chi_{-N})$. Similarly, we have $\vartheta_{Q_2}(\tau) \in \mathcal{M}_1(\Gamma_0(N), \chi_{-N})$.

3. Proof of Theorem 1

In order to show Theorem 1, we calculate the orders of $\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau)$ and $\eta(\tau)\eta(N\tau)$ at the cusps of $\Gamma_0(N)$. Since N is a square-free integer, a complete set of representatives for the cusps of $\Gamma_0(N)$ is

$$\mathcal{C}_N = \left\{ \frac{1}{c} \mid c \mid N \right\}.$$

Let $1/c \in C_N$. First, we consider the η -product $\eta(\tau)\eta(N\tau)$. From (1), the order of $\eta(\tau)\eta(N\tau)$ at 1/c is

$$v_{1/c} = \frac{N+c^2}{24c}.$$

We have $v_{1/c} = \frac{N+c^2}{24c} \in \mathbf{N}$, because c|N, 24|N+1 and $24|c^2-1$. Hence the product $\eta(\tau)\eta(N\tau)$ vanishes at all cusps of $\Gamma_0(N)$, and then we obtain $\eta(\tau)\eta(N\tau) \in S_1$ $(\Gamma_0(N), \chi_{-N})$. Next, we consider the theta series. We put

$$A_1 = \begin{pmatrix} 12 & 1\\ 1 & \frac{N+1}{12} \end{pmatrix}, \quad A_2 = \begin{pmatrix} 12 & 5\\ 5 & \frac{N+25}{12} \end{pmatrix}$$

AKIHIKO OKAMOTO

and put $\vartheta(\tau; A_1, N) = \vartheta_{Q_1}(\tau), \ \vartheta(\tau; A_2, N) = \vartheta_{Q_2}(\tau)$. For a cusp 1/c, we take $\gamma = \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$. Then we have $\gamma \infty = 1/c$. The following equalities are obvious by definition of the theta series.

$$\vartheta(\tau; A_1, N) = \sum_{\substack{\mathbf{g} \equiv 0 \pmod{N} \\ \mathbf{g} \in \mathbf{Z}^2/N\mathbf{Z}^2}} \vartheta(c\tau; \mathbf{g}, cA_1, cN) \quad \text{(for all } \mathbf{c} \in \mathbf{N}\text{)}$$
(2)

$$\vartheta(\tau+1; \mathbf{h}, A_1, N) = \exp\left(\frac{\mathbf{h}A_1^t \mathbf{h}}{2N^2}\right) \vartheta(\tau; \mathbf{h}, A_1, N)$$
(3)

where

$$\vartheta(\tau; \mathbf{h}, A_1, N) = \sum_{\substack{\mathbf{x} \equiv \mathbf{h} \pmod{N} \\ \mathbf{x} \in \mathbf{Z}^2}} q^{\frac{Q_1(\mathbf{x})}{N^2}}.$$

Since $c(\gamma \tau) = 1 - (c\tau + 1)^{-1}$, we obtain by applying (2),(3) and the transformation formula (cf.[7] Lemma 4.9.1)

$$\vartheta \mid [\gamma]_1(\tau; A_1, N) = (\det A_1)^{-\frac{1}{2}} c^{-1}(-\sqrt{-1}) \sum_{\substack{\mathbf{m} \in \mathbf{Z}^2/N\mathbf{Z}^2\\A_1\mathbf{m} \equiv 0 \pmod{N}}} \Phi(\mathbf{m}) \vartheta(\tau; A_1, \mathbf{m}, N),$$

where

$$\Phi(\mathbf{m}) = \sum_{\substack{\mathbf{g} \equiv 0 \pmod{N} \\ \mathbf{g} \in \mathbf{Z}^2/cN\mathbf{Z}^2}} \mathbf{e}\left(\frac{1}{cN^2} \left\{\frac{1}{2} \mathbf{g} A_1{}^t \mathbf{g} + \mathbf{m} A_1{}^t \mathbf{g} + \frac{1}{2} \mathbf{m} A_1{}^t \mathbf{m}\right\}\right).$$

Hence $\vartheta(\tau; A_1, N)$ has a q_{h_c} expansion $(q_{h_c} = q^{\frac{1}{h_c}})$

$$\vartheta \mid [\gamma]_1(\tau; A_1, N) = (\det A_1)^{-\frac{1}{2}} c^{-1}(-\sqrt{-1}) \sum_{\substack{\mathbf{m} \in \mathbb{Z}^2/N\mathbb{Z}^2\\A_1 \mathbf{m} \equiv 0 \pmod{N}}} \Phi(\mathbf{m}) q_{h_c}^{\frac{Q_1(\mathbf{m})h_c}{N^2}}.$$

LEMMA 1. For i = 1, 2 we have

$$\min\left\{\frac{Q_i(\mathbf{m})h_c}{N^2} \mid \mathbf{m} \in \mathbf{Z}^2 \setminus \{\mathbf{0}\}, \ A_i\mathbf{m} \equiv \mathbf{0} \ (\mathrm{mod}N)\right\} \geq \frac{N+c^2}{24c}.$$

PROOF. We put $\mu_i = \mu_i(\mathbf{m}) := \frac{Q_i(\mathbf{m})h_c}{N^2}$. Then the equation

$$6x^{2} + yx + \left(\frac{N+1}{24}y^{2} - \frac{\mu_{i}N^{2}}{h_{c}}\right) = 0$$

has integral solutions. We put

$$f(x) := 6x^2 + yx + \left(\frac{N+1}{24}y^2 - \frac{\mu_i N^2}{h_c}\right).$$

Then the discriminant of f(x)

disc(f(x)) =
$$y^2 - 24\left(\frac{N+1}{24}y^2 - \frac{\mu_i N^2}{h_c}\right)$$

= $N(-y^2 + 24\mu_i c)$

is a square. Since N is square-free, there exist $\alpha \in 2\mathbf{N} + 1$ and $s \in \mathbf{N}$ such that

$$-y^2 + 24\mu_i c = N^\alpha s^2 \,.$$

Then it follows that

$$y^{2} = 24\mu_{i}c - N^{\alpha}s^{2}$$
$$= c(24\mu_{i} - h_{c}N^{\alpha-1}s^{2})$$

Therefore there exist $\beta \in 2\mathbf{N} + 1$ and $t \in \mathbf{N}$ such that

$$24\mu_i - h_c N^{\alpha - 1} s^2 = c^\beta t^2 \,.$$

Thus we obtain

$$\mu_i = \frac{h_c N^{\alpha - 1} s^2 + c^\beta t^2}{24} \ge \frac{h_c + c}{24} = \frac{N + c^2}{24c}.$$

PROOF OF THEOREM 1. By Lemma 1 we have

$$\frac{\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau)}{\eta(\tau)\eta(N\tau)} \in \mathcal{M}_0(\Gamma_0(N)).$$

We note that there are no non-constant modular forms of weight zero, i.e.

$$\mathcal{M}_0(\Gamma) = \mathbf{C}$$

for any congruence subgroup Γ (cf.[5] p. 129 proposition 18). Hence we have

$$\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau) = A\eta(\tau)\eta(N\tau)$$

for some $A \in \mathbb{C}$. Comparing the coefficient of $q^{\frac{N+1}{24}}$, we obtain A = 2. This completes the proof of Theorem 1

ΑΚΙΗΙΚΟ ΟΚΑΜΟΤΟ

4. Application of Theorem 1

We recall the notion of genus of quadratic forms. Two quadratic forms Q_1 and Q_2 are in the same genus, if they are equivalent over **R** and \mathbf{Z}_p for all primes p. This definition depends only on equivalence classes and so we can define the genera of classes of quadratic forms. For example, in Theorem 1, Q_1 and Q_2 are in the same genus. In general, Siegel showed the following.

PROPOSITION 3 ([13], p. 577). If Q_1 and Q_2 are classes of positive definite quadratic forms in even variables which are in the same genus, then $\vartheta_{Q_1}(\tau) - \vartheta_{Q_2}(\tau)$ is a cusp form.

We note that the above claim is obtained by theta transformation formula. Here, we give examples of Siegel's theorem. Let *p* be a prime number, and $f = \sum_{n=1}^{\infty} a_n q^n$ a modular form on $\mathcal{M}_k(\Gamma_0(N), \chi)$. The Hecke operators U_p ($p \mid N$) and T_p ($p \nmid N$) are defined by

$$f \mid U_p = \sum_{n=1}^{\infty} a_{pn} q^n,$$

$$f \mid T_p = \sum_{n=1}^{\infty} a_{pn} q^n + \chi(p) p^{k-1} \sum_{n=1}^{\infty} a_n q^{pn}$$

(cf. [9] [12]). Let H(-N) be the group of equivalent classes of primitive positive definite binary quadratic forms with discriminant -N. There is an algorithm for computing equivalent classes of primitive positive definite binary quadratic forms (see for example [1] Theorem 2.8). Moreover, the group law of H(-N) see for example [1] Proposition 3.8 and Theorem 3.9. For simplify, put $[a, b, c] := ax^2 + bxy + cy^2$.

Example 1. N = 47

In this case, we see that H(-47) is isomorphic to the cyclic group of order 5. We put $R_0 := [1, 1, 12], R_1 := [2, 1, 6], R_2 := [3, 1, 4], R_3 := [3, -1, 4], R_4 := [2, -1, 6]$. Note that the quadratic form R_0 is the identity element of $H(-47), R_1$ is a generator of H(-47) and $R_i = (R_1)^i (1 \le i \le 5)$. The R_i are in the same genus, and then we have the following equalities:

$$\frac{1}{2}(\vartheta_{R_1}(\tau) - \vartheta_{R_2}(\tau)) = \eta(\tau)\eta(47\tau),$$

$$\frac{1}{2}(\vartheta_{R_0}(\tau) - \vartheta_{R_2}(\tau)) = \eta(\tau)\eta(47\tau) \mid T_2,$$

$$\frac{1}{2}(\vartheta_{R_0}(\tau) - \vartheta_{R_1}(\tau)) = -\eta(\tau)\eta(47\tau) \mid T_4.$$

Example 2. N = 95

In this case, we see that H(-95) is isomorphic to the cyclic group of order 8, and consists of two genera. We put $R_0 := [1, 1, 24]$, $R_1 := [2, 1, 12]$, $R_2 := [4, 1, 6]$, $R_3 :=$

324

[3, 1, 8], $R_4 := [5, 5, 6]$, $R_5 := [3, -1, 8]$, $R_6 := [4, -1, 6]$, $R_7 := [2, -1, 12]$. Then we see that R_0, R_2, R_4, R_6 are in the same genus and R_1, R_3, R_5, R_7 are in the same genus. We have the following equalities:

$$\begin{split} &\frac{1}{2}(\vartheta_{R_2}(\tau) - \vartheta_{R_4}(\tau)) = \eta(\tau)\eta(95\tau) ,\\ &\frac{1}{2}(\vartheta_{R_0}(\tau) - \vartheta_{R_2}(\tau)) = \eta(\tau)\eta(95\tau) \mid U_5 = \eta(5\tau)\eta(19\tau) ,\\ &\frac{1}{2}(\vartheta_{R_1}(\tau) - \vartheta_{R_3}(\tau)) = -\eta(\tau)\eta(95\tau) \mid T_3 ,\\ &\frac{1}{2}(\vartheta_{R_0}(\tau) - \vartheta_{R_4}(\tau)) = -\eta(\tau)\eta(95\tau) \mid T_6 . \end{split}$$

We can check the equalities of example 1 and 2 by Petersson's valence principle. We omit a proof, because it is just a comparison of Fourier coefficients.

LEMMA 2 (Petersson's valence principle). Assume that $f = \sum_{n=1}^{\infty} a_n q^n$ is a modular form on $\mathcal{M}_k(\Gamma_0(N), \chi)$. Put $\mu := N \prod_{p|N} (1 + \frac{1}{p}) = [SL_2(\mathbb{Z}) : \Gamma_0(N)]$. If $a_n = 0$ for $0 \le n \le \frac{\mu k}{12}$, then f = 0.

PROOF. Let *m* be the order of χ . Then $f^m \in \mathcal{M}_{km}(\Gamma_0(N), \chi_0)$ (χ_0 is the trivial character) and has $\frac{\mu km}{12}$ zeros in $\mathcal{H}^*/\Gamma_0(N)$ (cf. [11], Chapter V, Theorem 8). Hence the order of *f* at $(i\infty)$ is at most $\frac{\mu k}{12}$.

ACKNOWLEDGMENTS. The author is grateful to Professor Ki-ichiro Hashimoto who gave him various advice. He is also grateful to Professor Tomoyoshi Ibukiyama who suggested him an idea of proof of Theorem 1.

References

- [1] D. COX, Primes of the Form $x^2 + ny^2$, Fermat, Class Field Theory and Complex Multiplication, second edition, Wiley, 1997.
- [2] F. DIAMOND and J. SHURMAN, A First Course in Modular Forms, Graduate Texts in Mathematics 228, Springer-Verlag, 2004.
- [3] B. GORDON and D. SINOR, *Multiplicative properties of η-products*, Lecture Notes in Math, vol.1395, Springer-Verlag, New York, 173–200, 1988.
- [4] T. IBUKIYAMA, Positivity of Eta Products-a Certain Case of K. Saito's Conjecture, Publ. RIMS, Kyoto Univ 41 (2005), 683–693.
- [5] N. KOBLITZ, Introduction to Elliptic Curves and Modular Forms, Graduate texts in Mathematics 97, Springer-Verlag, second edition, 1993.
- [6] G. LIGOZAT, Courbes modulaires de genre 1, vol. 43, Bulletin de laSoc. Math. de France, 1975.
- [7] T. MIYAKE, Modular Forms, Springer-Verlag, 1989.
- [8] M. NEWMAN, Construction and application of a class of modular functions (II), Proc. London Math. Soc. (3) 9 (1959), 373–387.
- [9] A. OGG, Modular Forms and Dirichlet Series, Benjamin, 1969.

AKIHIKO OKAMOTO

- [10] K. ONO, Congruences for Frobenius partitions, J. Number Theory 57 (1996), 170–180.
- [11] B. SCHOENEBERG, Elliptic modular functions, Springer-Verlag, Berlin and New York, 1974.
- [12] J. P. SERRE, Modular forms of weight one and Galois representations, In: A. FROELICH ed. Algebraic Number Fields, 193–268, 1977.
- [13] C. L. SIEGEL, Über die analytische Theory der qudratische Formen, Ann of Math **36** (1935), 527–606.

Present Address: e-mail: prime@toki.waseda.jp

326