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On Expressions of Theta Series by η-products

Akihiko OKAMOTO

Waseda University

Abstract. In this paper, we give a certain identity between an η-product of weight 1 and theta series associated
with a pair of binary quadratic forms. We also have explicit description of Siegel’s theorem by an η-product. For
quadratic forms Q1 and Q2 which are in the same genus, we express the difference ϑQ1 (τ ) − ϑQ2 (τ ) by an η-

product.

1. Introduction

The Dedekind η-function is defined by

η(τ) := q
1

24

∞∏
n=1

(1 − qn) ,

where τ lies in the complex upper half plane H = {τ ∈ C | Im(τ ) > 0} and q = exp(2π iτ ).
An η-quotient is defined to be a product of the form

f (τ) =
∏
i|N
i>0

η(iτ )ei ,

where ei ∈ Z. This is a modular form of weight k = 1
2

∑
0<i|N ei with a multiplier system (cf.

[3]). When all of the ei
′s are non-negative, we say that f (τ) is an η-product. Fourier coef-

ficients of η-products are related to many well-known number-theoretic functions, including
partition functions and quadratic form representation numbers (cf. [4], [10]). Here we study
connections between η-products of weight 1 and theta series associated with a pair of binary
quadratic forms.

Let p be a prime number such that p ≡ −1 (mod 24). Consider the following pair of
primitive binary quadratic forms with discriminant −p:

Q1 : 6x2 + xy + p + 1

24
y2 , Q2 : 6x2 + 5xy + p + 25

24
y2 .
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Serre [12] has given the following identity.

1

2

(
ϑQ1(τ ) − ϑQ2(τ )

) = η(τ)η(pτ) ,

where ϑQ1(τ ) and ϑQ2(τ ) are the theta series associated with Q1 and Q2 respectively. We
will extend this relation and our result is the following:

THEOREM 1. Let N be a square-free positive integer such that N ≡ −1 (mod 24).
Let Q1 and Q2 be two primitive binary quadratic forms which are given by

Q1 : 6x2 + xy + N + 1

24
y2 , Q2 : 6x2 + 5xy + N + 25

24
y2

respectively. Then we have the equality

1

2

(
ϑQ1(τ ) − ϑQ2(τ )

) = η(τ)η(Nτ).

2. Preliminaries

In this section, we recall some known results about η-products and theta series associated
with a quadratic form.

PROPOSITION 1 ([3], p. 174). Suppose that f (τ) = ∏
0<i|N η(iτ )ei is an η-product

which satisfies the following two properties

(1)
∑

0<i|N
iei ≡ 0 (mod 24);

(2)
∑

0<i|N

N

i
ei ≡ 0 (mod 24).

Then an η-product f (τ) satisfies

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf (τ )

for every

(
a b

c d

)
∈ Γ0(N), where k = 1

2

∑
0<i|N ei , χ(d) = (

(−1)ks
d

) (Jacobi symbol), and

s = ∏
0<i|N iei .

Hence f (τ) is in the vector space Mk(Γ0(N), χ) of modular forms on Γ0(N) with
weight k and character χ , holomorphic in H and at the cusps of Γ0(N). These cusps can be
represented by rational numbers a/c, where c | N , c > 0 and gcd(a, c) = 1 (cf.[2] p.103).
The order of f (τ) at the cusp a/c is

νa/c = hc

24

∑
0<i|N

gcd(i, c)2

i
ei , (1)
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where hc = N

gcd(c2,N)
is the width of the cusp a/c (cf.[6], proposition 3.2.8).

Next, we review the theta series associated with a quadratic form. Let A be an even
integral symmetric r x r matrix, i.e. aij = aji is an integer and aii is an even integer. Let

Q(x) = 1
2 xAtx = 1

2

∑r
i,j=1 aij xixj (x = (x1, . . . , xr)) be a positive definite quadratic form,

that is Q(x) > 0 for x �= 0. The theta series associated with a quadratic form Q is defined by

ϑQ(τ) =
∑
x∈Zr

qQ(x) .

Assume r = 2k is even. The following result is given by Schoeneberg.

PROPOSITION 2 ([9], Theorem 20). We have ϑQ(τ) ∈ Mk(Γ0(N), χ), where N

is the least positive integer such that NA−1 is even integral and χ(d) = ( (−1)kdetA
d

)

(J acobi symbol).

In Theorem 1 we can write Q1(x, y) = 1
2

(
x y

) (
12 1
1 N+1

12

) (
x

y

)
. Since

N

(
12 1
1 N+1

12

)−1

is even integral, we have ϑQ1(τ ) ∈ M1(Γ0(N), χ−N). Similarly, we have

ϑQ2(τ ) ∈ M1(Γ0(N), χ−N).

3. Proof of Theorem 1

In order to show Theorem 1 , we calculate the orders of ϑQ1(τ )−ϑQ2(τ ) and η(τ)η(Nτ)

at the cusps of Γ0(N). Since N is a square-free integer, a complete set of representatives for
the cusps of Γ0(N) is

CN =
{

1

c

∣∣∣∣ c | N

}
.

Let 1/c ∈ CN . First, we consider the η-product η(τ)η(Nτ). From (1), the order of η(τ)η(Nτ)

at 1/c is

ν1/c = N + c2

24c
.

We have ν1/c = N+c2

24c
∈ N, because c|N , 24|N + 1 and 24|c2 − 1. Hence the prod-

uct η(τ)η(Nτ) vanishes at all cusps of Γ0(N), and then we obtain η(τ)η(Nτ) ∈ S1

(Γ0(N), χ−N). Next, we consider the theta series. We put

A1 =
(

12 1
1 N+1

12

)
, A2 =

(
12 5
5 N+25

12

)
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and put ϑ(τ ; A1, N) = ϑQ1(τ ), ϑ(τ ; A2, N) = ϑQ2(τ ). For a cusp 1/c, we take γ =(
1 0
c 1

)
∈ SL2(Z). Then we have γ∞ = 1/c. The following equalities are obvious by

definition of the theta series.

ϑ(τ ; A1, N) =
∑

g≡0 ( mod N)

g∈Z2/NZ2

ϑ(cτ ; g, cA1, cN) (for all c ∈ N) (2)

ϑ(τ + 1; h, A1, N) = exp

(
hAt

1h

2N2

)
ϑ(τ ; h, A1, N) (3)

where

ϑ(τ ; h, A1, N) =
∑

x≡h ( mod N)

x∈Z2

q
Q1(x)

N2 .

Since c(γ τ) = 1 − (cτ + 1)−1, we obtain by applying (2),(3) and the transformation
formula (cf.[7] Lemma 4.9.1)

ϑ | [γ ]1(τ ; A1, N) = (det A1)
− 1

2 c−1(−√−1)
∑

m∈Z2/NZ2
A1m≡0 ( mod N)

Φ(m)ϑ(τ ; A1, m, N) ,

where

Φ(m) =
∑

g≡0 ( mod N)

g∈Z2/cNZ2

e
(

1

cN2

{
1

2
gA1

tg + mA1
tg + 1

2
mA1

tm
})

.

Hence ϑ(τ ; A1, N) has a qhc expansion (qhc = q
1
hc )

ϑ | [γ ]1(τ ; A1, N) = (det A1)
− 1

2 c−1(−√−1)
∑

m∈Z2/NZ2
A1m≡0 ( mod N)

Φ(m)q

Q1(m)hc

N2

hc
.

LEMMA 1. For i = 1, 2 we have

min

{
Qi(m)hc

N2

∣∣∣∣ m ∈ Z2\{0}, Aim ≡ 0 (modN)

}
≥ N + c2

24c
.

PROOF. We put µi = µi(m) := Qi(m)hc

N2 . Then the equation

6x2 + yx +
(

N + 1

24
y2 − µiN

2

hc

)
= 0
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has integral solutions. We put

f (x) := 6x2 + yx +
(

N + 1

24
y2 − µiN

2

hc

)
.

Then the discriminant of f (x)

disc(f(x)) = y2 − 24

(
N + 1

24
y2 − µiN

2

hc

)

= N(−y2 + 24µic)

is a square. Since N is square-free, there exist α ∈ 2N + 1 and s ∈ N such that

−y2 + 24µic = Nαs2 .

Then it follows that

y2 = 24µic − Nαs2

= c(24µi − hcN
α−1s2).

Therefore there exist β ∈ 2N + 1 and t ∈ N such that

24µi − hcN
α−1s2 = cβt2 .

Thus we obtain

µi = hcN
α−1s2 + cβt2

24
≥ hc + c

24
= N + c2

24c
.

�

PROOF OF THEOREM 1. By Lemma 1 we have

ϑQ1(τ ) − ϑQ2(τ )

η(τ )η(Nτ)
∈ M0(Γ0(N)).

We note that there are no non-constant modular forms of weight zero, i.e.

M0(Γ ) = C

for any congruence subgroup Γ (cf.[5] p. 129 proposition 18). Hence we have

ϑQ1(τ ) − ϑQ2(τ ) = Aη(τ)η(Nτ)

for some A ∈ C. Comparing the coefficient of q
N+1

24 , we obtain A = 2. This completes the
proof of Theorem 1 �
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4. Application of Theorem 1

We recall the notion of genus of quadratic forms. Two quadratic forms Q1 and Q2 are in
the same genus, if they are equivalent over R and Zp for all primes p. This definition depends
only on equivalence classes and so we can define the genera of classes of quadratic forms.
For example, in Theorem 1, Q1 and Q2 are in the same genus. In general, Siegel showed the
following.

PROPOSITION 3 ([13], p. 577). If Q1 and Q2 are classes of positive definite quadratic
forms in even variables which are in the same genus, then ϑQ1(τ ) − ϑQ2(τ ) is a cusp form.

We note that the above claim is obtained by theta transformation formula. Here, we give
examples of Siegel’s theorem. Let p be a prime number, and f = ∑∞

n=1 anq
n a modular form

on Mk(Γ0(N), χ). The Hecke operators Up ( p | N) and Tp ( p � N) are defined by

f | Up =
∞∑

n=1

apnq
n,

f | Tp =
∞∑

n=1

apnq
n + χ(p)pk−1

∞∑
n=1

anq
pn

(cf. [9] [12]). Let H(−N) be the group of equivalent classes of primitive positive definite
binary quadratic forms with discriminant −N . There is an algorithm for computing equiva-
lent classes of primitive positive definite binary quadratic forms (see for example [1] Theorem
2.8). Moreover, the group law of H(−N) see for example [1] Proposition 3.8 and Theorem

3.9. For simplify, put [a, b, c] := ax2 + bxy + cy2.

EXAMPLE 1. N = 47

In this case, we see that H(−47) is isomorphic to the cyclic group of order 5. We put
R0 := [1, 1, 12], R1 := [2, 1, 6], R2 := [3, 1, 4], R3 := [3,−1, 4], R4 := [2,−1, 6]. Note
that the quadratic form R0 is the identity element of H(−47), R1 is a generator of H(−47)

and Ri = (R1)
i (1 ≤ i ≤ 5). The Ri are in the same genus, and then we have the following

equalities:

1

2
(ϑR1(τ ) − ϑR2(τ )) = η(τ)η(47τ ) ,

1

2
(ϑR0(τ ) − ϑR2(τ )) = η(τ)η(47τ ) | T2 ,

1

2
(ϑR0(τ ) − ϑR1(τ )) = −η(τ)η(47τ ) | T4 .

EXAMPLE 2. N = 95

In this case, we see that H(−95) is isomorphic to the cyclic group of order 8, and con-
sists of two genera. We put R0 := [1, 1, 24], R1 := [2, 1, 12], R2 := [4, 1, 6], R3 :=
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[3, 1, 8], R4 := [5, 5, 6], R5 := [3,−1, 8], R6 := [4,−1, 6], R7 := [2,−1, 12]. Then we
see that R0, R2, R4, R6 are in the same genus and R1, R3, R5, R7 are in the same genus. We
have the following equalities:

1

2
(ϑR2(τ ) − ϑR4(τ )) = η(τ)η(95τ ) ,

1

2
(ϑR0(τ ) − ϑR2(τ )) = η(τ)η(95τ ) | U5 = η(5τ )η(19τ ) ,

1

2
(ϑR1(τ ) − ϑR3(τ )) = −η(τ)η(95τ ) | T3 ,

1

2
(ϑR0(τ ) − ϑR4(τ )) = −η(τ)η(95τ ) | T6 .

We can check the equalities of example 1 and 2 by Petersson’s valence principle. We omit a
proof, because it is just a comparison of Fourier coefficients.

LEMMA 2 (Petersson’s valence principle). Assume that f = ∑∞
n=1 anq

n is a modu-

lar form on Mk(Γ0(N), χ). Put µ := N
∏

p|N(1 + 1
p
) = [SL2(Z) : Γ0(N)]. If an = 0 for

0 ≤ n ≤ µk
12 , then f = 0.

PROOF. Let m be the order of χ . Then f m ∈ Mkm(Γ0(N), χ0) (χ0 is the trivial

character) and has µkm
12 zeros in H∗/Γ0(N) (cf. [11], Chapter V, Theorem 8). Hence the order

of f at (i∞) is at most µk
12 . �
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