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Abstract. LetS =€, n>0S50,
therian local ring A. This paper investigates the positivity of mixed multiplicities of S and characterizes them in

ng) be a finitely generated standard multi-graded algebra over a Noe-

terms of Hilbert-Samuel multiplicities. As an application, we get some results on the mixed multiplicities of ideals
that covers the main results in [Vi] and [TV].

1. Introduction

Let (A, m) be a Noetherian local ring of Krull dimension d = dim A > 0 with maximal
ideal m and infinite residue k = A/m. Let

S = @ Sty,.ny)

ny,..,ng>0

(s > 0) be a finitely generated standard s-graded algebra over A. Let J be an m-primary ideal
of A. Set

J"S
D] (S) _ @ (n,...,n)

n>0 Jn+1S(n,...,n)
and £ = dim Dy, (S). Then
¢ JnOS(nl,...,ns)
A —2etts)
TSy )
is a polynomial of total degree £ — 1 in ng, ny, . .., ns for all large ng, n1, ..., ng (see Section

3). The terms of total degree £ — 1 in this polynomial have the form

ko ki ks
5 e(J ko. k k., S0 My Tt
2RO KL e K S0 T

ko+ky+---+ks=L—1
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Then e(J, ko, k1, ..., ks, S) are non-negative integers not all zero [HHRT] and called the
mixed multiplicity of S of type (ko, k1, . . ., k) with respect to J.
In particular, when S = A[ljt1, ..., I;t] is a multi-graded Rees algebra of ideals

Li,...,I;in A, e(J, ko, k1, ..., ks, S) is the mixed multiplicity of ideals J, Iy, ..., I (see
[HHRT]).

Mixed multiplicities of m-primary ideals were introduced by Teissier and Risler in 1973
[Te] and by Rees in 1984 [Re]. In general, mixed multiplicities have been mentioned in
the works of Verma [Ve], Katz and Verma [KV], Swanson [Sw], Trung [Tr], R. Callejas-
Bedregal and V. H. Jorge Prez in 2007 [CJ]. Moreover, the positivity of mixed multiplicities
of multi-graded modules over Artinian local rings was investigated by Kleiman and Thorup
[KT1, KT2] in the geometric context. By using the concept of (FC)-sequences, Viet in 2000
expressed mixed multiplicities of arbitrary ideals in terms of Hilbert-Samuel multiplicities
[Vi]. Trung and Verma in 2007 characterized mixed multiplicities of ideals via superficial se-
quences [TV]. Some another authors have extended mixed multiplicities of ideals to modules,
e.g. Kirby and Rees in [KR1, KR2], Manh and Viet in [MV].

In this paper, we consider mixed multiplicities of multi-graded algebra S over Noetherian
local ring. Our aim is to answer to question when mixed multiplicities of S are positive and
to characterize these mixed multiplicities in terms of Hilbert-Samuel multiplicities (Theorem
3.3, Sect. 3). As an application, we get a version of Theorem 3.3 for mixed multiplicities of
arbitrary ideals in local rings (Theorem 4.3, Sect. 4) that covers the main results in [Vi] and
[TV].

The paper is divided in four sections. In Section 2, we investigate (FC)-sequences of
multi-graded algebras. Section 3 gives some results on expressing mixed multiplicities of
multi-graded algebras in terms of Hilbert-Samuel multiplicity. Section 4 devoted to the dis-
cussion of mixed multiplicities of arbitrary ideals in local rings.

2. Weak-(FC)-sequences of multi-graded algebras

The author in [Vi] built (FC)-sequences of ideals in local rings for calculating mixed
multiplicities of ideals. In order to study mixed multiplicities of multi-graded algebras, this
section introduces weak-(FC)-sequences in multi-graded algebras and gives some important
properties of these sequences.

Seta:b® =[Jo2(a:b"),and

(M :N)p,={aeA|aN C M},

St =58 =D St =1.2,....9);

n;>0
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S++ = ST n---N Ss+ = @ S(n],...,ns) = S(l,...,l)S .
ni,...,ng>0
DEFINITION 2.1. Let S = €, . 50S50,,...n,) be a finitely generated standard s-
graded algebra over a Noetherian local ring A such that S; is non-nilpotent, and let / be an
ideal of A. A homogeneous element x € S is called a weak-(FC)-element of S with respect
to [ if there existsi € {1,2, ..., s} such that x € S; and

FC1): xSuy,.ni—1,..n5 N InOS(nl,...,ns) = XIHOS(nl ..... ni—1,...,n5) for all large
no, N, ..., Ng.
(FCz): x is a filter-regular element with respect to Sy, i.e.,0:x S 0: 8.

Let x1,...,x; be a sequence in S. We call that xq, ..., x; is a weak-(FC)-sequence of S
with respect to [ if x;1 is a weak-(FC)-element of S/(x1, ..., x;)S with respect to [ for all
i=0,1,...,t — 1, where x;4 is the image of x; 1 in S/(x1, ..., x;)S.

EXAMPLE 2.2. Let R = A[X|, X2, ..., X;] be the ring of polynomial in ¢ indetermi-
nates X1, X7, ..., X; with coefficients in A (dim A = d > 0). Then

R =P R
m>0

is a finitely generated standard graded algebra over A, where R,, is the set of all homogeneous
polynomials of degree m and the zero polynomial. It is well-known that X1, X5, ..., X; is
a regular sequence of R. Let / be an ideal of A. It is easy to see that X1 R,,—1 N [ R,, and
I X1 R,,—1 are both the set of all homogeneous polynomials of degree m with coefficients in 7
and divided by X;. Hence

XiRy—1 NIRy = IX1 Ry
for any ideal I of A. Using the results just obtained and the fact that
R/(X1,..., X))R = A[Xi+1, ..., X¢]

for all i < ¢, we immediately show that X, X», ..., X; be a weak-(FC)-sequence of R with
respect to / for any ideal / of A.

Now, we give some comments on weak-(FC)-sequences of a finitely generated standard
multi-graded algebra over A by the following remark.

REMARK 2.3.
(i) By Artin-Rees lemma, there exist integers u1, ua, . .., us such that

(O : Sio+) N S(nl ng) — S(n]—u],...,ns—us)((o : S_T.o.i_) N S(u],...,u‘))

Ng—lUyg) (O . Sf+)

yenes

g S(I’l] —Uuj

yenes
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forallny > uy,...,ng > ug. Since Sy —uy,....ny—u;) (0 : SS’FOJF) = 0 for all large
enough ny, ..., ng, it follows that (0 : S2°)(s;...np) = (02 S%) () Sayecong) =0
for all large enough ny, ..., ny.

(i) Letx € S be a homogeneous element. If x is a filter-regular element with respect
to Sy then0:x C0: S, . By (i),

O x)(n1 ..... ng) S O: Sf.:,.)(nl,...,ns) =0

for all large n1, ..., ny. Conversely, suppose that (0 : x),,,....n,) = O for all large
ni,...,ns. Then we have S¢,. . )0 : X)y,..00) € (02 X)(goy,....n4v,) = O for
all large n and all vy, ..., vs. It implies that

O : X)) €O Si+) C(©: Sio+)

for all large n and all vy, ..., vs. Hence (0 : x) € (0 : §5% ). Therefore x is a
filter-regular element with respect to S; 4 if and only if (0 : x)(,,,....n,) = O for all
large ny, ..., ng.

(iii) Suppose that x € S; is a filter-regular element with respect to Sy . Consider

Ax DSy, niyong) T XSy, ning)s Y > XY
It is clear that A, is surjective and ker Ay = (0 : x) N S, n,) = O for all large
ni, ..., ns. Therefore, Sg:, . . n;....ns) = XS(ny,....n;,....ny)- This follows that
ISy, .omisng) = XISy i)
for all large ny, ..., ny and for any ideal [ of A.

(iv) If S44 is non-nilpotent then S, . ) 7 O for all n. Hence, by Nakayama’s lemma,
m' S(n

(D (8)), = Wm”l) = 0 for all n. It implies that dim Dy, (S) > 1.

The following lemma will play a crucial role for showing the existence of weak-(FC)-
sequences.

LEMMA 2.4 (Generalized Rees’s lemma). Let (A, m) be a Noetherian local ring with

maximal ideal w, infinite residue k = A/m. Let S = B, ., >0 Sw....ny) be a finitely

generated standard s-graded algebra over A, and let I be an ideal of A. Let X be a finite
collection of prime ideals of S not containing S(1,...,1). Then foreachi =1, ..., s, there exists
an element x; € S;\mS;, x; not contained in any prime ideal in X, and a positive integer k;

such that

..... i) VIS ong) = XiI" Sty oni—1...ny)

for all n; > k; and all non-negative integers ng, ny, ..., nj_1, Nj41, - .., Hg.
PROOF. In the ring S[¢, =1 (¢ is an indeterminate), set

St=@Prest= P ISw..ant"

no€Z no€Z;ny,....ng=>0
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where /" = A forn < 0. Then S* is a Noetherian (s + 1)-graded ring. Since u = #~! is non-

zero-divisor in S*, the set of prime associated with u" S* is independent on n > 0 and so is

finite by the corollary of [Lemma 2.7, Re]. We divide this set into two subsets: S consisting

of those containing S; and &, those that do not (where S; = S(O,...,(!),...,O) = S(*O,O,..., 1 ,...,0))'
1 i )

(i+1
Since S;/m.S; is a vector space over the infinite field k and the sets ¥, &, are both finite, we
can choose x; € S;\mS$; such that x; is not contained in any prime ideal belongingto X UG, .
Set
nS*ixi)NS*
M, = (u Xi)
u"S*
Then M, is a S*-module for any n > 0. We need must show that there exists a suf-
ficiently large integer N > 0 such that SI.N M, = 0. Note that if P € Assg=M, then
P € Assg«S*/u"S* = 61 U Gy, and there exists z € u"S* : x; such that P = u"S* : z.
Since xjz € u"S*, x; € P. So P € 6. Hence S; C P. It follows that S; C (\peassgemt, P-

Therefore S; C +/Anng=M,. Since S; is finitely generated, there exists a sufficiently large

integer N > 0 (how large depending on n) such that SI.NM = 0. Hence [My](ny,ny,....n,) =0
for all n; > N. This means that for each n > 0, we have
(u" 1" S, ,...,ns)tno X)) ﬂ S* =u"I1" S, ,...,ni—l,...,ns)tno (1)
for all large n; and all non-negative integers ng, 11, ..., Ri—1, Ri4+1, - - -, Hs.
Denote by b an ideal of S* consisting of all finite sums ) ¢, with
Cno € XiStny,oni—1,ny) N I™Seuy ng) -
Then b has a finite generating set U = {x;b;t"}1<;j<, With b; € S(»,,... n;—1,....n,). Note that

if 0 £ a € IS and m > ng then at™ € S*, and if ng < O then at"™ € S* forall a € S.
Since U is finite, there exists an integer ¢ such that u?b;t"™ = ;1079 € §* forall 1 <i < v.
Therefore b C x; S* : u9.

Now, suppose that z € x;Su,,...n—1,...n5) N 1"Sw,,... ny)- This means z¢t" € b. Since
b € x; 8% @ ud, ulzt" = x;w with w € S*. Note that z € I"S(,, . »,), it follows that
xiw =udzt"0 € u?1"0 S, . ) t". Hence by (1), we can find k; such that

w e (MqInOS(nl““)ns)tno cx)NS* = uqanS(nl,...,n,-fl,...,ns)tno

for all n; > k;. Thus u9zt" = x;w € xju?1"Sy,. . ni—1,.. n)t"°. Since u and ¢ are non-
zero-divisors in §*, z € x; 1" S(,,....n;—1....n,)- Hence if n; > k; then

yenes

ni—1,ng) VIS0 XIS ni—1,.ny) -

Consequently, X; S, ,....n;—1,...n) V1" Sy ,..n) = XiI"" Sy, .oni—1,...0ny)- u
The following proposition will show the existence of weak-(FC)-sequences.

PROPOSITION 2.5. Suppose that S4 is non-nilpotent. Then for any 1 < i <'s, there
exists a weak-(F C)-element x € S; of S with respect to I.
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PROOF. Since Sy is non-nilpotent, §/0 : §¢° # 0. Set
X =Asss(S/0:8) ={P e€AssS| P 2 Su,.. 1}

Then X is finite. By Lemma 2.4, foreachi = 1, ..., s, there exists x € §; \ mS; such that
x ¢ Pforall P € ¥ and

.....

Thus x satisfies the condition (FCy). Since x ¢ P forall P € X,0:x C 0: S . Hence x
satisfies the condition (FC,). [ |

3. Mixed multiplicities of multi-graded algebras

This section first determines mixed multiplicities of multi-graded algebras, next answers
to the question when these mixed multiplicities are positive, and characterizes them in terms
of Hilbert-Samuel multiplicities.

Let S = @nl,---, >0 S(ny,....n,) be a finitely generated standard s-graded algebra over a
Noetherian local ring A such that S ; is non-nilpotent and an m-primary ideal J of A. Since

is a finitely generated standard s-graded algebra over Artinian local ring A/J, by [HHRT,
Theorem 4.1],

is a polynomial for all large ng, ny, . . ., ng. Denote by P(ng, ny, ..., ng) this polynomial. Set
J"S(n )
Dy($) = P Fre=t
nezao Jn+lS(n,...,n)

and £ = dim D, (S). By Remark 2.3(iv), £ > 1. Note that dim D;(S§) = dim D (S) for any

m-primary ideal J of A and deg P (ng, n1,...,ngs) = deg P(n,n,...,n), and
JnS(n ..... n)
P(n,n,...,n) = EA(m =LA(Dy(S)n)

for all large n, it follows that deg P(n,n,...,n) = dimDy(S) — 1 = € — 1. Hence
deg P(no,niy,...,n5) =€ — 1.

If the terms of total degree £ — 1 of P(ng, ny, ..., ny) have the form
a0k ks
onyt e n

Z e(J,kO,k1,~«~,ks,S)m,

ko+ki+-+ks=0—1
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thene(J, ko, k1, . . ., ks, S) are non-negative integers not all zero [HHRT] and called the mixed
multiplicity of S of type (ko, k1, . . ., ks) with respect to J.

From now on, the notation e4(J, M) will mean the Hilbert-Samuel multiplicity of A-
module M with respect to an m-primary ideal J of A. We shall begin this section with the
following lemma.

LEMMA 3.1. Let S be a finitely generated standard s-graded algebra over a Noe-
therian local ring A such that Sy+ is non-nilpotent and an m-primary ideal J of A. Set
£ =dim Dy (S). Then e(J, ko, 0, ...,0,8) # 0if and only if

.....

In this case, e(J, ko, 0,...,0,8) =ea(J, Su,...n)) for all large n.

PROOF. Denote by P(ng, ni, ..., ns) the polynomial of
J"0Swy,ne)
a| —77—").
TP Sy omy)
Then P is a polynomial of degree £ — 1. By taking ny = np = --- = ny = u, where u is a

sufficiently large integer, we get

= D)'Po.u, . ...
¢(J.ko.0.....0.8) = lim (G- DPCo.u,....u)

np— 0o né_l

J"o S(u u)

Since P(no. u, ....u) = zA(
Uy..ll)

), it follows that

deg P(no, u, ...,u) =dima Sq,.. 4 — 1
and e(J, ko, 0, ...,0,S) # 0 if and only if

.....

..........

Hence if u is chosen sufficiently large, we have

dimyg Sq,....»y =dimA/(0: S,

yenes

.....

.....

dimA/(0: Sa" 1))A = £ thendimy S(,,.. ») — 1 = £ — 1 for all large n, and hence

JHOS(n,,“,n)
D (e
eaJ, Swm,...n)) = n(}gnoo —1 '
i
L—1D'Po,n,...,
= gim EZDPOOR ) kg0, 0,8)
nyg— oo n07

for all large integer n. u
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PROPOSITION 3.2. Let S be a finitely generated standard s-graded algebra over a
Noetherian local ring A such that S4++ is non-nilpotent and an m-primary ideal J of A. Set
¢ = dim Dy (S). Assume that e(J, ko, k1, ..., ks, S) # 0, where ko, k1, ..., ks are non-
negative integers such thatko + k1 +--- + ks = € — 1. Then

(i) Ifki > 0andx € S; is a weak-(F C)-element of S with respect to J then

e(J, ko, ki, ks, S) = e(J, ko kiy.oo ki —1,... ks, S/xS),

and dim D, (S/xS) =€ — 1.
(ii) There exists a weak-(F C)-sequence of t = k1 + - - - + kg elements of S in Uf»:l Si
with respect to J consisting of k1 elements of Sy, . . ., ks elements of S;.

PROOF. The proof of (i): Denote by P(ng, n1, ..., ng) the polynomial of

Then deg P = ¢ — 1. Since x satisfies the condition (FCy), for all large ng, ny, ..., ns, we
have

A( J"(S/xS)n,...n5) )—EA( J" Sy [ XSymi—1....ny) >
Jn0+l(S/XS)(n1 ..... ng) Jn0+l(S(n1,...,ns)/xs(n1 ..... n,-fl,...,ns))

(J”OS(m ..... ) T XSy, ni—l,...,nn)
:EA

J”U'HS(nl ,,,,, ns) T XS0y, ni—1,.0n5)
= EA( JnOS(n] ----- ny) >
(Jn0+] S(n| sennty) T xs(n] ..... n,-—l,...,ns)) N JnOS(n] ..... ng)
= EA( JnOS(nlv---!ns) >
Jn0+1S(n] ..... ng) xs(m,...,n,-—l,...,n yN JnOS(n] ..... ng)
_ JnOS(nl ..... )
=4 ;
JorLS oy FXT0SG =10
_EA( JnOS(’ll ----- ng) ) (]”0+1S(n] ----- ns) +x‘]n0S(’11 ----- i—L..., ns))
T Sy, omg) T Sy, omg)
= EA( JnOS(n] !!!! ns) > _ ( _xJnOS(n] ----- ni—1,...,ng) >
T Sy, XISy =1 VIO Sy )
_ EA( JnOS(n] ..... ng) > _ EA( x-]nos(m ..... ni—1,...,ng) >
Jn0+1S(n] ..... ng) XS(n] ..... ni—1,..,n5) N JnOS(m ..... ng) N Jn0+1S(n],...,ns)
ZEA( J OS(m ..... ) ) —EA( xJnOS(nl,...,nifl,...,ns) )
Jn0+1S(n] ..... ng) XS(n] ..... ni—1,..,n5) N Jn0+1S(n] ..... ng)
— 0, JnOS(nl ..... ng) 0y x-]nOS(nl ..... ni—1,...,ng)
JnO+IS( ,,,,, ns) xJn0+1S(n1’...)ni71 ..... Vls)
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Since x is a filter-regular element of S,
JnOS(n] N TR | = XJHOS(n] rees Tl ey Tlg)

for all no and all large ny, ..., ns by Remark 2.3(iii). Then we have an isomorphism of
A-modules

xJ"OS(nI veni—1,...,n5) J"o S(n| enni—1,...,ng)

for all large ng, n1, ..., ng. From this it follows that

eA( XJHOS(nl ..... ni—1,...,n5) )_EA( JnOS(nl ..... ni—1,...,n5) )
XIS i1y TSy mi=1,my)

....................

Hence

ZA( JnO(S/XS)(m,...,nS) )_EA( JnOS(n],...,ns) >_€A( JnOS(m,...,ni—l,...,ns) )
Jn0+l(S/xs)(n|,...,n5) Jn0+1S(n],...,ns) Jn0+1S(n] ni—1,...,ng)

yenes

yenes

for all large ng, n1, ..., ng. Denote by Q(ng, ny, ..., ng) the polynomial of

) < JnO(S/XS)(nl,...,nS) )
A .
Jrot+l (S/XS)(nl,...,ns)

From the above fact, we get
Q(no,ny,...,ns) = P(no,ny,...,ni,...,ng) — P(no,ny,....,n; —1,...,ng).
Since e(J, ko, k1, ..., ks, S) # 0 and k; > 0, it implies that deg O = deg P — 1 and
e(J, ko, ki, ... ki,.... kg, S) =e(J, ko, ky,....ki—1,..., ks, S/xS).
Note that deg O = dim Dy, (S/xS) — 1. Hence
dim D (S/xS) =degQ+ 1 =degP =¢—1.

The proof of (ii): The proof is by induction on t = kj + - -+ 4+ ks. For ¢+ = 0, the result is
trivial. Assume that# > 0. Since ki + - -- + kg =t > 0, there exists k; > 0. Since S, 4 is
non-nilpotent, by Proposition 2.5, there exists a weak-(FC)-element x1 € S; of S with respect
to J. By (i),

e(J, ko, ki, ..., kj—1,... ks, S/x18) =e(J, ko, k1, ..., ks, S) #0.
This follows that

J(S/x18)(ny, . on5)
Jrotl (8/x1 S)(m,...,ns)

£0

and so (S/x18)(,,...n;) # O for all large ny,...,ns;. Hence (S/x15)44+ is non-nilpotent.
Since ky + --- + (k; — 1) +--- + ky = t — 1, by the inductive assumption, there exist
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t — 1 elements x2, ..., x; consisting of k1 elements of Sy, ..., k; — 1 elementsof §;, ..., ks
elements of S5 such that x», ..., x; is a weak-(FC)-sequence of S/x1S with respect to J (x; is
initial form of x; in §/x1S,i = 2, ..., t). Remember that x; € §; is a weak-(FC)-element of
S with respect to J, xi, ..., x; is a weak-(FC)-sequence of S with respect to J consisting of
ki elements of Sy, ..., k; elements of S;. |

Now, we will give the criteria for the positivity of mixed multiplicities and characterize
them in terms of Hilbert-Samuel multiplicity by the following theorem.

THEOREM 3.3. Let S be a finitely generated standard s-graded algebra over a Noe-
therian local ring A such that Sy is non-nilpotent. Let J be an m-primary ideal of A. Set
£ = dim Dy, (S). Then the following statements hold.

1) e(J, ko, ki,...,ks,S) # O if and only if there exists a weak-(F C)-sequence

X1y, Xt (t = k1 + -+ + kg) of S with respect to J consisting of k1 elements
of St, ... , ks elements of S; and
dim D (S/(xq, ..., x)S) =dim A/ ((x1, ..., x)S : S?.i...,l))f\ ={—t

(i) Suppose that e(J, ko, k1, ..., ks, S) #O0and x1,...,x: (t = k1 +---+ks)isa
weak-(F C)-sequence of S with respect to J consisting of k| elements of Sy, ... ,
ks elements of Ss. Set S = S/(x1,...,xt)S. Then

e(J, ko, ki, ... ks, S) = ea(J, Su...n)

for all large n.
PROOF. The proof of (i): First, we prove the necessary condition. By Proposition
3.2(ii), there exists a weak-(FC)-sequence xi, ..., x; of S with respect to J consisting of k1
elements of Sy, ... , ks elements of Ss. Set S = S/(x1,...,x:)S. Applying Proposition 3.2(i)

by induction on ¢, we get dim Dy, (S) = £ — ¢ and

0+ e(J, ko, ki, ..., ks, S) =e(J, ko,0,...,0,8).

.....

..........

it follows that

dim D (S/(x1, ..., x)S) = dim A/((x1, ..., x)S : S

Now, we prove the sufficiently condition. We assume that x; € ;. Denote by
P(no,ni, ...,ng)and Q(ng, ny, ..., ny) the polynomials of

J"S J"(S/x1S
LA <%) and ZA( +E [X18) (ny,...ons) )7
JMTES g JOT(S/x18) (g, ... m)
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respectively. Then by the proof of Proposition 3.2(i) we have
Q(nOSnls"'vnS) :P(”Ovnlv"'vniv"'sn.ﬂ)_P(”Osnlv"'sni - 11"'1’1.8')'

This implies that deg QO < deg P — 1. Recall that deg Q = dim Dy, (S/x1S) — 1 anddeg P =
dim Dy, (S) — 1. So dim Dy, (S/x1S) < dim Dy (S) — 1. Similarly, we have

£ —t =dim D (S/(x1, ..., x:)S) < dim D (S/(x1, ..., x:=1)S) — 1
<---<dimDn(S/x18) — (¢t —1) <dimDn(S) —t=€¢—+t.
This fact follows that dim Dy, (S/x1S) = dim Dy, (S) — 1. Thus deg Q = deg P — 1. Hence
e(J, ko, ki, ..., ks, S) =e(J, ko, k1,....ki —1,..., ks, S/x15).

By induction we have e(J, ko, k1, . .., ks, S) = e(J, ko, 0, ..., 0, S). Since

.....

e(J, ko,0,...,0, S‘) # 0 by Lemma 3.1. Hence
e(J, ko, k1, ..., ks, S) #£0.
The proof of (ii): Applying Proposition 3.2(i), by induction on #, we obtain
0+ e(J, ko, ki, ..., ks, S) =e(J, ko,0,...,0,8).

On the other hand by Lemma 3.1, e(/J, ko, O, ..., 0, S)=ealJ, ‘S_’(n,_,_,n)) for all large integer
n. Hence

e(J, ko ki, ... ks, S) =ea(J, Sn....n))
for all large 7. u

REMARK 3.4. From the proof of Theorem 3.3 we get the following comments.
(i) Ifxi,...,x is aweak-(FC)-sequence in | Ji_; S; of S with respect to J satisfying
the condition dim Dy, (S/(x1, . .., x:)S) = dim Dy, (S) — ¢, then
dim D (S/(x1, ..., x;)S) =dim Dy (S) —i forall 1l <i <t.
(i) Ifk; > Oand x € §; is a weak-(FC)-element of S with respect to J such that
dim D (S/xS) = dim Dy, (S) — 1 then

e(J, ko, kv, ..., ki,....ks,S) =e(J, ko, k1, ....ki —1,... ks, S/xS).

(i) Ife(J, ko, ky, ..., ks, S) # 0 then for every weak-(FC)-sequence x, ..., x; (t =
k14 - -+ks) of S with respect to J consisting of k| elements of Sy, . . ., ky elements
of Sy we always have

dim Dy (S/(x1, ... x)S) = dim A/((x1, ..., x)S : ST Ja=L—1.
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(iv) Suppose that x1, ..., x; is a weak-(FC)-sequence in Ule S; of S with respect to
J. Then dim D, (S/x1S) < dim Dy, (S) — 1. And by induction we have
dim Dy (S/(x1, ..., x)S) <dim Dy (S) —t =€ —t.

From this it follows that £ — ¢ > 0 or t < £. Hence the length of any weak-(FC)-
sequence in | J;_; S; of S with respect to J is not greater than £.

EXAMPLE 3.5. Let R = A[X, Y] be a polynomial rings of indeterminates X, ¥ and
dim A = d > 2. Then R is a finitely generated standard 2-graded algebra over A with deg X =
(1,0),degY = (0, 1) and

: . m"(XY)" . m" :

It can be verified that X, Y is a weak-(FC)-sequence of R with respect to m. Since
dim D (R/(X)) = dim(A/m) =0and d > 2, dim Dy (R/(X)) < dim Dy (R) — 1.

REMARK 3.6. Example 3.5 showed that for any weak-(FC)-sequence x1, ..., x; of S
with respect to J, one can get

dim D (S/(x1,...,x)) < dim Dy (S) — 1.
In the case that s = 1, we get the following result for a graded algebra § = @nzo Sp.

COROLLARY 3.7. Let S = @nzo Sn be a finitely generated standard graded alge-
bra over A such that S, = @, Su is non-nilpotent, and let J be an m-primary ideal
of A. Set Dj(S) = @n>0 J"S,,/J”+1S,, and dim Dy (S) = £. Suppose that xi, ..., X,
is a maximal weak—(FC)—tvequence in S1 of S with respect to J satisfying the condition

dim D (S/(x1, ..., x4)S) =€ —q. Then
(i) e, —i—1,i,8) #0ifandonlyifi < qanddimA/((x1,...,x;)S: SfO)A =
£—1i.
) Ife(J,t—i—1,i,8)#O0thene(J,L—i—1,i,8) =ea(J, Sp/(x1,...,Xi)Sn—1)
for all large n.

PROOF. By Theorem 3.3(ii) we immediately get (ii). Now let us to prove the part (i).
The "if" part. Assume thate(J,£ —i — 1,1, S) # 0. First, we show thati < g. Assume the
contrary thati > ¢g. Since x1, ..., x4 is a weak-(FC)-sequence in Sy of S with respect to J,
applying Proposition 3.2(i) by induction on ¢,

0#e(J,b—i—1,i,8)=e(lJ l—i—1,i—gq,5),
where S = S/(x1,...,x4)S. Since e(J,€ —i —1,i —¢q,S) # Oandi —q > 0, there

exists an element x € §; such that ¥ (the image of x in S) is a weak-(FC)-element of S with
respect to J by Proposition 3.2(ii). By Proposition 3.2(i), dim Dy, (S/xS) = £ — g — 1. Hence



(FC)-SEQUENCES AND MIXED MULTIPLICITIES 197

X1, ..., Xg, x is a weak-(FC)-sequence in Sy of § with respect to J satisfying the condition
dim D (S/(x1, ..., x4, X)S) =L —q — 1.

We thus arrive at a contradiction. Hence i < ¢. Since e(J,£ — i — 1,i,S5) # 0,
dim A/((x1,...,x)S8 1 S{°)a = £ — i by Remark 3.4(iii). We turn to the proof of suffi-
ciency. Suppose thati < g and

dimA/((x1, ..., x)S:S7)a =0 —1i.
Since dim Dy (S/(x1,...,%4)S) = £ — g, dim D (S/(x1,...,x)S) =€ —iforalli < ¢

by Remark 3.4(i). Since x1, ..., x; is a weak-(FC)-sequence of S with respect to J satisfying
the condition
dim Dy (S/(x1, ..., xi)S) =dimA/((x1, ..., x)S: STHa =€ — i,
e(J,£—i—1,i,8) # 0by Theorem 3.3(i). |
EXAMPLE 3.8. Let R = A[X1, X2, ..., X;] be the ring of polynomial in ¢ indetermi-

nates X1, X7, ..., X; with coefficients in A (dimA = d > 0). Then R = @mzo R, isa
finitely generated standard graded algebra over A (see Example 2.2). Let J is an m-primary
ideal of A. By Example 2.2, X1, ..., X; € R is a weak-(FC)-sequence of R with respect to

J. Denote by P(n, m) the polynomial of £ 4 (ke ). We have

Jn+1Rm
D (R) N @ mTRT . A[mX], ...,th]
ma = mIH Ry mA[mXy,...,mX,]’

Since htm > 0, dim Dy (R) =dimA+t—1=d +1t— 1. Hencedeg P(n,m) =d +1t — 2.
It is clear that R/ (X1, ..., X;)R = A[Xi41,..., X;] foralli <. Hence

dim D (R/(X1, ..., X/)R) = dim D (R) — i

foralli <t — 1. Letus calculate e(J, kg, k1, R) with kg + k1 = d + t — 1. First, we consider

the case k1 > . Since X1, ..., X;—1 is a weak-(FC)-sequence of R with respect to J and

dim D (R/(X1, ..., X;j)R) = dim Dy (R) —i foralli <t — 1, by Remark 3.4(ii),

e(J, ko, ki, R) = e(J, ko, k1 — (t — 1), R/ (X1, ..., Xi—1)R) = e(J, ko, ki — 1 + 1, A[X:]) .

Denote by Q(m, n) the polynomial of £ 4 (%). Since X; is regular element, J" X" A =
t

J"A. Thus, for all large n, m,

O m) = ¢ JrXMA PR
n,m) = —— | = —) ).
A J”JHX;"A A Jn+1A

Hence Q(n, m) is independent on m. Note that e(J, ko, k1 — ¢ + 1, A[X;]) is the coefficient

of mnkomk‘_’“ in Q(n, m). Since k; —t + 1 > 0, it follows that

e(J, ko, ki, R) = e(J, ko, k1 —1+ 1, A[X;]) = 0.
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In the case k1 < ¢, since dim D (R/(X1, ..., X§,)R) = dim D (R) — kq, by Corollary
3.7(1), e(J, ko, k1, R) # 0 if and only if

dimA/ (X1, ..., X )RR a=d+1—1—k .

Since X1, ..., X; are independent indeterminates,
((X1,...., Xk DR : R C (X1, ., Xk DR+ (Xky 41,5 -+, X1)A))a =0.
Hence dim A/((X1, ..., Xg )R : R{®)4 = dim A = d. Therefore, e(J, ko, k1, R) # 0if and

onlyif kf =t — 1. For k1 =t — 1 (then kg = d — 1), by Corollary 3.7(ii), we have
e(J,d—1,6=1,R) = ex(, Ru/(X1, ... X -)Ru1)

for all large u. Note that R, = (Xi,...,X;)"A and R,/(X1,..., Xi—1)Ry—1 = X}'A.

Thus e(J, R, /(X1, ..., Xi(—1)Ru—1) = ea(J, X} A). Since X is regular element in A[X,],

X!A= A Hencee(J,d —1,t —1,R) =ea(J, X' A) = ea(J, A). From the above facts we
get

0 if k1 #1—1
e(‘lsk()vklvR): . N
ea(J,A) if kh=1r—-1
Therefore
J, A
P(n,m) = m#_lmt_l + {terms of lower degree} .

4. Applications

As an application of Theorem 3.3, this section devoted to the discussion of mixed multi-
plicities of arbitrary ideals in local rings.

Let J be an m-primary ideal and 1, ..., I; ideals of A such that I = I --- I is non-
nilpotent. Set S = A[I1¢1, ..., Iit;]. Then
Jn"
D;($) =P
0 JJn"
IS ony Jrop g
ta e =ta 1701 s
LS ng NECRSY R K
is a polynomial of total degree dim D (S) — 1 for all large no, n1, . . ., ny. By Proposition 3.1

in [Vi], the degree of this polynomial is dim A/0 : I — 1. Hence dim D;(S) = dim A/O :

I°.Setdim A/0 : I®° = £. In this case, e(J, ko, ki1, ..., kg, S) forkg+k;+---+ks =£—1

is called the mixed multiplicity of ideals (J, I, ..., I;) of type (ko, k1, . . ., ks) and one put
e(J ko ki, ... ks, §) = (ol gl ylkslqy

(see [Ve2] or [HHRT]). By using the concept of (FC)-sequences of ideals, one expressed
mixed multiplicities of arbitrary ideals in terms of Hilbert-Samuel multiplicities [Vi].
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DEFINITION 4.1 (see Definition Vi). Let Iy, ..., I; be ideals such that I = Iy --- I
is a non nilpotent ideal. A element x € A is called an (FC)-element of A with respect to
(Iy, ..., L) if there exists i € {1,2,...,s}suchthat x € I; and

(FCp): )N I o r e = " 1 forall large ny, .. ., ny.

(FCy): x is a filter-regular element with respectto 1, i.e., 0 : x C 0: [,
(FC3): dimA/[(x):I*®°]=dimA/0: > — 1.

We call x a weak-(FC)-element with respect to (I, ..., I;) if x satisfies conditions
(FCyp) and (FCy).

Let x1,...,x; be a sequence in A. For each i = 0,1,...,r — 1, set A; =
A/(xt, ..., xi)S, I_j = Ij[A/(x1,...,xi)], Xi+1 the image of x;11 in A;. Then

X1, ..., x; is called a weak-(FC)-sequence of A with respect to (I1, ..., ;) if X;41 is a
weak-(FC)-element of A; with respect to (L,..., I foralli =0,1,...,¢r— 1.

X1, ..., x is called an (FC)-sequence of A with respectto (I, ..., I;) if X;4+1 is an (FC)-
element of A; with respect to (1_1, el I_S) foralli =0,1,...,¢ — 1.

A weak-(FC)-sequence x1, ..., x; is called a maximal weak-(FC)-sequence if 1A;_1 is

a non-nilpotent ideal of A,_; and I A; is a nilpotent ideal of A;.

REMARK 4.2.
(i) The condition (FC) in Definition 4.1 is a weaker condition than the condition
(FC)) of definition of (FC)-element in [Vi].

(i) If x € [; is a weak-(FC)-element with respect to (J, Iy, ..., I;), then it can be
verified that x¢; is a weak-(FC)-element of S with respect to J as in Definition 2.1.
(iii) If xq, ..., x; is an (FC)-sequence with respect to (J, I1, ..., I;), then from the
condition (FC3) we follow that dim A/((x1, ..., x:)S : S?ﬁ...,l))A = { —t. Hence

dim Dy (S/(x1, ..., x)S) = dim A/((x1, ..., x)S : S 1 )a=C—1

.....

that as in the state of Theorem 3.3(i).
(iv) ByLemma3.1,e(J, ko, 0,...,0,S) # Oif and only if dim A /(O : S&O

yenes

.......... )a = L. Hence
e(J, ko, 0,...,0,8) = ea(J, S,..n) for all large n. It is a plain fact that
ea(J, Sw,...n)) = ea(J, I"). On the other hand by the proof of Lemma 3.2 [Vi],
ea(J, I") = ea(J, A/0 : I®) for all large n. Hence e(J, kop,0,...,0,S5) =

ea(J, AJO : ).

Then as an immediate consequence of Theorem 3.3, we obtained an improvement for the
main result in [Theorem 3.4, Vi](see Remark 4.2 (i)) as follows.

THEOREM 4.3 (see Theorem 3.4, Vi). Let (A, m) denote a Noetherian local ring with
maximal ideal w, infinite residue k = A/m, and an m-primary ideal J, and I, ..., I, ideals
of A such that I = Iy - - - I is non nilpotent. Then the following statements hold.
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@) e(Jkot1l Il[k'], R Is[kS], A) # 0ifand only if there exists a weak-(F C)-sequence
X1, ..., X with respect to (J, I, ..., I;) consisting of k| elements of I, ... , ks
elements of Iy and dim A/ (xy, ..., x;) : I1° =dimA/0 : I —t.

(ii) Suppose that e(J%ot1 [kl gAY 20 and xy, ..., x, is a weak-(FC)-
sequence with respect to (J, I1, ..., Is) consisting of ki elements of 1, ... , ks
elements of Is. Set A = A/(x1, ..., x;): [ Then

(ol plkil -k A) = ea(J, A).

Recently, Trung and Verma in 2007 characterize also mixed multiplicities of ideals, in
terms of superficial sequences [TV]. Now we prove that [Theorem 1.4, TV] is a consequence
of Theorem 4.3.

Set T = P

lnl s

Ll . .
Moty 20 AT a1 Let & be an index with 1 < ¢ < s. An element
1 rls

x € A is an g-superficial element for Iy,...,I; if x € I, and the image x* of x in
I /I - Te—1I* 141 - - - I is a filter-regular element in T, ie., (0 :x x*)(u,..n,) = O for
ni,...,ng > 0. Letey, ..., &, be a non-decreasing sequence of indices with 1 < & < s.
A sequence Xxi,..., Xy iS an (&1, ..., &y)-superficial sequence for I, ..., I; if for i =
1,...,m, X; is an g;-superficial element for I, ..., I_S, where x;, I, ..., I_S are the images
ofxj, I, ..., Igin A/(x1,...,xi—1) [TV].

Then the relationship between (&1, ..., &y)-superficial sequences and weak-(FC)-
sequences is given by the following proposition.

PROPOSITION 4.4 (Proposition 4.3, DV). Let Iy, ..., I; be ideals in A. Let x € A

be an e-supetficial element for Iy, ..., Is. Then x is a weak-(FC)-element with respect to
Iy, ..., Iy).
PROOF. Assume that x is an e-superficial element for I, ..., I;. Without loss of gen-
erality, we may assume that ¢ = 1. Then
(11"'+2]£’2+1 ...I;’SH . x) N 11’1] c I = Iln|+11£zz+1 . I;ls+l Q)
forny,...,ns > 0. (2) implies
(1111+212n2+1 ---ISHS-H :x) N Ilnllzanrl L I;l;-‘rl — 1111+112n2+1 "'I;ls-‘rl 3)
forny, ..., ng > 0. We prove by induction on k > 2 that
(Ilnl+k1£12+1 . .ISnS+1 . x) N Ilnllznz+l L ISnS+1 — I;11+k7112nz+1 o I;zﬁ»l 4)
forny,...,ng > 0. The case k = 2 follows from (3). Assume now that

(Ilnl+kI;2+1 . 'I;ls-‘rl : x) n Ilnllznz+l L I;ls-"_l — 1111+k7112n2+1 L I;zs—i-l
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forny,...,ng > 0. Then
(If]+k+11512+1 . I;l5+1 . x) N II’I I;2+1 - I;’ls"rl
— (If]+k+11512+1 . I;ls+1 . x) N (If]+k1£lz+l L. I;lS+1 . x) N If] I;2+1 . 1;1:4»1
— (1f1+k+11n2+1 .. I;’SH . x) N 11"'+k_11£’2+1 .. Isn:+1

2
_ gni+k yna+1 ng+1
=

for ny,...,ns > 0. The last equality is derived from (3). Hence the induction is complete
and we get (4). It follows that for ny, ..., ng > 0,

O:xyn@pptt. st

— < ﬂ 11n|+k1£12+1 . ISnS+1 :x) N Ilm I§2+1 "'IsnSH
k>2

(Nt ) ot e

k=2
— ni+k yny+1 ng+1 . ny yng+1 I
_ﬂ((ll Lty o et
k=2
_ ni+k—1 yno+1 ne+1l
_mll 12 ...Iss _0’
k=2

thatis, (0 : x)NI" = O0forn > O, here I = I;---I;. Hence 0 : x € 0 : I*°. So x is
satisfies condition (FC2). Now we need to prove that I{" -+ I{* N (x) = xll'”_llg’2 s
for ny,...,ng > 0. But this has from the proof of [Lemma 1.3, TV]. Hence x is a weak-
(FC)-element with respect to (11, . .., ). |

REMARK 4.5. Assume that Q = (x1, ..., X;), where x1, ..., x, is an (g1, ..., &n)-
superficial sequence for J, I, ..., I;. Then xy, ..., x,, is a weak-(FC)-sequence with respect
to (J, 11, ..., Iy) by Proposition 4.4. This fact proved that Theorem 4.3 covers a main result
of Trung and Verma [Theorem 1.4, TV]. Hence our main result covers the main results in [Vi]
and [TV].
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