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Abstract. In this paper, we will establish the correspondence between the tempered distributions supported on
a regular closed set and the space of the solutions of Bloch equations with some conditions on its support.

1. Introduction

The following equation is called Hermite heat equation, or in quantum statistical me-
chanics called Bloch equation,(

∂

∂t
− ∆x + |x|2

)
U(x, t) = 0 , x ∈ Rd , t > 0 . (1.1)

B. P. Dhungana et al. characterized the tempered distributions in [1] and the Fourier hyper-
functions in [2] by the solutions of (1.1).

In this paper we show the correspondence between the tempered distributions supported
by a regular closed set and the space of the solutions of Bloch equations with some estimate
on its support. Namely, we characterize the tempered distributions supported by a regular
closed set. The definition and properties of a regular closed set will be given in section 3.

2. The Mehler kernel

First of all, we fix some notations. We use a multi-index α ∈ Zd+, namely, α =
(α1, . . . , αd ) where αi ∈ Z and αi ≥ 0. So, for x ∈ Rd , xα = x

α1
1 · · · xαd

d , ∂α
x = ∂

α1
x1 · · · ∂αd

xd
,

where ∂
αj
xj

= ( ∂
∂xj

)αj and ∆x = ∑d
i=1 ∂2

xi
. Moreover |α| = α1+· · ·+αd and α! = α1! · · · αd !.

DEFINITION 1. The Fourier transform F for an integrable function f is defined by

Ff (ξ) = (2π)−
d
2

∫
Rd

e−ix·ξf (x)dx
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and the inverse Fourier transform F−1 for an integrable function f is defined by

F−1f (x) = (2π)−
d
2

∫
Rd

eix·ξf (ξ)dξ ,

where x · ξ = x1ξ1 + x2ξ2 + · · · + xdξd .

We denote by M(x, ξ, t) the Mehler kernel defined by

M(x, ξ, t)

= e−dt

πd/2(1 − e−4t )d/2 e
− 1

2
1+e−4t

1−e−4t (|x|2+|ξ |2)+ 2e−2t

1−e−4t x·ξ
, x , ξ ∈ Rd , t ∈ C and Re t > 0 .

It is known (for instance, see: [3]) that

M(x, ξ, t) =
∑

γ∈Zd+

e−(2|γ |+d)thγ (x)hγ (ξ)

and

(−∆x + |x|2)hγ (x) = (2|γ | + d)hγ (x) ,

where the Hermite functions on R1 and Rd are defined by

hn(x) = (2nn!)− 1
2 π− 1

4 (−1)ne
x2
2

(
d

dx

)n

e−x2
, x ∈ R1, n = 0, 1, 2, . . .

and

hγ (x) = hγ1(x1) ⊗ · · · ⊗ hγd (xd) , γ ∈ Zd+ , x ∈ Rd

respectively.
The Mehler kernel M(x, ξ, t) satisfies Bloch equations (1.1) and

lim
t→0+ M(x, ξ, t) = δ(x − ξ).

Moreover we obtain the following estimate on derivatives of the Mehler kernel:

PROPOSITION 1. Let t0 be the unique positive solution of tanh(2t) = t . Then for any

α ∈ Zd+, we obtain

|∂α
ξ M(x, ξ, t)| ≤ (α!)1/2t−|α|(1 + |x| + |ξ |)|α|M(x, ξ, t) , x, ξ ∈ Rd , 0 < t < t0 .

PROOF. Since the Fourier transform F of the Hermite function hγ (ξ) is

F(hγ )(y) = (−i)|γ |hγ (y) ,

we have

Fξ (M(x, ξ, t))(y) =
∑

γ∈Zd+

e−(2|γ |+d)thγ (x)Fξ (hγ (ξ))(y)
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=
∑

γ∈Zd+

e−(2|γ |+d)thγ (x)(−i)|γ |hγ (y)

=
∑

γ∈Zd+

e− π |γ |i
2 e−(2|γ |+d)thγ (x)hγ (y)

= e
dπi

4
∑

γ∈Zd+

e−(2|γ |+d)(t+ πi
4 )hγ (x)hγ (y)

= e
dπi

4 M

(
x, y, t + πi

4

)
, (2.1)

where Fξ is the partial Fourier transform on ξ variables. By (2.1),

Fξ (M(x, ξ, t))(y) = e
dπi

4
e−d(t+ πi

4 )

πd/2(1 − e−4(t+ πi
4 ))d/2

e
− 1

2
1+e

−4(t+ πi
4 )

1−e
−4(t− πi

4 )
(|x|2+|y|2)+ 2e

−2(t+ πi
4 )

1−e
−4(t− πi

4 )
x·y

= e−dt

πd/2(1 + e−4t )d/2
e
− 1

2
1−e−4t

1+e−4t (|x|2+|y|2)− 2ie−2t

1+e−4t x·y

= e−dt

πd/2(1 + e−4t )d/2
e
− 1

2
1−e−4t

1+e−4t

(
y+ 2ie−2t

1−e−4t x
)2− 1

2
1+e−4t

1−e−4t |x|2
.

Let

Fξ (M(x, ξ, t))(y) = M̂(x, y, t), F (x, y, t) = e
− 1

2
1−e−4t

1+e−4t

(
y+ 2ie−2t

1−e−4t
x
)2

and

G(x, t) = e−dt

πd/2(1 + e−4t )d/2 e
− 1

2
1+e−4t

1−e−4t |x|2
.

Then M̂(x, y, t) = F(x, y, t)G(x, t). By the inverse of the Fourier transform on y variables

F−1
y , we have

F−1
y (M̂(x, y, t))(ξ) = G(x, t)F−1

y (F (x, y, t))(ξ) .

Now we have

∂α
ξ F−1

y (F (x, y, t))(ξ) = ∂α
ξ (2π)−

d
2

∫
Rd

eiξ ·ye− 1
2

1−e−4t

1+e−4t

(
y+ 2ie−2t

1−e−4t
x
)2

dy

= (2π)−
d
2

∫
Rd

(iy)αeiξ ·ye− 1
2

1−e−4t

1+e−4t

(
y+ 2ie−2t

1−e−4t
x
)2

dy . (2.2)

Let A = 1−e−4t

1+e−4t and B = 2e−2t

1−e−4t . Then since 0 < t < t0, it is clear that

0 < A < 1,
1

A
≤ 1

t
and 0 < AB ≤ 1. (2.3)
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By (2.2),

(2.2) = (2π)−
d
2

∫
Rd

(iy)αeiξ ·ye
1
2 A(y+iBx)2

dy

= (2π)−
d
2 e− |ξ |2

2A +Bξ ·x
∫

Rd

(iy)αe
− A

2 {y−
(

ξ
A −Bx

)
i}2

dy

We set I = ∫
Rd (iy)αe

− A
2 {y−

(
ξ
A

−Bx
)
i}2

dy. If we put η =
√

A
2

{
y −

(
ξ
A

− Bx
)

i
}

, then

we have

I =
∫

Rd

i |α|
(√

2

A
η +

(
ξ

A
− Bx

))α

e−η2
(

2

A

)d/2

dη

= i |α|
(

2

A

)d/2 ( 1

A

)|α| ∫
Rd

{√
2Aη + (ξ − ABx)i

}α

e−η2
dη

= i |α|
(

2

A

)d/2 ( 1

A

)|α|∑
k≤α

(
α

k

)
(
√

2A)|k|(ξ − ABx)α−ki |α−k|
∫

Rd

ηke−η2
dη . (2.4)

On the other hand, since

∫
Rd

ηke−η2
dη = Πd

j=1

∫
R

η
kj

j e
−η2

j dηj =




d∏
j=1

Γ

(
kj + 1

2

)
, k ∈ (2Z+)d ,

0 , otherwise

,

we have ∣∣∣∣
∫

Rd

ηke−η2
dη

∣∣∣∣ ≤ 2−|k|/2(k!)1/2πd/2 , (2.5)

where Γ is the Euler Gamma function. Hence by (2.4) and (2.5), we obtain

|I | =
∣∣∣∣∣
(

2

A

)d/2 ( 1

A

)|α| ∫
Rd

{√
2Aη + (ξ − ABx)i

}α

e−η2
dη

∣∣∣∣∣
≤
(

2

A

)d/2( 1

A

)|α|∑
k≤α

(
α

k

)
(
√

2A)|k||(ξ − ABx)α−k|
∫

Rd

|η|ke−η2
dη

≤
(

2

A

)d/2( 1

A

)|α|∑
k≤α

(
α

k

)
(
√

2A)|k||(ξ − ABx)α−k| (k!)1/2

2
|k|
2

πd/2

≤
(

2

A

)d/2( 1

A

)|α|
(α!) 1

2 (A
1
2 + |ξ − ABx|)|α|πd/2 .
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Since (2.3), we have

|I | ≤
(

2π

A

)d/2

t−|α|(α!)1/2(1 + |x| + |ξ |)|α| . (2.6)

Therefore by (2.6) we obtain

|∂α
ξ M(x, ξ, t)| = |∂α

ξ F−1
y M̂(x, y, t)(ξ)|

= |G(x, t)| · |∂α
ξ F−1

y (F (x, y, t))(ξ)|

≤ e−dt

πd/2(1 + e−4t )d/2 e
− 1

2
1+e−4t

1−e−4t
|x|2

(2π)−
d
2 e− |ξ |2

2A
+Bξ ·x · |I |

≤ (α!)1/2t−|α|(1 + |x| + |ξ |)|α|M(x, y, t) . �

COROLLARY 1. Let t > 0. Then M(x, ξ, t) ∈ S(Rd
ξ ).

B. P. Dhungana obtained the following characterization of the tempered distributions [1]:

THEOREM 1 ([1]). Let T > 0 be fixed. For any v in S ′(Rd), put U(x, t) =〈
vξ ,M(x, ξ, t)

〉
. Then U(x, t) satisfies that

U(x, t) ∈ C∞(Rd × (0, T )) , (2.7)

(
∂

∂t
− ∆x + |x|2

)
U(x, t) = 0 , on Rd × (0, T ) (2.8)

and

|U(x, t)| ≤ C
(
1 + t−ν

)
(2.9)

for some C > 0, ν ∈ Z+. Moreover for any ϕ ∈ S(Rd ),

lim
t→0+

∫
Rd

U(x, t)ϕ(x)dx = 〈v, ϕ〉 .

Conversely for any U(x, t) ∈ C∞(Rd × (0, T )) satisfying (2.8) and (2.9), there exists
v ∈ S ′(Rd) such that U(x, t) = 〈vξ ,M(x, ξ, t)〉.

3. The structure of the tempered distributions supported by regular closed sets

DEFINITION 2 ([4]). Let A be a closed subset of Rd . If there exist d > 0, ω > 0 and
0 < q ≤ 1 such that any x1 and x2 ∈ A so that |x1 −x2| ≤ d are linked by a curve in A whose
length l satisfies l ≤ ω|x1 − x2|q , then we call A a regular.

For example, if A is a convex closed set, ω = q = 1 and d = d(A) and if A is a closure
of the upper half-plane, ω = q = 1 and d = ∞. Of course, a closure of the first quadrant (a
proper convex cone ) and the light cone are also a regular closed set.
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Concerning on the tempered distributions supported on a regular closed set, the following
result is known:

PROPOSITION 2 ([4]). Let A be a regular closed set. If f ∈ S ′(Rd) and supp f ⊂ A,
then there exist the tempered measures supported on A, µα (|α| ≤ m), such that supp µα ⊂ A

and

f =
∑

|α|≤m

∂αµα ,

where the tempered measure µ means that there exists m ∈ Z+ so that
∫ |dµ|(x)

(1+|x|)m < ∞.

Put S ′
A = {f ∈ S ′ | supp f ⊂ A}. Now our main result is as follows:

THEOREM 2. Let A be a regular closed set. For any v in S ′
A(Rd ), set U(x, t) be

U(x, t) = 〈
vξ ,M(x, ξ, t)

〉
. Then U(x, t) satisfies that

U(x, t) ∈ C∞(Rd × (0, t0)) , (3.1)

(
∂

∂t
− ∆x + |x|2

)
U(x, t) = 0 , on Rd × (0, t0) (3.2)

and

|U(x, t)| ≤ C(1 + t−ν )e
− 1

4
2e−2t

1−e−4t
d(x,A)2

(3.3)

for some C > 0 and ν ∈ Z+, where d(x,A) = infξ∈A |x − ξ |. Moreover for any ϕ ∈ S(Rd ),

lim
t→0+

∫
Rd

U(x, t)ϕ(x)dx = 〈v, ϕ〉 .

Conversely for any U(x, t) ∈ C∞(Rd × (0, t0)) satisfying (3.2) and (3.3) , there exists
v ∈ S ′

A(Rd) such that U(x, t) = 〈vξ ,M(x, ξ, t)〉.
PROOF. Let u ∈ S ′

A. If U(x, t) = 〈
uξ ,M(x, ξ, t)

〉
, then we have

|U(x, t)| = | 〈uξ ,M(x, ξ, t)
〉 |

=
∣∣∣∣ ∑
|α|≤m

(−1)|α|
∫

A

∂α
ξ M(x, ξ, t)dµα(ξ)

∣∣∣∣
≤
∑

|α|≤m

∫
A

|∂α
ξ M(x, ξ, t)||dµα|(ξ) . (3.4)

By Proposition 1, we have

(3.4) ≤
∑

|α|≤m

(α!)1/2t−|α|
∫

A

(1 + |x| + |ξ |)|α|M(x, ξ, t)|dµα|(ξ)



CHARACTERIZATION OF THE TEMPERED DISTRIBUTIONS 413

=
∑

|α|≤m

(α!)1/2t−|α|∑
l≤m

(
m

l

)
(1 + |x|)l

∫
A

|ξ |m−lM(x, ξ, t)|dµα|(ξ)

=
∑

|α|≤m

(α!)1/2t−|α|∑
l≤m

(
m

l

)
(1 + |x|)l

∫
A

|ξ |m−l e−dt

π−d/2(1 − e−4t )d/2

× e
− 1

2
1+e−4t

1−e−4t
(|x|2+|ξ |2)+ 2e−2t

1−e−4t
x·ξ |dµα|(ξ) . (3.5)

Since x · ξ = −|x−ξ |2+|x|2+|ξ |2
2 , we have

(3.5) ≤
∑

|α|≤m

(α!)1/2t−|α|∑
l≤m

(
m

l

)
(1 + |x|)le− 1

2

(
1+e−4t

1−e−4t − 2e−2t

1−e−4t

)
|x|2

e
− 1

2
2e−2t

1−e−4t
d(x,A)2

×
∫

A

|ξ |m−le
− 1

2

(
1+e−4t

1−e−4t
− 2e−2t

1−e−4t

)
|ξ |2 |dµα|(ξ) , (3.6)

Since 0 < t < t0, for any p ∈ Z+,

|x|pe
− 1

2

(
1+e−4t

1−e−4t − 2e−2t

1−e−4t

)
|x|2 ≤ (tanh t)−p/2pp/2 ≤ t−p/2pp/2

and µα is the tempered measure, by (3.6), there exist r ∈ Z+ and Cr > 0 such that

|U(x, t)| ≤ Cr(1 + t−r )e
− 1

4
2e−2t

1−e−4t
d(x,A)2

.

Conversely for any U(x, t) ∈ C∞(Rd × (0, t0)) satisfying (3.2) and (3.3), by Theorem
1, there exists v ∈ S ′(Rd) such that U(x, t) = 〈

vξ ,M(x, ξ, t)
〉
. Let ϕ ∈ D(Rd ) and K =

supp ϕ ⊂ Rd \ A. Then we have∣∣∣∣
∫

Rd

U(x, t)ϕ(x)dx

∣∣∣∣ ≤
∫

Rd

|U(x, t)||ϕ(x)|dx

=
∫

K

|U(x, t)||ϕ(x)|dx

≤ C
(
1 + t−ν

)
e
− 1

4
2e−2t

1−e−4t
d(K,A)2

→ 0 ,

as t → 0+, where d(K,A) = inf
x∈K

d(x,A). Hence we obtain

lim
t→0+

∫
Rd

U(x, t)ϕ(x)dx = 0 .

On the other hand, by Theorem 1 we find that

lim
t→0+ U(x, t) = v(x) in S ′(Rd) .
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Therefore we obtain that supp v ⊂ A. �
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